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SPECTRAL PERTURBATIONS IN LINEAR VISCOELASTICITY
OF THE BOLTZMANN TYPE (*)

by J. Camnzos (*) and M. Loso-HmALGO (%)

Communiqué par E. SANCHEZ-PALENCIA

Abstract. — We study the vibration frequencies of a viscoelastic body filling a bounded domain
of R3. The viscosity term is multiplied by a small parameter €, which is made to tend to 0. Let ®,
be avibration frequency of the elastic body (e = 0) with algebraic multiplicity m. We prove that there
exist, for small €, vibration frequencies with total algebraic multiplicity m converging to ®, when
€ — 0%. They constitute an algebroid singularity.

Résumé. — On considére les fréquences de vibration d’un corps viscoélastique remplissant un
domaine borné de R®. Le terme de viscosité apparait multiplié par un petit paramétre €, que I'on fait
tendre vers zéro. On établit que, si @, est une fréquence propre de vibration de multiplicité m du corps
élastique (e = 0), pour & suffisamment petit, il y a des fréquences de vibration du corps viscoélastique
de multiplicité algébrique m qui convergent vers ®, et qui constituent une singularité algébroide.

1. INTRODUCTION

This paper deals with the study of the eigenvalues of a linear viscoelastic
problem of Boltzmann type (see Dafermos [2], [3]) when the viscosity term is
small.

r

Figure 1.
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560 J. CAINZOS, M. LOBO-HIDALGO

Let Q be a bounded domain of R® with smooth boundary I and we consider
in Q a body that fills it.
The equilibrium equations are :

o[ o\ o .
5= (P(ﬁ) §> = ox (o) .1

where :

t

. Ou;, Ou;,
Gij(i, t) = Cijkt(ﬁ)g)—cl‘ — & Gijkz(i; t—1) ax, (®)dt (1.2

- o0

and where ¢ > 0 is a small parameter.

The tensors { C;j; } and { G, } satisfy the usual elipticity and positivity
conditions (see Dafermos [3]) for the differential and integro-differential terms
in (1.2).

Some boundary conditions, either of Dirichlet type, or Neumann type, or
mixed conditions, are associated with the problem (1.1). On the other hand,
there are also some initial conditions as :

¥(x, 1) = ¢*(x,t) te(— 0,0]. (1.3)

The problem we study is that of vibration frequencies of the viscoelastic
body, i.e. the search of functions {(¢) such that the problem (1. 1) has solutions
of the type :

w(x, 1) = u(x) e 5" 1.4

under the boundary conditions imposed to the probiem.

In Section 2.1 we study the abstract formulation of problem (1.1) within the
framework of weak solutions following the techniques of contraction semi-
groups (see Dafermos [4]). We impose additional hypotheses of exponential
decaying in & of the terms of the tensor G, ;(x, £), & € [0, c0).

In section 2.2 we study the analytic dependence on ¢ of the eigenvalues
{(e). Also, we show the existence of a residual spectrum in a certain half-space

Rel > %, where p > 0 is a characteristic exponent of the exponential decaying

of G;j(x, &).

Finally, in Section 3 we study the reduction process (see Kato [5]) within the
framework of rigorous asymptotic analysis, to obtain the first terms of the
asymptotic expansion of {(g).

This work contains an improvement of the results obtained in Lobo-Hidal-
go [7] : in that paper only the viscoelastic problem where the tensor G, ;,(x, £)
is factorizable as a product of functions g(&) A4;;,(x) was treated.
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SPECTRAL PERTURBATIONS IN LINEAR VISCOELASTICITY 561

From the point of view of the computation of eigenvalues, a scalar equation
was obtained in the factorizable case. We study now the general case when
G, 1s not necessarily factorizable, and the eigenvalues equation becomes an
equation in terms of operators in a gertain Hilbert space V, of the form :

<§2A—sj G(&)ecgd§>u+u=0 ueV, u#0 (1.5)
0
where 4, G(&) e L(V, V).

The techniques we use are those of Ohayon and Sanchez-Palencia [9] and
Sanchez-Palencia [10], where the elastic tase is dealt with. For the reduction
process, we have used similar techniques to those of Kato [5], chapter IIL
In Section 4, we give some comments and examples on the application of the
abstract results previously obtained to different boundary condition problems.

