J.-P. Chehab
A. Miranville

Incremental unknowns on nonuniform meshes

<http://www.numdam.org/item?id=M2AN_1998__32_5_539_0>
INCREMENTAL UNKNOWN ON NONUNIFORM MESHES (*)

J.-P. CHEHAB 1 A. MIRANVILLE 2

Abstract — This article is devoted to the numerical analysis of the Incremental Unknowns method (IU) when applied to nonuniform meshes. The extension of the IU we propose here is devoted to the numerical solution of boundary value problems, e.g., in the presence of boundary layers which necessitate the use of refined grids near the boundary. We define the incremental unknowns in this context and we introduce the corresponding hierarchical preconditioners in space dimensions one and two for the Poisson problem. We establish the coercivity of the linear operator using the incremental unknowns. We also obtain numerical results on the asymptotic behavior of the condition number of the underlying matrices that are comparable to the ones derived in the uniform case in space dimension one. In space dimension two we do not recover the same asymptotic results but the condition number is considerably reduced with our preconditioner. The numerical examples we give concern the solution of elliptic problems on particular meshes used for boundary layer problems in Computational Fluid Dynamics. Furthermore, we construct high order IUs in the nonuniform case by a generalization of the interpolation compact schemes. © Elsevier, Paris

AMS(MOS) subject classification 65F10, 65F35, 65N55, 65N06, 65N22, 65N30

Key words Incremental Unknowns, Nonuniform Meshes, Hierarchical Methods, Preconditioning, Coercivity

1. INTRODUCTION

The Incremental Unknowns method (IU), that stems from the dynamical systems theory, was introduced in [20] for the approximation of inertial manifolds when finite differences are used. This new approach also provides a link between hierarchical methods and Nonlinear Galerkin methods (see [17] and [18] for instance). Incremental Unknowns can be defined when multilevel discretizations are used. For instance, if two levels of discretization are used, the IUs consist of the usual nodal values at the coarse grid points, and of an increment to the values of suitable neighboring points at the fine grid points that do not belong to the coarse grid.
The Incremental Unknowns have been applied to many problems and situations and have led to subsequent improvements when compared to methods using the usual nodal unknowns (see [5],[6], [7], [8], [10], [11] and the references therein). These results concern the construction of both preconditioners and new multiresolution schemes for solving nonlinear problems, and for which the IUs were introduced. Thus it was shown in [11] that the condition number of the matrix associated to the discretization of selfadjoint elliptic operators with IUs is considerably reduced. In [5] the extension of this method to a shifted mesh of MAC type gave an efficient hierarchical preconditioner for the Uzawa operator associated to a Generalized Stokes problem. In [7] and [8] the use of the IU method gave efficient generalizations of the Marder and Weitzner scheme for solving nonlinear eigenvalue and bifurcation problems.

Up to now the IU method was applied only to uniform grids (i.e. when the spatial mesh size h is constant in each direction of the discretized domain). As it is well known, it is preferable to use meshes that are refined in the boundary layers in order to solve boundary layer problems. These are special cases of nonuniform meshes. Furthermore efficient solutions of the Navier-Stokes equations were built using a Chebyshev-like mesh (see [2] and [19]) for the driven cavity, and using an an tanh-type grid for the channel flow problem (see [15]). Numerical studies of these problems using the techniques introduced in this article will be developed elsewhere.

Our aim in this article is to develop the numerical analysis of the IU method for general grids, with an emphasis on the compression of data and on the construction of preconditioners for elliptic operators. In that way we introduce several tools for the implementation of this method for the solution of boundary layer problems.

This article is organized as follows. In Section 2 we introduce the second order incremental unknowns for nonuniform grids in space dimensions one and two. Then, in Section 3, we derive a priori estimates based on energy methods. To obtain these estimates, we make a change of variable by writing $u = y + z$, where y is the coarse grid component (i.e. the value of u at the coarse grid points) and z the complementary grid component (i.e. the incremental quantity). We thus establish the coercivity of the linear operator using the Incremental Unknowns. Furthermore, these estimates enable us to prove that the incremental unknowns are small as expected.

