LIN QUN

Iterative refinement of finite element approximations for elliptic problems

<http://www.numdam.org/item?id=M2AN_1982__16_1_39_0>

© AFCET, 1982, tous droits réservés.

L’accès aux archives de la revue « RAIRO – Analyse numérique » implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/legal.php). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.
ITERATIVE REFINEMENT OF FINITE ELEMENT APPROXIMATIONS FOR ELLIPTIC PROBLEMS (*)

by Lin QUN (1)

Communiqué par J A NITSCHEN

Résumé — On présente une extrapolation itérative d’approximations de problèmes elliptiques par des éléments fins de bas degré

Abstract — An iterative refinement of low-degree finite element approximations for elliptic problems is presented

1. We will consider the boundary value problem

\[\Delta u + \sum a_i \frac{\partial u}{\partial x_i} + bu = -f \quad \text{in} \quad \Omega , \]

\[u = 0 \quad \text{on} \quad \partial \Omega . \quad (1) \]

Here \(\Omega \subset \mathbb{R}^N \) is a bounded domain with boundary \(\partial \Omega \) sufficiently smooth. We will adopt the standard notations (cf. Gilbarg-Trudinger, 1977). Especially \((., .) \) respective \((., .)_1 \) denote the \(L_2(\Omega) \)-inner-product respective the Dirichlet integral and \(\| . \|_k \) the norm in \(H^k(\Omega) \).

The weak formulation of problem (1) is

\[(u, v)_1 = (\sum a_i u \mid_i + bu + f, v) \quad \text{for} \quad v \in \tilde{H}_1 . \quad (2) \]

Our basic assumption is : problem (1) resp. (2) has a unique solution \(u \) to \(f \in H_0 \) with \(u \in \tilde{H}_1 \cap H_2 \) and \(\| u \|_2 \leq c \| f \| . \) Now let \(S_h \) be the space of linear finite

(*) Reçu le 17 mars 1981.
(1) Institute of Mathematics, Academia Sinica, Beijing, Chine

© Bordas-Dunod
éléments with isoparametric modifications in the boundary éléments such that $S_h \subset \bar{H}_1$ holds true. Due to an argument of Schatz (1974) for h sufficiently small the Galerkin-approximation $u^0 = u_h \in S_h$ defined by

$$(u^0, \chi)_1 = \left(\sum a_i u^0 |_i + b u^0 + f, \chi \right) \quad \text{for} \quad \chi \in S_h$$

is uniquely defined. The error estimate

$$\| u - u^0 \| + h \| u - u^0 \|_1 \leq c h^2 \| u \|_2$$

is well known.

In Lin Qun (1978), (1980) we introduced a refinement of u^0 on the basis of the additional assumption : to $F \in H_0$ given the solution of

$$- \Delta U = F \quad \text{in} \quad \Omega,$$

$$U = 0 \quad \text{on} \quad \partial \Omega$$

resp. $U \in \bar{H}_1$ and

$$(U, v)_1 = (F, v) \quad \text{for} \quad v \in \bar{H}_1$$

is computable. Then given u^0 we can compute \bar{u}^0 defined by $\bar{u}^0 \in \bar{H}_1$ and

$$(\bar{u}^0, v)_1 = \left(\sum a_i u^0 |_i + b u^0 + f, v \right) \quad \text{for} \quad v \in \bar{H}_1.$$ (7)

This leads to a higher accuracy in the H_1-norm :

$$\| u - \bar{u}^0 \|_1 \leq c h^2 \| u \|_2.$$ (8)

Of course \bar{u}^0 is not an element of S_h.

Following a suggestion of Nitsche (private communication) we construct starting with the pair (u^0, \bar{u}^0) iterates $(u^{\nu+1}, \bar{u}^{\nu+1})$ for $\nu \geq 0$ defined

$$u^{\nu+1} = \bar{u}^\nu + \varphi^\nu$$

with $\varphi^\nu \in S_h$ and

$$(\varphi^\nu, \chi)_1 = \left(\sum a_i \varphi^\nu |_i + b \varphi^\nu, \chi \right) =$$

$$\left(\sum a_i (\bar{u}^\nu - u^\nu) |_i + b (\bar{u}^\nu - u^\nu), \chi \right) \quad \text{for} \quad \chi \in S_h$$ (10)

and on the other hand by ($\nu \geq 0$)

$$(\bar{u}^\nu, v)_1 = \left(\sum a_i u^\nu |_i + b u^\nu + f, v \right) \quad \text{for} \quad v \in \bar{H}_1.$$ (11)
In Section 3 we give the proof of:

Theorem 1: Let \((u', \overline{u}')\) be defined as above. Then

\[
\| u - u' \| + \| u - \overline{u}' \|_1 \leq (ch)^{\nu+2} \| u \|_2
\]

is valid.

