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CONSTRUCTION OF SURFACE SPLINE INTERPOLANTS
OF SCATTERED DATA OVER FINITE DOMAINS (*)

by Nira DyN and David Levin ()

Communicated by P J LAURENT

Abstract — A numerical method for smooth interpolation of scattered data over a finite two dimen-
sional domain Q 1s presented The interpolating function 1s defined by mimmization of a Dirichlet-
type mtegral of order > 2 over Q, measuring the roughness of the surface The case corresponding
to Q = R? results m the so-called « thin plate » spline A Ritz-type method for approximating the
Site domamn mterpolating surface spline 1s developed, based on a set of basis functions mcluding
the fundamental «thm plate» splimes Numerical experiments are appended, demonstrating the
reduction of the roughness measure as compared to that of the «thin plate» spline

Résumé — On presente une methode numerique pour I’interpolation de donnees irregulierement
réparties sur un domaine fin1 bidimensionnel Q par une surface reguliére La fonction d’interpolation
est défime par mimimisation d’une ntégrale du type de Dirichlet, d’onde > 2, sur Q, qui mesure la
quahité de I’approximation de la surface Le cas oti Q@ = R? correspond aux splines de type « plaque
mince » On élabore une methode de Ritz pour approcher la surface spline d’interpolation dans le
cas d’un domaine fini, basée sur un ensemble de fonctions de base comprenant les splines fondamentales
du type « plaque mince » On nclut des resultats numeriques, qui mettent en evidence la réduction
du défaut d’approximation par rapport a celui de la spline du type « plaque mince »

1. INTRODUCTION

A univariate interpolatory spline can be introduced as the solution to the
problem of minimizing the quadratic seminorm

b 1/2
| 4 o pym = { [ | u™(e) | dt } (1.1)

(*) Recerved in April 1981.
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202 N. DYN, D. LEVIN
among all u, u™ e L,[a, b], satisfying the interpolation conditions
u(xl) = Sl > i = 1’ 2’ AR ] N b (1.2)

with N > m > 1 and { x, } being distinct points in [a, b].
This minimum principle is extended to the multivariate case as follows :
Given a domain Q in R” and N distinct points { z, = (x{, ..., x) } in Q,
find a function u € H™(Q) such that

u(z) =s,, 1 <i<N (1.3)

for some prescribed reals { s, }, and such that | u |, ,, is minimal where

2

T %) 1) (1.4)

0x,, 0x,, ... 0, ,

n
uBa = Y f
Q

1,02, Sim=1

Duchon [2] and Meingnet [4] give closed form solutions of this problem for
Q = R? and term these solutions « thin plate » splines.

In the univariate case the solution of the problem (1.1)-(1.2) accepts the
same values 1n the interval [x,, xy] for any a < x; and b > xy, and also in
case of the seminorm (1.1) defined on R* :

© 1/2
|u|R,m=” |u<m)<z>|2dr} .

However, this nice property does not hold in higher dimensional spaces, where
the solution does depend upon the geometry of the domain Q.

Intuitively, for given scattered data points { z, }'_, one expects to obtain
a better interpolation approximation by using the seminorm (1.4) chosen
over a domain which is characteristic to the distribution of the data points
rather than over all R". The purpose of this work is to investigate the perfor-
mance of a 2-dimensional surface spline interpolants based upon finite domain
seminorms | |y, in comparison with the solution corresponding to | |g2,,.
Using some theoretical results of Duchon [2] and Meingnet [4] on the formal
representation of surface spline interpolants, a numerical procedure is suggested
for approximating the solution of (1.3){1.4) for n = 2, m > 1 and « nice »
domains Q in R?. Some numerical results are presented for m = 2 and poly-
gonal domains, and the results are compared with those obtained by the « thin
plate » splies. It is concluded that in many cases a significant improvement
upon « thin plate » splines can be obtained, an improvement which justifies
the extra computational effort needed for computing the surface spline inter-
polants over finite domains.
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SURFACE SPLINE INTERPOLANTS 203

