Free access
Issue
ESAIM: M2AN
Volume 45, Number 2, March-April 2011
Page(s) 309 - 334
DOI http://dx.doi.org/10.1051/m2an/2010057
Published online 20 August 2010
  1. A. Alonso-Rodriguez and L. Gerardo-Giorda, New non-overlapping domain decomposition methods for the time-harmonic Maxwell system. SIAM J. Sci. Comp. 28 (2006) 102–122. [CrossRef]
  2. M. Bendahmane and K.H. Karlsen, Analysis of a class of degenerate reaction-diffusion systems and the bidomain model of cardiac tissue. Netw. Heterog. Media 1 (2006) 185–218. [MathSciNet]
  3. Y. Bourgault, Y. Coudière and C. Pierre, Existence and uniqueness of the solution for the bidomain model used in cardiac electrophysiology. Nonlinear Anal.: Real World Appl. 10 (2009) 458–482. [CrossRef] [MathSciNet]
  4. R.H. Clayton and A.V. Panfilov, A guide to modelling cardiac electrical activity in anatomically detailed ventricles. Prog. Biophys. Mol. Biol. 96 (2008) 19–43. [CrossRef] [PubMed]
  5. R.H. Clayton, O.M. Bernus, E.M. Cherry, H. Dierckx, F.H. Fenton, L. Mirabella, A.V. Panfilov, F.B. Sachse, G. Seemann and H. Zhang, Models of cardiac tissue electrophysiology: Progress, challenges and open questions. Prog. Biophys. Mol. Biol. (2010) DOI: 10.1016/j.pbiomolbio.2010.05.008.
  6. J.C. Clements, J. Nenonen, P.K.J. Li and M. Horacek, Activation dynamics in anisotropic cardiac tissue via decoupling. Ann. Biomed. Eng. 32 (2004) 984–990. [CrossRef] [PubMed]
  7. P. Colli Franzone and L.F. Pavarino, A parallel solver for reaction-diffusion systems in computational electrocardiology. Math. Mod. Meth. Appl. Sci. 14 (2004) 883–911. [CrossRef]
  8. P. Colli Franzone and G. Savaré, Degenerate evolution systems modeling the cardiac electric field at micro and macroscopic level, in Evolution Equations, Semigroups and Functional Analysis, A. Lorenzi and B. Ruf Eds., Birkhauser (2002) 49–78.
  9. P. Colli Franzone, L.F. Pavarino and B. Taccardi, Simulating patterns of excitation, repolarization and action potential duration with cardiac Bidomain and Monodomain models. Math. Biosc. 197 (2005) 35–66. [CrossRef]
  10. P. Colli Franzone, P. Deuflhard, B. Erdmann, J. Lang and L.F. Pavarino, Adaptivity in space and time for reaction-diffusion systems in electrocardiology. SIAM J. Sci. Comput. 28 (2006) 942–962. [CrossRef] [MathSciNet]
  11. V. Dolean and F. Nataf, An Optimized Schwarz Algorithm for the compressible Euler equations, in Domain Decomposition Methods in Science and Engineering, Proceedings of the DD16 Conference, Springer-Verlag (2007) 173–180.
  12. V. Dolean, M.J. Gander and L. Gerardo-Giorda, Optimized Schwarz Methods for Maxwell's equations. SIAM J. Sci. Comput. 31 (2009) 2193–2213. [CrossRef] [MathSciNet]
  13. J.J. Fox, J.L. McHarg and R.F. Gilmour, Ionic mechanism of electrical alternans. Am. J. Physiol. (Heart Circ. Physiol.) 282 (2002) H516–H530.
  14. M.J. Gander, Optimized Schwarz methods. SIAM J. Num. Anal. 44 (2006) 699–731. [CrossRef] [MathSciNet]
  15. M.J. Gander, F. Magoulès and F. Nataf, Optimized Schwarz methods without overlap for the Helmholtz equation. SIAM J. Sci. Comput. 24 (2002) 38–60. [CrossRef] [MathSciNet]
  16. L. Gerardo-Giorda, L. Mirabella, F. Nobile, M. Perego and A. Veneziani, A model-based block-triangular preconditioner for the Bidomain system in electrocardiology. J. Comp. Phys. 228 (2009) 3625–3639. [CrossRef]
  17. J.P. Keener, Direct activation and defibrillation of cardiac tissue. J. Theor. Biol. 178 (1996) 313–324. [CrossRef] [PubMed]
  18. J.P. Keener and J. Sneyd, Mathematical Physiology. Springer-Verlag, New York (1998).
  19. D.C. Latimer and B.J. Roth, Electrical stimulation of cardiac tissue by a bipolar electrode in a conductive bath. IEEE Trans. Biomed. Eng. 45 (1998) 1449–1458. [CrossRef] [PubMed]
  20. J. Le Grice, B.H. Smaill, L.Z. Chai, S.G. Edgar, J.B. Gavin and P.J. Hunter, Laminar structure of the heart: ventricular myocyte arrangement and connective tissue architecture in the dog. Am. J. Physiol. (Heart Circ. Physiol.) 269 (1995) H571–H582.
