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CONSTRUCTION OF SURFACE SPLINE INTERPOLANTS
OF SCATTERED DATA OVER FINITE DOMAINS (*)

by Nira DYN and David LEVIN (L)

Communicated by P J LAURENT

Abstract — A numcncal methodfor smooth interpolation oj scattered data over afinite two dimen-
sional domain Q is presented The interpolating function is defined by minimizatwn of a Dinchlet-
type intégral oj order ^ 2 over Q, nieasuring the rougîmes s oj the surface The case cor r esponding
to Q = R2 results in the so-called « thin plate » sphne A Ritz-type method for approximating the
fimte domain interpolating surface sphne is de\eloped, based on a set of basis functions including
the fundamental «thin plate» sphne s Numencal experiment s are appended, demonsti ating the
réduction of the rougîmes s measure as compared to that of the «thin plate» sphne

Résumé — On presente une methode numérique pour l'interpolation de données irrégulièrement
réparties sur un domaine fini bidimenswnnel Q par une surface régulière La fonction d'interpolation
est définie par minimisatwn d'une intégrale du type de Dirichlet, d'onde ^ 2, sur Q., qui mesure la
qualité de l'approximation de la surface Le cas oùQ. = i^2 correspond aux splines de type « plaque
mince » On élabore une methode de Ritz pour approcher la surface sphne d'interpolation dans le
cas d'un domaine fini, basée sur un ensemble de fonctions de base comprenant les splines fondamentales
du type « plaque mince » On inclut des résultats numériques, qui mettent en évidence la réduction
du défaut d'approximation par rapport a celui de la sphne du type « plaque mince »

1. INTRODUCTION

A univariate interpolatory spline can be introduced as the solution to the
problem of minimizing the quadratic seminorm

(î. i)

(*) Received in Apnl 1981.
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202 N. DYN, D. LEVIN

among all w, u{m) e L2[a, b], satisfying the interpolation conditions

u(Xl) = sl9 i = 1,2,..., AT, (1.2)

with N ^ m ^ 1 and { x,} being distinct points in [a, b\
This minimum principle is extended to the multivariate case as follows :
Given a domain Q in Rn and N distinct points { zx = (x({\ ..., xj,°)} in Q,

find a function u e Hm(Q) such that

u(zt) = s l 9 i ^ i ^ N (1.3)

for some prescribed reals { st}, and such that | u |Q m is minimal where

u \n,m
11, 12, , l m = l

(1.4)

Duchon [2] and Meingnet [4] give closed form solutions of this problem for
Q = R2 and term these solutions « thin plate » splines.

In the univariate case the solution of the problem (1.1)-(1.2) accepts the
same values in the interval [xl9 xN] for any a ^ xx and b ^ xN, and also in
case of the seminorm (1.1) defïned o n R 1 :

) l / 2
_ J I I *.W)U\ IZ ^

lit,m W
j

However, this nice property does not hold in higher dimensional spaces, where
the solution does depend upon the geometry of the domain Q.

Intuitively, for given scattered data points {zx }f= x one expects to obtain
a better interpolation approximation by using the seminorm (1.4) chosen
over a domain which is characteristîc to the distribution of the data points
rather than over all Rn. The purpose of this work is to investigate the perfor-
mance of a 2-dimensional surface spline interpolants based upon finite domain
seminorms | |Qm in comparison with the solution corresponding to | \R2>m.
Using some theoretical results of Duchon [2] and Meingnet [4] on the formai
représentation of surface spline interpolants, a numerical procedure is suggested
for approximating the solution of (1.3)-(l .4) for n = 2, m ^ 1 and « nice »
domains Q in R1. Some numerical results are presented for m = 2 and poly-
gonal domains, and the results are compared with those obtained by the « thin
plate » splines. It is concluded that in many cases a significant improvement
upon « thin plate » splines can be obtained, an improvement which justifies
the extra computational effort needed for Computing the surface spline inter-
polants over finite domains.
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SURFACE SPLINE INTERPOLANTS 203

2. CHARACTERIZATION OF THE SURFACE SPLINE INTERPOLANTS OVER FINITE
DOMAINS

Let Q be a simply connected domain in R2. Let z, = (x(l\ xty), i = 1, 2,..., N
be N distinct points in Q and let s„ i = 1, 2,..., N be any given data set of
N real numbers. As it is done in the univariate case one wants to find a function
which interpolâtes the given data and is smooth over Q is some sense. As a
roughness measure we use the functionals

defîned on the Sobolev space

dku
Hm(Q) = 1 u — E L2(Q), 0 < i ^ k, k < m V.