2. SPECTRAL STUDY
2.1. Abstract functional setting

The problem (1.1), (1.3) with the appropriate boundary conditions can be
considered in the following abstract setting.

Let V, H be two complex Hilbert spaces, V — H with a dense and compact
embedding, and let V' and H' be their antidual spaces.

USRS I Iy PO

Then we can write, with the appropriate identification
VcH=H cV 2.1)

where each space is contained in the following one trough a dense and compact
embedding.
We define a sesquilinear, hermitean, continuous and coercive form

a:VxV->sC 2.2)

aw,u) = Co ll ully .

On the other hand, we consider a family of sesquilinear, hermitean and
continuous forms depending on ¢ :

{bE,.,.):V =V —>Clel0, )} 2.3)

satisfying
b, wu) = CE) ul;  CE >0, VEe[0, ) 2.4)
Vu, vfixed, & — b(E, u, v)is of class C ([0, 0)) 2.5

and modulus decreasing,
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562 J. CAINZOS, M. LOBO-HIDALGO

Now, let 4, G(E)e L(V, V') be the operators associated with the forms
a(u, v), respectively b(, u, v). We make the following assumptions on G(&).

Let be g(€) = || G() || L.y such that there exist positive constant A, A,, p
verifying :

AMe < gl <he ™ VEe[0, ). (2.6)

Under these hypotheses we pose the following problem :
Find u, : (— o0, c0) = V such that :

T

(@), v)g + a(u(t), v) — sf b(t — t,ut),v)dt =0 VYoeV.(2.7)

— 0

u(t) = &) Vie(— ,0].

The problem (2.7) can be written as an evolution equation in ¢ (see Dafermos
[4]). Calling U = (u, v, w) with v(t) = '(t), w, t) = u(t — §) — u(t), we can
arrive at :

du
S+ U =0 (2.8)

U©) = U,

where ., is the operator defined as follows :

-0

woo | (A=e[ cor)u-s| com0m
ow
EE+U'

We consider the Hilbert space

H, =V x H x L0, 0; V) (2.10)

endowed with the scalar product :

00

(U, 0), = alu, &) — eJ

0

BE, u, i) dE + (0, D) + € f B(E wiE), W) de

0
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SPECTRAL PERTURBATIONS IN LINEAR VISCOELASTICITY 563

and we consider the operator &, : D(&,) — H,, where :

D(&) = { UeHfve V,(/I— 8r G(g)dz;)u — sr GE)w(&)dE e H,

0 0

g—vgeLj(O, 00 ; V), w(0) = 0} 2.11)

then we arrive at the following existence and uniqueness results.

THEOREM 1 : The operator — s/ is the infinitesimal generator of a contraction
semigroup { T,(t) },5, that solves in a unique way the problem (2.8) with
U, € D(,).

Proof : The details can be seen in Dafermos [4] and Lobo-Hidalgo [7] for
simpler cases, but the proof is essentially the same.

2.2. Eigenvalues equation

The search of the stationary solutions of exponential type given by the
relation (1.4) leads us to the study of the point spectrum of the operator .27,
associated with the problem and given by the relation (2.9).

The spectral relation

o ] — 1] leC
L QU el

e

—~
3%}
[T
N

N’

take us to the equivalent relation :

Cu,v)g + alu,v) — ¢ Jw bE, u,v)ede =0 WYoeV (2.13)

0

where u is the first component of U.
The study of equation (2.13) shows the existence of a residual spectrum
for <.

PROPOSITION 2.1 : Under the assumptions (2.1)-(2.6), and for every suffi-
ciently small € € (0, g,) the half-plane Re{ < 0 is a part of the resolvent set,

p(.), whereas the half-planeRe { > %equals the residual spectrum of ..
Proof : The details can be seen in Lobo-Hidalgo [7].

As a consequence of Proposition 2.1, the eigenvalues given by equa-
tion (2.12) lay in the strip

0<Re§<%, LeC. 2.14)
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564 J. CAINZOS, M. LOBO-HIDALGO

Let us give an expression of the eigenvalues equation (2.13) in terms of
bounded operators. In order to achieve that, let us consider in V' the following
scalar product (equivalent to the usual one)

(v, v)y = a(u, v) Yu,veV. (2.15)
Then we have :
(u, V)y = (Au, v), Yu,veV (2.16)

where 4 : V — V is a compact selfadjoint operator.
On the other hand

b, u, v) = (G(E) u, v)y, Vu,veV 2.17)

where G(E) e L(V, V).

