Issue |
ESAIM: M2AN
Volume 38, Number 6, November-December 2004
|
|
---|---|---|
Page(s) | 1055 - 1070 | |
DOI | https://doi.org/10.1051/m2an:2004050 | |
Published online | 15 December 2004 |
Approximation of the vibration modes of a plate coupled with a fluid by low-order isoparametric finite elements
Departamento de Matemática,
Universidad Técnica Federico Santa María, Casilla 110-V,
Valparaiso, Chile. erwin.hernandez@usm.cl.
Received:
24
July
2004
Revised:
22
September
2004
We analyze an isoparametric finite element method to compute the vibration modes of a plate, modeled by Reissner-Mindlin equations, in contact with a compressible fluid, described in terms of displacement variables. To avoid locking in the plate, we consider a low-order method of the so called MITC (Mixed Interpolation of Tensorial Component) family on quadrilateral meshes. To avoid spurious modes in the fluid, we use a low-order hexahedral Raviart-Thomas elements and a non conforming coupling is used on the fluid-structure interface. Applying a general approximation theory for spectral problems, under mild assumptions, we obtain optimal order error estimates for the computed eigenfunctions, as well as a double order for the eigenvalues. These estimates are valid with constants independent of the plate thickness. Finally, we report several numerical experiments showing the behavior of the methods.
Mathematics Subject Classification: 65N15 / 65N30 / 74F10 / 74H25
Key words: Reissner-Mindlin / MITC methods / fluid-structure interaction.
© EDP Sciences, SMAI, 2004
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.