P. A. Markowich
F. Poupaud
C. Schmeiser

Diffusion approximation of nonlinear electron phonon collision mechanisms

RAIRO – Modélisation mathématique et analyse numérique,

<http://www.numdam.org/item?id=M2AN_1995__29_7_857_0>
DIFFUSION APPROXIMATION OF NONLINEAR ELECTRON PHONON COLLISION MECHANISMS (*)

by P. A. MARKOWICH (¹), F. POUPAUD (²), C. SCHMEISER (³)

Communicated by F. BREZZI

Abstract. — We study the behaviour of the solutions of the Boltzmann equation of solid state physics when the mean free path tends to zero. The nonlinear Boltzmann operator considered in this paper models collisions between electrons and phonons with constant energy. Taking into account degeneracy effects we show that distribution functions relax to local equilibrium functions similar to Fermi Dirac distributions depending on energy dependent chemical potentials, which are periodic with period equal to the phonon energy. In the fluid limit these chemical potentials solve an energy dependent drift diffusion equation.

1. INTRODUCTION

In semiconductor kinetic theory the distribution of electrons \(f = f(t, x, v) \) is assumed to solve the following Boltzmann equation

\[
\frac{\partial}{\partial t} f + v \cdot \nabla_x f - \frac{a}{m^*} E \cdot \nabla_v f = Q(f), \quad t > 0, \quad x \in IR^3, \quad v \in IR^3. \tag{1.1}
\]

(*) Manuscript received August 8, 1994.
(¹) Fachbereich Mathematik, Technische Universität Berlin, Straße des 17 Juni, 136-Berlin, Germany.
(²) Laboratoire J. A. Dieudonné, URA168 du CNRS, UNSA, Parc Valrose, F-06108-Nice Cedex 02, France.
(³) Institut für Angewandte und Numerische Mathematik, Technische Universität, Wiedner Hptstr., 6-10, A-1040 Wien, Austria.

The work of the first two authors was supported by the "Human Capital and Mobility", Project entitled "Nonlinear Spatial-Temporal Structures in Semiconductors, Fluids and Oscillator ensembles", funded by the E.C.
The variables t, x, v represent the time, the position and the velocity of particles respectively. The constants q and m^* are the charge and the effective mass of electrons. The electric field $E = E(t, x)$ depends only on time and positions. For the sake of simplicity it will be assumed to be known for the following. Also we have assumed that the parabolic band approximation holds. We refer to [MRS, PI] for the physical background and details concerning equation (1.1). The by now classical scaling of the equation (1.1) leads to

$$
\alpha^2 \frac{\partial}{\partial t} f^\alpha + \alpha (v \cdot \nabla_x f^\alpha - E \cdot \nabla_v f^\alpha) = Q(f^\alpha),
$$

$$
t > 0, \quad x \in \mathbb{R}^3, \quad v \in \mathbb{R}^3.
$$

The integral operator Q is quadratic and acts only on the variable v. It reads

$$
Q(f) = \int_{\mathbb{R}^3} \left[f^\alpha - |v|^2 (1 - f^\alpha) - f^\alpha - |v|^2 (1 - f^\alpha) \right] \sigma(v, v') \, dv'
$$

where $\alpha > 1$ is given.

Here f' and f stand for $f(v')$, $f(v)$. The kernel σ is a positive symmetric measure.

The fluid limit of (1.2) is carried out by taking the limit of f^α when $\alpha \to 0$. When σ is smooth and positive, then the kernel of Q is only spanned by Fermi-Dirac distributions

$$
F(\mu, |v|^2) = \frac{1}{1 + a^{|v|^2 - \mu}}, \quad \mu \in (-\infty, \infty)
$$

and has nice compactness properties. Using this fact it is shown in [GP] (see also [PS]) that the distribution function f^α tends to a Fermi-Dirac distribution $F(\mu(t, x), v)$. The chemical potential $\mu(t, x)$ solves a non-linear drift diffusion equation. But the situation is different for singular cross sections σ. In this paper we consider a cross section which models collisions between electrons and phonons with a constant energy which is equal to 1 after the performed scaling. We have

$$
\sigma(v, v') = G(v, v') \left[a^{|v'|^2} \delta(|v|^2 - |v'|^2 + 1) + a^{|v|^2} \delta(|v|^2 - |v|^2 - 1) \right],
$$

where G is a smooth symmetric positive function.

