CARSTEN CARSTENSEN
ERNST P. STEPHAN

Adaptive coupling of boundary elements and finite elements

<http://www.numdam.org/item?id=M2AN_1995__29_7_779_0>
ADAPTIVE COUPLING OF BOUNDARY ELEMENTS AND FINITE ELEMENTS (*)

by Carsten CARSTENSEN (1) and Ernst P. STEPHAN (2)

Communicated by F. BREZZI

Abstract. — In this note we present an h-adaptive procedure for the symmetric coupling of boundary element and finite elements methods for two-dimensional linear and nonlinear interface problems. An a posteriori error estimate is derived which guarantees a given bound of the error in the energy norm (up to a multiplicative constant). Following the approach of Eriksson & Johnson this leads to a residual based adaptive procedure within the Galerkin discretization. Numerical examples confirm that our procedure gives good meshes leading to efficient numerical procedures.

Subject Classifications : AMS(MOS) 65 N 35, 65 R 20, 65 D 07, 45 L 10.

Key words : adaptive finite element methods, adaptive boundary element methods, a posteriori estimates, symmetric coupling.

1. INTRODUCTION

Since the first mathematical justifications of the « mariage à la mode » in the later seventies by Brezzi, Johnson, Nedelec, Bielak, MacCamy and others further progress in the analysis of the coupling of finite and boundary elements concerns Lipschitz boundaries, systems of equations, and nonlinear problems (approximated by finite elements) cf. e.g. [7, 10, 11, 17, 18, 19, 29] and the literature quoted therein.

(*) Manuscript received May 25, 1994. The work is partly supported by DFG research group at the University of Hannover.

(1) Fachbereich Mathematik, Technische Hochschule Darmstadt, 64289 Darmstadt, Germany.

(2) Institut für Angewandte Mathematik, UNI Hannover, Welfengarten 1, D-30167 Hannover, FRG.
In order to get a good convergence behavior not only asymptotically but also when we are dealing just with a few degrees of freedom, we need a good triangulation in particular when singularities appear. If the nature and the position of a singularity are known a priori, the mesh refinement can reflect on this. Otherwise one requires the information we may achieve from an analysis of the discrete solution and the given data. Whereas the main topics in the adaptive feedback steering of mesh refinements, usually based on the residuals, are mathematically understood for the finite element methods (we refer only to the pioneering works [1, 13] and to [20, 28] for nonlinear problems), comparably little is known for the boundary element method (cf. e.g. [4, 23, 24, 30, 31]).

In this paper an adaptive h-version of the Galerkin discretization for the symmetric coupling of the finite element method and the boundary element method is presented for linear and nonlinear interface problems. It is based on an a posteriori error estimate which gives a computable error estimate up to a multiplicative constant. Then, following the approach of Eriksson and Johnson elaborated for the finite element method we present an adaptive feedback algorithm for the mesh refinement of the coupling procedure.

The paper is organized as follows. For convenience of the reader we treat the interface problem and its rewritten form, problem (P), in § 2. Here, we are able to neglect the technical assumption of a Dirichlet boundary stated in the literature [11, 18]. Then, its discretization, the problem (P_h), is considered in § 3 where we conclude quasi-optimal convergence for the displacements in the H^1-norm approximated by (continuous, piecewise linear) finite elements in the domain Ω and for the tractions in the $H^{-1/2}$-norm approximated by (discontinuous piecewise constant) boundary elements on the interface Γ; these norms may be considered as natural (« energy ») norms. Then, in § 4, we state the precise assumptions and then prove an a posteriori error estimate. In § 5 we present and discuss the adaptive algorithm which is illustrated numerically in § 6.

We use the following notations. $H^s(\Omega)$ denotes the usual Sobolev spaces [21] with the trace spaces $H^{s-1/2}(\Gamma)$ ($s \in \mathbb{R}$) for a bounded Lipschitz domain Ω with boundary Γ. $\| \cdot \|_{H^s(\omega)}$ and $| \cdot |_{H^s(\omega)}$ denote the norm and semi-norm in $H^k(\omega)$ for $\omega \subseteq \Omega$ and an integer k.

2. THE INTERFACE PROBLEM

This section presents the interface problem and rewrites it with boundary integral operators as an equivalent problem (P) which will be treated numerically in the sequel.
Let \(\Omega \subseteq \mathbb{R}^2 \) be a bounded Lipschitz domain in the plane with boundary \(\Gamma \). The possibly nonlinear partial differential equation considered in \(\Omega \), the interior part of the problem, is described by the operator \(A \) defined by

\[
A: L^2(\Omega; \mathbb{R}^2) \to L^2(\Omega; \mathbb{R}^2),
\]

\[
\begin{pmatrix}
\varepsilon_1 \\
\varepsilon_2
\end{pmatrix} \mapsto \begin{pmatrix}
a_{11} \begin{pmatrix}
\varepsilon_1 \\
\varepsilon_2
\end{pmatrix} \cdot \varepsilon_1 + a_{12} \begin{pmatrix}
\varepsilon_1 \\
\varepsilon_2
\end{pmatrix} \cdot \varepsilon_2 \\
a_{21} \begin{pmatrix}
\varepsilon_1 \\
\varepsilon_2
\end{pmatrix} \cdot \varepsilon_1 + a_{22} \begin{pmatrix}
\varepsilon_1 \\
\varepsilon_2
\end{pmatrix} \cdot \varepsilon_2
\end{pmatrix}.
\]

The coefficients \(a_{ij} = a_{ji} \in L^\infty(\Omega) \) may or may not depend on the argument \(\begin{pmatrix}
\varepsilon_1 \\
\varepsilon_2
\end{pmatrix} \in L^2(\Omega; \mathbb{R}^2) \) and may vary in \(\Omega \) provided that \(A \) is uniformly bounded and monotone, i.e. there exists positive constants \(\alpha_0 \) and \(\alpha_1 \) with

\[
\alpha_0 \cdot |\delta - \varepsilon|^2 \leq
\]

\[
\leq (\varepsilon - \delta)^T \begin{pmatrix}
a_{11}(x, \delta) \delta_1 + a_{12}(x, \delta) \delta_2 - a_{11}(x, \varepsilon) \varepsilon_1 - a_{12}(x, \varepsilon) \varepsilon_2 \\
a_{21}(x, \delta) \delta_1 + a_{22}(x, \delta) \delta_2 - a_{21}(x, \varepsilon) \varepsilon_1 - a_{22}(x, \varepsilon) \varepsilon_2
\end{pmatrix}
\]

\[
\leq \alpha_1 \cdot |\delta - \varepsilon|^2
\]

for all \(\delta, \varepsilon \in \mathbb{R}^2 \) and for a.e. \(x \in \Omega \).

Example 1: As a typical example consider \(A = p \cdot I \) where \(I \) is the two-dimensional unit matrix. In the linear case \(p \in L^\infty(\Omega) \) is a scalar function with \(p_0 \leq p(x) \leq p_1 \) for almost every \(x \in \Omega \) and some global constants \(p_0, p_1 > 0 \):

\[
(A \varepsilon)(x) = p(x) \cdot \varepsilon \quad \text{for a.e. } x \in \Omega.
\]

In particular \(p = 1 \) leads to the Laplacian equation, cf. (1). In the nonlinear case we consider \(p \) as a function of the argument \(t := |\varepsilon| \) and may take e.g. \(p(t) = 2 + \frac{1}{1 + t} \) which gives

\[
(A \varepsilon)(x) = p(|\varepsilon|) \cdot \varepsilon \quad \text{for a.e. } x \in \Omega
\]

and \(2 \leq p(|\varepsilon|) \leq 3 \).

For a given right hand side \(f \in L^2(\Omega) \), we consider the (possibly nonlinear) partial differential equation

\[
- \text{div} (A \text{ grad } u) = f \quad \text{in } \Omega.
\]
In the complement $\Omega^c := \mathbb{R}^2 \setminus \overline{\Omega}$ we consider

\begin{equation}
-\Delta v = 0 \quad \text{in} \quad \Omega^c
\end{equation}

with the radiation condition

\begin{equation}
v(x) = \frac{b}{2\pi} \log |x| + o(1) \quad \text{as} \quad |x| \rightarrow \infty,
\end{equation}

where $b \in \mathbb{R}$ is a constant (depending on v). Both problems are coupled on the interface $\Gamma = \overline{\Omega} \cap \overline{\Omega}^c$ where we allow prescribed jumps, i.e. given $u_0 \in H^{1/2}(\Gamma)$ and $t_0 \in H^{-1/2}(\Gamma)$ we demand

\begin{equation}
u = v + u_0, \quad (A \, \text{grad} \, u) \cdot n = \frac{\partial v}{\partial n} + t_0 \quad \text{on} \quad \Gamma
\end{equation}

where $n = (n_1, n_2)$ is the unit outward normal to Γ pointing from Ω into Ω^c. We remark that $(A \, \text{grad} \, u) \cdot n|_{\Gamma}$ and $\left. \frac{\partial v}{\partial n} \right|_{\Gamma}$ are defined in $H^{-1/2}(\Gamma)$ via Green’s formula [9, Lemma 3.1].

Then, the interface problem (IP) of this note reads as follows where any derivative has to be interpreted in the distributional sense.

Definition 1: (Problem (IP)) Given $(f, u_0, t_0) \in L^2(\Omega) \times H^{1/2}(\Gamma) \times H^{-1/2}(\Gamma)$ find $(u, v) \in H^1(\Omega) \times H^1_{loc}(\Omega^c)$ satisfying (1)-(4).

Remark 1: It should be emphasized that in related works (e.g. [10, 11, 18, 19]) the constant displacements (or rigid body motions in elasticity) in the interface problem are prevented by an additional Dirichlet boundary inside of the interior domain. It is shown in this paper that this technical restriction is not necessary. Indeed, the radiation condition of the exterior problem yields positive definiteness of corresponding boundary integral operators (see Lemma 4 below) which, together with the semi-definiteness of the partial differential operators in the interior problem, avoid the constant displacements.