2. CHARACTERIZATION OF THE SURFACE SPLINE INTERPOLANTS OVER FINITE
DOMAINS

Let Q be a simply connected domain in R?. Let z, = (x{, x{),i = 1,2,..., N
be N distinct points in Q and let s, i = 1, 2, ..., N be any given data set of
N real numbers. As it is done in the univariate case one wants to find a function
which interpolates the given data and is smooth over Q is some sense. As a
roughness measure we use the functionals

m m amu 2
J = —— ) dx; d =2, 2.
0= 5 (7) () e m @.1

defined on the Sobolev space

ofu

1 k—1
0x} 0x5

H™Q) = { u

e L*(Q), 0<i<k,k<m}.

Form = 2 J,,(u) is the stress energy of a plate of shape Q under a distortion u.
The surface spline interpolant is thus the solution of the problem :

min J,,(u)
ue H™(Q)

(2.2)
u(z)=s,, i=12,..,N.
J (1) is a semmmorm on H™(Q) which can be written as

Jm(u) = Ap(u, u) (2.3)

where A4,, is a semi-inner-product on H™(Q)

m (m o™u o™
A = dx, d 2.4
) J‘Q ,:ZO < i) <6x‘1 5x'5‘”> <5x’1 6x'5‘“> X1 4% 24

for u, v e H™(Q).
Since A(u, u) = 0 1f and only 1if u € Q,, where

Q, =span{xyx}|i+j<m} =span{qs,qs,....qu }

m+ 1 .
with M = ( 5 ), (2.2) has a unique solution if the matrix { gz, },¥;, j’;’ 1

is of degree M. We assume, without loss of generality, that { g,(zy—-,+1) }?,’,-:1
is non-singular and denote the points zy_p 415 - Zy DY Vi, ..., Yar. Under
this assumption problem (2.2) for m > 2 has a unique solution, since

vol. 16, n° 3, 1982



204 N. DYN, D. LEVIN

H™Q) = C(Q) for m > 2 and the linear functionals L; f = f(z;), fe H™Q),
are bounded. It can be shown as in [3, 4] that this solution is of the form

N-M M
w= Y vidi+ ) W g; 2.5)
i=1 i=1

where the coefficients { v; } and { ; } are determined by the interpolation
conditions

u¥(z;))=s;, i=1.,N (2.6)
and the ¢;, 1 < i < N — M, are characterized variationally by
M
An(®i ) = fz) + Y a, f(y;) Vfe HMQ) 2.7
j=1
¢(y) =0, j=1..M. 2.8)

In particular by taking fe Q,, in (2.7) we get

M
-21 a;q(y) +q(z) =0 VqeQ,. (2.9)

j=

By assumption C = { g(y) }5=1 is non-singular and therefore the g;; in
(2.7) are given by

(A1, gy ooy AT = — CYqy(2), ..r que(2))T . (2.10)

Combining (2.7)-(2.9) with (2.5) and (2.6) we conclude that u* is charac-
terized variationally by

An*, f) = .;l Aif(z), feH™Q), (2.11)

u¥(zy)) =s;, i=1,..,N (2.12)

and A4, ..., Ay are constrained by the substitutions of g, ..., g\ to satisfy

M=

Aigiz) =0, j=1,.,M. (2.13)

i=1
In fact A,, ..., Ay are the Lagrange multipliers for the variational problem
(2.2), that is »* minimizes the functional

Im(u) + i Mi[u(z) — 5] . (2.14)
i=1

R.A.LLR.O. Analyse numérique/Numerical Analysis



SURFACE SPLINE INTERPOLANTS 205

Let Q be a « nice » domain such that the generalized Green’s formula holds [1] :

m—1 ajv
(A™u)vdx, dx, + ) J Oom—1-j(u) = ds
=0 Jr

Ap(u,v) = (- 1)"‘J o

Q

where A = 0%/0x? + 0%/0x3, §; is a differential operator of order i and d/on
is the normal derivative at the boundary I' of Q. Then the variational charac-
terization (2.11), (2.12) is equivalent to the differential characterization [1] :

