Special Issue – Polyhedral discretization for PDE
Open Access
Issue
ESAIM: M2AN
Volume 50, Number 3, May-June 2016
Special Issue – Polyhedral discretization for PDE
Page(s) 809 - 832
DOI http://dx.doi.org/10.1051/m2an/2015087
Published online 23 May 2016
  1. P.M. Adler, J.-F. Thovert and V.V. Mourzenko, Fractured Porous Media. Oxford University Press (2013).
  2. O. Al-Hinai, S. Srinivasan and M.F. Wheeler, Mimetic finite differences for flow in fractures from microseismic data. In SPE Reservoir Simulation Symposium, 23-25 February, Houston, Texas, USA. Society of Petroleum Engineers (2015).
  3. C. Alboin, J. Jaffré, J.E. Roberts, X. Wang and C. Serres, Domain decomposition for some transmission problems in flow in porous media. In vol. 552 of Lecture Notes Phys. Springer, Berlin (2000) 22–34.
  4. P. Angot, F. Boyer and F. Hubert, Asymptotic and numerical modelling of flows in fractured porous media. ESAIM: M2AN 43 (2009) 239–275. [CrossRef] [EDP Sciences] [MathSciNet]
  5. P.F. Antonietti, L. Beirão da Veiga, C. Lovadina and M. Verani, Hierarchical a posteriori error estimators for the mimetic discretization of elliptic problems. SIAM J. Numer. Anal. 51 (2013) 654–675. [CrossRef]
  6. P.F. Antonietti, L. Beirão da Veiga, and M. Verani, A mimetic discretization of elliptic obstacle problems. Math. Comput. 82 (2013) 1379–1400. [CrossRef]
  7. P.F. Antonietti, N. Bigoni and M. Verani, Mimetic discretizations of elliptic control problems. J. Sci. Comput. 56 (2013) 14–27. [CrossRef]
  8. P.F. Antonietti, L. Beirão da Veiga, N. Bigoni and M. Verani, Mimetic finite differences for nonlinear and control problems. Math. Models Methods Appl. Sci. 24 (2014) 1457–1493. [CrossRef]
  9. P.F. Antonietti, N. Bigoni and M. Verani, Mimetic finite difference method for shape optimization problems. Lect. Notes Comput. Sci. Eng. 103 (2015) 125–132. [CrossRef]
  10. P.F. Antonietti, N. Bigoni and M. Verani, Mimetic finite difference approximation of quasilinear elliptic problems. Calcolo 52 (2015) 45–67. [CrossRef] [MathSciNet]
  11. J. Bear, C.-F. Tsang and G. de Marsily, Flow and contaminant transport in fractured rock. Academic Press, San Diego (1993).
  12. L. Beirão da Veiga, K. Lipnikov and G. Manzini, Arbitrary-order nodal mimetic discretizations of elliptic problems on polygonal meshes. SIAM J. Numer. Anal. 49 (2011) 1737–1760. [CrossRef]
  13. L. Beirão da Veiga, F. Brezzi, A. Cangiani, G. Manzini, L.D. Marini and A. Russo, Basic principles of virtual element methods. Math. Models Methods Appl. Sci. 23 (2013) 199–214. [CrossRef]
  14. L. Beirão da Veiga, C. Lovadina and D. Mora, Numerical results for mimetic discretization of Reissner-Mindlin plate problems. Calcolo 50 (2013) 209–237. [CrossRef] [MathSciNet]
  15. L. Beirao da Veiga, K. Lipnikov and G. Manzini, The Mimetic Finite Difference Method for Elliptic Problems. Springer (2014).
