Vladimiro Valerio

On the partitioned matrix \(O\begin{bmatrix} A & Q \end{bmatrix} \) and its associated system \(AX = T, A^*Y + QX = Z \)

<http://www.numdam.org/item?id=M2AN_1981__15_2_177_0>
ON THE PARTITIONED MATRIX $\begin{pmatrix} O & A \\ A^* & Q \end{pmatrix}$
AND ITS ASSOCIATED SYSTEM $AX = T, A^* Y + QX = Z$ (*)

by Vladimiro Valerio (1) (**)

Communiqué par P G Ciarlet

Abstract — Inverses of the partitioned matrix $N = \begin{pmatrix} O & A \\ A^* & Q \end{pmatrix}$, where Q is possibly nonnegative definite, and solutions of its associated system $AX = T, A^* Y + QX = Z$ are the object of this note. Some results in an earlier paper are extended. Finally, condition for inverting the square regular matrix N, when Q is also singular, and a different construction of the inverse N^{-1} are given using a particular g-inverse of Q.

Résumé — L’objet de cet article est l’étude des inverses de matrices partitionnées sous la forme $N = \begin{pmatrix} O & A \\ A^* & Q \end{pmatrix}$, où Q peut être semi-définie positive, ainsi que l’étude des solutions du système associé $AX = T, A^* Y + QX = Z$. On généralise les résultats d’un article antérieur. Enfin, utilisant un g-inverse particulier de Q, on donne des conditions pour inverser la matrice carrée inversible N quand Q est singulière, ainsi qu’une construction différente de l’inverse N^{-1}.

LIST OF SYMBOLS

- α lower case greek alfa
- β lower case greek beta
- $*$ star
- \Rightarrow arrow
- \oplus circle with plus inside

(*) Reçu en novembre 1979.
(**) The author worked on the same subject when he was on a visiting appointment at the Delhi Campus of the Indian Statistical Institute (Sept 1977-Jan 1978)
(1) Istituto di Matematica, Facoltà di Architettura, Napoli, Italia

R.A.I.R.O. Analyse numérique/Numerical Analysis, 0399-0516/1981/177/5 00 © Bordas–Dunod
1. INTRODUCTION

An increasing number of papers has been appeared in the last ten years on the generalized inverses of a partitioned matrix. One of the approaches depends on the Schur-complement \(M/A = D - CA^{-1}B \) defined for a square regular matrix \(M = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \), where \(A \) is also regular. Its generalization to rectangular and singular matrices under any partition has also been studied in [6, 7, 11, 14] and [15]. Partitioned matrices are given in [3] and [10] which give conditions on the rank and the range of the partition in order to define their generalized inverses; [8] considers the Moore-Penrose inverse of \(M \). Some particular aspects, useful for correcting least squares estimates, are found in [9, 10, 12, 16] and [18], where the matrix is in the form \((A : a)\) and \(a \) is a vector. In [5] we have partitioned matrices like \(A = [U, V] \) in which conditions for the existence of the Moore-Penrose inverse are given. A more detailed discussion on the latter is in [2].

In the present note we consider the partitioned matrix \(N = \begin{pmatrix} O & A \\ A^* & Q \end{pmatrix} \) where \(Q \) is ndd, if it is not otherwise stated, and the associated system \(AX = T, A^*Y + QX = Z \). A matrix partitioned like \(N \) could be found in [19] and [20].

The above system arises in many problems of applied Mechanics, where \(Q \) is also symmetric and pd, and in calculating space structures (trusses) or continuous structures finding a discrete structure which matches the continuous one. We refer to an earlier paper [21] and give additional results. Theorem 1 gives a particular set of solution to the considered system if we observe that \(X \) and \(Y \) are possibly two different kind of unknowns [22]. Finally, conditions for inverting the square regular matrix \(N \) when \(Q \) is singular and a different construction of the regular inverse \(N^{-1} \) are given using a particular \(g \)-inverse of \(Q \).

2. DEFINITIONS AND NOTATIONS

We denote by \(C^{m\times n} \) the vector space of all \(m \times n \) matrices defined over the complex number field. For a given matrix \(A r(A) \) is its rank, \(R(A) \) is the range or the space spanned by the columns of \(A \), \(A^* \) is the conjugate transpose of \(A \). \(A^- \) is any \(g \)-inverse of \(A \) satisfying \(AA^-A = A \) and \(A^- \) is a reflexive \(g \)-inverse satisfying also \(A^-AA^- = A^- \). In general we use the notations of [19].