In this case Majorana [Maj1] and [Maj2] proved that the kernel of Q consists of $F(\mu(|v|^2), |v|^2)$ where μ is any 1-periodic function. We shall see that the behaviour of the fluid limit in this case is completely different from the regular case.
This paper follows the analysis of [MS] where the linear case is studied. There weak compactness is enough to pass to the limit $\alpha \to 0$ and a convergence proof is given in [MS]. The lack of compactness of Q when σ is given by (1.5) does not allow to use the technics of [GP] in the nonlinear case. Therefore we restrict ourselves to the formal derivation of the fluid limit.

The paper is organized as follows. The next Section is devoted to the basic properties of the collision operators. In Section 3, the fluid approximation is derived. Finally, in Section 4, we study perturbations of (1.2) by operators of the form $\varepsilon^n Q_1$ where the intersection of the nullspaces of Q and Q_1 consists only of Fermi-Dirac distributions. For $n = 1$ we recover the usual drift diffusion model and for $n = 2$ a relaxation term appears as a source term in the energy dependent drift-diffusion equation.

2. BASIC PROPERTIES OF THE COLLISION OPERATOR

Physically relevant distribution functions satisfy $0 \leq f \leq 1$. Therefore we introduce the space

$$V = \{ f \in C^0(\mathbb{R}^3) ; 0 \leq f \leq 1 \}$$

and define

$$N(Q) = \{ f \in V ; Q(f) = 0 \}$$

$$P_1 = \{ p \in C^0(\mathbb{R}^+ ; \mathbb{R}) ; p \text{ is } 1 \text{- periodic} \} .$$

We have

PROPOSITION 2.1: [Maj2] Let Q be the operator defined by (1.3), (1.5) then

1. (invariants) for any $p \in P_1$ and any $f \in V$

$$\int_{\mathbb{R}^3} Q(f)(v) p(|v|^2) \, dv = 0$$

2. (entropy estimate) let χ be an increasing function. Then for any $f \in V$ and $h = f a |v|^2 / (1-f)$

$$- \int Q(f) \chi(h) \, dv = \frac{1}{2} \int (h - h') [\chi(h) - \chi(h')] \times$$

$$\times (1-f)(1-f') a^{-|v|^2-|v'|^2} \sigma \, dv \, dv' \geq 0$$

vol. 29, n° 7, 1995
3. (local equilibrium) the inequality (2.4a) becomes an equality iff \(f \in N(Q) \) and

\[
N(Q) = \{ F(\mu(|v|^2), |v|^2) ; \mu \in P_1 \}
\]

where \(F \) is defined by (1.4).

In Section 4 we need the following generalization.

Proposition 2.2: Let \(Q \) be given by (1.3) and let \(\sigma \) be any positive symmetric measure. Then (2.4a) holds and we have an equality iff \(f \in N(Q) \).

Proof: (2.4a) is just a computation using the symmetry of \(\sigma \). Now, if this inequality is an equality it means that \((h-h')(1-f)(1-f')=0\) on the support of \(\sigma \). Therefore

\[
Q(f)(v) = \int (h-h')(1-f)(1-f') a^{-|v|^2-|v'|^2} \sigma dv' = 0
\]

Let \(Q_1 \) be the collision operator with kernel

\[
\sigma_1(v,v') = G_1(v,v') \left[a^{|v|^2} \delta(|v|^2-|v'|^2+r) + a^{|v'|^2} \delta(|v|^2-|v'|^2-r) \right]
\]

for some \(r > 0 \) and \(G_1 > 0 \) symmetric in \(v, v' \). Then \(N(Q+Q_1) = N(Q) \cap N(Q_1) \).

Obviously \(N(Q) \cap N(Q_1) = \{ F(\mu, |v|^2) ; \mu \in (-\infty, \infty) \} = : N_0 \) iff \(r \) is irrational. This corresponds to a certain instability of the nullspaces of operators defined by (1.3), (1.5).

In Section 3 we also need properties of the linearization of \(Q \) around \(f_0 \in N(Q) \). Denoting by \(L_{f_0} \) this linearization, we have

\[
L_{f_0}(g)(v) = \int (s_{f_0}(v',v) g' - s_{f_0}(v,v') g) dv',
\]

\[
s_{f_0}(v',v) := \sigma(v,v') \left[a^{-|v|^2}(1-f_0) - f_0 a^{-|v'|^2} \right].
\]

We want to write \(L_{f_0} \) in a symmetric form.

