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MATHEMATICAL MODELUNG AND NUMERICAL ANALYSIS
MODÉLISATION MATHÉMATIQUE ET ANALYSE ft

(Vol. 29, n° 3, 1995, p. 367 à 389)

LOCAL ERROR ESTIMATES FOR FINITE ELEMENT DISCRETIZATIONS OF
THE STOKES EQUATIONS (*)

Douglas N. ARNOLD (*) and XIAOBO LIU (2)

Communicated by R. SCOTT

Abstract. — Local error estimâtes are derived which apply to most stable mixed finite element
discretizations of the stationary Stokes équations.

Résumé. — Nous prouvons des estimations locales d'erreur qui s'appliquent à la plupart des
discrétisations stables par éléments finis mixtes du problème de Stokes stationnaire.

Key words : Stokes équations, mixed finite element method, local error estimâtes, interior error
estimâtes.

AMS(MOS) subject classifications (1985 revision), 65N30, 65N15, 76M10, 76D07.

1. INTRODUCTION

In this article we establish local error estimâtes for finite element approxi-
mations to solutions of the Stokes équations. To fix ideas, consider a finite
element approximation to the Stokes équations on a polygonal domain.
Suppose that the velocity space contains (at least) all continuous piecewise
polynomials of degree r ^ 1 subordinate to some triangulation of the domain
which satisfy any essential boundary conditions, and that the pressure space
contains ail continuous piecewise polynomials of degree r or of degree
r - 1 (in which case the continuity is dropped for r = 1 ). Suppose also that
the usual stability condition for Stokes éléments is fulfilled. Spécifie examples
for r = 1 include the MINI finite element (continuous piecewise linears and
bubble functions for the velocity and continuous piecewise linears for the
pressure) [1] and the P2 — Po finite element (continuous piecewise quadratics
for the velocity and discontinuous piecewise constants for the pressure) [6].
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368 D. N. ARNOLD, XIAOBO LIU

For r = 2 the Hood-Taylor element (continuous piecewise quadratics for the
velocity and continuous piecewise linears for the pressure) [8] and the
augmented P2 — Pl element (continuous piecewise quadratics plus bubbles
for velocity and discontinuous piecewise linears for pressure) [3], [9] fulfill
these hypotheses. Many other ex amples are known as well. The usual global
error estimate asserts that for such discretizations the finite element approxi-
mation converges in H x L (Q) with the same rate as the best approxi-
mation in the finite element spaces, namely the error is O(hr) if the exact
solution is smooth enough. Measured in L2 x H~ l the error converges to zero
with one higher order. These estimâtes require that the exact velocity field
belong to Hr+l and the exact pressure field to Hr. Ho wever, such smoothness
will generally not hold if the domain of the équations is not smoothly bounded
or if the boundary or forcing data is not smooth. In such a case the solution,
while not globally smooth, will usually be smooth in large subdomains,
namely any interior régions a positive distance from the singular points of the
data. It is therefore important to ask whether the optimal order convergence
holds in such subdomains, or whether the singularities dégrade the conver-
gence globally. In this paper we establish local error estimâtes which assert
that the rate of convergence in subdomains of smoothness is indeed optimal.
The précise statement is contained in Theorem 5.3, which is the major resuit
of the paper.

Local estimâtes (often called interior estimâtes because of their application
to problems with boundary singularities), were first studied in 1974 by Nitsche
and Schatz [10] for second order elliptic problems. Through this and subsé-
quent works, the local convergence theory is reasonably well understood for
such problems. See Wahlbin's handbook article [12, ChapterlII] for an
extensive treatment. In 1985 Douglas and Milner adapted the Nitsche-Schatz
approach to the Raviart-Thomas mixed method for scalar second order elliptic
problems [5], The present work adapts it to analyze a wide class of methods
for the Stokes équations. Although the gênerai approach is not new, there are
a number of significant difficulties which anse for the Stokes System that are
not present in previous works. Recently, Lucia Gastaldi [7] obtained interior
error estimâtes for some finite element methods for the Reissner-Mindlin plate
model. This work is related to local error analysis of the Stokes équations since
the Reissner-Mindlin model can be reformulated as a decoupled System of two
Laplace équations and a perturbed Stokes system. (Indeed the methods we
develop hère will be used in a subséquent work to analyze the method of
Arnold and Falk [2] for the Reissner-Mindlin model.) However Gastaldi's
work dépends strongly on special properties of mixed methods which arise
from particular methods for the plate (especially a commuting diagram
property), and so would not easily adapt to a gênerai analysis of mixed
methods for the Stokes équations.
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LOCAL ERROR ESTIMATES FOR THE STOKES EQUATIONS 369