2. Our proof is based on the following operator framework (cf. Chatelin, 1981, Hackbusch, 1981). Let us consider the equation

\[
u = Ku + y
\]

in a Banach-space \(X\) with \(K\) being a linear compact operator. Further let \(S\) be an approximating subspace and \(P : X \to S\) a bounded projection onto \(S\). The standard Galerkin solution is defined by

\[
u^0 = PKu^0 + Py
\]

Now we construct iterates \(\overline{u}^\nu\) and \(u^{\nu+1}\) in the way

\[
\overline{u}^\nu = Ku^\nu + y, \quad u^{\nu+1} = \overline{u}^\nu + r^\nu
\]

with \(r^\nu\) defined by

\[
r^\nu = PKr^\nu + PK(\overline{u}^\nu - u^\nu)
\]

Remark 1: \(d^\nu = \overline{u}^\nu - u^\nu = Ku^\nu - u^\nu + y\) is the defect of the \(\nu\)-th iterate. Therefore \(r^\nu\) may be interpreted as the Galerkin-solution to the right hand side \(Kd^\nu\).

Remark 2: The approximations \(\overline{u}^0\) are also considered in Sloan (1976), but the higher iterates introduced there differ from ours.

Lemma 1: Suppose that \(K\) is compact, \(1\) is not an eigenvalue of \(K\) and \(\kappa = \| (I - P) K \|\) is sufficiently small.

Then \((I - PK)^{-1}\) exists as a bounded operator in \(X\) and the Galerkin solutions are well defined. Moreover

\[
u - u^\nu = (I - PK)^{-1} (I - P) K (u - u^{\nu-1}).
\]

Proof: Since \((I - K)^{-1}\) is bounded for \(\kappa\) small enough also \((I - PK)^{-1}\) is bounded. As a consequence the Galerkin solution is uniquely defined. The identity

\[
(I - K)^{-1} = (I - PK)^{-1} + (I - PK)^{-1} (I - P) K (I - K)^{-1}
\]

vol. 16, n° 1, 1982
will be useful. The solution u of (12) may be written in the form

$$u = (I - PK)^{-1} y + (I - PK)^{-1} (I - P) Ku.$$ \hfill (19)

Because of our construction we have

$$u^{r+1} = Ku^r + y + (I - PK)^{-1} PK(Ku^r + y - u^r)$$

$$= (I - PK)^{-1} y + (I - PK)^{-1} (I - P) Ku^r.$$ \hfill (20)

Subtraction of (20) from (19) gives (17).

Remark 3: We mention that under our assumptions also $(I - KP)^{-1}$ exists and the recurrence relation

$$u - u^r = (I - KP)^{-1} K(I - P)(u - u^{r-1})$$ \hfill (21)

is valid. The proof is omitted.

By our assumptions $\| u^0 \|$ is bounded by a multiple of $\| y \|$. Because of

$$\| (I - PK)^{-1} \| \leq \frac{\gamma}{1 - \kappa \gamma}$$ \hfill (22)

with γ being the norm of $\| (I - K)^{-1} \|$ we conclude from lemma 1:

Corollary 1: Let $\kappa = \| (I - P) K \|$ be less than the half of

$$\gamma^{-1} = \| (I - K)^{-1} \|^{-1}.$$

Then error-estimates of the type

$$\| u - u^r \| \leq c \left\{ \frac{\kappa \gamma}{1 - \kappa \gamma} \right\}^\gamma \| y \|$$ \hfill (23)

hold true.