In Section 4, we propose some hierarchical preconditioners for the solution of the Dirichlet problem. In particular, in space dimension one, we recover numerically the same asymptotic behaviour of the condition number of the underlying matrices as in the uniform case. In space dimension two, we observe, for Chebyshev-like meshes, that the condition number of the preconditioned matrix is asymptotically in N^2 while that of the usual matrix, written in the nodal basis is asymptotically in N^6. Finally in Section 5 we present some numerical experiments concerning the solution of the Dirichlet problem for specific meshes used in Computational Fluid Dynamics.

2. SECOND ORDER INCREMENTAL UNKNOWNES ON A NONUNIFORM MESH

In this section, we introduce the second order Incremental Unknowns (IU2) in space dimensions one and two when the mesh is nonuniform i.e. when the mesh size h is not a constant. Throughout this article G_f and G_c will denote the fine grid and the coarse grid respectively.

2.1. The one dimensional case

Let u_j, $j = 0, ..., 2N - 1$ be the nodal unknowns on G_f and let x_j, $j = 0, ..., 2N - 1$ be the discretization points (usually, when the mesh size h is constant $x_j = j \cdot h$). Here the x_j enjoy the following (obvious) property:

$$0 < x_1 < x_2 < \ldots < x_j < x_{j + 1} < \ldots < x_{2N - 1} < 1,$$

and we set

$$x_0 = 0 \quad \text{and} \quad x_{2N} = 1.$$
We now follow the usual scheme in order to define the incremental unknowns (see [20]).

Hierarchization

We distinguish the coarse grid components, which are on \(G_c \) and whose indices are even, and the complementary grid components, which are on \(G_f \backslash G_c \) and whose indices are odd (see fig. 2).

\[
\begin{array}{cccccccc}
0 & x_1 & x_2 & \ldots & x_{t-1} & x_t & x_{t+1} & \ldots & x_{2N-2} & x_{2N-1}
\end{array}
\]

Figure 1. — Space dimension 1: a nonuniform grid.

Figure 2. — Space dimension 1, \(\Omega = \{0, 1\} \times \text{ points in } G_c \circ \text{ points in } G_f \backslash G_c \)

Incremental unknowns

We now introduce the IUs. Applying Taylor expansions to two consecutive unknowns of the coarse grid \(G_c \), we obtain:

\[
\begin{align*}
(a) \quad u_{2t+2} &= u_{2t+1} + \left(x_{2t+1} - 2 + x_{2t+2} \right) \frac{\partial u}{\partial x} \bigg|_{x = x_{2t+1}} + \frac{(x_{2t+1} - 2 + x_{2t+2})^2}{2} \frac{\partial^2 u}{\partial x^2} \bigg|_{x = x_{2t+1}} \\
&+ \frac{\left(x_{2t+1} - 2 + x_{2t+2} \right)^3}{6} \frac{\partial^3 u}{\partial x^3} \bigg|_{x = x_{2t+1}} + O((Ax)^4)
\end{align*}
\]

\[
\begin{align*}
(b) \quad u_{2t} &= u_{2t+1} - \left(x_{2t} - 1 + x_{2t+1} \right) \frac{\partial u}{\partial x} \bigg|_{x = x_{2t+1}} + \frac{(x_{2t} - 1 + x_{2t+1})^2}{2} \frac{\partial^2 u}{\partial x^2} \bigg|_{x = x_{2t+1}} \\
&- \frac{\left(x_{2t} - 1 + x_{2t+1} \right)^3}{6} \frac{\partial^3 u}{\partial x^3} \bigg|_{x = x_{2t+1}} + O((Ax)^4)
\end{align*}
\]

where \(Ax = \text{Sup}_{i \in \{1, \ldots, 2N-1\}} |x_{i+1} - x_i| \).

