 V. Agoshkov, A. Quarteroni and G. Rozza, A mathematical approach in the design of arterial bypass using unsteady Stokes equations. J. Sci. Comput. 28 (2006) 139–165. [CrossRef] [MathSciNet]
 V. Agoshkov, A. Quarteroni and G. Rozza, Shape design in aortocoronaric bypass anastomoses using perturbation theory. SIAM J. Numer. Anal. 44 (2006) 367–384. [CrossRef] [MathSciNet]
 G. Allaire, Conception optimale de structures, vol. 58. Springer Verlag (2007).
 D. Amsallem, J. Cortial, K. Carlberg and C. Farhat, A method for interpolating on manifolds structural dynamics reducedorder models. Int. J. Numer. Methods Eng. 80 (2009) 1241–1258. [CrossRef]
 H. Antil, M. Heinkenschloss, R.H.W. Hoppe and D.C. Sorensen, Domain decomposition and model reduction for the numerical solution of PDE constrained optimization problems with localized optimization variables. Comput. Vis. Sci. 13 (2010) 249–264. [CrossRef] [MathSciNet]
 M. Berggren, Numerical solution of a flowcontrol problem: Vorticity reduction by dynamic boundary action. SIAM J. Sci. Comput. 19 (1998) 829. [CrossRef] [MathSciNet]
 M. Bergmann and L. Cordier, Optimal control of the cylinder wake in the laminar regime by trustregion methods and POD reducedorder models. J. Comput. Phys. 227 (2008) 7813–7840. [CrossRef] [MathSciNet]
 R.P. Brent, Algorithms for Minimization Without Derivatives. PrenticeHall, Englewood Cliffs, N.J. (1973).
 E. Burman and M.A. Fernández, Continuous interior penalty finite element method for the timedependent Navier–Stokes equations: space discretization and convergence. Numer. Math. 107 (2007) 39–77. [CrossRef] [MathSciNet]
 K. Carlberg and C. Farhat, A lowcost, goaloriented compact proper orthogonal decomposition basis for model reduction of static systems. Int. J. Numer. Methods Eng. 86 (2011) 381–402. [CrossRef]
 T. F. Coleman and Y. Li, An interior trust region approach for nonlinear minimization subject to bounds. SIAM J. Optim. 6 (1996) 418–445. [CrossRef] [MathSciNet]
 L. Dedè, Optimal flow control for Navier–Stokes equations: drag minimization. Int. J. Numer. Methods Fluids 55 (2007) 347–366. [CrossRef]
 S. Dempe, Foundations of bilevel programming. Kluwer Academic Publishers, Dordrecht, The Netherlands (2002).
 S. Deparis, Reduced basis error bound computation of parameterdependent NavierStokes equations by the natural norm approach. SIAM J. Numer. Anal. 46 (2008) 2039–2067. [CrossRef] [MathSciNet]
 S. Deparis and G. Rozza, Reduced basis method for multiparameterdependent steady NavierStokes equations: Applications to natural convection in a cavity. J. Comput. Phys. 228 (2009) 4359–4378. [CrossRef] [MathSciNet]
 H. Do, A.A. Owida, W. Yang and Y.S. Morsi, Numerical simulation of the haemodynamics in endtoside anastomoses. Int. J. Numer. Methods Fluids 67 (2011) 638–650. [CrossRef]
 O. Dur, S.T. Coskun, K.O. Coskun, D. Frakes, L.B. Kara and K. Pekkan, Computeraided patientspecific coronary artery graft design improvements using CFD coupled shape optimizer. Cardiovasc. Eng. Tech. (2011) 1–13.
 Z. El Zahab, E. Divo and A. Kassab, Minimisation of the wall shear stress gradients in bypass grafts anastomoses using meshless CFD and genetic algorithms optimisation. Comput. Methods Biomech. Biomed. Eng. 13 (2010) 35–47. [CrossRef]
 C.R. Ethier, S. Prakash, D.A. Steinman, R.L. Leask, G.G. Couch and M. Ojha, Steady flow separation patterns in a 45 degree junction. J. Fluid Mech. 411 (2000) 1–38. [CrossRef]
 C.R. Ethier, D.A. Steinman, X. Zhang, S.R. Karpik and M. Ojha, Flow waveform effects on endtoside anastomotic flow patterns. J. Biomech. 31 (1998) 609–617. [CrossRef] [PubMed]
 S. Giordana, S.J. Sherwin, J. Peiró, D.J. Doorly, J.S. Crane, K.E. Lee, N.J.W. Cheshire and C.G. Caro, Local and global geometric influence on steady flow in distal anastomoses of peripheral bypass grafts. J. Biomech. Eng. 127 (2005) 1087. [CrossRef] [PubMed]
 M.D. Gunzburger, Perspectives in Flow Control and Optimization. SIAM (2003).