ProOPOSITION 2.2 : G :[0,0) = L(V, V) is a continuous map, and the
integral :

J ) G(E) €% dt (2.18)

(o]

exist for Re { < %and defines an operator of L(V, V).

Proof : The continuity and integrability of G(£) ¢® for Re { < %, follow
immediately from the properties of b(, u, v) given in (2.3)~(2.6).
As a consequence, equation (2. 13) admits the following expression :

<C2A—8Jw6(§)ecgd§>u+u=0, ueV, u#0. (2.19)

0o

2.3. Existence of eigenvalues

Let o, € C be such that — o2 is an eigenvalue of the operator A.

Remark 2.1 : Since A is compact and selfadjoint, its eigenvalues form a
bounded sequence { o2 } of positive real numbers. Therefore ®, = + a, i for
some n € N.

Now, let y be a simple closed curve that surrounds ®,, and such that it does
not surround any other value ® for which — ®? is an eigenvalue of 4, thus

— 7% < p(4).
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SPECTRAL PERTURBATIONS IN LINEAR VISCOELASTICITY 565

On the other hand, let us consider the operator T(g, ®) given by :

TE, ©) = A — e’ jw G(E) € gt . (2.20)

0

It is obvious that T'(e, ) is obtained formally from the involved in (2.19)
through the change { = %

PROPOSITION 2.3 : The curve — y*> = C is contained in the resolvent set
of T(g, w) for sufficiently small € > 0.

Proof : The proof is divided in several steps.

a) T(g, o) is jointly holomorphic, in (g, ®). This assertion is a consequence
of the holomorphy on each of the variables (*). The domain of holomorphy D
of the operator T'(g, ®) is the following :

D={(w)eC xClo¢B,} (2.21)

( 1 1
szimeC/lm—ﬁ‘sz—u}. 2.22)

Then, taking y of sufficiently small radius (see fig. 2), the holomorphy of

Tle ) on o naichhanrhand 77 afa fallawe

Fa \b, Wl viL @ Ll\ll&l.lv\lmll\lvu V L I AN LI YY O,
b) Weclaim — y* < p(T(e, w)) for (¢, ®) € D such that ¢ is sufficiently small.
Let n € — 2, and write

Rm=U-m)"", B = J G() &¥/° dg, . (2.23)

0o
We arrive at the following expression
T ©) —n = [I — e0” B@) Rm)] (4 — n). (2.29)
Finally
(T, ®) —n)™* = Rm) [I — £0* B@) R)] ™" . (2.25)

For the existence of the right hand member in (2.25) it suffices with the
estimate

| ew® B) RM) | < 1; (2.26)

(*) We refer here to the Hartogs theorem for maps with values in an infinite dimensional space.
(See for instance Noverraz [8].)
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566 J. CAINZOS, M. LOBO-HIDALGO

Figure 2.

The proof of Proposition 2.3 now follows from (2.26), using the com-
pacteness of y in C and the estimate of || ©* B(®) | in U,

Thus we arrive at the following theorem of existence and analytic depen-
dence on g, for the eigenvalues of problem (2.12) (2.13).

THEOREM 2 : If o2 is an eigenvalue of multiplicity m of the operator A,
then for sufficiently small €, there exist m holomorphic branches (of (€)
(resp. @5 (8))j = 1,..., m, each branch counted as many times as its algebraic
multiplicity ; such that 1/o] (resp. 1/®;) are eigenvalues of the integro-diffe-
rential problem that converge to i, (resp. — i) when € — 0.

Proof : We are going to follow the method of Sanchez-Palencia (see [10])
for a differential problem of the scattering frequencies of an elastic system.

Let , € C be such that — ©f = o7 is an eigenvalue of 4 and let y be a curve
that surrounds o, like in Proposition 2.3. Making in (2.19) the change of
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SPECTRAL PERTURBATIONS IN LINEAR VISCOELASTICITY 567

variable { = 1/® on a neighborhood of the region bounded by v, we obtain
(T, 0) + 0*)u=0 ueV u#0. (2.27)

From Proposition 2.3, the projection

_ 1 -1
P, ) = 5o i, (T, ®) — A)"tdr (2.28)
exist and is holomorphic in (g, ®).