In order to give an equivalent formulation of problem (IP) we incorporate some boundary integral operators. Let $H^{-s}(\Gamma)$ be the dual of $H^s(\Gamma) \ (0 \leq s \leq 1) \ (\Gamma$ is closed) where the duality $\langle \ , \ \rangle$ between these spaces extends the scalar product in $L^2(\Gamma)$.
Given $v \in H^{1/2}(\Gamma)$ and $\phi \in H^{-1/2}(\Gamma)$ we define for $z \in \Gamma$

\[
(V\phi)(z) := -\frac{1}{\pi} \int_{\Gamma} \phi(\zeta) \log |z - \zeta| \, ds_\zeta
\]

\[
(Kv)(z) := -\frac{1}{\pi} \int_{\Gamma} v(\zeta) \frac{\partial}{\partial n_\zeta} \log |z - \zeta| \, ds_\zeta
\]

\[
(K'\phi)(z) := -\frac{1}{\pi} \int_{\Gamma} \phi(\zeta) \frac{\partial}{\partial n_\zeta} \log |z - \zeta| \, ds_\zeta
\]

\[
(Wv)(z) := \frac{1}{\pi} \int_{\Gamma} v(\zeta) \frac{\partial}{\partial n_\zeta} \log |z - \zeta| \, ds_\zeta.
\]

This defines linear and bounded boundary integral operators when mapping between the following Sobolev-spaces [8]

\[
V : H^{s-1/2}(\Gamma) \rightarrow H^{s+1/2}(\Gamma)
\]

\[
K : H^{s+1/2}(\Gamma) \rightarrow H^{s+1/2}(\Gamma)
\]

\[
K' : H^{s-1/2}(\Gamma) \rightarrow H^{s-1/2}(\Gamma)
\]

\[
W : H^{s+1/2}(\Gamma) \rightarrow H^{s-1/2}(\Gamma)
\]

where (since we allowed Γ to be a Lipschitz boundary) $s \in [-1/2, 1/2]$. Moreover, the single layer potential V is symmetric, the double layer potential K has the dual K' and the hyper singular operator W is symmetric. V and W are strongly elliptic in the sense that they satisfy a Gårding inequality (in the above spaces with $s = 0$) [8]. Additionally, we have definiteness, where

\[
H^s_0(\Gamma) := \{v \in H^s(\Gamma) : \langle 1, v \rangle = 0 \} \equiv H^s(\Gamma)/\mathbb{R}
\]

with its dual $H^s_0(\Gamma)$, $0 \leq s \leq 1$.

Lemma 1: [16, 22, 25, 26] Provided the capacity of Γ is less than 1

\[
V : H^{-1/2}(\Gamma) \rightarrow H^{1/2}(\Gamma)
\]

is linear, bounded, symmetric and positive definite.

Remark 2: For a definition of $\text{cap} (\Gamma)$, the capacity of Γ, we refer to [25] and only mention here that, e.g., if Ω lies in a ball with radius less than 1, then $\text{cap} (\Gamma) < 1$. Thus, $\text{cap} (\Gamma) < 1$ can always be achieved by scaling [16, 25, 26].

Vol. 29, n° 7, 1995
The relation between the single layer potential and the hypersingular integral operator is given by \(W = - \frac{\partial}{\partial s} \mathcal{V} \frac{\partial}{\partial s} \) where \(\frac{\partial}{\partial s} \) denotes the derivative with respect to the arc-length (at least in the distributional sense).

Lemma 2 ([22]) \(\langle Wv, w \rangle = \left\langle \mathcal{V} \frac{\partial u}{\partial s}, \frac{\partial w}{\partial s} \right\rangle \) for any \(v, w \in H^{1/2}(\Gamma) \). □

From Lemmas 1 and 2 we get directly the following known result.

Lemma 3: Provided the capacity of \(\Gamma \) is less than 1

\[
W : H^{-1/2}(\Gamma) \to H^{1/2}(\Gamma)
\]

is linear, bounded, symmetric and positive semi-definite. □

We are now in the position to reformulate the interface problem (IP).

Definition 2: (Problem (P)) Given \((f, u_0, t_0) \in L^2(\Omega) \times H^{1/2}(\Gamma) \times H^{-1/2}(\Gamma)\) find \((u, \phi) \in H^1(\Omega) \times H^{-1/2}(\Gamma)\) satisfying

\[
\begin{align*}
5) \quad & \int_{\Omega} (A \text{ grad } u) \cdot \text{ grad } \eta \, d\Omega + \frac{1}{2} \langle Wu|_r + (K' - 1) \phi, \eta|_r \rangle = \\
& = \int_{\Omega} f \cdot \eta \, d\Omega + \left\langle t_0 + \frac{1}{2} Wu_0, \eta|_r \right\rangle \quad (\eta \in H^1(\Omega)) \\
6) \quad & \langle \psi, \mathcal{V} \phi + (1 - K) u|_r \rangle = \langle \psi, (1 - K) u_0 \rangle \quad (\psi \in H^{-1/2}(\Gamma)).
\end{align*}
\]

The problems (IP) and (P) are equivalent; compare also [10, 11, 18, 19] for related results. The proof is given here for convenient reading.

Theorem 1: The problems (IP) and (P) are equivalent in the following sense. If \((u, v) \in H^1(\Omega) \times H^1(\Omega)\) is a solution of (IP) then \((u, \phi) \in H^1(\Omega) \times H^{-1/2}(\Gamma)\) solves (P) with \(\phi := \frac{\partial u}{\partial n}|_r\), If, conversely, \((u, \phi)\) is a solution of problem (P) then \((u, v)\) solves (IP) with \(v \in H^{1}(\Omega)\) defined by

\[
7) \quad v(z) = \frac{1}{2\pi} \int_{\Gamma} \phi(\zeta) \cdot \log |z - \zeta| \, ds_{\zeta} = - \frac{1}{2\pi} \int_{\Gamma} (u - u_0)(\zeta) \cdot \frac{\partial}{\partial n_{\zeta}} \log |z - \zeta| \, ds_{\zeta} \quad (z \in \Omega).\]

Mathematical Modelling and Numerical Analysis
Proof: Assume that \((u, v)\) solves (IP). Then, from [9, Lemma 3.5], there holds the representation formula (7) with \(\phi := \left[\frac{\partial v}{\partial n}\right]_r\). Letting \(z \rightarrow \Gamma\) and by using the jump conditions, one obtains that the Cauchy data \(\left(v \big|_r, \frac{\partial v}{\partial n} \big|_r\right)\) satisfy

\[
H \left(\frac{v}{\partial n} \big|_r \right) = - \left(\frac{v}{\partial n} \big|_r \right), \quad H := \begin{pmatrix} -K & V \\ W & K' \end{pmatrix},
\]

(compare [9, Theorem 3.11] (note that \(a = 0\) here, cf. (3)). Using (4) in the first component of (8) gives (6). Multiplying of (1) with a test function \(\eta \in H^1(\Omega)\), integration over \(\Omega\), using Green’s formula, and incorporating (4) we get

\[
\int_{\Omega} (A \text{grad } u) \cdot \text{grad } \eta \, d\Omega = \int_{\Omega} f \cdot \eta \, d\Omega + \left(\frac{\partial v}{\partial n} \big|_r + t_0, \eta \big|_r \right).
\]

From the second component in (8) we have

\[
\left|Wv \big|_r + (K' - 1) \right| \left[\frac{\partial v}{\partial n} \big|_r \right] = -2 \left|\frac{\partial v}{\partial n} \big|_r \right|.
\]

The last two identities (with \(\phi = \left[\frac{\partial v}{\partial n}\right]_r\)) and (4) yield (5).

Conversely, let \((u, \phi)\) solve (P) and define \(v\) by (7). Then, according to [9], \(v\) satisfies (2), (3) and hence (8), and the jump relations yield

\[
\left(\frac{v}{\partial n} \big|_r \right) = \frac{1}{2} \left(\text{Id} - H \right) \left(\frac{u}{\partial n} \big|_r - u_0 \right).
\]

The first component of (9) together with (6) yields \(u \big|_r = v \big|_r + u_0\). From the second identity in (9) we then have

\[
\frac{\partial v}{\partial n} \big|_r = -\frac{1}{2} \left\{ W(u \big|_r - u_0) + (K' - 1) V\phi \right\}.
\]

Using this in (5) gives, by Green’s formula again,

\[
\int_{\Omega} \left(\text{div} (A \text{grad } u) + f \right) \eta \, d\Omega = \left((A \text{grad } u) \cdot n \big|_r - \left[\frac{\partial v}{\partial n}\right]_r - t_0, \eta \big|_r \right)
\]

for all \(\eta \in H^1(\Omega)\). Choosing \(\eta \in H^1_0(\Omega)\), the completion of \(C_0^\infty(\Omega)\) in the \(H^1\) -norm, we conclude the weak form of (1). Hence using (1) we get (4). \(\square\)
Remark 3: We note that

\begin{align*}
W1 = 0 \quad \text{and} \quad K1 = -1
\end{align*}

with 1 being the constant function with the value one. The identities (10) follow from \(H\left(\begin{array}{c}
1 \\
0
\end{array} \right) = \left(\begin{array}{c}
1 \\
0
\end{array} \right) \) (cf. [9, Lemma 3.5]).

Define the continuous mapping \(B : (H^1(\Omega) \times H^{-1/2}(\Gamma))^2 \rightarrow \mathbb{R} \) and the linear form \(L : H^1(\Omega) \times H^{-1/2}(\Gamma) \rightarrow \mathbb{R} \) by

\[
B\left(\left(\begin{array}{c}
u \\
\phi
\end{array} \right) , \left(\begin{array}{c}
u' \\
\psi
\end{array} \right) \right) := \int_{\Omega} (A \text{ grad } u) \cdot \text{ grad } v \, d\Omega \\
+ \frac{1}{2} \langle Wu|_\Gamma + (K' - 1) \phi, v|_\Gamma \rangle \\
+ \frac{1}{2} \langle \psi, V\phi + (1 - K) u|_\Gamma \rangle
\]

\[
L\left(\begin{array}{c}
u \\
\psi
\end{array} \right) := \int_{\Omega} f \cdot v \, d\Omega + \frac{1}{2} \langle \psi, (1 - K) u_0 \rangle \\
+ \langle t_0 + \frac{1}{2} Wu_0, v|_\Gamma \rangle
\]

for any \((u, \phi), (v, \psi) \in H^1(\Omega) \times H^{-1/2}(\Gamma) \).