 M.D. Gunzburger, L. Hou and T.P. Svobodny, Boundary velocity control of incompressible flow with an application to viscous drag reduction. SIAM J. Control Optim. 30 (1992) 167. [CrossRef] [MathSciNet]
 M.D. Gunzburger, H. Kim and S. Manservisi, On a shape control problem for the stationary NavierStokes equations. ESAIM: M2AN 34 (2000) 1233–1258. [CrossRef] [EDP Sciences]
 H. Haruguchi and S. Teraoka, Intimal hyperplasia and hemodynamic factors in arterial bypass and arteriovenous grafts: a review. J. Artif. Organs 6 (2003) 227–235. [CrossRef] [PubMed]
 J. Haslinger and R.A.E. Mäkinen, Introduction to shape optimization: theory, approximation, and computation. SIAM (2003).
 R. Herzog and F. Schmidt, Weak lower semicontinuity of the optimal value function and applications to worstcase robust optimal control problems. Optim. 61 (2012) 685–697. [CrossRef]
 M. Hintermüller, K. Kunisch, Y. Spasov and S. Volkwein, Dynamical systemsbased optimal control of incompressible fluids. Int. J. Numer. Methods Fluids 46 (2004) 345–359. [CrossRef]
 J.D. Humphrey, Review paper: Continuum biomechanics of soft biological tissues. Proc. R. Soc. A 459 (2003) 3–46. [CrossRef]
 M. Jiang, R. Machiraju and D. Thompson, Detection and visualization of vortices, in The Visualization Handbook, edited by C.D. Hansen and C.R. Johnson (2005) 295–309.
 H. Kasumba and K. Kunisch, Shape design optimization for viscous flows in a channel with a bump and an obstacle, in Proc. 15th Int. Conf. Methods Models Automation Robotics, Miedzyzdroje, Poland (2010) 284–289.
 R.S. Keynton, M.M. Evancho, R.L. Sims, N.V. Rodway, A. Gobin and S.E. Rittgers, Intimal hyperplasia and wall shear in arterial bypass graft distal anastomoses: an in vivo model study. J. Biomech. Eng. 123 (2001) 464. [CrossRef] [PubMed]
 D.N. Ku, D.P. Giddens, C.K. Zarins and S. Glagov, Pulsatile flow and atherosclerosis in the human carotid bifurcation. positive correlation between plaque location and low oscillating shear stress. Arterioscler. Thromb. Vasc. Biol. 5 (1985) 293–302. [CrossRef]
 K. Kunisch and B. Vexler, Optimal vortex reduction for instationary flows based on translation invariant cost functionals. SIAM J. Control Optim. 46 (2007) 1368–1397. [CrossRef] [MathSciNet]
 T. Lassila, A. Manzoni, A. Quarteroni and G. Rozza, A reduced computational and geometrical framework for inverse problems in haemodynamics (2011). Technical report MATHICSE 12.2011: Available on http://mathicse.epfl.ch/files/content/sites/mathicse/files/Mathicse
 T. Lassila and G. Rozza, Parametric freeform shape design with PDE models and reduced basis method. Comput. Methods Appl. Mechods Eng. 199 (2010) 1583–1592. [CrossRef]
 M. Lei, J. Archie and C. Kleinstreuer, Computational design of a bypass graft that minimizes wall shear stress gradients in the region of the distal anastomosis. J. Vasc. Surg. 25 (1997) 637–646. [CrossRef] [PubMed]
 A. Leuprecht, K. Perktold, M. Prosi, T. Berk, W. Trubel and H. Schima, Numerical study of hemodynamics and wall mechanics in distal endtoside anastomoses of bypass grafts. J. Biomech. 35 (2002) 225–236. [CrossRef] [PubMed]
 F. Loth, P.F. Fischer and H.S. Bassiouny. Blood flow in endtoside anastomoses. Annu. Rev. Fluid Mech. 40 (200) 367–393. [CrossRef]
 F. Loth, S.A. Jones, D.P. Giddens, H.S. Bassiouny, S. Glagov and C.K. Zarins. Measurements of velocity and wall shear stress inside a PTFE vascular graft model under steady flow conditions. J. Biomech. Eng. 119 (1997) 187. [CrossRef] [PubMed]
 F. Loth, S.A. Jones, C.K. Zarins, D.P. Giddens, R.F. Nassar, S. Glagov and H.S. Bassiouny, Relative contribution of wall shear stress and injury in experimental intimal thickening at PTFE endtoside arterial anastomoses. J. Biomech. Eng. 124 (2002) 44. [CrossRef] [PubMed]
 A. Manzoni, Reduced models for optimal control, shape optimization and inverse problems in haemodynamics, Ph.D. thesis, École Polytechnique Fédérale de Lausanne (2012).
