Free access
Volume 46, Number 1, January-February 2012
Page(s) 81 - 110
Published online 26 July 2011
  1. R. Alicandro and M. Cicalese, A general integral representation result for continuum limits of discrete energies with superlinear growth. SIAM J. Math. Anal. 36 (2004) 1–37. [CrossRef] [MathSciNet]
  2. X. Blanc, C. Le Bris and P.-L. Lions, From molecular models to continuum mechanics. Arch. Ration. Mech. Anal. 164 (2002) 341–381. [CrossRef] [MathSciNet]
  3. M. Born and K. Huang, Dynamical theory of crystal lattices. Oxford Classic Texts in the Physical Sciences. The Clarendon Press Oxford University Press, New York, Reprint of the 1954 original (1988).
  4. A. Braides and M.S. Gelli, Continuum limits of discrete systems without convexity hypotheses. Math. Mech. Solids 7 (2002) 41–66. [CrossRef] [MathSciNet]
  5. M. Dobson, M. Luskin and C. Ortner, Accuracy of quasicontinuum approximations near instabilities. J. Mech. Phys. Solids 58 (2010) 1741–1757. [CrossRef] [MathSciNet]
  6. M. Dobson, M. Luskin and C. Ortner, Sharp stability estimates for the force-based quasicontinuum approximation of homogeneous tensile deformation. Multiscale Model. Simul. 8 (2010) 782–802. [NASA ADS] [CrossRef] [MathSciNet] [PubMed]
  7. W.E and P. Ming, Cauchy–Born rule and the stability of crystalline solids: static problems. Arch. Ration. Mech. Anal. 183 (2007) 241–297. [CrossRef] [MathSciNet]
  8. G. Friesecke and F. Theil, Validity and failure of the Cauchy-Born hypothesis in a two-dimensional mass-spring lattice. J. Nonlinear Sci. 12 (2002) 445–478. [CrossRef] [MathSciNet]
  9. V.S. Ghutikonda and R.S. Elliott, Stability and elastic properties of the stress-free b2 (cscl-type) crystal for the morse pair potential model. J. Elasticity 92 (2008) 151–186. [CrossRef] [MathSciNet]
  10. M. Giaquinta, Introduction to regularity theory for nonlinear elliptic systems. Lectures in Mathematics ETH Zürich. Birkhäuser Verlag, Basel (1993).
  11. O. Gonzalez and A.M. Stuart, A first course in continuum mechanics. Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge (2008).
  12. C. Kittel, Introduction to Solid State Physics, 7th ed. John Wiley & Sons, New York, Chichester (1996).
  13. R. Kress, Linear integral equations, Applied Mathematical Sciences 82. Springer-Verlag, 2nd edition, New York (1999).
  14. L.D. Landau and E.M. Lifshitz, Theory of elasticity, Course of Theoretical Physics 7. Translated by J.B. Sykes and W.H. Reid. Pergamon Press, London (1959).
  15. X.H. Li and M. Luskin, An analysis of the quasi-nonlocal quasicontinuum approximation of the embedded atom model. arXiv:1008.3628v4.
  16. X.H. Li and M. Luskin, A generalized quasi-nonlocal atomistic-to-continuum coupling method with finite range interaction. arXiv:1007.2336.
  17. M.R. Murty, Problems in analytic number theory, Graduate Texts in Mathematics 206. Springer, 2nd edition, New York (2008). Readings in Mathematics.
  18. C. Ortner, A priori and a posteriori analysis of the quasinonlocal quasicontinuum method in 1D. Math. Comput. 80 (2011) 1265–1285 [CrossRef] [MathSciNet]
  19. C. Ortner and E. Süli, Analysis of a quasicontinuum method in one dimension. ESAIM: M2AN 42 (2008) 57–91. [CrossRef] [EDP Sciences]
  20. B. Schmidt, A derivation of continuum nonlinear plate theory from atomistic models. Multiscale Model. Simul. 5 (2006) 664–694. [NASA ADS] [CrossRef] [MathSciNet] [PubMed]
  21. F. Theil, A proof of crystallization in two dimensions. Commun. Math. Phys. 262 (2006) 209–236. [CrossRef] [MathSciNet]
  22. D. Wallace, Thermodynamics of Crystals. Dover Publications, New York (1998).
  23. T. Zhu, J. Li, K.J. Van Vliet, S. Ogata, S. Yip and S. Suresh, Predictive modeling of nanoindentation-induced homogeneous dislocation nucleation in copper. J. Mech. Phys. Solids 52 (2004) 691–724. [CrossRef]

Recommended for you