This allows us to write problem (2.27) as
P, @) (T, 0) + 0®)Pe,0)u=0 ueV, u#0 (2.29)

in a neighbourhood of ®,, for sufficiently small €.

Now using the transformation function Ule, ), (see Kato [5], p. 102,
Remark 4.4) that is holomorphic in (g, ®) again for sufficiently small €, we
arrive at the reduction of the problem to finite dimension.

Po U e, ) (T, 0) + 0*) Ug,®)u=0 ugPyV, u#0 (2.30)
where
1 f (4—-A"1dr. (2.31)

-
L v

P0=P(0,(D)=

-
The problem of eigenvalues in a neighborhood of {, = 1/, is transformed
trough (2.30) into a system of linear equation with holomorphic coefficients
in (g, ®) of dimension m ; that is : The dimension of the eigenspace of ®,, P, V,
(Algebraic multiplicity).
Thus, the existence of eigenvalues for the integro-differential problem follows
from the roots of the scalar equation :

Fe,0) = 0 2.32)

where F(g, ®) is the determinant of the system (2. 30) ; and hence a holomorphic
function with a root (0, ®,) ®y = o, i (resp. ®, = — a, i). The Weierstrass
preparation theorem and the properties of algebroid singularities (see Bochner
and Martin [1], chap. IX and Knopp [6], chap. V), allow us to end the proof
of the theorem.

3. REDUCTION PROCESS

It is possible to obtain more information on the asymptotic behaviour of the
o;(€), and hence of the {;(e) when ¢ — 0.

vol. 19, n° 4, 1985



568 J. CAINZOS, M. LOBO-HIDALGO

Taking account of the selfadjointess of the operator 4, a process analogous
to that of Reduction for families of operators depending of a single parameter €
(see Kato [5] chap. IT) holds, and we arrive at the following results.

THEOREM 3 : Under the same hypotheses of Theorem 2, the o (g), (resp.
®; (€)) can be expressed in the following way

0;(e) = 0y + €0, ; + 0/(€) 3.1

where the 0(€) - 0 when & — 0, depending on the determination ®;, and ®, ; is an
eigenvalue of the problem

(J G(&)e‘i/“’°d§—2%)u=0 ueP,V, u#0. (3.2
(0] 0

Proof :

a) We begin by posing two equivalent problems
Problem A : Find A = A(g) such that the system of equations (3.3) admits
non trivial solutions

Py U [T, 09 +eN) + (@ + EX)*)]Un =0 veP,V, v#0.
(3.3)

Problem B : Find A = A(g) such that the system of equations (3.4) admits
non trivial solutions

Po U™ L[T(e, @ + 51) + (o + £0)2] Ple, g + £4) U = 0
vePy,V, v#0. (3.4

It is straightforward to see that the Problem A and Problem B are equivalent,
by using the fact that P = UP, U~! and substituting in (3.4) (resp. (3.3)) to
prove the double implication.

b) Let us consider next
- 1
F(e,\) = detP, U™! < [T, ®, + €X) + (0o + €X)?] P(e, ®y + €X) UP,
(3.5
and we have only to compute the A(g) such that
F(e,Me)) = 0. (3.6)
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SPECTRAL PERTURBATIONS IN LINEAR VISCOELASTICITY 569

¢) We claim F is holomorphic in (g, A). Since U = U(g, ®) is holomorphic
in (g, o), it suffices to prove that the following operator is also holomorphic

%[T(s, ®y + €N) + (©y + €V)*] P(e, oy + €)) . (3.7

Substitute in (3.7) the expression of T'(g, ®) given by (2.20) and expand
B(w, + €\) as a Taylor series to obtain

T(e, ®y + €X) = A — e} B(oy) + €2 r(e, A) (3.8)
where r(g, A) is a holomorphic function in (g, A)

re,)) = Y, T®gnpntt (3.9)

n=0

where the T™ are the following

T® = — 02 BD(w,) — 2 0, B(®,) (3.10)
B"* V(w,) B™(@,) B" ()
™ — _ 2o Do) o _ 0 >
T P0G 1) ! o5 n-pr "=l
(3.11)

And B9(w,) are the coefficients of the Taylor expansion of B(w, + €\).
Now we can write

(T-m"'=RMU+(T-ARM]", T=TEao,+el).