After the préliminaires of the next section, we set out the hypotheses for the
finite element spaces in section 3. In addition to the natural requirements of
approximability and stability alluded to above, here, as in much of the theory
of interior estimâtes, the superapproximation property plays a crucial rôle. In
section 4, we introducé the local équations and dérive some basic properties
of their solutions. Section 5 gives the précise statement of our main resuit and
its proof. We close with a short application in section 6.

2. NOTATIONS AND PRELIMINARIES

Let Q dénote a bounded domain in IR2 and dQ its boundary. We shall use
the usual standard L2-based Sobolev spaces Hm -Hm{Q), m G Z, with the
norm || . ]|m Q. Recall that for m G N, H~ m dénotes the normed dual of
7/m, the closure of C~( Q ) in Hm. We use the notation ( . , . ) for both the
L2( Q )-innerproduct and its extension to a pairing of Hm and H~ m. If X is any
subspace of L2, then X dénotes the subspace of éléments with average value
zero. We affix an undertilde to a space to dénote the 2-vector-valued analogue.
The undertilde is also affixed to vector-valued functions and operators, and
double undertildes are used for matrix-valued objects. This is illustrated in the
définitions of the following standard differential operators :

fdpldx\
= l ) ,

\óp/óy /

d<pxfdx d<j>xfdy

The letter C dénotes a generic constant, not the same in each occurrence, but
always independent of the meshsize parameter h.

Let G be an open subset of Q and s an integer. If <p e HS(G),
y/ G H~ *(G), and w G C~(G), then

with the constant C depending only on G, w, and s. For &G HS(G),

f G H"5+1(G)define

R(w, &, Y) = (0(gradw)',grad j P ) - (grad 0,f(gradwY) . (2.1)
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370 D. N. ARNOLD, XIAOBO LIU

Then

\R(w9 0, ?)\ ^ C | | 0 | | , i G | | ^ L , + l f G . (2.2)

If, moreover, W e //" *+ 2, we have identity

(grad ( w0 ), grad W) = ( grad j#, grad ( w f) ) + R( w, d>, JP) .

The following lemma states the well-posedness and regularity of the
Dirichlet problem for the generalized Stokes équations on smooth domains.
(Because we are interested in local estimâtes we really only need this results
when the domain is a disk.) For the proof see [11, ChapterI, § 2].

LEMMA 2 .1: Let G be a smoothly bounded plane domain and m a nonne-
gative integer. Then for any given functions F e Hm~ (G),
K e Hm(G) n L2(G), there exist uniquely determined functions

p G Hm(G) n L2(G)

such that

(grad $,grad y) - (div^,/?) = (F, \//) , for ail xg G H

(div # , ? ) = (*:, 4 ) , for all q G L2(G)

Moreover,

where the constant C is independent of F and K.

3. FINITE ELEMENT SPACES

In this section we collect assumptions on the mixed finite element spaces
that will be used in the paper. In addition to the usual approximation and
stability properties required for the finite éléments spaces, we need the
so-called superapproximation property, which was first introduced by Nitsche
and Schatz [10].
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Let i 3 c R 2 be the bounded open set on which we solve the Stokes
équations and let h dénote a mesh size parameter. We dénote by Vh the finite
element subspace of HX(Q), and by Wh the finite element subspace of
L2(Q). For Qo ç Q, define

JWÛo) = {É 1*1 Ê*YH}> WhW = {Plao\ P e Wh}

&(flo) = {j0ey*|supp£ eÏ20}, Wh(Qo) = {p G Wh\suppPŒQ0}.

Let Go and G be concentric open disks with Go <î= G (^ Q, Le., GOŒ G and
G aQ, We assume that there exists a positive real number h0 and positive
integers kx and &2, such that for h G (0,h0], the following properties hold.

Al . Approximation property.
(1) If (j> G Hm(G) for some positive integer m, then there exists a

^ / G Vh such that

114 - 4'« I.G « C^'-'l^Lc , r, = min (*, + 1, m) .