3. Now we come back to the situation discussed in section 1. We identify X with the Hilbertspace $H_0 = L_2(\Omega)$. Since we want to work with the Ritz-method we have to impose the condition $S \subseteq \bar{H}_1$. For simplicity we focus our attention to the case $S = S_h$ is the space of linear finite elements with isoparametric modifications along the boundary. Further let $P = R_h$ be the standard Ritz-projection defined by $Pu \in S_h$ and

$$(Pu, \chi)_1 = (u, \chi)_1 \text{ for } \chi \in S_h.$$ \hfill (24)
The operator K is defined by

$$w = Kv \Rightarrow w \in \hat{H}_1$$

and $(w, g)_1 = (v, -\sum (a_i g)_i + bg)$ for $g \in \hat{H}_1$. (25)

Under suitable conditions concerning the regularity of a, b and since the original problem (1) resp. (2) is assumed to be uniquely solvable K is a bounded operator from H_0 into \hat{H}_1 and hence compact as mapping of H_0 into itself.

By duality the error-estimate

$$\| u - Pu \| \leq ch \| u \|_1$$

is a consequence of (4). Because of

$$\| (I - P) K v \| \leq ch \| K v \|_1 \leq c' h \| v \|$$

we find

$$\kappa = \kappa_h = \| (I - P) K \| \leq ch$$

with some constant c.

The estimates derived in section 2 lead to

$$\| u - u^v \| \leq (ch)^v \| u - u^0 \|$$

and because of (4) to

$$\| u - u^v \| \leq (ch)^{v+2} \| u \|_2.$$ (30)

Finally the terms $\| u - \bar{u}^v \|_1$ are bounded in the same way since by definition

$$u - \bar{u}^v = K(u - u^v).$$ (31)

This completes the proof of theorem 1.

4. In this section we consider the model problem

$$- \Delta u = f(\cdot, u) \quad \text{in} \quad \Omega$$

$$u = 0 \quad \text{on} \quad \partial \Omega$$

in two or three space dimensions. The weak formulation of (32) is: Find $u \in \hat{H}_1$ such that

$$(u, v)_1 = (f(u), v) \quad \text{for} \quad v \in \hat{H}_1.$$ (33)
Our assumptions are:

(i) \(f(x, z) \) is twice continuously differentiable with respect to \(z \in \mathbb{R} \) and

\[
|f_{zz}(x, z)| \tag{34}
\]

is uniformly bounded.

(ii) For \(z = u(x) \in C^0(\Omega) \) the functions \(f(x, u(x)), f_z(x, u(x)) \) and \(f_{zz}(x, u(x)) \) are in \(C^0(\Omega) \).

(iii) \(u \) is an isolated solution of (32), i.e. the linear problem

\[
<w, g> = (f(u, w, g) \quad \text{for} \quad g \in \mathcal{H}_1 \tag{35}
\]

admits only \(w = 0 \) in \(\mathcal{H}_1 \).

Now let \(u^0 = u_h \in S_h \) be the solution of the corresponding Galerkin-problem

\[
(u^0, \chi)_1 = (f(u^0), \chi) \quad \text{for} \quad \chi \in S_h \tag{36}
\]

Corresponding to section 1 we define the iterates \(u^\nu \) for \(\nu \geq 0 \) by

\[
<w, g> = (f(u^\nu, g) \quad \text{for} \quad g \in \mathcal{H}_1 \tag{37}
\]

and

\[
u^{\nu+1} = u^\nu + \varphi^\nu \tag{38}
\]

with \(\varphi^\nu \in S_h \) and

\[
(\varphi^\nu, \chi)_1 = (f(u^0)(\varphi^\nu + u^\nu - u^\nu), \chi) \quad \text{for} \quad \chi \in S_h \tag{39}
\]

The counterpart of theorem 1 is:

THEOREM 2: Let \((u^\nu, u^\nu) \) be defined as above. Then

\[
\| u - u^\nu \| + \| u - \mathcal{H}_1 \|_2 \leq c_1(c_2 h^2)^{\nu+1} \tag{40}
\]

is valid. The constants \(c_1, c_2 \) depend on \(u \) and bounds of \(f_z, f_{zz} \) but are independent of \(h \) and \(\nu \).