First we use that if \(f_0(v) = F(\mu_0(|v|^2), v) \), \(\mu_0 \in P_1 \) we have \(a^{-|v|^2}(1-f_0) = a^{-\mu_0(|v|^2)}f_0 \). Then

\[
s_{f_0}(v',v) = \sigma(v,v') f_0 [a^{-\mu_0(|v'|^2)} + a^{-|v'|^2}] .
\]
But on the support of \(\sigma \) we have \(|v'|^2 = |v|^2 \pm 1\). Therefore \(\mu_0(|v|^2) = \mu_0(|v'|^2) \) and we obtain
\[
s_{f_0}(v', v) = \sigma(v, v') a^{-\mu_0(|v|^2)} f_0(1 + a^{\mu_0(|v|^2) - |v|^2})
\]
\[
= \sigma(v, v') a^{-\mu_0(|v|^2)} f_0 \left[1 + \frac{f'_0}{1-f'_0} \right]
\]
\[
= \sigma(v, v') a^{-\mu_0(|v|^2)} f_0 f'_0 \frac{1}{f'_0(1-f'_0)}.
\]

Setting \(\sigma_{f_0}(v, v') = \sigma(v, v') a^{-\mu_0(|v|^2)} f_0(v) f_0(v') \) we see that \(\sigma_{f_0} \) is symmetric and we can rewrite (2.5)
\[
L_{f_0}(g) = \int_{\sigma_{f_0}} \left(\frac{g'}{f'_0(1-f'_0)} - \frac{g}{f_0(1-f_0)} \right) dv.
\] (2.6)

Proposition 2.3: The nullspace of \(L_{f_0} \) is
\[
N_{f_0} = \{ q(|v|^2) f_0(1-f_0) ; q \in P_1 \}.
\] (2.7)

For any function \(p \in P_1 \) and \(g \) in \(C^0(\mathbb{R})^3 \) we have
\[
L_{f_0}(pg) = pL_{f_0}(g).
\] (2.8)
\[
\int L_{f_0}(g) \ p \ dv = 0.
\] (2.9)

Proof: Multiplying (2.6) by \(q = g/f_0(1-f_0) \) and integrating we obtain \(q(v) = q(v') \) on the support of \(\sigma \). It follows that \(q \) depends only on \(|v|^2\) and is 1-periodic w.r.t. this variable. To obtain (2.8) we have just to remark that \(p(|v'|^2) = p(|v|^2) \) on the support of \(\sigma \). Then (2.9) is a consequence of (2.8) and of the symmetry of the expression (2.6).

In Section 3 we need to solve equations of the type \(L_{f_0}(g) = h \). For that we perform explicit computations. We set
\[
v = \sqrt{c\Omega}, \quad |\Omega| = 1, \quad c = |v|^2.
\]

Then we have the following

Lemma 2.1: If the function \(G \) is of the form
\[
G(v, v') = \overline{G}(c, c', \Omega, \Omega') > 0
\] (2.10)
then

\[\int_{\Omega'} G(v, v') \, d\Omega' = H(c, c') \, \Omega \]

\[\int_{\Omega} G(v, v') \, d\Omega' = I(c, c') \]

and

\[|H(c, c')| < I(c, c') . \]

Proof: Without loss of generality we can assume that \(\Omega = (0, 0, 1) \). The result is immediate using spherical coordinates.

In order to avoid technical difficulties, from now on we assume that there exist positive constants \(\lambda, I_*, I^* \) such that

\[|\tilde{H}(c)| < \lambda \tilde{I}(c) \, , \quad \lambda < 1 \]

\[0 < I_* \leq \tilde{I}(c) \leq I^* < \infty \]

where \(\tilde{H}(c) = H(c, c + 1) \) \(\tilde{I}(c) = I(c, c + 1) \). Then we have

Proposition 2.4: For \(\mu_0 \in \mathcal{P}_1 \) let \(f_0(c) = F(\mu_0(c), c) \). Then there is a function \(g(\mu_0, c) \) such that

\[-L f_0(g(\mu_0(|v|^2), |v|^2)) = v f_0(|v|^2) \left(1 - f_0(|v|^2) \right) . \quad (2.13a) \]

Moreover

\[g(\mu_0(c), c) \geq 0 , \quad \int_{a^c}^{\infty} g(\mu_0(c), c) \, dc < \infty . \quad (2.13b) \]