Corollary 1: Problem (P) is equivalent to \((u, \phi) \in H^1(\Omega) \times H^{-1/2}(\Gamma) \) with

\begin{align*}
B\left(\left(\begin{array}{c}
u \\
\phi
\end{array} \right) , \left(\begin{array}{c}
u' \\
\psi
\end{array} \right) \right) = L
\end{align*}

i.e. for any \((v, \psi) \in H^1(\Omega) \times H^{-1/2}(\Gamma) \) there holds

\[B\left(\left(\begin{array}{c}u \\
\phi
\end{array} \right) , \left(\begin{array}{c}v \\
\psi
\end{array} \right) \right) = L\left(\begin{array}{c}v \\
\psi
\end{array} \right). \]

Proof: Note that \(B\left(\left(\begin{array}{c}u \\
\phi
\end{array} \right) , \left(\begin{array}{c}\cdot \\
0
\end{array} \right) \right) = L\left(\begin{array}{c}\cdot \\
0
\end{array} \right) \) is equivalent to (5) and \(B\left(\left(\begin{array}{c}u \\
\phi
\end{array} \right) , \left(\begin{array}{c}0 \\
\cdot
\end{array} \right) \right) = L\left(\begin{array}{c}0 \\
\cdot
\end{array} \right) \) is equivalent to (6).
LEMMA 4: The operator $S := W + (1 - K') \ V^{-1}(1 - K) : H^{1/2}(\Gamma) \to H^{-1/2}(\Gamma)$ is linear, bounded, symmetric and positive definite.

Proof: Due to the above mentioned properties of W, K, V, K', the operator S is linear, bounded, symmetric, positive semidefinite and a Fredholm operator of index zero. Thus, it suffices to prove that the kernel $\ker S$ is trivial in order to conclude that S is positive definite. Let $u \in \ker S$, then $0 = \langle Su, u \rangle$. On the other hand $\langle Su, u \rangle \geq \langle Wu, u \rangle \geq 0$, so that $\langle Wu, u \rangle = 0$. By Lemma 1, u is constant. Therefore $0 = \langle V^{-1}(1 - K) u, (1 - K) u \rangle$. By Lemma 1, V^{-1} is positive definite so that $(1 - K) u = 0$. Using (10), this implies that the constant u is equal to zero. Thus, $\ker S = \{0\}$.

In the case that A is a linear mapping, the following result proves that the bilinear form B satisfies the Babuska-Brezzi condition.

THEOREM 2: There exists a constant $\beta > 0$ such that for all $(u, \phi), (v, \psi) \in H^1(\Omega) \times H^{-1/2}(\Gamma)$ we have

$$\beta \cdot \left\| \begin{pmatrix} u - v \\ \phi - \psi \end{pmatrix} \right\|_{H^1(\Omega) \times H^{-1/2}(\Gamma)} \cdot \left\| \begin{pmatrix} u - v \\ \eta - \delta \end{pmatrix} \right\|_{H^1(\Omega) \times H^{-1/2}(\Gamma)} \leq B\left(\begin{pmatrix} u \\ \phi \end{pmatrix}, \begin{pmatrix} u - v \\ \eta - \delta \end{pmatrix} \right) - B\left(\begin{pmatrix} v \\ \psi \end{pmatrix}, \begin{pmatrix} u - v \\ \eta - \delta \end{pmatrix} \right),$$

with

$$2 \eta := \phi + V^{-1}(1 - K) u \big|_\Gamma, 2 \delta := \psi + V^{-1}(1 - K) v \big|_\Gamma \in H^{-1/2}(\Gamma).$$

Proof: Some calculations show

$$B\left(\begin{pmatrix} u \\ \phi \end{pmatrix}, \begin{pmatrix} u - v \\ \eta - \delta \end{pmatrix} \right) - B\left(\begin{pmatrix} v \\ \psi \end{pmatrix}, \begin{pmatrix} u - v \\ \eta - \delta \end{pmatrix} \right) =$$

$$= \int_\Omega (\nabla u - \nabla v) : \nabla (u - v) \, d\Omega$$

$$+ \frac{1}{4} \langle W(u - v), u - v \rangle + \frac{1}{4} \langle S(u - v), u - v \rangle$$

$$+ \frac{1}{4} \langle V(\phi - \psi), \phi - \psi \rangle.$$
Due to Lemmas 1, 3 and 4 and since A is uniformly monotone we have that the right hand side is bounded below by

$$\alpha_0 \| \text{grad} (u - v) \|^2_{L^2(\Omega)} + \frac{c_1}{4} \| (u - v) \|^2_{H^{1/2}(\Gamma)} + \frac{c_2}{4} \| \phi - \psi \|^2_{H^{-1/2}(\Gamma)}$$

where $c_1, c_2 > 0$ result from the positive definiteness of V and S. Note that

$$\| u \|^2 = \| \text{grad} u \|^2_{L^2(\Omega)} + \| u \|^2_{H^{1/2}(\Gamma)} \quad (u \in H^1(\Omega))$$

defines a norm $\| \cdot \|$ which is equivalent to the standard norm in $H^1(\Omega)$. Thus there exists a constant $c_3 > 0$ with $\| u \| \geq c_3 \| u \|_{H^1(\Omega)}$. Altogether we have proved that

$$B\left(\left(\begin{array}{c} u \\ \phi \end{array}\right), \left(\begin{array}{c} u - v \\ \eta - \delta \end{array}\right)\right) - B\left(\left(\begin{array}{c} v \\ \psi \end{array}\right), \left(\begin{array}{c} u - v \\ \eta - \delta \end{array}\right)\right) \geq$$

$$\geq c_4 \left\| \left(\begin{array}{c} u - v \\ \phi - \psi \end{array}\right) \right\|^2_{H^1(\Omega) \times H^{-1/2}(\Gamma)}$$

with

$$c_4 := \min \left\{ \frac{c_2}{4}, c_3^2 \cdot \min \left\{ \alpha, \frac{c_1}{4} \right\} \right\} > 0.$$

On the other hand, by definition of η, δ, we have

$$\| \eta - \delta \|^2_{H^{-1/2}(\Gamma)} \leq \frac{1}{2} \left(\| \phi - \psi \|^2_{H^{-1/2}(\Gamma)} + c_5 (1 + c_6) \| u - v \|^2_{H^{1/2}(\Gamma)} \right)$$

$$\leq c_7 \left\| \left(\begin{array}{c} u - v \\ \phi - \psi \end{array}\right) \right\|^2_{H^1(\Omega) \times H^{-1/2}(\Gamma)}$$

where $c_4 > 0$ and $c_5 > 0$ are the bounds of $V^{-1} : H^{1/2}(\Gamma) \to H^{-1/2}(\Gamma)$ and $K : H^{1/2}(\Gamma) \to H^{1/2}(\Gamma)$, respectively, and $c_7 = \max \{1, c_5 (1 + c_6)\}$.

Combining the last two estimates we obtain (12) with

$$\beta := \frac{c_4}{2} \cdot \min \{1, 1/c_7\}.$$

In case that A is linear, Theorems 1 and 2 and the Lax-Milgram lemma gives existence and uniqueness of solutions of the interface problem (IP) as well as of the rewritten problem (P).

Corollary 2: The problem (IP) as well as the problem (P) have unique solutions.
Proof: Note that (6) is equivalent to

\[\phi = -V^{-1}(1 - K)(u\mid_r - u_0) \]

which may be used to eliminate \(\phi \) in (5). This leads to the problem to find \(u \in H^1(\Omega) \) with

\[A'(u)(\eta) := \int_{\Omega} (A \text{ grad } u) \cdot \text{ grad } \eta \, d\Omega + \frac{1}{2} \langle Su\mid_r, \eta\mid_r \rangle \]

\[= L'(\eta) \quad (\eta \in H^1(\Omega)) . \]

Here, \(L' \) is some bounded linear functional. The operator \(A' \) on the left hand side maps \(H^1(\Omega) \) into its dual, is continuous, bounded, uniformly monotone (cf. the arguments of the proof of Theorem 2). From the main theorem on monotone operators [32] we obtain that \(A' \) is bijective. This yields the existence of \(u \) satisfying (14). Letting \(\phi \) as in (13) we have that \((u, \phi) \) solves Problem (P). Uniqueness of the solution may be concluded from the converse calculation and the bijectivity of \(A' \) or, alternatively, from Theorem 2. \(\square \)

3. THE DISCRETE PROBLEM \((P_h)\)

In this section we treat the discretization of problem (P) in the form (11).

Let \((H_h \times H_h^{-1/2} : h \in I)\) be a family of finite dimensional subspaces of \(H^1(\Omega) \times H^{-1/2} \Gamma).\) Then, the coupling of finite elements and boundary elements consists in the following Galerkin procedure.

Definition 3: (Problem \((P_h)\)) For \(h \in I \) find \((u_h, \phi_h) \in H_h \times H_h^{-1/2}\) such that

\[B\left(\begin{pmatrix} u_h \\ \phi_h \end{pmatrix}, \begin{pmatrix} v_h \\ \psi_h \end{pmatrix}\right) = L\left(\begin{pmatrix} v_h \\ \psi_h \end{pmatrix}\right) \]

for all \((v_h, \psi_h) \in H_h \times H_h^{-1/2} .\)

In order to prove a discret Babuska-Brezzi condition if \(A \) is linear, we need some notations and a discrete analog of Lemma 4.

Assumption 1: For any \(h \in I \) let \(H_h \times H_h^{-1/2} \subseteq H^1(\Omega) \times H^{-1/2} \Gamma)\) where \(I \subseteq (0, 1) \) with \(0 \notin I. \) \(1 \in H_h^{-1/2} \) for any \(h \in I \) where \(1 \) denotes the constant function with value 1.
Let \(i_h : H_h \hookrightarrow H^1(\Omega) \) and \(j_h : H_{h}^{-1/2} \hookrightarrow H^{-1/2}(\Gamma) \) denote the canonical injections with their duals \(i_h^* : H^1(\Omega) \to H_h^* \) and \(j_h^* : H^{-1/2}(\Gamma) \to (H_{h}^{-1/2})^* \) being projections. Let \(\gamma : H^1(\Omega) \to H^{1/2}(\Gamma) \) denote the trace operator, \(\gamma u = u|_\Gamma \) for all \(u \in H^1(\Omega) \), with the dual \(\gamma^* \).

Then, define

\[
V_h := j^*_h V j_h, \quad K_h := j^*_h K y_i h, \quad W_h := i^*_h y_i h, \quad K'_h := i^*_h y^* K j_h
\]

and, since \(V_h \) is positive definite as well,

\[
S_h := W_h + (1_h - K'_h) V_h^{-1} (1_h - K_h) : H_h \to H_h^*
\]

with \(1_h := j^*_h y_i h \) and its dual \(1_h^* \).