(2) If /? e H1 (G) for some nonnegative integer /, then there exists a
p7 G Wh, such that

Furthermore, if >̂ and p vanish on G \ Go, respectively, then $> and p1 can
be chosen to vanish on Q\G.

A2. Superapproximation property. Let w e CQ ( G ), >̂ G V̂̂ , and
p G WA. Then there exist % e Vh(G) and qe Wh(G), such that

where C dépends only on G and vu
A3. Inverse property. For each /i G (0, &0], there exists a set

GA, Go (ê GA ^ G, such that for each nonnegative integer m there is a constant
C for which

C7T ] - m | | ^ IL m,G;,. for all ^ e Vh ,

1BiGi, forall p e Wh .
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372 D. N. ARNOLD, XIAOBO LIU

A4. Stability property. Th ere is a positive constant y, such that for all
h G (0, h0] there is a domain Gh, Go <ê Gh (s G for which

int sup ^ y .

p ^ 0 - 0 ^ 0

When Gft = £2, property A4 is the standard stability condition for Stokes
éléments. It will usually hold as long as Gh is chosen to be a union of éléments.
The standard stability theory for mixed methods then gives us the following
result.

LEMMA 3.1 : Let Gh be a subdomain f or which the stability inequality in A4
O 1 O

holds. Then for <f> e H (Gh) and pe L (Gh), there exist unique

nef) e Vh{ Gh ) and np e Wh( Gh) with np = \ p such that

(grad(^-7r^),grad^)-(div^,/7-7r/7) = O, for all \g e VA(GA),
(div(^-7r^),^)=0, for all q <= Wh{Gh).

Moreover,

\\p-q\\
o,Gl

The approximation properties Al are typical of finite element spaces
Vh and Wh constructed from polynomials of degrees at least kl and k2,
respectively. (It does not matter that the subdomain G is not a union of
éléments since <j> and p can be extended beyond G.) The superapproximation
property is discussed as Assumptions 7.1 and 9.1 in [12]. Many finite element
spaces are known to have the superapproximation property. In particular, it
was verified in [10] for Lagrange and Hermite éléments. To end this section
we shall verify the superapproximation for the MINI element.

Let bT dénote the cubic bubble on the triangle 7, so on TbT is the cubic

polynomial satisfying bT\dT=Ö and bT=l. We extend bT outside T by

zero. For a given triangulation 2Th let Vh dénote the span of the continuous
piecewise linear functions and the bubble functions b^ T e 0~h. The MINI
element uses Vh x Vh as the finite element space for velocities. We wish to
s h o w tha t if <p e Vh a n d we C~(G) t h e n \\w<p - y/\\hG *£ Ch \\<p\\lG for
some y/ G Vh( G) . We begin by writing 0 = (pt+ <ph with (pl piecewise linear
and <pb = I 7 r e ^ fiT bT for some flT e IR.
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We know that there exists a piecewise linear function y/t supported in G for
which

Turning to the bubble function term <ph define

n = X {PTPTw)bTe Vh(G)

where PT w G IR is the average value of w on T. Now if T intersects supp w
then T <= G, at least for h sufficiently small. Hence

2 or= E \\PTbT(w-PTw)\\2
0T

TŒG TŒG

TŒG

where the constant C dépends on w. Moreover,

2
TŒG

llgrad ( w0 f o - V̂ ^ ) II o 7-

2 \\ë^d^Tb1iw-PTw))\\2
0T

TŒG

TŒG

=£ c(h2 2 llgrad w || 1 r||)Srgrad bT\\2
0T+ llgradw||l

V TG '
2
TczG

where we used the fact that

\\bT\\0T^Ch\\bT\\1T.
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Taking y/h = y/b + y/t e Vh(G) we thus have

We complete the proof by showing that

for any triangle T with the constant C depending only on the minimum angle

of T. Since grad <pb. grad <j>l = 0, it suffices to prove that
JT

If T is the unit triangle this hold by équivalence of all norms on the flnite
dimensional space of cubic polynomials, and the extension to an arbitrary
triangle is accomplished by scaling.

4. INTERIOR DUALITY ESTIMATE

Let ( (f>,p) e Hl(Q) x L2(Ü) be some solution to the generalized
Stokes équations

— Â > + grad p = F,

div $ = K.