Let \(A \in C^{m\times n} \) and \(X \in C^{n\times p} \), we consider the system

\[
\begin{pmatrix}
AX = T \\
A^*Y + QX = Z
\end{pmatrix}
\]

(1)

R.A.I.R.O. Analyse numérique/Numerical Analysis
We have $Q \in \mathbb{C}^{n \times m}$, $Y \in \mathbb{C}^{m \times p}$, $T \in \mathbb{C}^{m \times p}$ and $Z \in \mathbb{C}^{n \times p}$. System (1) can be constrained in the form $NU = W$, where $N \in \mathbb{C}^{n+m \times n+m}$, $U \in \mathbb{C}^{n+m \times m}$ and $W \in \mathbb{C}^{n+m \times p}$.

In particular
\[
N = \begin{pmatrix} O & A \\ A^* & Q \end{pmatrix}, \quad U = \begin{pmatrix} Y \\ X \end{pmatrix}, \quad W = \begin{pmatrix} T \\ Z \end{pmatrix}.
\]

3. MAIN RESULTS

We use the following lemmas.

Lemma 1: A necessary and sufficient condition that $AX = T$ is consistent is that $AA^* T = T$.

Lemma 2: Let $G = \begin{bmatrix} -H^* & H^- AK^- \\ K^* A^* H^- & K^- - K^- A^* H^- AK^- \end{bmatrix}$ be a partitioned matrix in which $K = Q + A^* A$ and $H = AK^* A^*$. Then:

(a) G is a g-inverse of N;

(b) if $R(A^*) \subset R(Q)$, G is a g-inverse of N replacing the expression of K by Q.

A proof of lemma 1 and lemma 2 is in [19]. But for lemma 2(b) we can give the following alternative proof. The generalized Schur-complement (1) of Q reduces to $N/Q = AQ^- A^*$, thus according to [14] and [15], G is a g-inverse of N iff the rank is additive on the Schur-complement; that's true if

\[
R(A^*) \subset R(Q)
\]

in view of [14, corollary 19.1].

Theorem 1: If system (1) is consistent $R(Z - QA^- T) \subset R(A^*)$ is n.s. for $\forall X/AX = T \Leftrightarrow X \in U$.

Proof: If $AX = T$ and $X \in U$, there exists a solution of $A^* Y + QA^- T = Z$ for any Z and $QA^- T$. Thus in view of lemma 1 : $R(Z - QA^- T) \subset R(A^*)$, and vice versa. ■

By straightforward multiplication we obtain :

Corollary 1: If K^* and H^* (respectively Q^* and H^*) in the expression for G in lemma 2(a) (lemma 2(b)) are replaced by K^*_r and H^*_r (Q^*_r and H^*_r), G is a reflexive g-inverse of N no further conditions being required.

(1) For the Schur-complement and other references see [11].

vol. 15, no 2, 1981
Lemma 3: The set of all solutions of system (1) is given by

\[Y = H^{-1} AK^{-1} Z - H^{-1} T, \]
\[X = K^{-1} A^* H^{-1} T + (I - K^{-1} A^* H^{-1} A) K^{-1} Z; \]

where \(H \) and \(K \) are defined as in lemma 2.

As far as the uniqueness of solution of system (1) is concerned we state the following.

Lemma 4: System (1) has a unique solution only if \(r(A) = m \) and \(r(Q) \geq n - m \).

Theorem 2: (a) A necessary and sufficient condition that system (1) has a unique solution is that:

(i) \(r(A) = m \) and \(R(A^*) \oplus R(Q) = R(A) \oplus R(Q^*) = C^n \),

or what is the same

(ii) \(r(A) = m \), \(r(Q) \geq n - m \) and \(A \) and \(Q \) are virtually disjoint, or

(iii) \(K = (Q + A^* A) \) has full rank.

(b) \(r(A) = m \) and \(r(Q) = n \) are n.s. that system (1) has a unique solution iff \(R(A^*) \subset R(Q) \).