For m = 2 Jm(u) is the stress energy of a plate of shape Q under a distortion u.
The surface spline interpolant is thus the solution of the problem :

min Jm(u)

u(Zl) = sl9 i= 1,2,...,AT.J

Jm(u) is a semmorm on Hm(Q) which can be written as

Jm(u) = Am(u9u) (2.3)

where Am is a semi-inner-product on H m(Q)

for M, i; e Hm(Q).
Since 4̂(w, M) = 0 if and only if u e Qm where

Qm = span { x\ xJ
2\i + j < m } = span { ̂ l 5 ^2,..., qM }

with M = ( I (2.2) has a unique solution if the matrix { qv{z) }l^1JS1

is of degree M. We assume, without loss of generality, that { g^jv-j+i) }5=i
is non-singular and dénote the points zN_M + 1 , . . . , zN by yi,...,)>M- Under
this assumption problem (2.2) for m ^ 2 has a unique solution, since

vol. 16, n° 3, 1982



204 N. DYN, D. LEVIN

Hm(Q) c C(Q) for m ^ 2 and the linear functionals LJ= f(zt), /eifm(O),
are bounded. It can be shown as in [3, 4] that this solution is of the 'form

N-M M

« * = E v,4>(+ £ ^.q. (2.5)
i = 1 i = 1

where the coefficients { vf } and {\it} are determined by the interpolation
conditions

u*{zt) = s i 9 i = 1 , . . . , N (2.6)

and the <\>b 1 ^ i: ̂  JV — M, are characterized variationally by

O W V/eHw(Q) (2.7)

i(^) = °» J = 1—Af. (2.8)

In particular by taking / e gOT in (2.7) we get

M

E axi q(yj) + ^(zf) = 0 Vg G em • (2.9)

By assumption C = { ̂ -(yj) }ij=i is non-singular and therefore the atj in
(2.7) are given by

(a,i, ûl2,..., alM)T = - C-\qi{zù ..., gM(z,))T . (2.10)

Combining (2.7)-(2.9) with (2.5) and (2.6) we conclude that w* is charac-
terized variationally by

Am(u*J) = £ XJizJ, feHm(Q), (2.11)
i = l

u*(zi) = sl, i = 1 JV (2.12)

and X,1;..., XN are constrained by the substitutions of ql9..., qM to satisfy

X \,q£zt) = 0, j= l , . . . ,M. (2.13)
t = l

In fact Xl9 ...,XN are the Lagrange multipliers for the variational problem
(2.2), that is w* minimizes the functional

Jm(u)+ Z W i ) - ^ ] . (2.14)

R.A.I.R.O. Analyse numérique/Numerical Analysis
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Let Q be a « nice » domain such that the generalized Green's formula holds [1] :

m-lf
= (-ir\

Ja
(X»u)vdx1dx

2

where A = d2jdx\ + d2/dx%, Sf is a differential operator of order i and dj dn
is the normal derivative at the boundary F of Q. Then the variational charac-
terization (2.11), (2.12) is equivalent to the differential characterization [1] :

( - l)m (Amu*) (z) = X h 8 ( z " zt) > z = (*i> xi) e Q (2.15)

ô m + >*) = 0 , 7 = 0 , . . . , m - 1 on T (2.16)

11^) = ^ , i = l , . . . , N (2.17)

with X,l9..., XN constants constrained by (2.13).
A fundamental solution of the operator (— l)mAm, namely a function

satisfying

( - l)wAm\|/(z,Q = 5(z - O (2.18)

is known explicitly as [2, 4] :

i|/(z, O = Cm | z - Ç l2^-1) log | z - Ç | , C-1 = 22-"17ü[(m - 1) ! ] 2 .