Regardless of the boundary conditions used to specify the particular solution,
( <£>,/?) satisfîes

(grad 0,gradj^) - (divj^,/?) = (F,j^), for all y e

(div $,q) = (K,q), for all q e L2(Q) ,

Similarly, regardless of the particular boundary conditions, the flnite element
solution ( (j>h, ph ) e VhxWh satisfies

( grad ^A,gradj^) - (div}/f,ph) = (F>}/f) » for all j ^ e

(div^ f c f 9) = ( « r ^ ) , for all ^ e Wfc.

Therefore

(gmd ( ^ - ^ ) ,g rad ^ ) - (div ̂ , p - / > J = 0 , for all y G Vh(Q),

(4.1)
( d i v ( 0 - ^ ) , 9 ) = 0, forall q e Wh . (4.2)
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The local interior error analysis starts from these local discretization équations.

THEOREM 4.1 : Let Go <ü G be concentric open disks with closures con-
tained in Q and s an arbitrary nonnegaîive integer, Then there exists a
constant C such that if ($,p) e H\Ü) X L2(Q), and
(ÊwPh) G Yhx Wh satisfy (4.1) and (4.2), we have

(4.3)

In order to prove the theorem we first establish two lemmas.

LEMMA 4.2 : Under the hypotheses of Theorem 4.1f there exists a constant
C for which

Proof : Choose a function w G C Q ( G ) which is identically 1 on Go. Also
choose a function Ô G C^( GO ) with intégral 1. Then

HS+\G)
9*0

\\9\\ s+\,G

Now

J
and clearly

c\\p-Ph\Ls-2.G\\g\\0.G-

Since g - ô\ g e Hs+ (G) n L (G) it follows from Lemma 2.1 that there
JG

exist

and n L2(G)

vo]. 29, n° 3, 1995



376 D. N. ARNOLD, XIAOBO LIU

such that

(grad 0,gradj//) - (div y/,P) = 0, for all y e Hl{G) , (4.5)

(div # , $ ) = ( g - i f g9q\9 forall q e L2(G) . (4.6)

Furthermore,

11*11^2.0+ ll^ll.+ l.G^CUfflI^LC. (4-7)

Then, taking # = w(p -ph) in (4.6), we obtain

9 -<
/G

(div 3>, w(p-pk))= (dïv(w<P),p-ph) - (grad w, (p -ph) &)

(div (w0)\p-ph) + {(div [w0-(^/],/?-/?J-

- (gradw, (p-ph)&)}

1 ^ + ^ . (4.8)

Here the superscript ƒ is the approximation operator specified in property Al
of section 3. Choosing \//- (w^)1 in (4.1), we get

= (grad(0 -«^A) ,grad(w*)) + (grad ( 0 -

(grad [w(^> - ^ ) ] , g r ad 0

(grad ( ^ - 0,),grad [ ( w 0 / - # ] )} =: A2 + £2 , (4.9)
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where R is defined in (2.1). Next, setting \// = w((j) - <j>h) in (4.5), we
obtain

A2:= (grad [w( 0 - 0J],grad &) = (div [w($ - $h)], P)

= (div( <£ - $h), wP) + (grad w, P($ - $h))

= (div (0 - ^fc), wP - (wP)1) + (grad w, P($-$h)),

where we applied (4.2) in the last step.
Applying the approximation property Al and (2.2) we get

\ B 2 \ ^ C { \ \ < t > $ h \ \ _ s _ U G \ \ $ \ \ s + 2tC + h \ \ $ < l > h \ \ U G \ \ & \ \ X G ) ,
(4.10)

\A2\

Substituting (4.7) into (4.10) and combining the result with (4.4), (4.8), and
(4.9), we arrive at (4.3). D

Now we state the second lemma to be used in the proof of Theorem 4.1.
LEMMA 4.3 : Under the hypotheses of Theorem 4,1, there exists a constant

C for which

Proof : Given Fe H\G ), defïne & e HS + 2(G) n Hl(G) and
Pe Hs + ï(G)nL2(G) by

(grad 0,grad^) - (div j ^ , P) = (F, \j/) , for all y/eHl(G), (4.11)

(d iv* ,4 ) = 0, for all q G L2(G) . (4.12)

Then, by Lemma 2.1,

II^H, + 2,G+ ilPH,+ l,G^ C ü f II..G' C = C ( G 0 , G ) .
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378 D. N. ARNOLD, XIAOBO LIU