Lemma 5: There exist constants \(c_0 > 0 \) and \(h_0 > 0 \) such that for any \(h \in I \) with \(h < h_0 \) we have

\[
\langle S_h u_h, u_h \rangle \geq c_0 \| u_h \|_\Gamma^2 \| u_h \|_{H^{1/2}(\Gamma)}^2 \quad \text{for all } u_h \in H_h.
\]

Proof: The proof is quite analog to that of [3, Lemma 8] so that we give only a sketch. Assume that the conclusion is false. Then one can construct a sequence of functions \((u_{h_n})_{n=1,2,3,...} \) in \(H^1(\Omega) \) with

\[
u_{h_n} \in H_{h_n}, \quad \| u_{h_n} \|_\Gamma \|_{H^{1/2}(\Gamma)} = 1, \quad \langle S_h u_{h_n}, u_{h_n} \rangle \leq \frac{1}{n} (n = 1, 2, 3, ...)
\]

and \(\lim h_n = 0 \). Due to the Banach-Alaoglu theorem we may assume that \((u_{h_n})_{n=1,2,3,...} \) converges towards some \(w \in H^{1/2}(\Gamma) \) weakly in \(H^{1/2}(\Gamma) \) (a subsequence at least).

Then, by definition of \(S_h \), we firstly conclude that \(\langle W u_{h_n}, u_{h_n} \|_\Gamma \rangle \) tends towards zero so that (by weak convexity of \(\langle W \cdot , \cdot \rangle \) \(\langle W w, w \rangle = 0 \), i.e. \(w \|_\Gamma \) is constant by Lemma 1. A decomposition of \(u_{h_n} \|_\Gamma = v_n + w_n \) with \(v_n \in H^{1/2}_0(\Gamma) \) and \(w_n \in \mathbb{R} \) shows additionally that \(\langle v_n, u_{h_n} \|_\Gamma = 0 \) and \(\| v_n \|_{H^{1/2}(\Gamma)} \) tends towards zero strongly in \(H^{1/2}(\Gamma) \) so that we have also strong convergence of \((u_{h_n} \|_\Gamma)_{n=1,2,3,...} \) towards the constant \(w \in \mathbb{R} \) in \(H^{1/2}(\Gamma) \).

On the other hand we have \(0 = \lim \langle V z_n, z_n \rangle \) with \(z_n := V_h^{-1}(\phi_n) \in H_{h_n}^{-1/2} \subseteq H^{-1/2}(\Gamma) \),

\[
\phi_n := j_{h_n}^* y_n \in (H_{h_n}^{-1/2})^*, \quad y_n := u_{h_n} - K u_{h_n} \in H^{1/2}(\Gamma).
\]

Thus, \(0 = \lim \| z_n \|_{H^{-1/2}(\Gamma)} \) whence \(0 = \lim \| \phi_n \|_{(H_{h_n}^{-1/2})^*} \). Because of \((u_{h_n} \|_\Gamma)_{n=1,2,3,...} \to w \) we get \((y_n)_{n=1,2,3,...} \to 2 \) \(w \) strongly in \(H^{1/2}(\Gamma) \) (by (10) and \(w \in \mathbb{R} \)). Hence,

\[
2 w \langle 1, 1 \rangle = \lim_{n \to \infty} \langle j_{h_n} 1, y_n \rangle = \lim_{n \to \infty} \langle j_{h_n} 1, y_n \rangle = \lim_{n \to \infty} \langle 1, \phi_n \rangle = 0.
\]
COUPLING OF BOUNDARY AND FINITE ELEMENTS

i.e. \(w = 0 \). This contradicts \(\| w \|_{H^1(\Omega)} = \lim_{n \to \infty} \| u_n \|_{H^1(\Omega)} = 1 \).

Theorem 3: There exist constants \(\beta_0 > 0 \) and \(h_0 > 0 \) such that for any \(h \in I \) with \(h < h_0 \) we have that for any \((u_h, \phi_h), (v_h, \psi_h) \in H_h^1 \times H^{-1/2}_h\)

\[
\beta_0 \cdot \left\| \begin{pmatrix} u_h - v_h \\ \phi_h - \psi_h \end{pmatrix} \right\|_{H^1(\Omega) \times H^{-1/2}(\Gamma)} \cdot \left\| \begin{pmatrix} u_h - \eta_h - \delta_h \\ \phi_h - \psi_h \end{pmatrix} \right\|_{H^1(\Omega) \times H^{-1/2}(\Gamma)} \\
\leq B\left(\begin{pmatrix} u_h \\ \phi_h \end{pmatrix}, \begin{pmatrix} u_h - v_h \\ \eta_h - \delta_h \end{pmatrix}\right) - B\left(\begin{pmatrix} v_h \\ \psi_h \end{pmatrix}, \begin{pmatrix} u_h - v_h \\ \eta_h - \delta_h \end{pmatrix}\right)
\]

with

\[
2 \eta_h := \phi_h + V_h^{-1}(1h - K_h) u_h, 2 \delta_h := \psi_h + V_h^{-1}(1h - K_h) v_h \in H^{-1/2}_h.
\]

Proof: The proof is quite analogous to that of Theorem 2 dealing with the discrete operators (16) and (17). All calculations in the proof of Theorem 2 can be repeated with obvious modifications. Due to Lemma 5 the constants are independent of \(h \) as well so that \(\beta_0 \) does not depend on \(h < h_0, h_0 \) chosen in Lemma 5. Hence we may omit the details. \(\Box \)

Corollary 3: There exist constants \(c_0 > 0 \) and \(h_0 > 0 \) such that for any \(h \in I \) with \(h < h_0 \) the problem \((P_h)\) has a unique solution \((u_h, \phi_h)\) and, if \((M, \psi)\) denotes the solution of \((P)\), there holds

\[
\left\| \begin{pmatrix} u - u_h \\ \phi - \phi_h \end{pmatrix} \right\|_{H^1(\Omega) \times H^{-1/2}(\Gamma)} \\
\leq c_0 \cdot \inf_{(v_h, \psi_h) \in H_h^1 \times H^{-1/2}_h} \left\| \begin{pmatrix} u - v_h \\ \phi - \psi_h \end{pmatrix} \right\|_{H^1(\Omega) \times H^{-1/2}(\Gamma)}.
\]

Proof: The existence and uniqueness of the discrete solutions follows as in the proof of Corollary 2. Let \((U_h, \Phi_h) \in H^1_h \times H^{-1/2}_h\) be the orthogonal projections onto \(H^1_h \times H^{-1/2}_h \) of the solution \((u, \phi)\) of Problem \((P)\) in \(H^1(\Omega) \times H^{-1/2}(\Gamma)\). From Theorem 3 we conclude with appropriate \((\eta_h, \delta_h) \in H^1_h \times H^{-1/2}_h\) that

\[
\beta_0 \cdot \left\| \begin{pmatrix} U_h - u_h \\ \Phi_h - \phi_h \end{pmatrix} \right\|_{H^1(\Omega) \times H^{-1/2}(\Gamma)} \cdot \left\| \begin{pmatrix} U_h - \eta_h - \delta_h \\ \Phi_h - \psi_h \end{pmatrix} \right\|_{H^1(\Omega) \times H^{-1/2}(\Gamma)} \\
\leq B\left(\begin{pmatrix} U_h \\ \Phi_h \end{pmatrix}, \begin{pmatrix} U_h - u_h \\ \eta_h - \delta_h \end{pmatrix}\right) - B\left(\begin{pmatrix} u_h \\ \phi_h \end{pmatrix}, \begin{pmatrix} U_h - u_h \\ \eta_h - \delta_h \end{pmatrix}\right).
\]

vol. 29, n° 7, 1995
Using the Galerkin conditions and the Lipschitz continuity of B, with related constant L (which follows since A is Lipschitz continuous), we get that the right hand side is bounded by

$$L \cdot \left\| \begin{pmatrix} U_h - u_h \\ \eta_h - \delta_h \end{pmatrix} \right\|_{H^1(\Omega) \times H^{-\frac{1}{2}}(\Gamma)} \cdot \left\| \begin{pmatrix} U_h - u \\ \Phi_h - \phi \end{pmatrix} \right\|_{H^1(\Omega) \times H^{-\frac{1}{2}}(\Gamma)}.$$

Dividing the hole estimate by $\left\| \begin{pmatrix} U_h - u_h \\ \eta_h - \delta_h \end{pmatrix} \right\|_{H^1(\Omega) \times H^{-\frac{1}{2}}(\Gamma)}$ proves

$$\left\| \begin{pmatrix} U_h - u_h \\ \Phi_h - \phi_h \end{pmatrix} \right\|_{H^1(\Omega) \times H^{-\frac{1}{2}}(\Gamma)} \leq \frac{L}{\beta_0} \left\| \begin{pmatrix} U_h - u \\ \Phi_h - \phi \end{pmatrix} \right\|_{H^1(\Omega) \times H^{-\frac{1}{2}}(\Gamma)}.$$

From this, the triangle inequality yields the assertion. \quad \square

Remark 4: If $1 \in H_h$, then $\phi - \phi_h \in H^0_0(\Gamma)$. For a proof consider

$$0 = B\left(\begin{pmatrix} u - u_h \\ \phi - \phi_h \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \end{pmatrix} \right).$$

4. **A POSTERIORI ERROR ESTIMATE**

In this section we state the assumptions and the result of an a posteriori error estimate, proved in the following section, which is the base of our adaptive feedback procedure. For simplicity, we restrict ourselves to linear triangles as finite elements in H_h and piecewise constants $H^{1/2}_h$.

Assumption 2: Let Ω be a two-dimensional domain with polygonal boundary Γ on which we consider a family $\mathcal{T} := (T_h : h \in I)$ of decomposition $\mathcal{T}_h = \{ \Delta_1, \ldots, \Delta_N \}$ of Ω in closed triangles $\Delta_1, \ldots, \Delta_N$ such that $\overline{\Omega} = \bigcup_{i=1}^N \Delta_i$ and two different triangles are disjoint or have a side in common or have a vertex in common. Let S_h denote the sides, i.e.

$$S_h = \{ \partial T_i \cap \partial T_j : i \neq j \text{ with } \partial T_i \cap \partial T_j \text{ is a common side} \},$$

∂T_j being the boundary of T_j. Let

$$G_h = \{ E : E \in S_h \text{ with } E \subseteq \Gamma \}$$

be the set of « boundary sides » and let

$$S^0_h = S_h \setminus G_h$$

be the set of « interior sides ».
We assume that all the angels of some $\Delta \in \mathcal{T}_h \subset \mathcal{T}$ are $\sim \Omega$ for some fixed $\Theta > 0$ which does not depend on Δ or \mathcal{T}_h.