(3.12)
Since
[+ T - DRI = 3 [ (T - ) ROP
= 3 o[04 Bog) — ore. ) R
3.13)

Therefore, it follows that :
(T =m)™! = RM) + 0 RM) B(@,) RM) + €2 0, X))  (3.14)

where Q(g, A) is obviously a holomorphic function of (g, A).
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570 J. CAINZOS, M. LOBO-HIDALGO
Then the projection P(g, ®, + €) takes the following form :
P(e,\) = Py + e P, + €2 Q(s, A). (3.15)
Recall that P, = P(0, ®,) and

Py = o R Bog) R an. 6.16)

The selfadjointess of A implies that — ©3 is a semisimple eigenvalue and
hence

RM) = —(m + @) 1Py + 3 (n + 0" s (3.17)

n=0

where
s = sz £ A — &)t d

(3.18)
and P, S = SP, = 0 (see Kato [5] chap. I, 5.3)
Therefore :
P, = Py, B(wy) S + SB(w,) P, . (3.19)
From (3.8) and (3. 15) it follows that

L7 +\0’0T8;\)JP(3,@0+8}\)=(‘"T’(2)£(2)P + Ql -

m |-
>J

— (0% B(®wg) — 2@ A) P(e, @y + €X) + €[r(e, 1) + A*] P(e, @ + €))
(3.20)

and hence F{(g, 1) is a holomorphic function of (g, A).
d) If ®, € C is an eigenvalue of the problem (3.2), then we claim that

F(0,®,) = det [Py(4 + 03) 0f P; — (05 B(®y) — 2wy @) Po] = 0. (3.21)
Letbeve P, V,v # 0, an eigenvector associated to @,, then using (3.19)
[Po(4 + @) 0 Py — (0F B(wo) — 2w, ®;) Polv =
®
= I:mé Po(A + ©3) (Py B(®,) S + SB(w,) Py) — cof,(B(wo) - 20)—1> P0:| v.
0

(3.22)
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. ® .
Since (4 + ®3) P, = 0 and (B(oao) - 2;&) v =0, (3.22) is reduced to :
0

20y ®; Py(4 + @) SPyv. (3.23)

But, as we quoted previously, SP, = 0 and thus F(0, ®,) = 0.

e) The complex variables theorems we quoted in Theorem 2, allow us to
obtain (3.1) ; we can even write explicitely the function o;(€), then obtain

1

0;(e) = 0y + €0y ; + g P, ; + (3.24)

so that the proof'is finished.

4. FINAL REMARKS

The abstract framework we described in § 2, contain as we pointed out in the
introduction the problem of vibrations of a finite viscoelastic body with a
fixed boundary (Dirichlet problem)

ulp=0 i=1,23. @.1)

It suffices to take V = (H}(Q))?, H = (L*(Q))?, and as hermitean forms :

ou, 0v;
a(u, U) = J‘n Cijkl a—xl 5;; dx (42)
0wy 5{’:
b(E, u,v) = L Gijkl(z:w x) a_xj a_x, dx . 4.3)

Of course, considering these forms (4.2) and (4. 3) over spaces V < (H*(Q))?,
different from (H§(Q))?, gives place to another type of boundary problems, that
can be included in the abstract framework of section 2.

As for the Neumann problem, where V = (H *(Q))? and where the form (4.2)
is not coercive, the same remarks as Lobo-Hidalgo [7] can be made in order to
solve the problem.

On other hand, other types of dependence on € can be studied, specifically :

£ 1 ' t—=7
Cij = Cijkl - EJ’ Gijkl(_e_’_'§> dT . (4.4)

This kind of dependence has been studied with different techniques by
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572 J. CAINZOS, M. LOBO-HIDALGO

Turbe (see [11]) and Lobo-Hidalgo (see [7]) dealing with the convergence of
solutions when € — 0. The spectral study, analytic dependence on € and reduc-
tion process that we described in §3 can also be applied to problems
of type (4.4).
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