Taking \((x_{2t+1} - x_{2t}) (a) + (x_{2t+2} - x_{2t+1}) (b)\), we find

\[
u_{2t+1} = \frac{(x_{2t+1} - x_{2t}) u_{2t+2} + (x_{2t+2} - x_{2t+1}) u_{2t+1}}{x_{2t+2} - x_{2t}}, \quad O((Ax)^2)
\]

We can now define the second order IUs as the numbers \(Z_{2t+1} \):

\[
Z_{2t+1} = u_{2t+1} - \frac{(x_{2t+1} - x_{2t}) u_{2t+2} + (x_{2t+2} - x_{2t+1}) u_{2t+1}}{x_{2t+2} - x_{2t}}.
\]

We note that if \(x_{i+1} - x_i = h \ \forall i \), we recover the usual IUs (see [20]).

Remark 1: According to Taylor's formula these IUs are of order \(O((Ax)^2) \). We shall verify this property in the next section using energy type estimates as in [10] for the uniform case.
2.2. The two dimensional case

We proceed as in space dimension one, starting with a hierarchization of the unknowns. For the sake of simplicity we only consider two grid levels (see fig. 3 below).

\[
\begin{array}{cccccccccc}
& & & & & & & & & \\
& & & & o & o & o & o & o & o \\
& & & o & o & o & o & o & o & o \\
& & o & o & o & o & o & o & o & o \\
& o & o & o & o & o & o & o & o & o \\
& o & o & o & o & o & o & o & o & o \\
& o & o & o & o & o & o & o & o & o \\
& & & & & & & & & \\
\end{array}
\]

In space dimension one the unknowns of the complementary grid \((G_f \setminus G_c)\) have the same geometric characteristics (see fig. 2). In space dimension two, we distinguish in fact three kinds of points in \(G_f \setminus G_c\): points of type \(f1\), \(f2\) and \(f3\) (see fig. 4).

\[
\begin{array}{cccc}
\times & \times & \times \\
o & o & o & o \\
\times & \times & \times \\
\end{array}
\]

points of type \(f1\) points of type \(f2\) points of type \(f3\)

We extend the construction of the IUs given in the previous subsection for the one dimensional case as follows. Let \(x_i\) and \(y_j\) be the sequences defining the mesh on the \(x\)-direction and the \(y\)-direction respectively:

\[
\begin{align*}
0 < x_1 < x_2 < \cdots < x_i < x_{i+1} < \cdots < x_{2N-1} < 1, \\
0 < y_1 < y_2 < \cdots < y_j < y_{j+1} < \cdots < y_{2N-1} < 1, \\
x_0 = y_0 = 0; x_{2N} = y_{2N} = 1.
\end{align*}
\]

As in the one dimensional case we define \(Ax\) and \(Ay\) by:

\[
\begin{align*}
Ax &= \text{Sup}_{i \in \{0, \ldots, 2N - 1\}} |x_{i+1} - x_i|, \\
Ay &= \text{Sup}_{j \in \{0, \ldots, 2N - 1\}} |y_{j+1} - y_j|.
\end{align*}
\]
We set
\[Z_{t,2j+1} = u_{t,2j+1} + \frac{(y_{2j+1} - y_{2j}) u_{2t,2j+2} + (y_{2j+2} - y_{2j+1}) u_{2t,2j}}{y_{2j+2} - y_{2j}}, \]
(2.1)
at the points of type f1;
\[Z_{t,2j+1} = u_{t,2j+1} + \frac{x_{2j+1} - x_{2j}}{x_{2j+2} - x_{2j}} u_{2t,2j} + \frac{(x_{2j+2} - x_{2j+1}) u_{2t,2j+2}}{x_{2j+2} - x_{2j}}, \]
(2.2)
at the points of type f2;
\[Z_{t,2j+1} = u_{t,2j+1} + \frac{x_{2j+1} - x_{2j}}{x_{2j+2} - x_{2j}} u_{2t,2j} + \frac{(x_{2j+2} - x_{2j+1}) u_{2t,2j+2}}{x_{2j+2} - x_{2j}}, \]
(2.3)
at the points of type f3; i, j = 0, ..., N - 1.