Now

(w(é - 0), F)

with w as in the proof of the previous lemma. Setting
y/ = w( (p - <f>h ) in (4.11), we get

( w(^> - £A), F) = (grad 0,grad [w(«^ - $h)] ) ~ (div [w( 0 - ^ ) ] , P)

+ (grad w, $

To estimate Ev we set q = (wP)1 in (4.2) and obtain

- (grad [w0 - (w0) 7 ] ,

Taking ^ = (vw0)7 in (4.1), we arrive at

E2 = (grad ( w 0 )7, grad ( 0 - 0 J )

= (gradw, ( /7 - /7 A )^ ) + (div [ (w^) 7 - (

where we applied (4.12) in the last step. Applying (2.2) and the approximation
property Al, we have

\F2\

\E2\
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From these bounds we get the desired resuit. D
Proof of Theorem 4.1 : Let Go <ü Gx <£ ,..GS = G be concentric disks. First

applying Lemma 4.2 and Lemma 4.3 with s replaced by 0 and G replaced by
Gv we obtain

To estimate || $ - 0 J | _ t <?| and \\p - pA || _ 2 Gj, we again apply
Lemma 4.2 and Lemma 4.3, this time with Go and G being replaced by Gl and
G2 and s replaced by 1. Thus, we get

Continuing in this fashion, we obtain (4.3). D

5. INTERIOR ERROR ESTIMATES

In this section we state and prove the main resuit of this paper, Theorem 5.3.
First we obtain in Lemma 5.1 a bound on solutions of the homogeneous
discrete System. In Lemma 5.2 this bound is iterated to get a better bound,
which is then used to establish the desired local estimate on disks. Finally
Theorem 5.3 is extends this estimate to arbitrary interior domains.

LEMMA 5 .1 : Suppose (<Ph,Ph) e VhxWh satisfies

(grad ^,grad y/) - (diy\//,ph) = 0, for ail ^ e Vft(jQ), (5.1)

( d i v # A , 9 ) = 0 , forall qeWh(Q). (5.2)
Thenfor any concentric disks Go <£= G (s Q, and any nonnegative integer t, we
have

where C=C(t,G0,G).
Proof: Let Gh, Go <E= Gh <& G, be as in Assumption A4. Let G'be another

disk concentric with Go and G, such that Go <s= G'<£ Gh, and construct

vol. 29, n° 3, 1995
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w>eC~(G') with w = 1 on Go. Set £h = w(ph e Hl(G'),
p = wph e L2(G'). By Lemma 3.1, we may define func-
* ft r ti o

tions n<f)h e ^ ( G ^ ) and 7rp̂  e ^ ( G ^ ) by the équations

(grad ( <j)h - ii(f)h ),grad î  ) - ( div y/, ph - nph ) = 0 , for all \JJ e V;i( G;i ) ,
(5.4)

together with ( nph - ph ) = 0. Furthermore, there exists a constant C
v G

such that

il$h ~nih lii,GA
+ lift -

^ c( inf II 07 - w ||,

(5.6)

where we have used the superapproximation property in the last step.
To prove (5.3), note that

H 0 j l l , G o + WPhKoo * \\fh lll,GA+ Wfk KG,

* Wfh - ^ l l l . C * + lift

o,Gfc

Next, we bound \\n<f>h \\x G. In (5.4) we take y/ = n(j)h to obtain, for
a positive constant c,

^ li Î

= (grad fh , grad n<fh ) - (div nfh ipk ~nfh) . (5.8)
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LOCAL ERROR ESTIMATES FOR THE STOKES EQUATIONS 381

For the first term on the right hand side of (5.8), we have

(grad fh , grad nfh ) = (grad ( w$h ), grad nfh )

= (grad $h,grad (wnfh ) ) - R(w,nfh, $h)

+ {(grad ^,grad [wnfh -

-/?(wî7T^,^)}-:G1+//1. (5.9)

To bound G p we take y/ = (wn^h / in (5.1) and get

Gx = (div (wnfh )*,ph)

= (diw (wnfh ),pA) + (div [(vv7r<^ )J-wnfh],ph)

= (div7zfh,wph) + (gmdw,Phnfh ) + (div [(WTC^ / - W ^ ] , / ? A )

= (div nfh,fh ) + (gradw,phnfh ) + (div [(wnfh Y -wnfh],ph)

=:(divnfh,fh)+H2. (5.10)

Combining (5.7), (5.8), (5.9) and (5.10), we obtain

= (div nfh tnfk) + H1+H2.

