Highlight
Free access
Issue
ESAIM: M2AN
Volume 47, Number 6, November-December 2013
Page(s) 1583 - 1626
DOI http://dx.doi.org/10.1051/m2an/2013077
Published online 20 August 2013
  1. M.P. Allen and D.J. Tildesley, Computer simulation of liquids. Clarendon Press, New York, NY, USA (1989).
  2. P. Billingsley, Convergence of probability measures. Wiley Series in Probability and Statistics: Probability and Statistics. John Wiley and Sons Inc., New York, second edition (1999).
  3. P. Calderoni, D. Dürr and S. Kusuoka, A mechanical model of Brownian motion in half-space. J. Stat. Phys. 55 (1989) 649–693. [CrossRef]
  4. G. Ciccotti, R. Kapral and A. Sergi, Non-equilibrium molecular dynamics. In Handbook of Materials Modeling, edited by S. Yip (2005) 745–761.
  5. R. Cont and P. Tankov, Financial modelling with jump processes. Chapman & Hall/CRC Financial Mathematics Series. Chapman & Hall/CRC, Boca Raton, FL (2004).
  6. D. Dürr, S. Goldstein and J. Lebowitz, A mechanical model for the Brownian motion of a convex body. Z. Wahrscheinlichkeit 62 (1983) 427–448. [CrossRef]
  7. D. Dürr, S. Goldstein and J.L. Lebowitz. A mechanical model of Brownian motion. Comm. Math. Phys. 78 (1981) 507–530. [CrossRef]
  8. B. Edwards, C. Baig and D. Keffer, A validation of the p-SLLOD equations of motion for homogeneous steady-state flows. J. Chem. Phys. 124 (2006). [CrossRef] [PubMed]
  9. D.J. Evans and G.P. Morriss, Statistical mechanics of nonequilibrium liquids. ANU E Press, Canberra (2007).
  10. N.G. Hadjiconstantinou, Discussion of recent developments in hybrid atomistic-continuum methods for multiscale hydrodynamics. Bull. Pol. Acad. Sci-Te. 53 (2005) 335–342.
  11. J.H. Irving and J.G. Kirkwood, The statistical mechanical theory of transport processes. IV. The equations of hydrodynamics. J. Chem. Phys. 18 (1950) 817–829. [CrossRef]
  12. R. Joubaud and G. Stoltz, Nonequilibrium shear viscosity computations with Langevin dynamics. Multiscale Model. Simul. 10 (2012) 191–216. [CrossRef]
  13. P. Kotelenez, Stochastic ordinary and stochastic partial differential equations. In vol. 58 of Stoch. Modell. Appl. Probab. (2008).
  14. T.G. Kurtz, Semigroups of conditioned shifts and approximation of Markov processes. Ann. Probab. 3 (1975) 618–642. [CrossRef]
  15. S. Kusuoka and S. Liang, A Classical Mechanical Model of Brownian Motion with Plural Particles. Rev. Math. Phys. 22 (2010) 733–838. [CrossRef] [MathSciNet]
  16. C. Le Bris and T. Lelièvre, Micro-macro models for viscoelastic fluids: modelling, mathematics and numerics. Sci. China Math. 55 (2012) 353–384. [CrossRef]
  17. F. Legoll, M. Luskin and R. Moeckel, Non-ergodicity of the Nosé-Hoover thermostatted harmonic oscillator. Arch. Ration. Mech. Anal. 184 (2007) 449–463. [CrossRef] [MathSciNet]
  18. F. Legoll, M. Luskin and R. Moeckel, Non-ergodicity of Nosé-Hoover dynamics. Nonlinearity 22 (2009) 1673–1694. [CrossRef]
  19. M. McPhie, P. Daivis, I. Snook, J. Ennis and D. Evans, Generalized Langevin equation for nonequilibrium systems. Phys. A 299 (2001) 412–426. [CrossRef]
  20. S.T. O’Connell and P.A. Thompson, Molecular dynamics-continuum hybrid computations: A tool for studying complex fluid flows. Phys. Rev. E 52 (1995) R5792–R5795. [CrossRef]
  21. W. Ren and W. E, Heterogeneous multiscale method for the modeling of complex fluids and micro-fluidics. J. Comput. Phys. 204 (2005) 1–26. [CrossRef] [MathSciNet]
  22. R. Rowley and M. Painter, Diffusion and viscosity equations of state for a Lennard-Jones fluid obtained from molecular dynamics simulations. Int. J. Thermophys. 18 (1997) 1109–1121. [CrossRef]
  23. A.V. Skorokhod, Limit theorems for Markov processes. Theor. Probab. Appl. 3 (1958) 202–246. [CrossRef]
  24. T. Soddemann, B. Dünweg and K. Kremer, Dissipative particle dynamics: A useful thermostat for equilibrium and nonequilibrium molecular dynamics simulations. Phys. Rev. E 68 (2003) 046702. [CrossRef]
  25. B. Todd and P.J. Daivis, A new algorithm for unrestricted duration nonequilibrium molecular dynamics simulations of planar elongational flow. Comput. Phys. Commun. 117 (1999) 191–199. [CrossRef]
  26. B.D. Todd and P.J. Daivis, Homogeneous non-equilibrium molecular dynamics simulations of viscous flow: techniques and applications. Mol. Simulat. 33 (2007) 189–229. [CrossRef]
  27. M.E. Tuckerman, C.J. Mundy, S. Balasubramanian and M.L. Klein, Modified nonequilibrium molecular dynamics for fluid flows with energy conservation. J. Chem. Phys. 106 (1997) 5615–5621. [CrossRef]
  28. T. Werder, J.H. Walther and P. Koumoutsakos, Hybrid atomistic-continuum method for the simulation of dense fluid flows. J. Comp. Phys. 205 (2005) 373–390. [CrossRef]

Recommended for you