Free Access
Issue
ESAIM: M2AN
Volume 46, Number 2, November-December 2012
Page(s) 265 - 290
DOI https://doi.org/10.1051/m2an/2011040
Published online 12 October 2011
  1. I. Aavatsmark, An introduction to multipoint flux approximations for quadrilateral grids. Comput. Geosci. 6 (2002) 405–432. Locally conservative numerical methods for flow in porous media. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed]
  2. I. Aavatsmark and R. Klausen, Well index in reservoir simulation for slanted and slightly curved wells in 3D grids. SPE J. 8 (2003) 41–48.
  3. I. Aavatsmark, T. Barkve, O. Boe and T. Mannseth, Discretization on non-orthogonal, quadrilateral grids for inhomogeneous, anisotropic media. J. Comput. Phys. 127 (1996) 2–14. [CrossRef]
  4. I. Aavatsmark, G. Eigestad, B. Heimsund, B. Mallison, J. Nordbotten and E. Oian, A new finite-volume approach to efficient discretization on challenging grids. SPE J. 15 (2010) 658–669.
  5. L. Agelas, D.A. Di Pietro and R. Masson, A symmetric and coercive finite volume scheme for multiphase porous media flow problems with applications in the oil industry, in Finite volumes for complex applications V. ISTE, London (2008) 35–51.
  6. L. Agelas, R. Eymard and R. Herbin, A nine-point finite volume scheme for the simulation of diffusion in heterogeneous media. C. R. Math. Acad. Sci. Paris 347 (2009) 673–676. [CrossRef] [MathSciNet]
  7. B. Andreianov, M. Bendahmane and K. Karlsen, A gradient reconstruction formula for finite-volume schemes and discrete duality, in Finite volumes for complex applications V. ISTE, London (2008) 161–168.
  8. B. Andreianov, M. Bendahmane, K.H. Karlsen and C. Pierre, Convergence of discrete duality finite volume schemes for the cardiac bidomain model. Netw. Heterog. Media 6 (2011) 195–240. [CrossRef] [MathSciNet]
  9. F. Boyer and F. Hubert, Finite volume method for 2D linear and nonlinear elliptic problems with discontinuities. SIAM J. Numer. Anal. 46 (2008) 3032–3070. [CrossRef] [MathSciNet]
  10. F. Brezzi, A. Buffa and K. Lipnikov, Mimetic finite differences for elliptic problems. ESAIM: M2AN 43 (2008) 277–295. [CrossRef] [EDP Sciences] [MathSciNet]
  11. Y. Coudière and F. Hubert, A 3D discrete duality finite volume method for nonlinear elliptic equations. SIAM J. Sci. Comput. 33 (2011) 1739. [CrossRef]
  12. Y. Coudière, J.-P. Vila and P. Villedieu, Convergence rate of a finite volume scheme for a two-dimensional convection-diffusion problem. ESAIM: M2AN 33 (1999) 493–516. [CrossRef] [EDP Sciences] [MathSciNet]
  13. Y. Coudière, C. Pierre, O. Rousseau and R. Turpault, 2D/3D discrete duality finite volume scheme (DDFV) applied to ECG simulation. A DDFV scheme for anisotropic and heterogeneous elliptic equations, application to a bio-mathematics problem: electrocardiogram simulation, in Finite volumes for complex applications V. ISTE, London (2008) 313–320.
  14. Y. Coudière, C. Pierre, O. Rousseau and R. Turpault, A 2D/3D discrete duality finite volume scheme. Application to ECG simulation. Int. J. Finite 6 (2009) 24.
  15. K. Domelevo and P. Omnes, A finite volume method for the Laplace equation on almost arbitrary two-dimensional grids. ESAIM: M2AN 39 (2005) 1203–1249. [CrossRef] [EDP Sciences]
  16. J. Droniou, R. Eymard, T. Gallouët and R. Herbin, A unified approach to mimetic finite difference, hybrid finite volume and mixed finite volume methods. Math. Models Methods Appl. Sci. 20 (2010) 265–295. [CrossRef] [MathSciNet]
  17. A. Ern and J.-L. Guermond, Theory and practice of finite elements, Applied Mathematical Sciences 159. Springer-Verlag, New York (2004).
  18. R. Eymard, T. Gallouët and P. Joly, Hybrid finite element techniques for oil recovery simulation. Comput. Methods Appl. Mech. Eng. 74 (1989) 83–98. [CrossRef]
  19. R. Eymard, T. Gallouët and R. Herbin, Finite volume methods, in Handbook of numerical analysis, Handb. Numer. Anal. VII. North-Holland, Amsterdam (2000) 713–1020.
  20. R. Eymard, T. Gallouët and R. Herbin, A new finite volume scheme for anisotropic diffusion problems on general grids: convergence analysis. C. R. Math. Acad. Sci. Paris 344 (2007) 403–406. [CrossRef] [MathSciNet]
  21. R. Eymard, T. Gallouët and R. Herbin, Discretisation of heterogeneous and anisotropic diffusion problems on general non-conforming meshes, SUSHI: a scheme using stabilisation and hybrid interfaces. IMA J. Numer. Anal. 30 (2010) 1009–1043. see also http://hal.archives-ouvertes.fr/. [CrossRef] [MathSciNet]
  22. R. Eymard, C. Guichard, R. Herbin and R. Masson, Multiphase flow in porous media using the VAG scheme, in Finite Volumes for Complex Applications VI – Problems and Persepectives, edited by J. Fort, J. Furst, J. Halama, R. Herbin and F. Hubert. Springer Proceedings in Mathematics (2011) 409–417.
  23. R. Eymard, G. Henry, R. Herbin, F. Hubert, R. Kloefkorn and G. Manzini, 3D benchmark on discretization schemes for anisotropic diffusion problem on general grids, in Finite Volumes for Complex Applications VI – Problems and Persepectives, edited by J. Fort, J. Furst, J. Halama, R. Herbin and F. Hubert. Springer Proceedings in Mathematics (2011) 95–130.
  24. I. Faille, A control volume method to solve an elliptic equation on a two-dimensional irregular mesh. Comput. Methods Appl. Mech. Eng. 100 (1992) 275–290. [CrossRef] [MathSciNet]
  25. R. Herbin and F. Hubert, Benchmark on discretization schemes for anisotropic diffusion problems on general grids for anisotropic heterogeneous diffusion problems, in Finite Volumes for Complex Applications V, edited by R. Eymard and J.-M. Hérard. Wiley (2008) 659–692.
  26. F. Hermeline, Approximation of diffusion operators with discontinuous tensor coefficients on distorted meshes. Comput. Methods Appl. Mech. Eng. 192 (2003) 1939–1959. [CrossRef] [MathSciNet]
  27. F. Hermeline, Approximation of 2-D and 3-D diffusion operators with variable full tensor coefficients on arbitrary meshes. Comput. Methods Appl. Mech. Eng. 196 (2007) 2497–2526. [CrossRef] [MathSciNet]
  28. F. Hermeline, A finite volume method for approximating 3D diffusion operators on general meshes. J. Comput. Phys. 228 (2009) 5763–5786. [CrossRef] [MathSciNet]
  29. G. Strang, Variational crimes in the finite element method, in The mathematical foundations of the finite element method with applications to partial differential equations (Proc. Sympos., Univ. Maryland, Baltimore, Md. 1972). Academic Press, New York (1972) 689–710.

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you