Taking q — nph in (5.5), we get

(div7T^,7Z/?7 ) = (div fh,nfh ) = (div ( w ^ ) , nph )

= ( div #A, w7c/̂  ) + (grad w, 7ip^ ̂ ^ )

= ( div 0fc, w7tpA - ( wwph / ) + (grad w, ^ ) 3

(5.12)
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382 D. N. ARNOLD, XIAOBO LIU

where we used (5.2) at the last step. Applying the Schwarz inequality (2.2),
and the superapproximation property A2, we get

\\nfh\\UCii,

\\nfh \\hGh,\H2

\H%

Combining the above three inequalities with (5.11) and (5.12), and using the
arithmetic-geometry mean inequality, we arrive at

Next we estimate || nph || 0 G . By the triangle inequality,

1G„
 h

\\np„\\h H 0, Gh meas ( Gh ]

meas ( Gh
v - 1 l Ph

0,G„

+ meas ( Gh )
- i (5.14)

0,G,,

Notice that the second term on the right hand side of (5.14) is bounded above
by the right hand side of (5.6), and, for the last term,

Ph 0,G„ = wPh (5.15)

To estimate the first term, we use the inf-sup condition,

f -
- Jo„

nPh meas(GJ C sup
/' nPh )

Ch . (5.16)
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To deal with the numerator on the right hand side of (5.16), we apply (5.4),

(div yr, nph ) = (div j^,/?~ ) - (grad (fh - nfh ), grad y)

= ( div \//y wph ) - (grad (fh - n<fh ), grad \j/ )

= (div (wy/) ,ph)- (grad (<t>h-nfh ), gra

- (grad w,ph}j/)

= (div (wy/)\ph) -(grad (fh -nfh

+ (div (w\j/ - (w\f/)l),ph) - (gmdw,phy/) . (5.17)

We use (5.1) to treat (diw (w\//)\ph) and get

(div (wxjj/,ph) = (grad $h, grad (wy/)1)

= (gmd $h, grad ( wy ) ) + (grad ^ft, grad [(wy/)1 - wy/])

w0^), grad ^ ) + {/?( w, }j/^h) +

Af1. (5.18)

Combining (5.17) and (5.18), we get

(divj^, nfh ) = (gvjidnfh, grad y) + {(div (w^ - (wj^) 7 ,^) -

, grad^) + Mj + M2 . (5.19)

Then applying the superapproximation property, the Schwarz inequality, and
(2.2), we arrive at

|(grad nfh, grad i//)\
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Combining (5.14), (5.15), (5.16), and (5.19) with the above three inequalities,
we obtain

« 0.0.

Substituting (5.20) into (5.13), we obtain

F O.G' + llftlLi.G'). (5.21)

Thus, substituting (5.21) back into (5.20), we find that \\nfh ||0 G/ is also
bounded above by the right hand side of (5.21). Therefore, from (5.7) we
obtain

Applying Theorem 4.1 for the case that ^ = / ? = 0 and G'in place of
Go, we finally arrive at

LEMMA 5.2 : Suppose the conditions of Lemma 5.1 are satisfied. Then

l l&Hi. (*+ I I P j l o . C ^ C ( l l & l l _ , c + l l ^ l i _ , _ U G ) • (5.22)

Proof: Let Go <1 G, (Ë ... <ë G f+2 = G be concentric disks and apply
Lemma 5.1 to each pair G. <s Gj+, to get

o.Cy+1+ H0JL,,G y + 1+ b J I - , - , . C y + 1 ) - (5-23)

Combining these we obtain

I I ^ J I r , G , + , I I P * l l , + l .C,+ I )
( 5 . 2 4 )
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While by A3, we can find Gh, Gt+l m Gh <e Gt + 2 = G, such that

C\\ph\\_t_UG.