Proof: In the following we use the convention that a function taken at \(c < 0 \) vanishes. We set \(h(c) = g(\mu_0(c), c) f_0(1 - f_0) \). From (1.5), (2.6) and Lemma 2.1 we obtain

\[-L f_0(g(\mu_0(|v|^2), |v|^2)) = \]

\[= (\alpha(c) h(c) - \beta(c) h(c - 1) - \gamma(c) h(c + 1)) v \quad (2.14) \]
with
\[
\alpha(c) = \frac{d^e - \mu_0}{2} f_0(c) \left[f_0(c + 1) \tilde{I}(c) + \alpha^{-1} f_0(c - 1) \tilde{I}(c - 1) \right]
\]
\[
\beta(c) = \frac{d^e - \mu_0}{2} f_0(c) \alpha^{-1} f_0(c - 1) \tilde{H}(c - 1)
\]
\[
\gamma(c) = \frac{d^e - \mu_0}{2} f_0(c) f_0(c + 1) \tilde{H}(c).
\]

Then (2.13) reduces to that three stage recursion
\[
\left[f_0(c + 1) \tilde{I}(c) + \alpha^{-1} f_0(c - 1) \tilde{I}(c - 1) \right] h(c)
\]
\[
- \alpha^{-1} f_0(c - 1) \tilde{H}(c - 1) h(c - 1) - f_0(c + 1) \tilde{H}(c) h(c + 1)
\]
\[
= 2 d^e - \mu_0 (1 - f_0(c)) = 2 f_0(c).
\] (2.15)

This recursion is of the type studied in [MS]. The technics used there lead to (2.13).

3. FLUID APPROXIMATION

We begin to derive the conservation laws corresponding to (1.2) where the collision operator is defined by (1.3) and (1.5). The energy dependent concentrations and fluxes are defined according to
\[
n^\alpha(t, x, c) = \int f^\alpha(t, x, v) d\Omega \frac{\sqrt{c}}{2}
\] (3.1)
\[
j^\alpha(t, x, c) = \frac{1}{\alpha} \int j^\alpha(t, x, v) \Omega d\Omega \frac{\sqrt{c}}{2}.
\] (3.2)

Then the usual concentrations and fluxes are computed by :
\[
N^\alpha(t, x) = \int_0^\infty n^\alpha(t, x, c) dc, \quad J^\alpha(t, x) = \int_0^\infty j^\alpha(t, x, c) dc.
\] (3.3)

Let \(p \in P_1 \). We multiply (1.2) by \(p(\sqrt{v^2}) \) and integrate with respect to \(v \). Using (2.3) we obtain
\[
\partial_t \int_0^\infty n^\alpha p dc + \text{div} \int_0^\infty j^\alpha p dc = -\frac{1}{\alpha} E \cdot \int_0^\infty \nabla_v f^\alpha p dv = 0.
\] (3.4)
Integrating by parts gives

\[
\frac{1}{\alpha} \int \nabla_v f^\alpha \ p \ dv = - \frac{1}{\alpha} \int 2 \ v f^\alpha \ p'(v^2) \ dv
\]

\[
= - 2 \int_0^\infty f^\alpha \ p'(c) \ dc = 2 \int_0^\infty \frac{\partial}{\partial c} j^\alpha \ p \ dc
\]

because \(j^\alpha (c = 0) = j^\alpha (c = \infty) = 0 \). In this way we obtain

\[
\int_0^\infty \left[\partial_t n^\alpha + \text{div}_x f^\alpha - 2 \ E \cdot \frac{\partial}{\partial c} j^\alpha \right] p \ dc = 0
\]

for any \(p \in P_1 \). (3.5)

This conservation law has now to be completed by an equation of state connecting \(n^\alpha \) and \(j^\alpha \). We formally expand \(f^\alpha \) in power of \(\alpha \)

\[
f^\alpha = f_0 + \alpha f_1 + o(\alpha) . \quad (3.6)
\]

Inserting (3.6) in (1.2) gives

\[
Q(f_0) = 0 \quad (3.7)
\]

\[
-L_{f_0}(f_1) = -v \cdot \nabla_x f_0 + E \cdot \nabla_v f_0 . \quad (3.8)
\]

The operator \(L_{f_0} \) is the linearization of \(Q \) around \(f_0 \) given by (2.5). We obtain from (2.4b)

\[
f_0 = f_0(t, x, c) = F(\mu_0(t, x, c), c) , \quad \mu_0(t, x, c) \in P_1 . \quad (3.9)
\]

It follows from (3.1), (3.6) and (3.9) that

\[
n^\alpha = n^0(\mu_0(t, x, c), c) + o(1) \quad (3.10)
\]

\[
n^0(\mu_0, c) = 2 \pi \sqrt{c} F(\mu_0, c) . \quad (3.11)
\]

