Free access
Issue
ESAIM: M2AN
Volume 45, Number 4, July-August 2011
Page(s) 627 - 650
DOI http://dx.doi.org/10.1051/m2an/2010068
Published online 30 November 2010
  1. I. Aavatsmark, T. Barkve, Ø. Bøe and T. Mannseth, Discretization on unstructured grids for inhomogeneous, anisotropic media. I. Derivation of the methods. SIAM J. Sci. Comput. 19 (1998) 1700–1716. [CrossRef] [MathSciNet]
  2. I. Aavatsmark, T. Barkve, Ø. Bøe and T. Mannseth, Discretization on unstructured grids for inhomogeneous, anisotropic media. II. Discussion and numerical results. SIAM J. Sci. Comput. 19 (1998) 1717–1736. [CrossRef] [MathSciNet]
  3. B. Andreianov, F. Boyer and F. Hubert, Discrete duality finite volume schemes for Leray-Lions-type elliptic problems on general 2D meshes. Numer. Methods Partial Differ. Equ. 23 (2007) 145–195. [CrossRef] [MathSciNet]
  4. L. Angermann, Numerical solution of second-order elliptic equations on plane domains. RAIRO Modél. Math. Anal. Numér. 25 (1991) 169–191. [MathSciNet]
  5. R.E. Bank and D.J. Rose, Some error estimates for the box method. SIAM J. Numer. Anal. 24 (1987) 777–787. [CrossRef] [MathSciNet]
  6. E. Bertolazzi and G. Manzini, On vertex reconstructions for cell-centered finite volume approximations of 2D anisotropic diffusion problems. Math. Models Methods Appl. Sci. 17 (2007) 1–32. [CrossRef] [MathSciNet]
  7. S. Boivin, F. Cayré and J.-M. Hérard, A Finite Volume method to solve the Navier Stokes equations for incompressible flows on unstructured meshes. Int. J. Thermal Sciences 39 (2000) 806–825. [CrossRef]
  8. F. Boyer and F. Hubert, Finite volume method for 2D linear and nonlinear elliptic problems with discontinuities. SIAM J. Numer. Anal. 46 (2008) 3032–3070. [CrossRef] [MathSciNet]
  9. J. Breil and P.-H. Maire, A cell-centered diffusion scheme on two-dimensional unstructured meshes. J. Comput. Phys. 224 (2007) 785–823. [CrossRef] [MathSciNet]
  10. Z. Cai, On the finite volume element method. Numer. Math. 58 (1991) 713–735. [CrossRef] [MathSciNet]
  11. Z. Cai, J. Mandel and S. McCormick, The finite volume element method for diffusion equations on general triangulations. SIAM J. Numer. Anal. 28 (1991) 392–402. [CrossRef] [MathSciNet]
  12. C. Carstensen, R. Lazarov and S. Tomov, Explicit and averaging a posteriori error estimates for adaptive finite volume methods. SIAM J. Numer. Anal. 42 (2005) 2496–2521. [CrossRef] [MathSciNet]
  13. C. Chainais-Hillairet, Discrete duality finite volume schemes for two-dimensional drift-diffusion and energy-transport models. Internat. J. Numer. Methods Fluids 59 (2009) 239–257. [CrossRef] [MathSciNet]
  14. S.H. Chou, D.Y. Kwak and Q. Li, Lp error estimates and superconvergence for covolume or finite volume element methods. Numer. Methods Partial Differ. Equ. 19 (2003) 463–486. [CrossRef]
  15. Y. Coudière, J.-P. Vila and P. Villedieu, Convergence rate of a finite volume scheme for a two dimensional convection-diffusion problem. ESAIM: M2AN 33 (1999) 493–516. [CrossRef] [EDP Sciences] [MathSciNet]
  16. Y. Coudière, C. Pierre, O. Rousseau and R. Turpault, A 2D/3D Discrete Duality Finite Volume Scheme. Application to ECG simulation. International Journal on Finite Volumes 6 (2009).
  17. M. Crouzeix and P.-A. Raviart, Conforming and nonconforming finite element methods for solving the stationary Stokes equations. I. Rev. Française Automat. Informat. Recherche Opérationnelle Sér. Rouge 7 (1973) 33–75.