(= )" (A™*) (2) = i Moz —z), z=(x,x)eQ  (2.15)
Bms @) =0, j=0,...,m—1 on T (2.16)

u¥(z;) =5, i=1,..,N 2.17)

with A,, ..., Ay constants constrained by (2.13).
A fundamental solution of the operator (— 1)" A", namely a function
satisfying

(= D" A™Y(z,C) = 8(z — {) (2.18)
is known explicitly as [2, 4] :

V(28 =Culz =" Vlog|z —¢|, C,;'=2""1q[m-1)1]*.
2.19)

The function Y(z, {) is analogous to the univariate fundamental solution
(_2m1~—1)l (x — E)>™~! giving rise to the spline functions. Using the funda-

mental solution (2.19) we can write u* as
N
u*z) = ) LViz) + W(2), (2.20)
i=1

with A, .., Ay constrained by (2.13), Vi(z) = V(z,z), i = 1,...,N, and
W(z) e H*™(Q) a solution of the boundary value problem

A"W =0 in Q (2.21)
N

Opsj W = — 5m+,-[2 A Vi(z, zi)], j=0,..,m—=1,0on . (2.22)
i=1

vol. 16, n° 3, 1982



206 N. DYN, D. LEVIN

The variational characterization of W(z) m view of (2.11) and (2.20) is

N N
AW, f) =Y MSf(z) = X MALS), feH™Q).  (2.23)
1=1 1=1
By (2 18) and Green’s formula, (2 23) 1s equivalent to

N J
Wf) Z J‘ 52m—1—;[;1 A’l‘ll(z’zl)]%ds’ fEHm(Q) (2 24)

The solution to the boundary value problem (2 21)-(2 22) for given A, , Ay
15 determmed uniquely up to a polynomial in Q,, Thus (2 21)-(2 22) together
with the N + M conditions (2 12)-(2 13) determime a unique function W(z)
and a set of constants Ay, , Ay
In the case of the «thin plate» sphine »* 1s given by (2 20) with
M
W(z) = Y v,9,€0,, and the N + M unknown A,, , Ay, V1, , Yy are

1=1
determmed by the N + M conditions (2 12)<2 13) This leads to a linear
system of order N + M 1n the unknowns

3. APPROXIMATION OF THE SURFACE SPLINE INTERPOLANTS OVER FINITE
DOMAINS

Let ® = {q,, .,qum> ©1-9,, } be a complete set of functions
VirQ) = {¢lee H™Q), A" =0 m Q} G171

The solution of the boundary value problem (2 21)<(2 22) can be well
approximated by a finite sum of the form

W) = £ 8006+ 3 g0 6.2

provided that » 1s large enough A system of n + M linear equations for the
coefficient { b™ }7_,, { ¢ )L, 1s obtained, as m the Ritz method, by applying
the varlatlonal charactenzatlon (2 23) to the subspace of basis functions
{44 s > @1, - @, } This procedure yields equations of two types :

21 b An(9,, 0,) — Z MY 0,(z) + Z AP AU @) =0, 1=1,.n,
J (3.3)
Y M qz) =0, k=1,..,M. (3.4)

I=1

2z

R AIR O Analyse numerique/Numerical Analysis



SURFACE SPLINE INTERPOLANTS 207

These equations together with the N interpolation conditions

z b(n) (p_](z) + Z }\’(n) "lll(zl) + Z C;c") qk =35, i = 15 '-'3N (3'5)
=1
constitute a linear system of N + M + n equations in the N + M + n
coefficients of the approximate solution of (2.11)~(2.12), given by

N n M
=Y M9, + Y e, + ) "gq,. (3.6)