(2.19)

The function \(/(z, Q is analogous to the univariate fundamental solution

TT TTT(X — ^ ) + m l giving rise t o the spline fonctions. U s i n e the funda-
(2 m - 1) !
menta l solut ion (2 .19) we can write M* as

M*(z) = X ^ ^ ( z ) + W(z), (2.20)

with Xl9...9XN constrained by (2.13), \|/f(z) = \|/(z, z£), i = 1,..., AT, and
W(z) G if 2m(Q) a solution of the boundary value problem

tSTW = 0 in Q (2.21)

j = 0 , . . . , m - l , on T . (2.22)

vol. 16, n° 3, 1982
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The vanational characterization of W(z) in view of (2.11) and (2.20) is

AJWJ) = £ \f{zt) - £ \AJUvf), feHm(Q). (2.23)
i = i i = i

By (2 18) and Green's formula, (2 23) is equivalent to

Am(WJ) = - "if f Ö2m_ ! -, I" I X, iKz, z,)l f t ds , ƒ e ff "(Û). (2 24)
7=o J r b=i Jön

The solution to the boundary value problem (2 21)-(2 22) for given Xi9 ,XN

is determined uniquely up to a polynomial in Qm Thus (2 21)-(2 22) together
with the N -f M conditions (2 12)-(2 13) détermine a unique function W(z)
and a set of constants Xl9 ,XN

In the case of the « thin plate » splme w* is given by (2 20) with
M

W(z) = ^ Î . ^ G Ôw, and the iV + M unknown Xl9 , XN, y1? , yM are
i = i

determmed by the AT + M conditions (2 12)-(2 13) This leads to a lmear
System of order N + M m the unknowns

3. APPROXIMATION OF THE SURFACE SPLINE INTERPOLANTS OVER FINITE
DOMAINS

Let <î> = { qu , qM, cpl9 cp2, } be a complete set of functions m

K2m(Q) = { q> | cp e H2m(Q), Amcp = 0 m Q } (3 1)

The solution of the boundary value problem (2 21)-(2 22) can be well
approximated by a fmite sum of the form

WH(z)= t bf%(z)+ £ cfqj(z) (3.2)
J = l 7 = 1

provided that n is large enough A System of n + M lmear équations for the
coefficient { tyn) }"=i, { cf] }Ji j is obtamed, as m the Ritz method, by applying
the variational characterization (2 23) to the subspace of basis functions
{ 4i' —5 %> 91» •> 9n } This procedure yields équations of two types :

t fe<w> 4 . ( 9 , , <pj - £ X<w> 9,(2,) + X !̂rt> 4 „ ( ^ , cp,) = 0 , Ï = 1,..., n ,
j=i i = i i = i

(3.3)

Z ^ ^ ( ^ = 0, k= l , . . . ,Af . (3.4)
i=i

R A I R O Analysenumenque/NumencalAnalysis
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These équations together with the N interpolation conditions
n N M

j=l 1=1 k=l

constitute a linear System of N + M + n équations in the N + M + n
coefficients of the approximate solution of (2. ll)-(2.12), given by

N n M

u = V Xf,n^ il/, + y b[n^ (p, + V cîM* a,. (3.6)

In case n can be taken much smaller than N, the set of équations (3.3),
(3.4), (3.5) differs from the set of équations for the « thin plate » splines by a
small number of comparatively complicated équations, which depend on the
geometry of the domain. The coefficients in these équations consist of the
bi-linear forms Am((pl9<Pj), Am(y\fb cp,) i,j= 1,..., n, / = 1, ...,iV, which in
gênerai can be evaluated only numerically. Yet by Green's formula and since
Am(pt = 0, i = 1,..., n, the area intégrais defming these forms can be computed
by line intégrais along the boundary of the domain :