  18. S. Delcourte, K. Domelevo and P. Omnes, A discrete duality finite volume approach to Hodge decomposition and div-curl problems on almost arbitrary two-dimensional meshes. SIAM J. Numer. Anal. 45 (2007) 1142–1174. [CrossRef] [MathSciNet]
  19. K. Domelevo and P. Omnes, A finite volume method for the Laplace equation on almost arbitrary two-dimensional grids. ESAIM: M2AN 39 (2005) 1203–1249. [CrossRef] [EDP Sciences]
  20. R. Ewing, R. Lazarov and Y. Lin, Finite volume element approximations of nonlocal reactive flows in porous media. Numer. Methods Partial Differ. Equ. 16 (2000) 285–311. [CrossRef] [MathSciNet]
  21. R.E. Ewing, T. Lin and Y. Lin, On the accuracy of the finite volume element method based on piecewise linear polynomials. SIAM J. Numer. Anal. 39 (2002) 1865–1888. [CrossRef] [MathSciNet]
  22. R. Eymard, T. Gallouët and R. Herbin, Handbook of numerical analysis 7, P.G. Ciarlet and J.-L. Lions Eds., North-Holland/Elsevier, Amsterdam (2000) 713–1020.
  23. P.A. Forsyth and P.H. Sammon, Quadratic convergence for cell-centered grids. Appl. Numer. Math. 4 (1988) 377–394. [CrossRef] [MathSciNet]
  24. W. Hackbucsh, On first and second order box schemes. Computing 41 (1989) 277–296. [CrossRef] [MathSciNet]
  25. R. Herbin, An error estimate for a finite volume scheme for a diffusion-convection problem on a triangular mesh. Numer. Methods Partial Differ. Equ. 11 (1995) 165–173. [CrossRef] [MathSciNet]
  26. F. Hermeline, A finite volume method for the approximation of diffusion operators on distorted meshes. J. Comput. Phys. 160 (2000) 481–499. [CrossRef] [MathSciNet]
  27. F. Hermeline, Approximation of diffusion operators with discontinuous tensor coefficients on distorted meshes. Comput. Methods Appl. Mech. Eng. 192 (2003) 1939–1959. [CrossRef] [MathSciNet]
  28. R.D. Lazarov, I.D. Mishev and P.S. Vassilevski, Finite volume methods for convection-diffusion problems. SIAM J. Numer. Anal. 33 (1996) 31–55. [CrossRef] [MathSciNet]
  29. C. Le Potier, Finite volume scheme for highly anisotropic diffusion operators on unstructured meshes. C. R. Math. Acad. Sci. Paris 340 (2005) 921–926. [CrossRef] [MathSciNet]
  30. C. Le Potier, Finite volume monotone scheme for highly anisotropic diffusion operators on unstructured triangular meshes. C. R. Math. Acad. Sci. Paris 341 (2005) 787–792. [CrossRef] [MathSciNet]
  31. C. Le Potier, A nonlinear finite volume scheme satisfying maximum and minimum principles for diffusion operators. International Journal on Finite Volumes 6 (2009).
  32. I.D. Mishev, Finite volume methods on Voronoi meshes. Numer. Methods Partial Differ. Equ. 14 (1998) 193–212. [CrossRef] [MathSciNet]
  33. A. Njifenjou and A.J. Kinfack, Convergence analysis of an MPFA method for flow problems in anisotropic heterogeneous porous media. International Journal on Finite Volumes 5 (2008).
  34. P. Omnes, Error estimates for a finite volume method for the Laplace equation in dimension one through discrete Green functions. International Journal on Finite Volumes 6 (2009).
  35. E. Süli, Convergence of finite volume schemes for Poisson's equation on nonuniform meshes. SIAM J. Numer. Anal. 28 (1991) 1419–1430. [CrossRef] [MathSciNet]
  36. R. Vanselow and H.P. Scheffler, Convergence analysis of a finite volume method via a new nonconforming finite element method. Numer. Methods Partial Differ. Equ. 14 (1998) 213–231. [CrossRef] [MathSciNet]
  37. A. Weiser and M.F. Wheeler, On convergence of block centered finite differences for elliptic problems. SIAM J. Numer. Anal. 25 (1988) 351–375. [CrossRef] [MathSciNet]

Recommended for you