Proof of (a): The matrix \(N \) is not singular, so its rows are linearly independent hence \(r(A) = m \) and \(R(A^*) \oplus R(Q) = C^n \). The same for its columns, thus \(R(A^*) \oplus R(Q) = C^n \). This condition is obviously equivalent to (ii). (iii) follows from Lemma 3, and if (iii) holds then (i) holds.

Proof of (b): The matrix \(G \) as defined in lemma 2(b) is the regular inverse of \(N \) with \(R(A^*) \subset R(Q) \), hence \(H^{-1} \) and \(Q^{-1} \) exist, so that \(r(A) = m \) and \(r(Q) = n \). For the only if part we consider that if \(r(A) = m \) and \(r(Q) = n \) then \(R(A^*) \subset R(Q) \) since \(m \leq n \) and both \(A \) and \(Q \) have full rank.

An alternative proof of Theorem 2(b) is in [7, theorem 1].

We point out that Theorem 2(a) provides a general statement for the uniqueness of solution of system (1). A particular case of (a), when \(r(Q) = n - m \) is stated in [19, p. 19] when the matrix is \(\begin{pmatrix} A & U \\ V^* & O \end{pmatrix} \), and \(U \) and \(V \) have the same dimension. Theorem 2 emphasizes that the inverse of a matrix partitioned like in \(N \) (2) can be constructed even if \(Q \) is not of full rank (for \(Q \) with full rank see [13, p. 107]), but only \(r(Q) \geq n - m \). Theorem 2 holds for any \(Q \).

On the other hand, it is natural to expect some g-inverse of \(Q \) gets involved in computing the regular inverse of \(N \) whenever \(Q \) is singular just as the regular inverse plays when \(Q \) is not singular. The following lemma clears up this

(2) This result can be extended to the general form \(M = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \).

R.A.I.R.O. Analyse numérique/Numerical Analysis
apparent contradiction by showing how a particular g-inverse of Q arises from the formula of lemma 2 under the conditions of theorem 2(a).

Lemma 5: Let $A \in C^{m \times n}$ and $Q \in C^{n \times n}$, if $r(A) = m$, $(Q + A^* A)^{-1}$ exists and is one choice of Q^{-} with maximum rank iff A and Q are virtually disjoint, $R(A^*) \oplus R(Q) = R(A) \oplus R(Q^*) = C^n$.

We do not prove this lemma since it follows easily from [19, theorem 2.7.1],

Lemma 6(a): Under the conditions of theorem 2(a)

$$G = \begin{bmatrix} 0 & A_{Q0}^* \\ A_{Q0}^{-} & \tilde{Q}^{-} - A_{Q0}^{-} A\tilde{Q}^{-} \end{bmatrix}$$

is the regular inverse of N, where $A_{Q0}^{-} = \tilde{Q}^{-} A^* H^{-}$ is a g-inverse of A, $H = A\tilde{Q}^{-} A^*$ and \tilde{Q}^{-} is a selected g-inverse of Q with maximum rank as defined in lemma 5.

The solution of system (1) is

$$Y = A_{Q0}^{-} Z, \quad X = A_{Q0}^{-} T + (I - A_{Q0}^{-} A) \tilde{Q}^{-} Z.$$

(b) If theorem 2(b) holds then

$$G = \begin{bmatrix} -H^{-1} & A_{Q0}^{-} \\ A_{Q0}^{-1} & Q^{-1} - A_{Q0}^{-1} A Q^{-1} \end{bmatrix}$$

is the regular inverse of N, where $A_{Q0}^{-1} = Q^{-1} A^* H^{-1}$ is the g-inverse of A as defined by [4] and H is defined in lemma 2(b). The solution of system (1) is

$$Y = A_{Q0}^{-1} Z - H^{-1} T, \quad X = A_{Q0}^{-1} T + (I - A_{Q0}^{-1} A) Q^{-1} Z.$$