Remark 2: As in the one dimensional case, according to Taylor’s formula, the 2-D IU are expected to be small and of order \(O((\Delta x)^2 + (\Delta y)^2)\). This will be confirmed in the next section by deriving a priori estimates. We also note that if \(x_{i+1} - x_i = y_{j+1} - y_j = \text{Const} = h\), we recover the usual IUs on a uniform grid.

3. INCREMENTAL UNKNOWNS AND THE DIRICHLET PROBLEM

As in the uniform case, we relate the incremental unknowns to the solution of the Dirichlet problem. In Section 4 we shall construct appropriate hierarchical preconditioners.

3.1. The one dimensional case

3.1.1. Discretization of the Laplacian

We consider the Dirichlet problem:
\[
\begin{align*}
-\frac{\partial^2 u}{\partial x^2} &= f \quad \text{in } \Omega = [0, 1], \\
u(0) &= u(1) = 0.
\end{align*}
\]
(3.4)

In order to solve (3.4), we use the following symmetric discretization which is as usual obtained using directly Taylor expansions. We have
\[(a) \quad u_{i+1} = u_i + (x_{i+1} - x_i) \frac{\partial u}{\partial x}\bigg|_{x = x_i} + \frac{(x_{i+1} - x_i)^2}{2} \frac{\partial^2 u}{\partial x^2}\bigg|_{x = x_i} \\
&\quad + \frac{(x_{i+1} - x_i)^3}{6} \frac{\partial^3 u}{\partial x^3}\bigg|_{x = x_i} + O((\Delta x)^4),
\]
\[(b) \quad u_{i-1} = u_i - (x_i - x_{i-1}) \frac{\partial u}{\partial x}\bigg|_{x = x_i} + \frac{(x_i - x_{i-1})^2}{2} \frac{\partial^2 u}{\partial x^2}\bigg|_{x = x_i} \\
&\quad - \frac{(x_i - x_{i-1})^3}{6} \frac{\partial^3 u}{\partial x^3}\bigg|_{x = x_i} + O((\Delta x)^4).\]
Taking \((a) \frac{1}{x_{i+1} - x_i} + (b) \frac{1}{x_i - x_{i-1}}\), we obtain
\[
\left(\frac{1}{x_i - x_{i-1}} + \frac{1}{x_{i+1} - x_i} \right) u_i - \frac{1}{x_i - x_{i-1}} u_{i-1} - \frac{1}{x_{i+1} - x_i} u_{i+1} = -\frac{x_{i+1} - x_{i-1}}{2} \frac{\partial^2 u}{\partial x^2} \bigg|_{x = x_i} + O((Ax)^3).
\]

We set for convenience:
\[
\alpha_i = \frac{1}{x_i - x_{i-1}} + \frac{1}{x_{i+1} - x_i}, \quad \beta_i = \frac{1}{x_i - x_{i-1}}, \quad \gamma_i = \frac{1}{x_{i+1} - x_i}.
\]

Incremental unknowns

Using the present discretization of the Laplacian, we can define the incremental unknowns. We set
\[
Z_{2i+1} = u_{2i+1} - \frac{1}{\alpha_{2i+1}} \left(\beta_{2i+1} u_{2i} + \gamma_{2i+1} u_{2i+2} \right).
\]

These IUe are obviously the same as those introduced in Section 2.

3.1.2. A priori estimates

The linear system can be expressed as
\[
\alpha_i u_i - \beta_i u_{i-1} - \gamma_i u_{i+1} = \frac{x_{i+1} - x_{i-1}}{2} f_i,
\]
where \(f_i = f(x_i)\).