Then, define

$$H_h := \{ \eta_h \in C(\Omega) : \eta_h|_\Delta \in P_1 \text{ for any } \Delta \in \mathcal{T}_h \}$$

$$H_h^{1/2} := \{ \eta_h \in L^{\infty}(\Gamma) : \eta_h|_E \in P_0 \text{ for any } E \in \mathcal{F}_h \}$$

where P_j denotes the polynomials with degree $\leq j$.

For fixed \mathcal{F}_h let h be the piecewise constant function defined such that the constants $h|_\Delta$ and $h|_E$ equal the element sizes $\text{diam} (\Delta)$ of $\Delta \in \mathcal{T}_h$ and $\text{diam} (E)$ of $E \in \mathcal{F}_h$.

We assume that the coefficients a_{ij} of A are piecewise smooth such that $A(\text{grad} v_h) \in C^1(\Delta)$ for any $\Delta \in \mathcal{T}_h \subset \mathcal{T}$ and any trial function $v_h \in H_h$.

Finally, let $f \in L^2(\Omega)$, $u_0 \in H^1(\Gamma)$, and $t_0 \in L^2(\Gamma)$.

Let n be the exterior normal on Γ and on any element boundary $\partial \Delta$, let n have a fixed orientation so that $[(A \text{grad} u_h) \cdot n]|_E \in L^2(E)$ denotes the jump of the discrete tractions $(A \text{grad} u_h) \cdot n$ over the side $E \in \mathcal{F}_h$. Define

$$R_1^2 := \sum_{\Delta \in \mathcal{F}_h} \text{diam} (\Delta)^2 \cdot \int_{\Delta} |f + \text{div} (A \text{grad} u_h)|^2 d\Omega$$

$$R_2^2 := \sum_{E \in \mathcal{F}_h^0} \text{diam} (E) \cdot \int_E \|[(A \text{grad} u_h) \cdot n]|_E\|^2 ds$$

$$R_3 := \|\sqrt{h} \cdot \left(t_0 - (A \text{grad} u_h) \cdot n + \frac{1}{2} W(u_0 - u_h|_\Gamma) - \frac{1}{2}(K'-1)\phi_h\right)\|_{L^2(\Gamma)}$$

$$R_4 := \sum_{E \in \mathcal{F}_h} \text{diam} (E)^{1/2} \cdot \|\frac{\partial}{\partial s} \left((1-K)(u_0 - u_h|_\Gamma) - V\phi_h\right)\|_{L^2(E)}.$$

Under the above assumptions and notations there holds the following a posteriori estimate where (u, ϕ) and (u_h, ϕ_h) solve problem (P) and (P_h), respectively.

THEOREM 4: There exists some constant $c > 0$ such that for any $h \in I$ with $h < h_0$ (h_0 from Lemma 5) we have

$$\left\|\begin{pmatrix} u - u_h \\ \phi - \phi_h \end{pmatrix}\right\|_{H^1(\Omega) \times H^{1/2}(\Gamma)} \leq c \cdot (R_1 + R_2 + R_3 + R_4).$$

Note that R_1, \ldots, R_4 can be computed (at least numerically) as far as the solution (u_h, ϕ_h) of problem (P_h) is known.

vol. 29, nº 7, 1995
The proof of Theorem 4 is divided into several lemmas. Throughout this section we adopt the notations and assumptions of Theorem 4 and let

\[e := u - u_h, \quad \varepsilon := \phi - \phi_h, \quad \delta := \frac{1}{2} (\varepsilon + V^{-1}(1 - K)e|_R). \]

We start with a simple inequality and estimate the appearing terms in the rest of this section.

Lemma 6: We have

\[
\beta \cdot \left\| \begin{pmatrix} e \\ \varepsilon \end{pmatrix} \right\|_{H^1(\Omega) \times H^{-1/2}(\Gamma)} \cdot \left\| \begin{pmatrix} e \\ \delta \end{pmatrix} \right\|_{H^1(\Omega) \times H^{-1/2}(\Gamma)} \leq T_1 + T_2 + T_3 + T_4
\]

where, for any \((e_h, \delta_h) \in H_h \times H^{-1/2}_h,

\begin{align*}
T_1 & := \sum_{\mathcal{A} \in \mathcal{T}_h} \int_{\mathcal{A}} (f + \text{div} (A \text{grad} u_h))(e - e_h) \, d\Omega \\
T_2 & := - \sum_{E \in \mathcal{T}_{h,E}} \int_E [(A \text{grad} u_h) \cdot n](e - e_h)|_E \, ds \\
T_3 & := \left(t_0 - (A \text{grad} u_h) \cdot n + \frac{1}{2} W(u_0 - u_h|_R) - \frac{1}{2} (K' - 1) \phi_h, (e - e_h)|_R \right) \\
T_4 & := \frac{1}{2} (\delta - \delta_h, (1 - K)(u_0 - u_h|_R) - V\phi_h).
\end{align*}

Proof: Due to the arguments of the proof of Theorem 2 we have

\[
\beta \cdot \left\| \begin{pmatrix} e \\ \varepsilon \end{pmatrix} \right\|_{H^1(\Omega) \times H^{-1/2}(\Gamma)} \cdot \left\| \begin{pmatrix} e \\ \delta \end{pmatrix} \right\|_{H^1(\Omega) \times H^{-1/2}(\Gamma)} \leq B\left(\begin{pmatrix} u \\ \phi \end{pmatrix}, \begin{pmatrix} e \\ \delta \end{pmatrix} \right) - B\left(\begin{pmatrix} u_h \\ \phi_h \end{pmatrix}, \begin{pmatrix} e \\ \delta \end{pmatrix} \right)
\]

\[
= L\left(\begin{pmatrix} e - e_h \\ \delta - \delta_h \end{pmatrix} \right) - B\left(\begin{pmatrix} u_h \\ \phi_h \end{pmatrix}, \begin{pmatrix} e - e_h \\ \delta - \delta_h \end{pmatrix} \right)
\]

M² AN Modélisation mathématique et Analyse numérique Mathematical Modelling and Numerical Analysis
using (15) and (11). By definition of B and L, the last expression is equal to

$$\int_{\Omega} (f(e - e_h) - A \grad u_h \grad (e - e_h)) \, d\Omega$$

$$+ \left\{ t_0 + \frac{1}{2} W(u_0 - u_h|_F) - \frac{1}{2} (K' - 1) \phi_h, (e - e_h)|_F \right\}$$

$$+ \frac{1}{2} \left\{ \delta - \delta_h, (1 - K)(u_0 - u_h|_F) - V\phi_h \right\}.$$

Using Green's formula on any element $\mathcal{A} \in \mathcal{T}_h$ we obtain

$$- \int_{\Omega} A \grad u_h \grad (e - e_h) \, d\Omega$$

$$= \sum_{\mathcal{A} \in \mathcal{T}_h} \int_{\mathcal{A}} \div (A \grad u_h)(e - e_h) \, d\Omega$$

$$- \sum_{E \in \mathcal{E}_h} \int_{E} \left[(A \grad u_h) \cdot n \right](e - e_h)|_E \, ds$$

$$- \left\langle (A \grad u_h) \cdot n, (e - e_h)|_F \right\rangle.$$

Combining the last two identities proves the lemma. \qed

We note that under the Assumption 2 the results of [6] apply here and give the following lemmas where $c > 0$ is a generic constant and depends only on \mathcal{T} but not on h, \mathcal{A}, N, u, etc.

LEMMA 7: There exists a family of interpolation operators $(I_h : H^1(\Omega) \to H_h : h \in I)$ and a constant $c > 0$ such that the following holds. For any $\mathcal{A} \in \mathcal{T}_h$, \mathcal{A} and integers k, q with $0 \leq k \leq q \leq 2$ and with $N := \cup \{ \mathcal{A}' \in \mathcal{T}_h : \mathcal{A}' \cap \mathcal{A} \neq \emptyset \}$, the union of all neighbor elements of \mathcal{A}, and for all $u \in H^q(\Omega)$,

$$|I_h u - u|^2_{H^k(\mathcal{A})} \leq c \cdot \text{diam}(T)^{2(q-k)} \cdot |u|^2_{H^q(N)}.$$

Proof: The proof follows from the analysis in [6]; compare e.g. [6, page 82, line 13] in different notations.

Remark 5: The operator I_h is obtained in [6] locally as follows. For any knot x_j let $N_j := \cup \{ \mathcal{A} : x_j \in \mathcal{A} \in \mathcal{T}_h \}$ be the support of some trial function (or «hat function») η_j in H_h related to x_j. Let c_j be the value of the $L^2(N_j)$-projection of $u|_{N_j}, u \in H^1(\Omega)$, at x_j. Then, $I_h u$ is the sum of all such $c_j \cdot \eta_j$.

vol. 29, no 7, 1995
Remark 6: Due to the angle condition in Assumption 2 we have that the number of neighbor elements is bounded, i.e.

$$\text{card} \left\{ A' \in \mathcal{T}_h : A' \cap A \neq \emptyset \right\} \leq 6\pi/\Theta.$$

Moreover, the quotient of the size of two neighboring elements is bounded, i.e. there exists $c \geq 1$ (depending only on \mathcal{T}) with

$$\frac{1}{c} \leq \frac{\text{diam} \ (A)}{\text{diam} \ (A')} \leq c \text{ if } A \cap A' \neq \emptyset, \ A, A' \in \mathcal{T}_h \in \mathcal{T}.$$

In particular, if E is one side of $A \in \mathcal{T}_h \in \mathcal{T}$,

$$\frac{1}{c} \cdot \text{diam} \ (A) \leq \text{diam} \ (E) \leq c \cdot \text{diam} \ (A).$$

Lemma 8: Choosing $e_h := I_h e$ we have $T_1 \leq c \cdot |e|_{H^1(\Omega)} \cdot R_1$.

