Free access
Issue
ESAIM: M2AN
Volume 46, Number 3, May-June 2012
Special volume in honor of Professor David Gottlieb
Page(s) 605 - 618
DOI http://dx.doi.org/10.1051/m2an/2011057
Published online 11 January 2012
  1. R.F. Bass and K. Gröchenig, Random sampling of multivariate trigonometric polynomials. SIAM J. Math. Anal. 36 (2005) 773–795. [CrossRef]
  2. J.J. Benedetto, A.M. Powell and Ö. Yılmaz, Sigma-delta (ΣΔ) quantization and finite frames. IEEE Trans. Inf. Theory 52 (2006) 1990–2005. [CrossRef]
  3. I. Daubechies and R. DeVore, Reconstructing a bandlimited function from very coarsely quantized data : A family of stable sigma-delta modulators of arbitrary order. Ann. Math. 158 (2003) 679–710. [CrossRef]
  4. H.A. David and H.N. Nagarja, Order Statistics, 3th edition. John Wiley & Sons, Hoboken, NJ (2003).
  5. L. Devroye, Laws of the iterated logarithm for order statistics of uniform spacings. Ann. Probab. 9 (1981) 860–867. [CrossRef] [MathSciNet]
  6. R. Gervais, Q.I. Rahman and G. Schmeisser, A bandlimited function simulating a duration-limited one, in Anniversary volume on approximation theory and functional analysis (Oberwolfach, 1983), Internationale Schriftenreihe zur Numerischen Mathematik 65. Birkhäuser, Basel (1984) 355–362.
  7. C.S. Güntürk, Approximating a bandlimited function using very coarsely quantized data : improved error estimates in sigma-delta modulation. J. Amer. Math. Soc. 17 (2004) 229–242. [CrossRef] [MathSciNet]
  8. S. Huestis, Optimum kernels for oversampled signals. J. Acoust. Soc. Amer. 92 (1992) 1172–1173. [CrossRef]
  9. S. Kunis and H. Rauhut, Random sampling of sparse trigonometric polynomials II. orthogonal matching pursuit versus basis pursuit. Found. Comput. Math. 8 (2008) 737–763. [CrossRef] [MathSciNet]
  10. F. Natterer, Efficient evaluation of oversampled functions. J. Comput. Appl. Math. 14 (1986) 303–309. [CrossRef]
  11. R.A. Niland, Optimum oversampling. J. Acoust. Soc. Amer. 86 (1989) 1805–1812. [CrossRef] [MathSciNet]
  12. E. Slud, Entropy and maximal spacings for random partitions. Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete 41 (1977/78) 341–352. [CrossRef]
  13. T. Strohmer and J. Tanner, Fast reconstruction methods for bandlimited functions from periodic nonuniform sampling. SIAM J. Numer. Anal. 44 (2006) 1073–1094. [CrossRef]
  14. C. Vogel and H. Johansson, Time-interleaved analog-to-digital converters : Status and future directions. Proceedings of the 2006 IEEE International Symposium on Circuits and Systems (ISCAS) (2006) 3386–3389.
  15. J. Xu and T. Strohmer, Efficient calibration of time-interleaved adcs via separable nonlinear least squares. Technical Report, Dept. of Mathematics, University of California at Davis. http://www.math.ucdavis.edu/-strotimer/papers/2006/adc.pdf
  16. Ö. Yılmaz, Coarse quantization of highly redundant time-frequency representations of square-integrable functions. Appl. Comput. Harmonic Anal. 14 (2003) 107–132. [CrossRef]
  17. A.I. Zayed, Advances in Shannon’s sampling theory. CRC Press, Boca Raton (1993).

Recommended for you