We multiply (3.5) by \(u_i\), and summing these expressions on all indices \(i\), we obtain
\[
A = \sum_{i=1}^{2N-1} \left(\alpha_i u_i - \beta_i u_{i-1} - \gamma_i u_{i+1} \right) u_i = \sum_{i=1}^{2N-1} \left(\frac{x_{i+1} - x_{i-1}}{2} f_i \right) u_i.
\]

Using the relations \(\alpha_i = \beta_i + \gamma_i\) and \(\beta_{i+1} = \gamma_i\) (due to the symmetry), we have (we set for convenience \(x_{-1} = 0\))
\[
A = \sum_{i=1}^{2N-1} \left(\beta_i u_i - \beta_i u_{i-1} \right) u_i = \sum_{i=0}^{2N-1} \gamma_i \left(u_i - u_{i+1} \right) u_i,
\]
and thus
\[
A = \sum_{i=0}^{2N-1} \gamma_i \left(u_{i+1} - u_i \right)^2 = \sum_{i=1}^{2N-1} \left(\frac{x_{i+1} - x_{i-1}}{2} f_i \right) u_i.
\]

At this point, we introduce the following discrete Poincaré inequality:

Lemma 1: Let \(u_i, i = 0, ..., 2N\) be a sequence of real numbers such that \(u_0 = u_{2N} = 0\). Then we have
\[
\sum_{i=1}^{2N-1} (x_{i+1} - x_{i-1}) u_i^2 \leq 2 \sum_{i=1}^{2N-1} \frac{1}{x_{i+1} - x_i} (u_{i+1} - u_i)^2,
\]
where \(x_i\) is the sequence defined in the previous section.
Proof:
We have
\[
\sqrt{x_{i+1} - x_i} |u_i| = \sqrt{x_{i+1} - x_i} \sum_{j=0}^{i-1} \left(|u_{j+1}| - |u_j| \right),
\]
\[
\leq \sqrt{x_{i+1} - x_i} \sum_{j=0}^{i-1} \left(|u_{j+1} - u_j| \right),
\]
\[
\leq \sqrt{x_{i+1} - x_i} \sum_{i=0}^{2N-1} \frac{|u_{i+1} - u_i|}{\sqrt{x_{i+1} - x_i}} \sqrt{x_{i+1} - x_i},
\]
\[
\leq (\text{thanks to Cauchy-Schwarz inequality}),
\]
\[
\leq \sqrt{x_{i+1} - x_i} \sqrt{\sum_{i=0}^{2N-1} \frac{(u_{i+1} - u_i)^2}{x_{i+1} - x_i}} \sqrt{\sum_{i=0}^{2N-1} (x_{i+1} - x_i)}. \]

We then obtain
\[
\sum_{i=1}^{2N-1} (x_{i+1} - x_i) u_i^2 \leq \sum_{i=1}^{2N-1} (x_{i+1} - x_i) \sum_{i=0}^{2N-1} \frac{(u_{i+1} - u_i)^2}{x_{i+1} - x_i},
\]
and finally
\[
\sum_{i=1}^{2N-1} (x_{i+1} - x_i) u_i^2 \leq 2 \sum_{i=0}^{2N-1} \frac{(u_{i+1} - u_i)^2}{x_{i+1} - x_i}. \]

Using Lemma 1 and Cauchy-Schwarz inequality we find
\[
\sum_{i=0}^{2N-1} \gamma_i (u_{i+1} - u_i)^2 \leq \sqrt{\frac{1}{2} \sum_{i=1}^{2N-1} (x_{i+1} - x_i) f_i^2} \sqrt{\sum_{i=0}^{2N-1} \gamma_i (u_{i+1} - u_i)^2}.
\]

Therefore
\[
\sum_{i=0}^{2N-1} \gamma_i (u_{i+1} - u_i)^2 \leq \frac{1}{2} \sum_{i=1}^{2N-1} (x_{i+1} - x_i) f_i^2,
\]
and, using the inequality \(\gamma_i = \frac{1}{x_{i+1} - x_i} \geq \frac{1}{Ax^i}\), we have
\[
A = \sum_{i=0}^{2N-1} (u_{i+1} - u_i)^2 \leq \frac{Ax}{2} \sum_{i=1}^{2N-1} (x_{i+1} - x_i) f_i^2.
\]