In order to compute the flux, we first remark that

\[
\int_{\Omega} \Omega f_0 \ d\Omega = f_0 \int_{\Omega} \Omega \ d\Omega = 0 .
\]
Therefore we obtain
\[j^a = j_1 + o(1), \quad j_1 = \frac{c \sqrt{c}}{2} \int \Omega f_1 \, d\Omega. \] (3.12)

Our goal is to compute \(j_1 \) in terms of \(\mu_0 \). Therefore we have to solve (3.8). But if \(f_0 \) is given by (3.9), (3.8) can be rewritten:
\[-L_{\mu_0}(f_1) = \psi_0(1 - f_0) \left(-\nabla_x \mu_0 - E + E \cdot \frac{\partial \mu_0}{\partial c} \right). \] (3.13)

Note that \(\left(-\nabla \mu_0 - E + E \cdot \frac{\partial \mu_0}{\partial c} \right) \in P_1 \). Therefore, in view of (2.7), (2.8) the general solution of (3.13) is given by
\[f_1 = v g(\mu_0(t, x, |v|^2), |v|^2) \cdot \left(-\nabla_x \mu_0 - E + E \cdot \frac{\partial \mu_0}{\partial c} \right) + \\
+ q(t, x, |v|^2) f_0(1 - f_0) \] (3.14)

where \(q \) is any function such that \(q(t, x, \cdot) \in P_1 \). \(q \) is still unknown, but (3.14) is enough to compute the flux \(j_1 \). We obtain
\[j_1 = j_1(t, x, c) = 2 \pi c^2 \sqrt{c} g(\mu_0, c) \left(-\nabla_x \mu_0 - E + E \cdot \frac{\partial \mu_0}{\partial c} \right). \] (3.15)

Passing to the limit in (3.5) gives
\[\int_0^\infty \left(\partial_t n_0 + \text{div}_x j_1 - 2 E \cdot \frac{\partial}{\partial c} j_1 \right) p \, dc = 0 \]
for any \(p \in P_1 \). (3.16)

The equations (3.11), (3.15) and (3.16) constitute an energy dependent hydrodynamic model. In order to simplify the formulation we define
\[n(\mu_0, c) = \sum_{k=0}^\infty n_0(\mu_0, c + k) \] (3.17)
\[j(t, x, c) = D(\mu_0, c) \left(-\nabla_x \mu_0 - E + E \cdot \frac{\partial \mu_0}{\partial c} \right), \]
\[D(\mu_0, c) = \sum_{k=0}^\infty 2 \pi (c + k)^2 \sqrt{c + k} g(\mu_0, c + k). \] (3.18)
From (3.3) we obtain (formally):

\[N^\alpha \to N = \int_0^1 n(\mu_0(t,x,c),c) \, dc, \quad (3.19) \]

\[J^\alpha \to J = \int_0^1 j(t,x,c) \, dc. \quad (3.20) \]

On the other hand, splitting the integral (3.16) in integrals over \((k,k+1)\) and using the change of variable \(c \to c+k\) lead to

\[\int_0^1 \left(\partial_t n + \text{div}_x j - 2E \cdot \frac{\partial}{\partial c} j \right) p \, dc = 0 \]

for any \(p \in P_1\).

Therefore we obtain

\[\partial_t n + \text{div}_x j - 2E \frac{\partial}{\partial c} j = 0 \quad t > 0, \quad x \in IR^3, \quad c \in (0,1) \quad (3.21) \]

which, completed by (3.17) and (3.18), constitutes the energy dependent drift diffusion equation.

This equation is subject to periodic boundary conditions

\[n(t,x,0) = n(t,x,1), \quad j(t,x,0) = j(t,x,1). \quad (3.22) \]

Indeed, \(n^0(\mu_0,0) = 0, j_1(t,x,0) = 0\) and (3.22) follows from the definitions (3.17), (3.18).

4. PERTURBATION BY OTHER SCATTERING MECHANISMS

In this Section we study the fluid approximation of the Boltzmann equation when collision processes involve two types of phenomena. The predominant one is always assumed to be the collisions between electrons and phonons which are modelled by the collision operator \(Q\) defined by (1.3), (1.5). Other collision mechanisms are modelled by the operator \(Q_1\) defined by (1.3) corresponding to a different cross section \(\sigma_1\).