Examples

$$N = \begin{bmatrix} 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & -2 \end{bmatrix}; \quad A = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix};$$

$$Q = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -2 \end{bmatrix}; \quad r(A) = 2, \quad r(Q) = 1.$$
It easy to verify that \(R(A^*) \not\subset R(Q) \) and
\[
R(A^*) \oplus R(Q) = R(A) \oplus R(Q^*) = R^3,
\]
thus \(A \) and \(Q \) are disjoint. The conditions of theorem 2(a) are fulfilled and \(G \) as defined in lemma 6(a) is the regular inverse of \(N \). Thus \(\tilde{Q}^{-1} = (Q + A^* A)^{-1} \),
\[
H = AQ^{-1} A^*, A_{Q0} = Q^{-1} A^* H^{-1}
\]
and by easy computation
\[
N^{-1} = \begin{bmatrix}
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & -1/2
\end{bmatrix},
\]
\[
N = \begin{bmatrix}
0 & 1 & 0 \\
1 & 1 & 0 \\
0 & -1 & 1
\end{bmatrix}; \quad A = (1 \ 0); \quad Q = \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix};
\]
\[
r(A) = 1, \quad r(Q) = 2.
\]
In this case \(R(A^*) \subset R(Q) \) and theorem 2(b) holds. Then by lemma 6(b) \(H = AQ^{-1} A^* \) and
\[
N^{-1} = \begin{bmatrix}
-1 & 1 & 0 \\
1 & 0 & 0 \\
1 & 0 & 1
\end{bmatrix}.
\]

4. OTHER INVERSES OF \(N \)

As stated in lemma 4 system (1) does not have a unique solution whenever \(A \in C^{m\times n} \) and \(m > n \). However we can find other particular solutions when system (1) is possibly inconsistent. A set of equivalent conditions is stated in [18] in order to obtain a \(g \)-inverse minimum norm, least squares or both them for the system \(AX = T \). We denote these by \(A_m^-, A_1^-, A^+ \) : the last one is the Moore-Penrose inverse of \(A \). Thus we have the following :

Theorem 3 : Let \(G \) be a partitioned matrix as defined in lemma 2(b),
(a) \(G \) is a minimum norm inverse of \(N \) if \((I - H^* H) A = 0 \), \(Q^{-1} \) is replaced by \(Q_m^- \) and \(R(A^*) \subset R(Q^*) \).
(b) \(G \) is a least squares inverse of \(N \) if \(Q^{-1} \) is replaced by \(Q_1^- \) and
\[
A^*(I - HH^{-1}) = 0.
\]
(c) \(G \) is the Moore-Penrose inverse of \(N \) if \(Q^- \) and \(H^- \) are replaced by \(Q^+ \) and \(H^+ \) and \(R(A^*) \subseteq R(Q^+) \), \(R(AQ^+) \subseteq R(H) \) and \(R((Q^+ A^*)^*) \subseteq R(H^*) \).

Remark If \(Q \) is Hermitian, then \(G \) is the Moore-Penrose inverse of \(N \) if \(Q^- \) and \(H^- \) are replaced by \(Q^+ \) and \(H^+ \) and \(R(AQ^+) \subseteq R(H) \) only.

REFERENCES

1 A Ben-Israel, A note on partitioned matrix equations SIAM Rev, 11 (1969), 247-250
2 A Ben-Israel, Generalized inverses theory and applications J Wiley and Sons (1974), New York
5 T Boullion, P L Odell, Generalized inverse matrices J Wiley and Sons (1971), New York
8 Ching-Hsiang Hung, T Markham, The Moore-Penrose inverse of a partitioned matrix \(M = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \) Linear Alg and its Appl, 11 (1975), 73-86
9 R E Cline, Representation for the generalized inverse of partitioned matrix SIAM J Appl Math, 12 (1964), 588-600
11 R W Cottle, Manifestation of the Schur complement Linear Alg and its Appl, 8 (1974), 189-211
13 C Hadley, Linear Algebra Addison-Wesley (1965), New York
14 G Marsaglia, G P H Styan, Rank conditions for generalized inverses of partitioned matrices Sankhya, Ser A (1974), 437-442
15 G Marsaglia, Equations and inequalities for ranks of matrices Linear and Multil Alg, 2 (1974), 269-292
16 S K Mitra, P Bhimasankaram, Generalized inverse of partitioned matrices and recalculation of least squares estimates for data or model charges Sankhya, Ser A, 33 (1971), 395-410

20 C H Rohde, *Generalized inverse of partitioned matrices* SIAM J, 13 (1965), 1033-1035

21 V Valerio, *Sulle inverse generalizzate e sulla soluzione di particolari sistemi di equazioni lineari, con applicazione al calcolo delle strutture reticolari* Acc Naz Lincei, Rend sc, vol LX (1976), 84-89