  21. P.-L. Lions, On the Schwarz alternating method. III: A variant for nonoverlapping subdomains, in Third International Symposium on Domain Decomposition Methods for Partial Differential Equations, held in Houston, Texas, March 20–22, 1989, Philadelphia, R. Glowinski, J. Périaux, T.F. Chan and O. Widlund Eds., SIAM (1990).
  22. L. Luo and Y. Rudy, A model of the ventricular cardiac action potential: depolarization, repolarization and their interaction. Circ. Res. 68 (1991) 1501–1526. [CrossRef] [PubMed]
  23. L. Mirabella, F. Nobile and A. Veneziani, An a posteriori error estimator for model adaptivity in electrocardiology. Technical Report TR-2009-025, Dept. MathCS, Emory University (2009).
  24. B.F. Nielsen, T.S. Ruud, G.T. Lines and A. Tveito, Optimal monodomain approximation of the bidomain equations. Appl. Math. Comp. 184 (2007) 276–290. [CrossRef]
  25. A. Nygren, C. Fiset, L. Firek, J.W. Clark, D.S. Lindblad, R.B. Clark and W.R. Giles, Mathematical model of an adult human atrial cell: the role of K+ currents in repolarization. Circ. Res. 82 (1998) 63–81. [PubMed]
  26. L.F. Pavarino and S. Scacchi, Multilevel additive Schwarz preconditioners for the Bidomain reaction-diffusion system. SIAM J. Sci. Comp. 31 (2008) 420–443. [CrossRef]
  27. M. Pennacchio and V. Simoncini, Efficient algebraic solution of rection-diffusion systems for the cardiac excitation process. J. Comput. Appl. Math. 145 (2002) 49–70. [CrossRef] [MathSciNet]
  28. M. Perego and A. Veneziani, An efficient generalization of the Rush-Larsen method for solving electro-physiology membrane equations. Electronic Transaction on Numerical Analysis 35 (2009) 234–256.
  29. M. Potse, B. Dubé, J. Richer and A. Vinet, A comparison of monodomain and bidomain reaction-diffusion models for action potential propagation in the human heart. IEEE Trans. Biomed. Eng. 53 (2006) 2425–2435. [CrossRef] [PubMed]
  30. A. Quarteroni and A. Valli, Domain Decompostion Methods for Partial Differential Equations. Oxford University Press, Oxford (1999).
  31. A. Quarteroni, L. Formaggia and A. Veneziani, Complex Systems in Biomedicine, in Computational electrocardiology: mathematical and numerical modeling, P. Colli Franzone, L. Pavarino and G. Savaré Eds., Springer, Milan (2006).
  32. B. Roth, A comparison of two boundary conditions used with the bidomain model of cardiac tissue. Ann. Biomed. Eng. 19 (1991) 669–678. [CrossRef] [PubMed]
  33. S. Scacchi, A hybrid multilevel Schwarz method for the bidomain model. Comp. Meth. Appl. Mech. Eng. 197 (2008) 4051–4061. [CrossRef]
  34. B.F. Smith, P.E. Bjørstad and W. Gropp, Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial Differential Equations. Cambridge University Press, Cambridge (1996).
  35. D. Streeter, Gross morphology and fiber geometry in the heart, in Handbook of Physiology 1 (Sect. 2), R.M. Berne Ed., Williams and Wilnkins (1979) 61–112.
  36. A. Toselli and O. Widlund, Domain Decomposition Methods. 1st edition, Springer (2004).
  37. N. Trayanova, Defibrillation of the heart: insights into mechanisms from modelling studies. Exp. Physiol. 91 (2006) 323–337. [CrossRef] [PubMed]
  38. M. Veneroni, Reaction-diffusion systems for the macroscopic bidomain model of the cardiac electric field. Nonlinear Anal.: Real World Appl. 10 (2009) 849–868. [CrossRef] [MathSciNet]
  39. E.J. Vigmond, F. Aguel and N.A. Trayanova, Computational techniques for solving the bidomain equations in three dimensions. IEEE Trans. Biomed. Eng. 49 (2002) 1260–1269. [CrossRef] [PubMed]
  40. E.J. Vigmond, R. Weber dos Santos, A.J. Prassl, M. Deo and G. Plank, Solvers for the caridac bidomain equations. Prog. Biophys. Mol. Biol. 96 (2008) 3–18. [CrossRef] [PubMed]
  41. R. Weber dos Santos, G. Planck, S. Bauer and E.J. Vigmond, Parallel multigrid preconditioner for the cardiac bidomain model. IEEE Trans. Biomed. Eng. 51 (2004) 1960–1968. [CrossRef] [PubMed]

Recommended for you