 A. Manzoni, A. Quarteroni and G. Rozza, Shape optimization for viscous flows by reduced basis methods and freeform deformation, Internat. J. Numer. Methods Fluids 70 (2012) 646–670. [CrossRef] [MathSciNet]
 A. Manzoni, A. Quarteroni and G. Rozza, Model reduction techniques for fast blood flow simulation in parametrized geometries. Int. J. Numer. Methods Biomed. Eng. 28 (2012) 604–625. [CrossRef] [MathSciNet]
 F. Migliavacca and G. Dubini, Computational modeling of vascular anastomoses. Biomech. Model. Mechanobiol. 3 (2005) 235–250. [CrossRef] [PubMed]
 I.B. Oliveira and A.T. Patera, Reducedbasis techniques for rapid reliable optimization of systems described by affinely parametrized coercive elliptic partial differential equations. Optim. Eng. 8 (2008) 43–65. [CrossRef]
 A.A. Owida, H. Do and Y.S. Morsi, Numerical analysis of coronary artery bypass grafts: An over view. Comput. Methods Programs Biomed. (2012). DOI: 10.1016/j.cmpb.2011.12.005.
 J.S. Peterson, The reduced basis method for incompressible viscous flow calculations. SIAM J. Sci. Stat. Comput. 10 (1989) 777–786. [CrossRef]
 M. Probst, M. Lülfesmann, M. Nicolai, H.M. Bücker, M. Behr and C.H. Bischof. Sensitivity of optimal shapes of artificial grafts with respect to flow parameters. Comput. Methods Appl. Mech. Eng. 199 (2010) 997–1005. [CrossRef]
 A. Qiao and Y. Liu, Medical application oriented blood flow simulation. Clinical Biomech. 23 (2008) S130–S136. [CrossRef]
 A. Quarteroni and G. Rozza, Optimal control and shape optimization of aortocoronaric bypass anastomoses. Math. Models Methods Appl. Sci. 13 (2003) 1801–1823. [CrossRef]
 A. Quarteroni and G. Rozza, Numerical solution of parametrized NavierStokes equations by reduced basis methods. Numer. Methods Part. Differ. Equ. 23 (2007) 923–948. [CrossRef]
 A. Quarteroni, G. Rozza and A. Manzoni. Certified reduced basis approximation for parametrized partial differential equations in industrial applications. J. Math. Ind. 1 (2011).
 S.S. Ravindran, Reducedorder adaptive controllers for fluid flows using POD. J. Sci. Comput. 15 (2000) 457–478. [CrossRef]
 A.M. Robertson, A. Sequeira and M.V. Kameneva, Hemorheology. Hemodynamical Flows (2008) 63–120.
 G. Rozza, On optimization, control and shape design of an arterial bypass. Int. J. Numer. Methods Fluids 47 (2005) 1411–1419. [CrossRef]
 G. Rozza, D.B.P. Huynh and A.T. Patera, Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations. Arch. Comput. Methods Eng. 15 (2008) 229–275. [CrossRef] [MathSciNet]
 S. Sankaran and A.L. Marsden, The impact of uncertainty on shape optimization of idealized bypass graft models in unsteady flow. Phys. Fluids 22 (2010) 121902. [CrossRef]
 O. Stein, Bilevel strategies in semiinfinite programming. Kluwer Academic Publishers, Dordrecht, The Netherlands (2003).
 R. Temam, NavierStokes Equations. AMS Chelsea, Providence, Rhode Island (2001).
 K. Veroy and A.T. Patera, Certified realtime solution of the parametrized steady incompressible NavierStokes equations: rigorous reducedbasis a posteriori error bounds. Int. J. Numer. Methods Fluids 47 (2005) 773–788. [CrossRef]
 G. Weickum, M.S. Eldred and K. Maute, A multipoint reducedorder modeling approach of transient structural dynamics with application to robust design optimization. Struct. Multidisc. Optim. 38 (2009) 599–611. [CrossRef]
 D. Zeng, Z. Ding, M.H. Friedman and C.R. Ethier, Effects of cardiac motion on right coronary artery hemodynamics. Ann. Biomed. Eng. 31 (2003) 420–429. [CrossRef] [PubMed]
Issue 
ESAIM: M2AN
Volume 47, Number 4, JulyAugust 2013
Direct and inverse modeling of the cardiovascular and respiratory systems



Page(s)  1107  1131  
DOI  http://dx.doi.org/10.1051/m2an/2012059  
Published online  17 June 2013 