Thus inequality (5.22) follows from (5,23), (5.24), and (5.25). •
We now state the main resuit of the paper.
THEOREM 5.3 : Let Qo<£ Ql (^ Q and suppose that

(j£,p) e H1 (£2) x L2(Q) (the exact solution) satisfies
$ I Ol e Hm~l(Q1) p\Qie Hm~x{Ql) for some integer m > 0. Suppose
that (<Ph,ph) £ Yhx^k (tne fin^t€ clement solution) is given so that (4.1)
and (4.2) hold. Let t be a nonnegative integer. Then there exists a constant C
depending only on Qv Qo, and t, such that

, - i . O l ) . * = <U (5-26)

with rl = min (kl + 1, m), r2 = min (k2 + 2, m), and kv k2 as in AL
The theorem will follow easily from a slightly more localized version.
LEMMA 5.4 : Suppose the hypotheses of Theorem 5.3 are fulfilled and, in

addition, that Qo = Go and Qx= G are concentric disks. Then the conclusion
of the theorem holds.

Proof : Let G'o <E G'be further concentric disks strictly contained between
GQ and G and let Gh be a union of éléments which is strictly contained between
G'and G and for which properties A3 and A4 hold. Thus

Go m G'o m G' m Ghm G ^ Q .

Take w e CQ(G') identically 1 on GQ and set <j) = w >̂, p = wp. Let
j V(G) , npe Wh(G) be defined by

(grad ( <j> - n<j) ), grad y/ ) - ( div j ^ , p - np ) = 0 ,

for ail j ^ e Vh(Gh) 9 (5.27)

( d i v ( ^ - 7 i ^ ) , ^ ) = 0,

for ail 9 eW A (G f c ) f (5.28)
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together with np = p. Then using Lemma 3.1 and Al we have

inf
^ e Vh(Gh)

inf
W(G

Let's now estimate II j ^ - ^AII i Go and ||p — p fc | |0 Go- First, the triangle
inequality gives us

From (5.27), (5.28) and (4.1), (4.2) we find

(grad ( 0A - 7ii£),grad y) - (div y,ph - np) = 0 ,

for all yz Vh(G'o),

( d i v ( ^ - « ^ ) l 9 ) = 0, forall g 6 W A ( G ^ ) .

We next apply Lemma 5.2 to (j)h — n(f> and ph - np wuth G replaced by
G'o. Then it follows from (5.22) that

1,G„ IIP» "

-,.G + \\P-PhW-,-X,G+ l l ^ - ^ H l . G i
+ I IP -^ l lo ,G„) -
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In the light of (5.30), (5.29), and the above inequality, we have

Thus, we have proved the desired resuit for s = 1. For 5 = 0, we just apply
Theorem4.1 to the disks Go and G'and get

Then, applying (5.31) with Go replaced by G', we obtain the desired resuit

Proof of Theorem 5.3 : The argument hère is same as in Theorem 5.1 of
[10]. Let d = do/2 where d0 = dist (£?0, dQx ). Cover Qo with a finite
number of disks Go(^.), / = 1, 2, ..., £ centered at x. e Qo with
diam G0(jcf.) = d. Note that the number of disks, k, dépends only on Qo and
Qv Let G(x-), i =1,2,.. . , k be corresponding concentric disks with
diam G(xt) = 2 J. Applying Lemma 5.4, we have

Then the inequality (5.26) follows by summing (5.32) /. •

6. AN EXAMPLE APPLICATION

As an example, we apply our gênerai resuit to the Stokes System when the
domain is a non-convex polygon, in which case the finite element approxi-
mation does not achieve optimal convergence rate in the energy norm on the
whole domain, due to the boundary singuiarity of the exact solution.
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Assume that Q is a non-convex polygon. Then it is known that the solution
of the Stokes system satisfies

$ G H2(Qx),p<z H \ Q X ) , i f QX^Q,

for s < sQ, where sQ is a constant which is determined by the largest interior
angle of Q [4]. For a non-convex polygonal domain we have
1/2 < sQ < 1. The value of sQ for various angles have been tabulated in [4],
For example, for an L-shaped domain, sQ ~ 0.544.

The MINI element was introduced by Arnold, Brezzi and Fortin [1] as a
stable Stokes element with few degrees of freedom. Hère the velocity is
approximated by the space of continuous piecewise linear functions and
bubble functions and the pressure is approximated by the space of continuous
piecewise linear functions only. Globally we have

which reflects a loss of accuracy due to the singularity of the solutions.
In order to apply Theorem 5.3, we note that a standard duality argument as

in [1] gives us

Hence, according to Theorem 5.3, for Qo (s Qx d Q, we have

Since 2 s > 1, the finite element approximation achieves the optimal order of
convergence rate in the energy norm in interior subdomains.
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