Proof:

$$T_1 \leq \sum_{A \in \mathcal{T}_h} \|f + \text{div} (A \text{ grad } u_h)\|_{L^2(A)} \cdot \|e - e_h\|_{L^2(A)}$$

$$\quad \leq c \sum_{A \in \mathcal{T}_h} \text{diam} \ (A) \cdot \|f + \text{div} (A \text{ grad } u_h)\|_{L^2(A)} \cdot |e|_{H^1(N_A)},$$

using Lemma 7 ($k = 0, q = 1$) with N_A denoting the union of all neighbors of A. Using Cauchy's inequality and Remark 6, this gives

$$T_1 \leq c \cdot R_1 \cdot \sqrt{6\pi/\Theta} \cdot |e|_{H^1(\Omega)},$$

which proves the lemma.

We recall the following weighted trace inequality which can be proved using the trace inequality and equivalence of norms on the reference triangle and then by transformation on the elements.

Lemma 9 ([6, Lemma 4]): There exists a constant $c > 0$ such that for any E, E is one side of $A \in \mathcal{T}_h \in \mathcal{T}$, and any $u \in H^1(A)$ there holds

$$\text{diam} \ (A) \cdot \|u\|_{L^2(E)}^2 \leq c \cdot (\|u\|_{L^2(A)}^2 + \text{diam} \ (A)^2 \cdot |u|_{H^1(A)}^2).$$

Lemma 10: Choosing $e_h := I_h e$ we have $T_2 \leq c \cdot |e|_{H^1(\Omega)} \cdot R_2$.

M² AN Modélisation mathématique et Analyse numérique
Mathematical Modelling and Numerical Analysis
Proof: Combining Lemma 9 (with \(e - I_h e\) replacing \(u\)) and Lemma 7 (with \(e\) replacing \(u, k = 0, q = 1\) and \(k = 1 = q\)) we obtain for any \(E \in \mathcal{S}_h^0, E \subseteq \Delta, \Delta \in \mathcal{T}_h \in \mathcal{T}\),

\[
\| e - I_h e \|_{L^2(E)}^2 \leq c (1/\text{diam} (\Delta)) \| e - I_h e \|_{L^2(\Delta)}^2 + \text{diam} (\Delta) \| e - I_h e \|_{H^1(\Delta)}^2
\]

with \(N_d\) denoting the union of all neighbors of \(\Delta\). Therefore,

\[
T_2 \leq \sum_{E \in \mathcal{S}_h^0} \| [(A \text{ grad } u_h) n] \|_{L^2(E)} \cdot \| e - I_h e \|_{L^2(E)}
\]

\[
\leq \sqrt{2} c \sum_{E \in \mathcal{S}_h^0} \sqrt{\text{diam} (E)} \| [(A \text{ grad } u_h) n] \|_{L^2(E)} \cdot |e|_{H^1(N_d)}.
\]

Using Cauchy's inequality and Remark 6 again, this gives

\[
T_2 \leq c \sqrt{12 \pi/\Theta} \cdot R_2 \cdot |e|_{H^1(\Omega)}
\]

which proves the lemma.

LEMMA 11: Choosing \(e_h := I_h e\) we have \(T_3 \leq c \cdot |e|_{H^1(\Omega)} \cdot R_3\).

Proof: Note that \(t_0 \in L^2(\Gamma), W(u_0 - u_h|_{\Gamma}) \in L^2(\Gamma)\) since \(u_0 - u_h|_{\Gamma} \in H^1(\Gamma)\), \((K' - 1) \phi_h \in L^2(\Gamma)\) since \(\phi_h \in L^2(\Gamma)\), and \((A \text{ grad } u_h) n|_{\Gamma} \in L^2(\Gamma)\) since \(A \text{ grad } u_h\) is piecewise constant \(a_{ij}\) is piecewise smooth. Thus, we may repeat the arguments of the proof of Lemma 10 in connection with \(\mathcal{G}_h\). This proves the lemma.

LEMMA 12: For \(\psi := (1 - K)(u_0 - u_h|_{\Gamma}) - V\phi_h\) we have

\[
\| \psi \|_{H^{1/2}(\Gamma)} \leq c \cdot \sum_{E \in \mathcal{G}_h} \| \nabla h \psi \|_{L^2(E)}.
\]

Proof: Note that \(\psi \in H^1_0(\Gamma)\) has the property that \(\langle \psi, \eta_h \rangle = 0\) for any piecewise constant function \(\eta_h \in H_{\text{per}}^{1/2}\). Then, the assertion follows from [4, Proposition 1] so that we only give a brief sketch of the proof here.

Let \(\Gamma_1, ..., \Gamma_N\) denote the boundary elements of the considered triangulation, \(\Gamma = \bigcup_{j=1}^N \Gamma_j\). Since \(\int_{\Gamma_j} \psi \, ds = 0\) we have at least one zero \(y_j\) of the continuous
function ψ in the interior of Γ_j, $j = 1, \ldots, N$. Let $\tilde{\psi}_j \in H^{1/2}(\Gamma)$ be equal to ψ on the part of Γ between y_j and y_{j+1} and equal to 0 on the remaining part of Γ. Here we set $y_0 = y_N$. Then, the triangle inequality gives

$$\|\psi\|_{H^{1/2}(\Gamma)} \leq \sum_{j=0}^{N-1} \|\tilde{\psi}_j\|_{H^{1/2}(\Gamma)}.$$ \hfill (18)

Since $\text{supp} \psi_j \subseteq \Gamma_j \cup \Gamma_{j+1}$ and by interpolation [2] we obtain

$$\|\tilde{\psi}_j\|_{H^{1/2}(\Gamma)} \leq \|\tilde{\psi}_j\|_{H^1(\Gamma)} \cdot \|\tilde{\psi}_j\|_{L^2(\Gamma)} \leq \|\psi\|_{H^1(\Gamma_j \cup \Gamma_{j+1})} \cdot \|\psi\|_{L^2(\Gamma_j \cup \Gamma_{j+1})}.$$ \hfill (19)

Since ψ has at least one zero y_j in Γ_j, the main theorem of calculus shows

$$\|\psi\|_{L^2(\Gamma_j \cup \Gamma_{j+1})} \leq c \cdot (h_j + h_{j+1}) \cdot \|\psi'\|_{L^2(\Gamma_j \cup \Gamma_{j+1})}.$$

Here, $h_j > 0$ is the length of the boundary element Γ_j and we note that h_j / h_{j+1}, $h_{j+1} / h_j \leq c$ due to the angle condition (cf. Remark 6). Using this leads to

$$\|\psi\|_{H^1(\Gamma_j \cup \Gamma_{j+1})} \leq c \|\psi'\|_{L^2(\Gamma_j \cup \Gamma_{j+1})}$$

and (19) gives

$$\|\tilde{\psi}_j\|_{H^{1/2}(\Gamma)} \leq c \cdot \sqrt{h} \|\psi'\|_{L^2(\Gamma_j \cup \Gamma_{j+1})}.$$

According to (18), this proves the assertion. \hfill \Box

\textbf{Proof of Theorem 4:} Use Lemmas 8, 10, 11 and 12 to estimate T_1, T_2, T_3 and T_4 (with $\delta_h = 0$) in Lemma 6, respectively. Then, division by $
abla (e, \delta) \bigg|_{H^1(\Omega) \times H^{-1/2}(\Gamma)}$ proves the theorem. \hfill \Box

5. ADAPTIVE FEEDBACK PROCEDURE

For a given triangulation $T_h = \{ \Gamma_1, \ldots, \Gamma_M \}$ of Ω and the related partition $\{ \Gamma_1, \ldots, \Gamma_M \} = \mathcal{G}_h$ of the boundary Γ we can consider one element
\(A_j \in \mathcal{F}_h \) and compute its contributions \(a_j, b_k \) to the right hand side of the \textit{a posteriori} error estimate in Theorem 4

\[
a_j^2 := \text{diam} (A_j)^2 \cdot \int_{A_j} |f + \text{div} (A \, \text{grad} \, u_h)|^2 \, d\Omega
\]

\[+ \sum_{E \in \mathcal{F}_h, E \subset \partial A_j} \text{diam} (E) \cdot \int_E \left| (A \, \text{grad} \, u_h) \cdot n \right|^2 \, ds
\]

\[+ \text{diam} (\Gamma \cap \partial A_j) \cdot \left\| t_0 - (A \, \text{grad} \, u_h) \cdot n + \frac{1}{2} W(u_0 - u_h|_{\Gamma}) \right\|_{L^2(\Gamma \cap \partial A_j)}^2
\]

\[= \frac{1}{2} (K' - 1) \, \phi_h \|_{L^2(\Gamma \cap \partial A_j)}^2
\]

\[
b_k := \text{diam} (\Gamma_k)^{1/2} \cdot \left\| \frac{\partial}{\partial s} \left((1 - K)(u_0 - u_h|_{\Gamma}) - V\phi_h \right) \right\|_{L^2(\Gamma_k)}
\]

The computational details for \(a_j, b_k \) are given in the next section. If we neglect the constant \(c > 0 \) in Theorem 4, the error in the energy norm is bounded by

\[
\sqrt{\sum_{j=1}^N a_j^2 + \sum_{k=1}^M b_k}
\]

This \textit{a posteriori} error estimate is almost useless for absolute error control unless the constant \(c > 0 \) (or an upper bound at least) is known. But it can be used to compare the contributions to the local error.

Note that the different nature of the coefficients \(a_j \) and \(b_k \) is, in general, caused by two different discretizations: \(a_j \) is related to a finite element, \(b_k \) is related to a boundary element. Because of a simple storage organization and a simple computation of the stiffness matrices, it is convenient to use only one mesh, i.e. to take the boundary element discretization induced by the finite element triangulation. Therefore, we consider this case in the sequel. For any element \(A_j \) let

\[
c_j := a_j + \sum_{k=1, \Gamma_k \subset A_j}^N b_k
\]

where the sum may be zero or consists of one or two summands.

The meshes in our numerical examples are steered by the following algorithm where \(0 \leq \theta \leq 1 \) is a global parameter.
Algorithm (A) Given some coarse e.g. uniform mesh refine it successively by halving some of the elements due to the following rule. For any triangulation define $a_1, ..., a_N$ as above and divide some element Γ_j by halving the largest side if

$$c_j \geq 0 \cdot \max_{k=1, \ldots, N} c_k.$$

In a subsequent step all hanging nodes are avoided by further refinement in order to obtain a regular mesh.

Remark 7: (i) Note that in Algorithm (A) $\theta = 0$ gives a uniform triangulation and with increasing θ the number of refined elements in the present step decreases.

(ii) By observing (20) we have some error control which, in some sense, yields a reliable algorithm. In particular, the relative improvement of (20) may be used as a reasonable termination criterion.

