Free access
Issue
ESAIM: M2AN
Volume 45, Number 3, May-June 2011
Page(s) 541 - 561
DOI http://dx.doi.org/10.1051/m2an/2010066
Published online 30 November 2010
  1. Y. Ait-Sahalia, Maximum likelihood estimation of discretely sampled diffusions: A closed-form approximation approach. Econometrica 70 (2002) 223–262. [CrossRef] [MathSciNet]
  2. M. Alber, N. Chen, T. Glimm and P.M. Lushnikov, Multiscale dynamics of biological cells with chemotactic interactions: From a discrete stochastic model to a continuous description. Phys. Rev. E 73 (2006) 051901. [CrossRef] [MathSciNet] [PubMed]
  3. W. E and B. Engquist, The heterogeneous multi-scale methods. Commun. Math. Sci. 1 (2003) 87–132. [CrossRef] [MathSciNet]
  4. W. E, D. Liu and E. Vanden-Eijnden, Analysis of multiscale methods for stochastic differential equations. Commun. Pure Appl. Math. 58 (2005) 1544–1585. [CrossRef]
  5. W. E, B. Engquist, X. Li, W. Ren and E. Vanden-Eijnden, Heterogeneous multiscale methods: A review. Commun. Comput. Phys. 2 (2007) 367–450. [MathSciNet]
  6. R. Erban and H.G. Othmer, From signal transduction to spatial pattern formation in E. coli: A paradigm for multiscale modeling in biology. SIAM Multiscale Model. Simul. 3 (2005) 362–394. [CrossRef]
  7. I. Fatkullin and E. Vanden-Eijnden, A computational strategy for multiscale systems with applications to Lorenz 96 model. J. Comput. Phys. 200 (2004) 605–638. [CrossRef] [MathSciNet]
  8. Y. Frederix and D. Roose, A drift-filtered approach to diffusion estimation for multiscale processes, in Coping with complexity: model reduction and data analysis, Lecture Notes in Computational Science and Engineering 75, Springer-Verlag (2010).
  9. Y. Frederix, G. Samaey, C. Vandekerckhove, T. Li, E. Nies and D. Roose, Lifting in equation-free methods for molecular dynamics simulations of dense fluids. Discrete Continuous Dyn. Syst. Ser. B 11 (2009) 855–874. [CrossRef]
  10. C. Gear, Projective integration methods for distributions. Technical report, NEC Research Institute (2001).
  11. C.W. Gear, T.J. Kaper, I.G. Kevrekidis and A. Zagaris, Projecting to a slow manifold: Singularly perturbed systems and legacy codes. SIAM J. Appl. Dyn. Syst. 4 (2005) 711–732. [CrossRef] [MathSciNet]
  12. D. Givon, R. Kupferman and A. Stuart, Extracting macroscopic dynamics: model problems and algorithms. Nonlinearity 17 (2004) R55–R127. [CrossRef]
  13. R.M. Gray, Toeplitz and circulant matrices: A review. Found. Trends Commun. Inf. Theory 2 (2005) 155–239. [CrossRef]
  14. B. Jourdain, C.L. Bris and T. Lelièvre, On a variance reduction technique for micro-macro simulations of polymeric fluids. J. Non-Newton. Fluid Mech. 122 (2004) 91–106. [CrossRef]
  15. I.G. Kevrekidis and G. Samaey, Equation-free multiscale computation: Algorithms and applications. Ann. Rev. Phys. Chem. 60 (2009) 321–344. [CrossRef] [PubMed]
  16. I.G. Kevrekidis, C.W. Gear, J.M. Hyman, P.G. Kevrekidis, O. Runborg and C. Theodoropoulos, Equation-free, coarse-grained multiscale computation: Enabling microscopic simulators to perform system-level analysis. Commun. Math. Sci. 1 (2003) 715–762. [MathSciNet]
  17. H.C. Öttinger, B.H.A.A. van den Brule and M.A. Hulsen, Brownian configuration fields and variance reduced CONNFFESSIT. J. Non-Newton. Fluid Mech. 70 (1997) 255–261. [CrossRef]
  18. G. Pavliotis and A. Stuart, Multiscale Methods: Averaging and Homogenization, Texts in Applied Mathematics 53. Springer, New York (2007).
  19. G.A. Pavliotis and A.M. Stuart, Parameter estimation for multiscale diffusions. J. Stat. Phys. 127 (2007) 741–781. [CrossRef] [MathSciNet]
  20. Y. Pokern, A.M. Stuart and E. Vanden-Eijnden, Remarks on drift estimation for diffusion processes. SIAM Multiscale Model. Simul. 8 (2009) 69–95. [CrossRef]
  21. H. Risken, The Fokker-Planck Equation: Methods of Solutions and Applications. Springer Series in Synergetics, Second Edition, Springer (1989).
  22. M. Rousset and G. Samaey, Simulating individual-based models of bacterial chemotaxis with asymptotic variance reduction. INRIA, inria-00425065, available at http://hal.inria.fr/inria-00425065/fr/ (2009).
  23. A. Skorokhod, Asymptotic methods in the theory of stochastic differential equations, Translations of mathematical monographs 78. AMS, Providence (1999).
  24. N. Van Kampen, Elimination of fast variables. Phys. Rep. 124 (1985) 69–160. [CrossRef] [MathSciNet]
  25. P. Van Leemput, W. Vanroose and D. Roose, Mesoscale analysis of the equation-free constrained runs initialization scheme. SIAM Multiscale Model. Simul. 6 (2007) 1234–1255. [CrossRef]
  26. E. Vanden-Eijnden, Numerical techniques for multi-scale dynamical systems with stochastic effects. Commun. Math. Sci. 1 (2003) 385–391. [MathSciNet]

Recommended for you