We assume that \(Q_1\) is of order \(\alpha^N\) compared to \(Q\) and that

\[N(Q) \cap N(Q_1) = N_0. \quad (4.1) \]
As it was already noticed in Section 2, Q_1 could be an operator modelling collisions between electrons and phonons whose energy is irrational (after the scaling). The problem is now to determine the limit of the distribution function f^α which solves

$$\alpha^2 \frac{\partial}{\partial t} f^\alpha + (v \cdot \nabla x f^\alpha - E \cdot \nabla v f^\alpha) = Q(f^\alpha) + \alpha^N Q_1(f^\alpha)$$

$$t > 0, \quad x \in IR^3, \quad v \in IR^3.$$ \hspace{1cm} (4.2)

We restrict ourselves to the cases $N = 1$ or 2. The conservation laws are

$$\left[\partial_t n^\alpha + \nabla x f^\alpha - 2 E \frac{\partial}{\partial c} f^\alpha \right] p \, dc = \alpha^{N-2} \int_{IR^3} Q_1(f^\alpha) p(v^2) \, dv,$$

for any $p \in P_1$. \hspace{1cm} (4.3)

We expand f^α as in (3.6). We find

$$Q(f_0) = 0$$

$$-L_{f_0}(f_1) = -v \cdot \nabla x f_0 + E \cdot \nabla v f_0 \quad (N = 2)$$

$$-Q_1(f_0) - L_{f_0}(f_1) = -v \cdot \nabla x f_0 + E \cdot \nabla v f_0 \quad (N = 1).$$

Therefore f_0 is given by (3.9). In the case $N = 2$, f_1 is determined by (3.14). So if n^0 and j_1 are given by (3.11), (3.12), instead of (3.16) we have

$$\int_0^\infty \left(\partial_t n^0 + \nabla x j_1 - 2 E \cdot \frac{\partial}{\partial c} j_1 \right) p \, dc = \int_{IR^3} Q_1(f_0) p(|v|^2) \, dv$$

for any $p \in P_1$. \hspace{1cm} (4.7)

Then with the definitions (3.17), (3.18) we obtain

$$\partial_n \frac{\partial}{\partial c} j = S, \quad t > 0, \quad x \in IR^3, \quad c \in (0, 1),$$

$$S = \sum_{k=0}^{\infty} \int_{S_2} Q_1(f_0) \left(\sqrt{c + \frac{k}{\Omega}} \right) d\Omega \hspace{1cm} (4.8)$$

always completed with the boundary condition (3.22). Note that S is a relaxation term. Indeed $S = 0$ implies that

$$\int_{IR^3} Q_1(f_0) p(v^2) \, d\sigma = 0 \quad \text{for any} \quad p \in P_1.$$ \hspace{1cm} (4.9)
But since \(f_0 \) is given by (3.9) the function
\[
p_0(t, x, \cdot) = a^2 f_0 / (1 - f_0) \in P_1.
\] (4.10)

It follows from Proposition 2.2 that \(f_0 \in N(Q_1) \). In view of (4.1) this gives \(f_0 \in N_0 \). In this case \(\mu_0 = \mu_0(t, x) \) does not depend on \(c \). Then we can integrate equation (4.8) with respect to \(c \) to obtain the usual drift diffusion model as in [GP].

Now we analyse the case \(N = 1 \). We multiply (4.6) by \(p_0 \) defined by (4.10). In view of (2.9) and since \(f_0 \) is an even function we obtain
\[
\int Q_1(f_0) p_0 \, dv = 0.
\]
As previously, we conclude that \(f_0 \in N_0 \) and that \(\mu_0 = \mu_0(t, x) \) does not depend on \(c \). (4.6) reduces to (4.5) and therefore \(f_1 \) is given by (3.14). But (4.3) with \(p \equiv 1 \) gives
\[
\partial_t N^\alpha + \text{div} \, J^\alpha = 0.
\]
Passing to the limit we obtain
\[
\partial_t N + \text{div} \, J = 0 \quad (4.11)
\]
\[
N = N(\mu_0(t, x)) = \int_{\mathbb{R}^3} F(\mu_0(t, x), |v|^2) \, dv \quad (4.12)
\]
\[
J = D(\mu_0(t, x) \, (-\nabla_x \mu_0 - E)) \quad (4.13)
\]
with
\[
D(\mu_0) = \frac{1}{3} \int_{\mathbb{R}^3} g(\mu_0^r, |v|^2) \, |v|^2 \, dv. \quad (4.14)
\]
The drift diffusion model defined by (4.11)-(4.14) is this one which has been already obtained in [GP].

REFERENCES