(iii) If in some step of Algorithm (A), (20) does not become smaller then we may add some uniform refinement steps ($\theta = 0$). It can be proved that in this case (20) decreases and tends towards zero. If we allow this modification we get convergence of the adaptive algorithm.

6. NUMERICAL EXPERIMENTS

We consider four numerical examples for the solution of linear and nonlinear interface problems related to Example 1, i.e. $A = p \cdot I$.

First, we describe the numerical implementation of the Algorithm (A).

6.1. Implementation of the Galerkin procedure

We treat the case $p(t) = 1$ and $p(t) = 2 + \frac{1}{1 + t}$ yielding a linear and nonlinear operator $A = p \cdot I$, respectively, as explained in Example 1. In the sequel we explain the computation of the form in (15) where it is sufficient to describe the approximation of

$$B \left(\left(\begin{array}{c} \eta_j \\ \psi_k \\ \eta_n \\ \psi_m \end{array} \right) \right) \quad \text{and} \quad L \left(\begin{array}{c} \eta_n \\ \psi_m \end{array} \right)$$

used in the numerical examples. Here $\eta_j, \eta_k \in H^1_h$ are « hat functions » and $\psi_m, \psi_n \in H^{-1/2}_h$ are constant on one boundary element Γ_m, Γ_n and vanish on the remaining part of Γ partitioned by $\Gamma_1, ..., \Gamma_M$.

M² AN Modélisation mathématique et Analyse numérique
Mathematical Modelling and Numerical Analysis
Note that the displacements are piecewise linear such that ∇u_h is piecewise constant. Thus, for any triangle $\Delta \in \mathcal{T}_h$, the weight p is constant on Δ. Therefore,

$$\int_{\Delta} p \cdot (\nabla \eta_j \cdot \nabla \eta_k) d\Omega = \text{area} (\Delta) \cdot p \cdot (\nabla \eta_j \cdot \nabla \eta_k)_{|\Delta}$$

can be determined explicitly. The integrals

$$I_k(x) := \int_{\Gamma_k} \log |x - y| \, ds_x \quad \text{and} \quad J_k(x) := \int_{\Gamma_k} \frac{\partial}{\partial n_y} \log |x - y| \, ds_y$$

can be calculated analytically [15]. By using the functions I_k and J_k, the outer integration of $\langle \nabla \psi_m, \psi_m \rangle$ and $\langle (K' - 1) \psi_m, \eta_k \rangle_{|\Gamma}$, respectively, is performed by a 32 point Gaussian quadrature rule on any boundary element. Since the derivative of $\eta_j|_{\Gamma}$ with respect to the arc-length is piecewise constant, the stiffness matrix W_h of the hypersingular integral operator can be computed using the entries of the stiffness matrix of the single layer potential due to Lemma 2.

In order to approximate the right hand side for given functions $f \in L^2(\Gamma)$, $u_0 \in H^{1/2}(\Gamma)$, and $t_0 \in H^{-1/2}(\Gamma)$ we compute $\int_{\Delta} f \cdot \eta_j \, d\Omega$ via a quadrature rule with order 19 and 73 knots on any triangle Δ as presented in [12].

The integrals $\langle \psi_k, (1 - K) u_0 \rangle = \int_{\Gamma} J_k(x) \cdot u_0(x) \, ds_x$, $\int_{\Gamma} t_0 \cdot \eta_k \, ds$ and $\langle Wu_0, \eta_j |_{\Gamma} \rangle = \int_{\Gamma} u_0'(Vn \eta_j') \, ds$ are computed using a 32 point Gaussian quadrature formula on any boundary element and the values of J_k, u_0', t_0', u_0' and $(Vn \eta_j')$. Since η_j' is piecewise constant, the values of $(Vn \eta_j')$ are may be calculated with I_k.

Altogether the above descriptions determine the (approximate) computation of the mappings B and L when applied to discrete functions. In the linear case ($p = 1$ is a constant weight and $A = I$) this yields a linear system of equations which is solved directly via Gaussian elimination. In the nonlinear case we get a nonlinear system of equations which is solved via a Newton-Raphson method until the termination error is of the magnitude of the machine precision. Then, the second derivatives of the interior problem are calculated as above; we refer e.g. to [5] for more details.

6.2. Calculation of norms and residuals

In the examples below the error of the displacements u and hence their gradient ∇u and normal derivative $\phi = \frac{\partial \psi}{\partial n}$ (cf. Theorem 1) are known explicitly.
Hence the $L^2(\Omega)$ norm of $u - u_h$ and $\text{grad } (u - u_h)$ can be calculated via the 73 knot quadrature rule [12] on any triangle. This yields an approximation of the error $u - u_h$ in the $H^1(\Omega)$-norm.

The $H^{1/2}(\Gamma)$-norm is equivalent to the « energy norm »

$$\| \psi \|_{\nu} = \sqrt{\langle V\psi, \psi \rangle}$$

which is used in the sequel. For $x \in \Gamma_j$ and $\psi = \phi - \phi_h$ we compute

$$(V\psi)(x) = -\frac{1}{\pi} \sum_{k=1}^{M} \int_{\Gamma_k} \psi(y) \log |x - y| \, ds_y$$

by numerical quadrature rules. For $j \neq k$ we apply a 32 point Gaussian quadrature formula. For $j = k$ we divide and transform the integral such that the « singular point » x lies at the end of the unit interval. Then, we apply a 8 point Gaussian quadrature rule with logarithmic weights [27]. This explains the approximation of the « energy norm » of $\phi - \phi_h$ we use.

The calculation of the integrals for the residuals R_{v_1}, \ldots, R_{v_4} over the finite element Δ and the boundary element Γ_k is performed as follows: the integral

$$\int_{\Delta} |f + \text{div } (p \text{ grad } u_h) |^2 \, d\Omega$$

is approximated via the above mentioned 73 knot quadrature rule [12]. Here, $f(x)$ is given explicitly and $p \text{ grad } u_h$ is constant on Δ (even in the nonlinear case), whence the term $\text{div } (p \text{ grad } u_h)$ is neglected. The jumps on the interior element boundaries in R_{v_2} are piecewise constant and their L^2-norm is determined explicitly. The $L^2(\Gamma_k)$-norm of

$$t_0 - (A \text{ grad } u_h) \cdot n + \frac{1}{2} W(u_0 - u_h |_{\Gamma}) - \frac{1}{2} (K' - 1) \phi_h$$

is approximated by a 32 point Gaussian quadrature formula. Here, $t_0(x)$ is known, $(A \text{ grad } u_h) \cdot n$ is constant on Γ_k and determined explicitly, while the term $((K' - 1) \phi_h)(x)$ is computed by using the integrals $J_{\alpha}(x)$ above. With $v_h := u_h |_{\Gamma}$ the remaining term $W(u_0 - u_h |_{\Gamma})$.

$$(x) = -\left(\frac{\partial}{\partial s} V(u_0 - v_h) \right)(x)$$

is computed with replacing $\frac{\partial}{\partial s}$ by a symmetric difference quotient with stepsize 10^{-5}. This requires the computation of $V(u_0 - v_h)'(y)$. Here, $Vv_h'(y)$ can be treated by using the integrals $I_m(y)$ as above while $Vu_0'(y)$ is calculated as in (21) where u_0 is differentiated analytically.

For any $x \in \Gamma_j$ we compute the first and third summand of

$$\psi(x) := (u_0 - u_h |_{\Gamma})(x) - (K(u_0 - u_h |_{\Gamma}))(x) - (V\phi_h)(y)$$

$${\textit{AN Modélisation mathématique et Analyse numérique}}$$

$${\textit{Mathematical Modelling and Numerical Analysis}}$$
explicitly and by using $I_k(y)$, respectively. The term $(K\eta_j|_{\Gamma})(x)$ is calculated analytically giving $(K\eta_j|_{\Gamma})(x)$ while the integral $(K\eta_0|_{\Gamma})(x)$ is approximated by a 32 point Gaussian quadrature rule on any boundary element. Then, $\|\psi\|_{L^2(\Gamma_{k})}$ is approximated by a 32 point Gaussian quadrature rule on Γ_k where the value $\psi(x_i)$ is determined for any Gaussian knot x_i as follows. For $1 < i < 32$, the values of $\psi(x_{i-1}), \psi(x_i)$ and $\psi(x_{i+1})$ are interpolated by a second order polynomial P_i and its derivative $P_i'(x_i)$ replaces $\psi(x_i)$. For $i = 1$ we take $\psi(x_1), \psi(x_2)$ and $\psi(x_3)$ and for $i = 32 \psi(x_{30}), \psi(x_{31})$ and $\psi(x_{32})$ to determine P_1 and P_{32}.

6.3. Numerical example on the L-shape

The domain under consideration Ω is the L-shape region with vertices $(0,0)$, $(1,0)$, $(1,1)$, $(-1,1)$, $(-1,-1)$, $(0,-1)$. The numerical calculations are carried out as explained in the previous subsections for known displacement fields

\begin{equation}
(22) \quad u = r^{2\alpha} \cdot \sin \left(\frac{2}{3} \alpha \right) \quad \text{and} \quad v = \frac{1}{2} \log \left(\left(x + \frac{1}{2} \right)^2 + \left(y - \frac{1}{2} \right)^2 \right)
\end{equation}

in polar and Cartesian coordinates (r, α) and (x, y) respectively. Even if the right hand side is smooth, the solution has a typical corner singularity such that the convergence rate of the h-version with a uniform mesh leads not to the optimal convergence rate.

In the first example we take a linear problem with the constant weight $p = 1$ and $f = 0$. The jumps of u_0 and t_0 are given by (4). Using these data f, u_0, t_0 the Algorithm (A) generates meshes as shown in figure 1 for $\theta = 0.4$. As it is expected for a reasonable improvement, the meshes automatically refine towards the origin where we have the singularity of the solution. In view of the well-known improvement of the Galerkin procedure by using e.g. graded meshes if corner singularities appear, this is quite reasonable.

In Table 1 we have the numerical results for the uniform mesh $(\theta = 0)$ and for the meshes generated by Algorithm (A) for $\theta = 0.2$, 0.4, 0.6, 0.8 and 1.0. Here, we show only the number of degrees of freedom N for the finite element method (chosen by the algorithm ; a new row corresponds to a new refinement step in the adaptive algorithm), and the corresponding relative error of the displacements e_N in the $H^1(\Omega)$-norm.

