 R. Abgrall and S. Karni, Twolayer shallow water system: a relaxation approach. SIAM. J. Sci. Comput. 31 (2009) 1603–1627. [CrossRef] [MathSciNet]
 R. Abgrall and S. Karni, A comment on the computation of nonconservative products. J. Comput. Phys. 229 (2010) 2759–2763. [CrossRef] [MathSciNet]
 E. Audusse, F. Bouchut, M.O. Bristeau, R. Klien and B. Perthame, A fast and stable wellbalanced scheme with hydrostatic reconstruction for shallow water flows. SIAM. J. Sci. Comput. 25 (2004) 2050–2065. [CrossRef] [MathSciNet]
 E. Audusse and M.O. Bristeau, Finite volume solvers for multilayer SaintVenant system. Int. J. Appl. Math. Comput. Sci. 17 (2007) 311–319. [CrossRef] [MathSciNet]
 M.J. Castro, P. LeFloch, M.L. Munoz Ruiz and C. Pares, Why many theories of shock waves are necessary: Convergence error in formally pathconsistent schemes. J. Comput. Phys. 227 (2008) 8107–8129. [CrossRef] [MathSciNet]
 G.Q. Chen, C. Christoforou and Y. Zhang, Continuous dependence of entropy solutions to the euler equations on the adiabatic exponent and mach number. Arch. Ration. Mech. Anal. 189 (2008) 97–130. [CrossRef] [MathSciNet]
 G. Dal Maso, P. LeFloch and F. Murat, Definition and weak stability of nonconservative products. J. Math. Pures. Appl. 74 (1995) 483–548. [MathSciNet]
 U.S. Fjordholm, S. Mishra and E. Tadmor, Energy preserving and energy stable schemes for the shallow water equations,Foundations of Computational Mathematics, Proc. FoCM held in Hong Kong 2008, London Math. Soc. Lecture Notes Ser. 363, edited by F. Cucker, A. Pinkus and M. Todd (2009) 93–139.
 U.S. Fjordholm, S. Mishra and E. Tadmor, Wellbalanced and energy stable schemes for the shallow water equations with discontinuous topography. J. Comput. Phys. 230 (2011) 5587–5609. [NASA ADS] [CrossRef] [MathSciNet]
 E. Godlewski and P.A. Raviart, Hyperbolic systems of conservation laws. Ellipses (1991).
 S. Gottlieb, C.W. Shu and E. Tadmor, High order time discretization methods with the strong stability property, SIAM Rev. 43 (2001) 89–112.
 S. Karni, Viscous shock profiles and primitive formulations. SIAM J. Numer. Anal. 29 (1992) 1592–1609. [CrossRef] [MathSciNet]
 P.G. LeFloch, Entropy weak solutions to nonlinear hyperbolic systems in nonconservative form. Comm. Partial Differential Equations 13 (1988) 669–727. [CrossRef] [MathSciNet]
 T.Y. Hou and P.G. LeFloch, Why nonconservative schemes converge to wrong solutions. Error analysis. Math. Comput. 62 (1994) 497–530. [CrossRef] [MathSciNet]
 P.G. LeFloch and M.D. Thanh, The Riemann problem for fluid flows in a nozzle with discontinuous crosssection. Commun. Math. Sci. 1 (2003) 763–797. [CrossRef] [MathSciNet]
 P.G. LeFloch, J.M. Mercier and C. Rohde, Fully discrete entropy conservative schemes of arbitrary order. SIAM J. Numer. Anal. 40 (2002) 1968–1992. [CrossRef] [MathSciNet]
 R.J. LeVeque, Finite volume methods for hyperbolic problems.Cambridge university press, Cambridge (2002).
 T.P. Liu, Shock waves for compressible Navier–Stokes equations are stable. Comm. Pure Appl. Math. 39 (1986) 565–594. [CrossRef] [MathSciNet]
 M.L. Munoz Ruiz and C. Pares, Godunov method for nonconservative hyperbolic systems. Math. Model. Num. Anal. 41 (2007) 169–185. [CrossRef]
 C. Pares and M.J. Castro, On the wellbalance property of Roe’s method for nonconservative hyperbolic systems. Applications to shallow water equations. Math. Model. Num. Anal. 38 (2004) 821–852. [CrossRef] [EDP Sciences]
 C. Pares, Numerical methods for nonconservative hyperbolic systems: a theoretical framework. SIAM. J. Num. Anal. 44 (2006) 300–321. [CrossRef] [MathSciNet]
 E. Tadmor, The numerical viscosity of entropy stable schemes for systems of conservation laws, I. Math. Comp. 49 (1987) 91–103. [CrossRef] [MathSciNet]
 E. Tadmor, Entropy stability theory for difference approximations of nonlinear conservation laws and related timedependent problems. Acta Numer. 12 (2003) 451–512. [CrossRef] [MathSciNet]
 E. Tadmor and W. Zhong, Entropy stable approximations of Navier–Stokes equations with no artificial numerical viscosity. J. Hyperbolic Differ. Equ. 3 (2006) 529–559. [CrossRef] [MathSciNet]
 E. Tadmor and W. Zhong, Energy preserving and stable approximations for the twodimensional shallow water equations,in Mathematics and computation: A contemporary view, Proc. of the third Abel symposium. Ålesund, Norway, Springer (2008) 67–94.
 E. Romenski, D. Drikakis and E. Toro, Conservative models and numerical methods for compressible twophase flow. J. Sci. Comput. 42 (2010) 68–95. [CrossRef] [MathSciNet]
Free access
Issue 
ESAIM: M2AN
Volume 46, Number 1, JanuaryFebruary 2012



Page(s)  187  206  
DOI  http://dx.doi.org/10.1051/m2an/2011044  
Published online  03 October 2011 