Now
\[
A = \sum_{i=0}^{N-1} (u_{2i+1} - u_{2i})^2 + \sum_{i=0}^{N-1} (u_{2i+2} - u_{2i+1})^2 \leq \frac{Ax}{2} \sum_{i=1}^{2N-1} (x_{i+1} - x_i) f_i^2.
\]
which yields, setting $Y_{2i} = u_{2i}$,

$$
\sum_{i=0}^{N-1} \left(Z_{2i+1} + \frac{1}{\alpha_{2i+1}} \left((\beta_{2i+1} - \alpha_{2i+1}) Y_{2i} + \gamma_{2i+1} Y_{2i+2} \right) \right)^2 + \sum_{i=0}^{N-1} \left(Z_{2i+1} + \frac{\beta_{2i+1}}{\alpha_{2i+1}} \left(Y_{2i+2} - Y_{2i} \right) \right)^2
$$

\[\leq \frac{Ax_2}{2} \sum_{i=1}^{2N-1} (x_{i+1} - x_{i-1}) f_i^2, \]

and after simplification, we obtain

$$
2 \sum_{i=0}^{N-1} Z_{2i+1}^2 + \sum_{i=0}^{N-1} \left(\frac{\gamma_{2i+1}}{\alpha_{2i+1}} + \frac{\beta_{2i+1}}{\alpha_{2i+1}} \right) (Y_{2i+2} - Y_{2i})^2 - 2 \sum_{i=0}^{N-1} \left(\frac{\beta_{2i+1} + \gamma_{2i+1}}{\alpha_{2i+1}} \right) Z_{2i+1} + (Y_{2i+2} - Y_{2i}),
$$

\[\leq \frac{Ax_2}{2} \sum_{i=1}^{2N-1} (x_{i+1} - x_{i-1}) f_i^2. \]

Using Young inequality, we find

$$
-2 \sum_{i=0}^{N-1} \left(\frac{\beta_{2i+1} + \gamma_{2i+1}}{\alpha_{2i+1}} \right) Z_{2i+1} + (Y_{2i+2} - Y_{2i}) \equiv -\epsilon \sum_{i=0}^{N-1} \left(\frac{\beta_{2i+1} + \gamma_{2i+1}}{\alpha_{2i+1}} \right) Z_{2i+1}^2 + \frac{1}{\epsilon} \sum_{i=0}^{N-1} \left(\frac{\beta_{2i+1} + \gamma_{2i+1}}{\alpha_{2i+1}} \right) (Y_{2i+2} - Y_{2i})^2,
$$

where ϵ is a strictly positive real number which will be fixed later.

If we replace $f_i = f(x_i)$ by $f_i = \frac{1}{x_{i+1} - x_{i-1}} \int_{x_{i-1}}^{x_{i+1}} f(x) \, dx$, we have:

$$
\sum_{i=0}^{N-1} \left(2 - \epsilon \left(\frac{\beta_{2i+1} + \gamma_{2i+1}}{\alpha_{2i+1}} \right) \right) Z_{2i+1}^2 + \sum_{i=0}^{N-1} \left(\frac{\gamma_{2i+1}}{\alpha_{2i+1}} + \frac{\beta_{2i+1}}{\alpha_{2i+1}} - \frac{1}{\epsilon} \left(\frac{\beta_{2i+1} + \gamma_{2i+1}}{\alpha_{2i+1}} \right) \right) (Y_{2i+2} - Y_{2i})^2
$$

\[\leq \frac{Ax_2}{2} \sum_{i=1}^{2N-1} \int_{\alpha_{i-1}}^{\alpha_{i+1}} f^2(t) \, dt \leq Ax \| f \|^2,
$$

where $\| f \| = \| f \|_{L^2(0,1)}$. Setting $\zeta = \frac{\beta_{2i+1} + \gamma_{2i+1}}{\alpha_{2i+1}}$, we have

