Free access
Issue
ESAIM: M2AN
Volume 46, Number 3, May-June 2012
Special volume in honor of Professor David Gottlieb
Page(s) 647 - 660
DOI http://dx.doi.org/10.1051/m2an/2011063
Published online 11 January 2012
  1. I.M. Babuška and S.A. Sauter, Is the pollution effect of the FEM avoidable for the Helmholtz equation considering high wave numbers? SIAM Rev. 42 (2000) 451–484. [CrossRef] [MathSciNet]
  2. A. Bayliss, C.I. Goldstein and E. Turkel, An iterative method for the Helmholtz equation. J. Comput. Phys. 49 (1983) 443–457. [CrossRef]
  3. A. Bayliss, C.I. Goldstein and E. Turkel, On accuracy conditions for the numerical computation of waves. J. Comput. Phys. 59 (1985) 396–404. [CrossRef]
  4. A. Brandt, Multi-level adaptive solution to the boundary- value problems. Math. Comp. 31 (1977) 333-390. [CrossRef] [MathSciNet]
  5. A. Brandt and I. Livshits, Remarks on the wave-ray Multigrid Solvers for Helmholtz Equations, Computational Fluid and Solid Mechanics, edited by K.J. Bathe. Elsevier (2003) 1871–1871.
  6. H.C. Elman and D.P. O’Leary, Efficient iterative solution of the three dimensional Helmholtz equation. J. Comput. Phys. 142 (1998) 163–181. [CrossRef]
  7. Y.A. Erlangga, Advances in iterative methods and preconditioners for the Helmholtz equation. Arch. Comput. Methods Eng. 15 (2008) 37–66. [CrossRef] [MathSciNet]
  8. Y.A. Erlangga, C. Vuik and C.W. Oosterlee, On a class of preconditioners for the Helmholtz equation. Appl. Numer. Math. 50 (2004) 409–425. [CrossRef]
  9. Y.A. Erlangga, C.W. Oosterlee and C. Vuik, A novel multigrid based preconditioner for heterogeneous Helmholtz problems. SIAM J. Sci. Comput. 27 (2006) 1471–1492. [CrossRef]
  10. Y.A. Erlangga, C. Vuik and C.W. Oosterlee, Comparison of multigrid and incomplete LU shifted-Laplace preconditioners for the inhomogeneous Helmholtz equation. Appl. Numer. Math. 56 (2006) 648–666. [CrossRef]
  11. G.R. Hadley, A complex Jacobi iterative method for the indefinite Helmholtz equation. J. Comput. Phys. 203 (2005) 358–370. [CrossRef]
  12. I. Harari and E. Turkel, Accurate finite difference methods for time-harmonic wave propagation. J. Comput. Phys. 119 (1995) 252–270. [CrossRef]
  13. I. Singer and E. Turkel, High order finite difference methods for the Helmholtz equation. Comput. Meth. Appl. Mech. Eng. 163 (1998) 343–358. [CrossRef]
  14. I. Singer and E. Turkel, Sixth order accurate finite difference schemes for the Helmholtz equation. J. Comp. Acous. 14 (2006) 339–351. [CrossRef]
  15. H. Tal-Ezer and E. Turkel, Iterative Solver for the Exterior Helmholtz Problem. SIAM J. Sci. Comput. 32 (2010) 463–475. [CrossRef]
  16. E. Turkel, Numerical methods and nature. J. Sci. Comput. 28 (2006) 549–570. [CrossRef]
  17. E. Turkel, Boundary Conditions and Iterative Schemes for the Helmholtz Equation in Unbounded Regions, Computational Methods for Acoustics Problems, edited by F. Magoules. Saxe-Coburg Publ. UK (2008).
  18. H.A. van der Vorst, Bi-CGSTAB : A fast and smoothly converging variant of BI-CG for the solution of nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 13 (1992) 631–644. [CrossRef] [MathSciNet]
  19. M.B. van Gijzen, Y.A. Erlangga and C. Vuik, Spectral analysis of the discrete Helmholtz operator preconditioned with a shifted Laplace precondtioner. SIAM J. Sci. Comput. 29 (2006) 1942–1958. [CrossRef]
  20. R. Wienands, C.W. Oosterlee, On three-grid Fourier analysis for multigrid. SIAM J. Sci. Comput. 22 (2001) 651–671. [CrossRef]

Recommended for you