Free access
Issue
ESAIM: M2AN
Volume 45, Number 2, March-April 2011
Page(s) 201 - 216
DOI http://dx.doi.org/10.1051/m2an/2010038
Published online 02 August 2010
  1. F. Ben Belgacem, C. Bernardi, N. Chorfi and Y. Maday, Inf-sup conditions for the mortar spectral element discretization of the Stokes problem. Numer. Math. 85 (2000) 257–281. [CrossRef] [MathSciNet]
  2. M. Bercovier, Régularisation duale des problèmes variationnels mixtes : application aux éléments finis mixtes et extension à quelques problèmes non linéaires. Thèse de Doctorat d'État, Université de Rouen, France (1976).
  3. M. Bercovier, Perturbation of mixed variational problems. Application to mixed finite element methods. RAIRO Anal. Numér. 12 (1978) 211–236. [MathSciNet]
  4. C. Bernardi, Indicateurs d'erreur en hN version des éléments spectraux. RAIRO Modél. Math. Anal. Numér. 30 (1996) 1–38. [MathSciNet]
  5. C. Bernardi and Y. Maday, Polynomial approximation of some singular functions. Appl. Anal. 42 (1991) 1–32. [CrossRef] [MathSciNet]
  6. C. Bernardi and Y. Maday, Spectral Methods, in Handbook of Numerical Analysis V, P.G. Ciarlet and J.-L. Lions Eds., North-Holland (1997) 209–485.
  7. C. Bernardi and Y. Maday, Uniform inf-sup conditions for the spectral discretization of the Stokes problem. Math. Mod. Meth. Appl. Sci. 9 (1999) 395–414. [CrossRef] [MathSciNet]
  8. C. Bernardi, B. Métivet and R. Verfürth, Analyse numérique d'indicateurs d'erreur, in Maillage et adaptation, P.-L. George Ed., Hermès (2001) 251–278.
  9. C. Bernardi, V. Girault and F. Hecht, A posteriori analysis of a penalty method and application to the Stokes problem. Math. Mod. Meth. Appl. Sci. 13 (2003) 1599–1628. [CrossRef]
  10. C. Bernardi, Y. Maday and F. Rapetti, Discrétisations variationnelles de problèmes aux limites elliptiques, Mathématiques & Applications 45. Springer-Verlag (2004).
  11. G.F. Carey and R. Krishnan, Penalty approximation of Stokes flow. Comput. Meth. Appl. Mech. Eng. 35 (1982) 169–206. [CrossRef]
  12. G.F. Carey and R. Krishnan, Penalty finite element method for the Navier–Stokes equations. Comput. Meth. Appl. Mech. Eng. 42 (1984) 183–224. [CrossRef]
  13. G.F. Carey and R. Krishnan, Convergence of iterative methods in penalty finite element approximation of the Navier–Stokes equations. Comput. Meth. Appl. Mech. Eng. 60 (1987) 1–29. [CrossRef]
  14. V. Girault and P.-A. Raviart, Finite Element Methods for Navier–Stokes Equations, Theory and Algorithms . Springer-Verlag (1986).
  15. Y. Maday, D. Meiron, A.T. Patera and E.M. Rønquist, Analysis of iterative methods for the steady and unsteady Stokes problem: Application to spectral element discretizations. SIAM J. Sci. Comput. 14 (1993) 310–337. [CrossRef] [MathSciNet]
  16. D.S. Malkus and E.T. Olsen, Incompressible finite elements which fail the discrete LBB condition, in Penalty-Finite Element Methods in Mechanics, Phoenix, Am. Soc. Mech. Eng., New York (1982) 33–50.

Recommended for you