1=1 1=1 1=1
In case n can be taken much smaller than N, the set of equations (3.3),
(3.4), (3.5) differs from the set of equations for the « thin plate » splines by a
small number of comparatively complicated equations, which depend on the
geometry of the domain. The coefficients in these equations consist of the
bi-linear forms A,(¢, o)), 4, @, i,j=1,..,n, I =1,..,N, which in
general can be evaluated only numerically. Yet by Green’s formula and since
A"p, = 0,i = 1, ..., n, the area integrals defining these forms can be computed

by line integrals along the boundary of the domain :

m((pn (p]) - Z JVSZm 1- r((pt) n d (37)
An00) = %, | B0 3 s (3.9)

m—1 ar
—o ) Y fazm_l_,(w,)g—,cp, s
r=0 n

r

For a « nice » finite domain €, where Re, Im { z/ }°2, form a complete
set of harmonic functions (z = x; + ix,), the set of functlons

Re, Im {Z" 2/ }2 ;o (3.9)

constitutes a complete set of m-harmonic functions. This follows from the
observation that the general representation of an m-harmonic function in Q is

Re { ::i: Z£(2) } (3.10)

where f,(2), ..., f.— 1(2) are analytic in Q. Indeed, (3.10) is obtained recursively
from the identity

ARe{Zf(z)} = 4kRe{F 1 f(2)}, (3.11)

and from the fact that any harmonic function is the real part of an analytic
function.

vol. 16, n° 3, 1982
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In this work we present several numerical examples computed by this
method for the case m = 2 and with the basis functions { ¢4, ..., 9, } taken
from the set (3.9). Other choices of basis functions are yet to be investigated.

4. NUMERICAL EXPERIMENTS FOR THE CASE m = 2

In this section we discuss the application of the method of section 3 in the
case m = 2, which is analogous to the univariate cubic spline. For this case
the extra computational work in the evaluation of the coefficients in the
n equations (3.3) is still reasonable. We present several examples indicating
that this additional effort is worthwhile.

We have produced a program for calculating the approximation u, ((3.6))
over polygonal domains using the following basis functions :

@, = Re(zz)
Pri4qj = Im (Zj+2)
@3+4; = Re(77?) j=0 4.1)

Paraj = Im (z2"?)
@s+4; = Re (z2'*?)

where z = x; + ix,. The formulae (3.7), (3.8) do not hold for non-smooth
domains, therefore, we compute the coefficients in equations (3.3) by using
the following version of Green’s formula :

Ipu\vas + | V- voas. @2
on r on

With this formula the various bilinear forms in (3.3) as well as the roughness
measure J,(u,) can be evaluated by line integrals. The actual numerical compu-
tation of the line integrals has been carried out by using Simpson rule.

In the following table we demonstrate the reduction in the roughness
measure J,(u,) as n increases, for various data sets over the L-shaped domain :

A2(u3 U) = J~

Q

(A%u) vdx, dx, — f

r

Q={(x;,x)] —05<x;,x,<05x, 20 or x,>0}. (4.3)

The interpolation points are chosen randomly in Q and the data is taken from
the test functions :

Ji =4x1%;
, = sin (10 x; x,)
fy = exp(— 25(x? + x5 — 0.1)%).

R.A.LR.O. Analyse numérique/Numerical Analysis
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The upper index i JY (u,) indicates the number of data points

fi 12 /3
J 33 (u) 250 980 850
J B (u,) 174 760 780
JB(uys) 166 720 740
J2(ug) 281 1050 | 1320
J37(uy) 190 870 | 1240
J#(uy5) 183 820 1190

For the cases tested the sequence { J,(u,) } seems to be converging The
reduction mn the roughness measure of u, with increasing » from that of the
« thin plate » spline u,, 1s also reflected in the pomtwise approximation to the
test functions It turns out that the oscillations of the approximation are signifi-
cantly reduced 1n a sub-region of Q which 1s not too close to I' However,
as we get closer to the boundary of Q the approximation u, 1s sometimes even
worse than u, We believe that this 1s due to the enforcement of the so-called
« natural boundary conditions » (2 16) which are in fact unnatural to the
functions tested

As a result of our numerical experiments we conclude that for a smooth
mterpolation to a given data over Q one should solve the problem (2 2)
over a somewhat larger domain Q > Q For a suitable chosen Q one would
get an optimal trade-off between the reduction of the roughness measure and
the mtrusion of the natural boundary conditions Further results m this
direction are yet under investigation
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