Proof: Let \(K : H_0 \rightarrow \mathcal{H}_1 \cap H_2 \) be the inverse of the Laplacian defined by

\[
w = Kv \iff (w, g)_1 = (v, g) \quad \text{for} \quad g \in \mathcal{H}_1 \tag{41}
\]

and let \(P = R_h \) be the Ritz operator defined by

\[
\Phi = Pv \iff \Phi \in S_h \quad \text{and} \quad (\Phi, \chi)_1 = (v, \chi)_1 \quad \text{for} \quad \chi \in S_h \tag{42}
\]
Problem (32) is equivalent to \(u = Kf(u) \). We may rewrite this in the form
\[
(I - PKf'(u^0))u = Kf(u) - PKf'(u^0)u.
\]

In terms of \(K \) and \(P \) the iterates \(\bar{u}^\nu \) and \(\varphi^\nu \) have the representation
\[
\bar{u}^\nu = Kf(u^\nu),
\]
\[
(I - PKf'(u^0))\varphi^\nu = PKf'(u^0)(\bar{u}^\nu - u^\nu).
\]

This leads to
\[
(I - PKf'(u^0))u^{\nu+1} = Kf(u^\nu) - PKf'(u^0)u^\nu.
\]

By comparison of (43) and (46) and by adding and subtracting appropriate terms we come to
\[
(I - PKf'(u^0))(u^{\nu+1} - u) = (I - P)Kf'(u^0)(u^\nu - u) +
\]
\[
+ K \{ f(u^\nu) - f(u) - f'(u)(u^\nu - u) + f'(u) - f(u^0) \} (u^\nu - u).
\]

The Ritz operator \(P \) is the orthogonal projection in \(H^1 \) onto \(S = S_h \). For \(v, w \in H_0 \) arbitrary we get
\[
((I - P)Kv, w) = ((I - P)Kv, Kw)_1
\]
\[
= ((I - P)Kv, (I - P)Kw)_1
\]
\[
\leq ch^2 \| Kv \|_2 \| Kw \|_2 \leq ch^2 \| v \| \| w \|.
\]

This implies that the norm of \((I - P)K \) as mapping of \(H_0 \) into \(H_0 \) is bounded by \(ch^2 \). Next let \(a \) be a continuous function and \(v, w \in H_0 \). Then also \(K(aww) \) is in \(H_0 \) and
\[
\| K(aww) \| \leq c \| v \| \| w \|.
\]

This follows from
\[
\| K(aww) \|_0 = \sup \{ (Kaww, g) \| g \| = 1 \}
\]
and
\[
(K(aww), g) = (v, \{ aKg \} w)
\]
in combination with Sobolev's embedding lemma.

For \(h \) small enough the initial Galerkin solution \(u^0 \) is "near" to \(u \). Because of our assumption (iii) then the operator \(I - PKf'(u^0) \) will have a bounded inverse.

vol. 16, no 1, 1982
By the aid of these arguments we derive from the recurrence relation (47) the corresponding error bound

\[\| u^{\nu+1} - u \| \leq c_3 h^2 \| u^{\nu} - u \| + c_4 \| u^{\nu} - u \|^2 + c_5 \| u^0 - u \| \| u^{\nu} - u \|. \]

(52)

For the sake of clarity we have numbered the constants. Since an estimate of the type

\[\| u^0 - u \| \leq c h^2 \]

(53)

holds true anyway we derive from (52)

\[\| u^{\nu+1} - u \| \leq c_6 h^2 \| u^{\nu} - u \| + c_4 \| u^{\nu} - u \|^2 . \]

(54)

Because of (53) by complete inductions there is a constant \(c_7 \) such that for \(h < h_0 \) with \(h_0 \) chosen appropriate the relation

\[\| u^{\nu+1} - u \| \leq c_7 h^2 \| u^{\nu} - u \| \]

(55)

holds true (55) together with (53) lead to the error bound stated in theorem 2 for \(u^{\nu} - u \).

Because of

\[\tilde{u}^{\nu} - u = K (f(u^{\nu}) - f(u)) \]

(56)

we come to

\[\| \tilde{u}^{\nu} - u \|_2 \leq c \| f(u^{\nu}) - f(u) \| \leq c \| u^{\nu} - u \|. \]

(57)

Remark 3: Whereas assumption (iii) is essential the two preceding ones can be reduced.

ACKNOWLEDGEMENT

I want to thank W. Hackbusch, J. Liu and J. Nitsche for their suggestions and discussions.
REFERENCES