  16. M.F. Benedetto, S. Berrone, S. Pieraccini and S. Scialò, The virtual element method for discrete fracture network simulations. Comput. Methods Appl. Mech. Engrg. 280 (2014) 135–156. [CrossRef] [MathSciNet]
  17. M.F. Benedetto, S. Berrone and S. Scialò, A globally conforming method for solving flow in discrete fracture networks using the virtual element method. Finite Elements Anal. Design 109 (2016) 23–36. [CrossRef]
  18. M. Benzi, G.H. Golub and J. Liesen, Numerical solution of saddle point problems. Acta numerica 14 (2005) 1–137. [CrossRef] [MathSciNet]
  19. S. Berrone, S. Pieraccini and S. Scialò, On simulations of discrete fracture network flows with an optimization-based extended finite element method. SIAM J. Sci. Comput. 35 (2013) A908–A935. [CrossRef]
  20. S. Berrone, S. Pieraccini and S. Scialò, A PDE-constrained optimization formulation for discrete fracture network flows. SIAM J. Sci. Comput. 35 (2013) B487–B510. [CrossRef]
  21. S. Berrone, S. Pieraccini and S. Scialò, An optimization approach for large scale simulations of discrete fracture network flows. J. Comput. Phys. 256 (2014) 838–853. [CrossRef]
  22. S. Berrone, S. Pieraccini, S. Scialò and F. Vicini, A parallel solver for large scale DFN flow simulations. SIAM J. Sci. Comput. 37 (2015) C285–C306. [CrossRef]
  23. K. Brenner, M. Groza, C. Guichard, G. Lebeau and R. Masson, Gradient discretization of hybrid dimensional Darcy flows in fractured porous media. In Finite Volumes for Complex Applications VII-Elliptic, Parabolic and Hyperbolic Problems, edited by J. Fuhrmann, M. Ohlberger and C. Rohde. Springer (2014) 527–535.
  24. K. Brenner, M. Groza, C. Guichard, G. Lebeau and R. Masson, Gradient discretization of hybrid dimensional Darcy flows in fractured porous media. Technical Report. HAL archives-ouvertes hal-01097704 (2014).
  25. K Brenner, J Hennicker, R Masson and P Samier, Gradient discretization of hybrid dimensional Darcy flows in fractured porous media with discontinuous pressures at the matrix fracture interfaces. In MAMERN VI-2015 HAL-01147495 (2015).
  26. F. Brezzi and A. Buffa, Innovative mimetic discretizations for electromagnetic problems. J. Comput. Appl. Math. 234 (2010) 1980–1987. [CrossRef]
  27. F. Brezzi, K. Lipnikov and M. Shashkov, Convergence of the mimetic finite difference method for diffusion problems on polyhedral meshes. SIAM J. Numer. Anal. 43 (2005) 1872–1896. [CrossRef] [MathSciNet]
  28. F. Brezzi, K. Lipnikov and V. Simoncini, A family of mimetic finite difference methods on polygonal and polyhedral meshes. Math. Models Methods Appl. Sci. 15 (2005) 1533–1551. [CrossRef] [MathSciNet]
  29. F. Brezzi, K. Lipnikov and M. Shashkov, Convergence of mimetic finite difference method for diffusion problems on polyhedral meshes with curved faces. Math. Models Methods Appl. Sci. 16 (2006) 275–297. [CrossRef]
  30. F. Brezzi, K. Lipnikov, M. Shashkov and V. Simoncini, A new discretization methodology for diffusion problems on generalized polyhedral meshes. Comput. Methods Appl. Mech. Engrg. 196 (2007) 3682–3692. [CrossRef] [MathSciNet]
  31. F. Brezzi, A. Buffa and K. Lipnikov, Mimetic finite differences for elliptic problems. ESAIM: M2AN 43 (2009) 277–295. [CrossRef] [EDP Sciences] [MathSciNet]
  32. F. Brezzi, A. Buffa and G. Manzini, Mimetic scalar products of discrete differential forms. J. Comput. Phys. 257 (2014) 1228–1259. [CrossRef]
  33. B. da Veiga Lourenco, K. Lipnikov and G. Manzini, The mimetic finite difference method for elliptic problems. Vol. 11 of MS&A. Model. Simul. Appl. Springer, Cham (2014).