4«(<P„ <P,) = "E' [ *2m-l-AV.)-f-r%dS (3.7)

m-l Ç flr

AMl9%)= Z à2m-i-r(<ï>j)j-;tyids (3.8)
r=o J r ônr

m - l C Qr
^m-i-rfWr-;^^.

drf

For a « nice » finite domain Q, where Re, Im { zJ }J°=0 form a complete
set of harmonie functions (z = xx + ix2), the set of functions

(3.9)

constitutes a complete set of m-harmonic functions. This follows from the
observation that the gênerai représentation of an m-harmonic function in Q is

£ (3.10)
k=0 J

where/0(z), ...,ƒ„_ x(z) are analytic in Q. Indeed, (3.10) is obtained recursively
from the identity

ARe{? / ( z )} = 4 / c R e { i k - 1 / ' ( z ) } , (3.11)

and from the fact that any harmonie function is the real part of an analytic
function.

vol. 16, n° 3, 1982



208 N. DYN, D. LEVIN

In this work we present several numerical examples computed by this
method for the case m = 2 and with the basis functions {(p1?..., cpM} taken
from the set (3.9). Other choices of basis functions are yet to be investigated.

4. NUMERICAL EXPERIMENTS FOR THE CASE m = 2

In this section we discuss the application of the method of section 3 in the
case m = 2, which is analogous to the univariate cubic spline. For this case
the extra computational work in the évaluation of the coefficients in the
n équations (3.3) is still reasonable. We present several examples indicating
that this additional effort is worthwhile.

We have produced a program for calculating the approximation un ((3.6))
over polygonal domains using the following basis functions :

cpi = Re(zz)

cp2+4j. = I m ( ^ +

(p4+4/- = lm (zzj+2)

J>0 (4.1)

where z = xx + ix2. The formulae (3.7), (3,8) do not hold for non-smooth
domains, therefore, we compute the coefficients in équations (3.3) by using
the following version of Green's formula :

A2(u9v) = f (A2u)vdx1dx2 - f (-^AiAvds + f V ^ - Vixfr. (4.2)

With this formula the various bilinear forms in (3.3) as well as the roughness
measure J2(u„) can be evaluated by line intégrais. The actual numerical compu-
tation of the line intégrais has been carried out by using Simpson rule.

In the following table we demonstrate the réduction in the roughness
measure J2(u„) as n increases, for various data sets over the L-shaped domain :

n = {(x1,x2)\-0.5<xl9x2^0.59x1>0 or x2 > 0} . (4.3)

The interpolation points are chosen randomly in Q and the data is taken from
the test functions :

yi = 4 xt x2

f2 = sin (10 Xj x2)

/ 3 =exp( -25 (x 2 +x 2
: -0 .1 ) 2 ) .

R.A.I.R.O. Analyse numérique/Numerical Analysis
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The upper index in J^(wn) indicates the number of data points

209

J2
27K)

J 2
2> 7 )

^227K5)

h

25 0
174
16 6

28 1
19 0
18 3

f2

98 0
76 0
72 0

105 0
87 0
82 0

h

85 0
78 0
74 0

132 0
124 0
1190

For the cases tested the séquence { J2(un)} seems to be converging The

réduction m the roughness measure of un with mcreasmg n from that of the

« thin plate » splme u0 is also reflected in the pointwise approximation to the

test functions It turns out that the oscillations of the approximation are signifi-

cantly reduced in a sub-region of Q, which is not too close to F However,

as we get closer to the boundary of Q the approximation un is sometimes even

worse than u0 We believe that this is due to the enforcement of the so-called

« natural boundary conditions » (2 16) which are in fact unnatural to the

functions tested

As a resuit of our numencal expenments we conclude that for a smooth

interpolation to a given data over Q one should solve the problem (2 2)

over a somewhat larger domain Q => Q For a suitable chosen Q one would

get an optimal trade-off between the réduction of the roughness measure and

the intrusion of the natural boundary conditions Further results in this

direction are yet under investigation
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