In order to illustrate the estimate of Theorem 3 let γ_N be the error in energy norm divided by (20). Hence, by Theorem 3, γ_N is bounded which can be observed from Table 1. Moreover, γ_N is bounded below which indicates efficiency of the estimate and hence of the adaptive scheme.

From Table 1 we compare the degrees of freedom needed to make the relative error smaller than 0.05 : the values for $\theta = 0$, 0.2, 0.4, 0.6 and 0.8
Figure 1. — Adapted meshes for the linear transmission problem.
Figure 1 (suite).
Figure 1 (suite).
Table 1. — Numerical results for the linear transmission problem.

<table>
<thead>
<tr>
<th>Uniform mesh</th>
<th>(A) for $\theta = 0.2$</th>
<th>(A) for $\theta = 0.4$</th>
<th>(A) for $\theta = 0.6$</th>
</tr>
</thead>
<tbody>
<tr>
<td>N e_N γ_N</td>
<td>N e_N γ_N</td>
<td>N e_N γ_N</td>
<td></td>
</tr>
<tr>
<td>8 0.20434 .152</td>
<td>31 0.11007 .201</td>
<td>8 0.20434 .152</td>
<td></td>
</tr>
<tr>
<td>11 0.18587 .173</td>
<td>40 0.09420 .168</td>
<td>10 0.20467 .173</td>
<td></td>
</tr>
<tr>
<td>21 0.14485 .164</td>
<td>48 0.08544 .177</td>
<td>13 0.17286 .176</td>
<td></td>
</tr>
<tr>
<td>33 0.12564 .185</td>
<td>55 0.07824 .180</td>
<td>17 0.14848 .185</td>
<td></td>
</tr>
<tr>
<td>65 0.09563 .149</td>
<td>71 0.06837 .182</td>
<td>21 0.13954 .193</td>
<td></td>
</tr>
<tr>
<td>113 0.08027 .159</td>
<td>80 0.06260 .184</td>
<td></td>
<td></td>
</tr>
<tr>
<td>225 0.06230 .148</td>
<td>101 0.05633 .187</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>134 0.04959 .187</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>157 0.04510 .184</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>201 0.03904 .183</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>226 0.03656 .184</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>239 0.03562 .185</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 1 (suite).

<table>
<thead>
<tr>
<th>N</th>
<th>ε_N</th>
<th>γ_N</th>
<th>ε_N</th>
<th>γ_N</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>0.20434</td>
<td>0.152</td>
<td>45</td>
<td>0.08681</td>
</tr>
<tr>
<td>9</td>
<td>0.20451</td>
<td>0.162</td>
<td>46</td>
<td>0.08391</td>
</tr>
<tr>
<td>10</td>
<td>0.20467</td>
<td>0.173</td>
<td>47</td>
<td>0.08322</td>
</tr>
<tr>
<td>11</td>
<td>0.19777</td>
<td>0.173</td>
<td>48</td>
<td>0.08305</td>
</tr>
<tr>
<td>12</td>
<td>0.19035</td>
<td>0.178</td>
<td>49</td>
<td>0.08207</td>
</tr>
<tr>
<td>15</td>
<td>0.16267</td>
<td>0.181</td>
<td>50</td>
<td>0.08108</td>
</tr>
<tr>
<td>17</td>
<td>0.14848</td>
<td>0.185</td>
<td>51</td>
<td>0.08065</td>
</tr>
<tr>
<td>18</td>
<td>0.14462</td>
<td>0.187</td>
<td>52</td>
<td>0.08018</td>
</tr>
<tr>
<td>19</td>
<td>0.14027</td>
<td>0.192</td>
<td>53</td>
<td>0.07867</td>
</tr>
<tr>
<td>22</td>
<td>0.12391</td>
<td>0.191</td>
<td>54</td>
<td>0.07712</td>
</tr>
<tr>
<td>24</td>
<td>0.11730</td>
<td>0.195</td>
<td>55</td>
<td>0.07650</td>
</tr>
<tr>
<td>25</td>
<td>0.11651</td>
<td>0.195</td>
<td>58</td>
<td>0.07467</td>
</tr>
<tr>
<td>59</td>
<td>0.08049</td>
<td>0.175</td>
<td>60</td>
<td>0.07467</td>
</tr>
<tr>
<td>62</td>
<td>0.07760</td>
<td>0.184</td>
<td>63</td>
<td>0.07324</td>
</tr>
<tr>
<td>80</td>
<td>0.06404</td>
<td>0.187</td>
<td>81</td>
<td>0.07298</td>
</tr>
<tr>
<td>108</td>
<td>0.05430</td>
<td>0.189</td>
<td>104</td>
<td>0.07267</td>
</tr>
<tr>
<td>133</td>
<td>0.04934</td>
<td>0.186</td>
<td>135</td>
<td>0.07187</td>
</tr>
<tr>
<td>166</td>
<td>0.04366</td>
<td>0.187</td>
<td>167</td>
<td>0.07161</td>
</tr>
<tr>
<td>199</td>
<td>0.03927</td>
<td>0.188</td>
<td>191</td>
<td>0.07129</td>
</tr>
<tr>
<td>238</td>
<td>0.03589</td>
<td>0.185</td>
<td>238</td>
<td>0.07110</td>
</tr>
<tr>
<td>39</td>
<td>0.09181</td>
<td>0.213</td>
<td>70</td>
<td>0.07088</td>
</tr>
<tr>
<td>40</td>
<td>0.09206</td>
<td>0.218</td>
<td>71</td>
<td>0.07055</td>
</tr>
<tr>
<td>43</td>
<td>0.08820</td>
<td>0.219</td>
<td>72</td>
<td>0.06855</td>
</tr>
</tbody>
</table>
are > 255, 156, 134, 149 and 133. This shows that, in this example, the adapted meshes are better than a uniform triangulation. In order to determine the most efficient procedure we have to take into account the number of meshes created for this improvement. The number of corresponding required meshes (and hence the number of Galerkin equations to be solved) are > 7, 11, 13, 15 and 16. Since the values are more or less comparable, it is not clear which of the parameter leads to the most efficient procedure (the answer depends on the precise implementation and the machine we use). Conversely, we conclude that Algorithm (A) is robust concerning the parameter θ.

From Table 1 we may compute experimental convergence rates. For the uniform mesh we get experimentally a convergence of the form $O(h^\alpha)$ with a mesh size $h = O(N^{-1/2})$ and $\alpha = 2/3$ as expected. In order to compress the data but compare the convergence rates, we present our numerical examples below in the form of figures where an entry corresponds to a symbol (like Δ, ∇, \diamond etc.) depending on the parameter $\theta = \theta$. The entries belonging to the same parameter are connected by a straight line. The x-coordinate of a symbol is $\log(N)$ where N is the number of degrees of freedom while the y-coordinate of the symbol is $\log(e_N)$. However, the numbers shown on the axis are e_N and N.

In figure 2 we show the results for the first example where we have in the left picture the error for the displacement in relation to the number of

![Figure 2. — Numerical results for the linear transmission problem (L-shape).](image-url)
unknowns in the finite element discretization while the right picture shows the error for the tractions \(\phi - \phi_h \) in relation to the number of unknowns in the boundary element discretization. The slope corresponds to the experimental convergence rates and we see an improvement of the convergence rates from 2/3 to the optimal value 1 for the displacements and an average optimal value 1.5 for the tractions.

In the second part of this example we treat the nonlinear problem where \(p(t) = 2 + \frac{1}{1 + t^2} \). We consider the same displacement fields as in (22) and obtain

\[
f = -\frac{4}{27} \left(\frac{r^{-5/3}}{1 + \frac{2}{3} r^{-1/3}} \right)^2 \cdot \sin \left(\frac{2}{3} \alpha \right)
\]

in polar coordinates \((r, \alpha)\). The jumps of \(u_0 \) and \(t_0 \) are again given by (4). Using these data \(f, u_0, t_0 \) the Algorithm (A) generates meshes which refine towards the singularity as well. The related numerical output is shown in figure 3 which is quite similar to figure 2. Hence, we may conclude the same properties as above.

6.4. Numerical example on the Z-shape

The domain under consideration \(\Omega \) is the Z-shape region with vertices \((0, 0), (1, 0), (1, 1), (-1, 1), (-1, -1), (1, -1)\). The numerical calculations
Figure 4. — Adapted meshes for the nonlinear transmission problem.
Figure 4 (suite).
Figure 4 (suite).
are carried out as explained in the previous subsections for known displacement fields

\[(23) \quad u = r^{4/7} \sin\left(\frac{4}{7} \alpha\right) \quad \text{and} \quad v = \frac{1}{2} \log \left(\left(x + \frac{1}{2}\right)^2 + \left(y - \frac{1}{2}\right)^2\right)\]

in polar and Cartesian coordinates \((r, \alpha)\) and \((x, y)\) respectively. The solution has a typical corner singularity such that the convergence rate of the \(h\)-version with a uniform mesh leads not to the optimal convergence rate.

We consider the nonlinear problem where \(p(t) = 2 + \frac{1}{1 + t}\) with the displacement fields \((23)\) and obtain

\[f = -\frac{48}{343} \cdot \frac{r^{-13/7}}{1 + \frac{4}{7} r^{-3/7}} \cdot \sin\left(\frac{4}{7} \alpha\right)\]

in polar coordinates \((r, \alpha)\). The jumps of \(u_0\) and \(t_0\) are then given by \((4)\). Using these data \(f, u_0, t_0\) the Algorithm (A) generates meshes which refines towards the singularity as well. In figure 4 we show the meshes created by Algorithm (A) for \(\theta = 0.4\).

The convergence rates can be seen in figure 5 which is analog to the figures of the previous examples. As in the previous examples we get an improvement of the convergence rates.

Figure 5. — Numerical results for the nonlinear transmission problem (Z-shape).
We also considered the linear problem \((p = 1)\) for this example. The convergence behavior was similar as in the presented nonlinear case, hence we omit the details.

6.5. Conclusion

From the numerical experiments reported in the previous subsections, we claim that adaptive methods are important tools for an efficient numerical solution of transmission or interface problems \textit{via} a coupling of finite elements and boundary elements. The asymptotic convergence rates are quite improved as well as the quality of the Galerkin solutions corresponding to only a few degrees of freedom. This underlines the efficiency of the adaptive algorithm as well as significance and sharpness of the \textit{a posteriori} error estimate.

Acknowledgment. The authors would like to thank S. Funken for calculating the numerical examples and the DFG Forschergruppe at the University of Hannover for support.

REFERENCES