  34. C. D’Angelo and A. Scotti, A mixed finite element method for Darcy flow in fractured porous media with non-matching grids. ESAIM: M2AN 46 (2012) 465–489. [CrossRef] [EDP Sciences]
  35. J. Droniou, Finite volume schemes for diffusion equations: Introduction to and review of modern methods. Math. Models Methods Appl. Sci. 24 (2014) 1575–1619. [CrossRef]
  36. J. Droniou, R. Eymard, T. Gallouet and R. Herbin, Gradient schemes: a generic framework for the discretisation of linear, nonlinear and nonlocal elliptic and parabolic equations. Math. Models Methods Appl. Sci. 23 (2013) 2395–2432. [CrossRef]
  37. J. Droniou, R. Eymard and R. Herbin, Gradient schemes: generic tools for the numerical analysis of diffusion equations. To appear in Special issue – Polyhedral discretization for PDE: ESAIM: M2AN 50 (2016) Doi:10.1051/m2an/2015079.
  38. G.D. Dziuk, Finite elements for the Beltrami operator on arbitrary surfaces. In Partial differential equations and calculus of variations. Vol. 1357 of Lect. Notes Math. Springer, Berlin (1988) 142–155.
  39. R. Eymard, T. Gallouët and R. Herbin, Finite volume methods. In Techniques of Scientific Computing, Part III, Handbook of Numerical Analysis, VII. Edited by P.G. Ciarlet and J.-L. Lions. North Holland (2000) 713–1020.
  40. A. Fumagalli and A. Scotti, A numerical method for two-phase flow in fractured porous media with non-matching grids. Computational Methods in Geologic CO2 Sequestration. Adv. Water Res. 62 (2013) 454–464. [CrossRef]
  41. G. Guennebaud, Benoît Jacob, et al., Eigen v3. http://eigen.tuxfamily.org (2010).
  42. H. Hægland, A. Assteerawatt, H.K. Dahle, G.T. Eigestad and R. Helmig, Comparison of cell-and vertex-centered discretization methods for flow in a two-dimensional discrete-fracture–matrix system. Adv. Water Res. 32 (2009) 1740–1755. [CrossRef]
  43. J. Jaffré, M. Mnejja and J.E. Roberts, A discrete fracture model for two-phase flow with matrix-fracture interaction. Proc. Comput. Sci. 4 (2011) 967–973. [CrossRef]
  44. M. Karimi-Fard, L.J. Durlofsky, K. Aziz, et al., An efficient discrete-fracture model applicable for general-purpose reservoir simulators. SPE J. 9 (2004) 227–236. [CrossRef]
  45. K. Lipnikov, J.D. Moulton and D. Svyatskiy, A multilevel multiscale mimetic (M3) method for two-phase flows in porous media. J. Comput. Phys. 227 (2008) 6727–6753. [CrossRef]
  46. K. Lipnikov, G. Manzini and M. Shashkov, Mimetic finite difference method. Physics-compatible numerical methods. J. Comput. Phys. 257 (2014) 1163–1227. [CrossRef]
  47. B.T. Mallison, M.H. Hui and W. Narr, Practical gridding algorithms for discrete fracture modeling workflows. In 12th European Conference on the Mathematics of Oil Recovery (2010).
  48. V. Martin, J. Jaffré and J.E. Roberts, Modeling fractures and barriers as interfaces for flow in porous media. SIAM J. Sci. Comput. 26 (2005) 1667–1691. [CrossRef] [MathSciNet]
  49. H. Mustapha, A Gabriel-Delaunay triangulation of 2D complex fractured media for multiphase flow simulations. Comput. Geosci. 18 (2014) 989–1008. [CrossRef]
  50. J.E. Roberts and J.-M. Thomas, Mixed and hybrid methods. In Vol. 2 of Handbook of Numerical Analysis. Finite Element Methods (Part I). Elsevier (1991) 523–639.
  51. The CGAL Project, CGAL User and Reference Manual. CGAL Editorial Board, 4.6 edition (2015).

Recommended for you