$$
\left(2 - \epsilon \left(\frac{\beta_{2i+1} + \gamma_{2i+1}}{\alpha_{2i+1}} \right) \right) = 2 - \epsilon \left(\frac{1 - \zeta}{1 + \zeta} \right) = g_1(\zeta),
$$

\[
\left(\frac{\gamma_{2i+1}}{\alpha_{2i+1}} + \frac{\beta_{2i+1}}{\alpha_{2i+1}} - \frac{1}{\epsilon} \left(\frac{\beta_{2i+1} + \gamma_{2i+1}}{\alpha_{2i+1}} \right) \right) = \frac{1 + \zeta^2}{(1 + \zeta)^2} - \frac{1}{\epsilon} \left(\frac{1 - \zeta}{1 + \zeta} \right) = g_2(\zeta).
\]

It is easy to prove that for $\epsilon > 1$ there exists a constant $C_1(\epsilon)$ such that

$$
g_2(\zeta) \geq C_1(\epsilon) > 0, \quad \forall \zeta \in [0, \infty[.
$$
On the other hand, we note that \(g_1(\xi) \equiv 2 - \epsilon, \forall \xi \in [0, \infty[, \) since
\[
\left| \frac{1 - \xi}{1 + \xi} \right| \leq 1, \quad \forall \xi \in [0, \infty[.
\]
Taking \(\epsilon = \frac{3}{2} \) we see that \(g_1 \) and \(g_2 \) are both bounded from below by a strictly positive constant \(\kappa = \min \left(\frac{1}{2} C_1 \left(\frac{3}{2} \right) \right) \) and we finally obtain the following result:

Proposition 1: The second order Incremental Unknowns associated to the discretization of (3.4) satisfy the following a priori estimates:

\[
\sum_{i=0}^{N-1} Z_{2i+1}^2 \leq C \cdot Ax,
\]

\[
\sum_{i=0}^{N-1} (Y_{2i+2} - Y_{2i})^2 \leq C \cdot Ax,
\]

where \(Ax \) is defined above and \(C \) is a constant independent of the mesh.

In particular, we find
\[
\sum_{i=0}^{N-1} (x_{2i+2} - x_{2i+1}) Z_{2i+1}^2 \leq C \cdot (Ax)^2.
\]

We thus obtain the same estimates as in the uniform case and we conclude that the Incremental Unknowns are small, as expected. We also note that this result is obtained without any assumption on the mesh.

3.2. The two dimensional case

We consider the Dirichlet problem:

\[
\begin{aligned}
- \Delta u &= f \quad \text{in } \Omega =]0, 1[^2, \\
 u &= 0 \quad \text{on } \partial \Omega.
\end{aligned}
\]

(3.6)

We discretize (3.6) with finite differences on a mesh defined by its discrete coordinates \(x_i \) and \(y_j \) and obtain the following discrete system:

\[
\frac{y_{j+1} - y_{j-1}}{2} (\alpha_i u_{i,j} - \beta_i u_{i-1,j} - \gamma_i u_{i+1,j}) + \frac{x_{i+1} - x_{i-1}}{2} (\bar{\alpha}_j u_{i,j} - \bar{\beta}_j u_{i,j-1} - \bar{\gamma}_j u_{i,j+1})
\]

\[= \frac{y_{j+1} - y_{j-1}}{2} \frac{x_{i+1} - x_{i-1}}{2} f_{i,j}, \]

(3.7)

where

\[
\begin{aligned}
\alpha_i &= \frac{1}{x_{i+1} - x_i} + \frac{1}{x_i - x_{i-1}}; \quad \bar{\alpha}_j = \frac{1}{y_{j+1} - y_j} + \frac{1}{y_j - y_{j-1}} \\
\beta_i &= \frac{1}{x_i - x_{i-1}}; \quad \bar{\beta}_j = \frac{1}{y_j - y_{j-1}} \\
\gamma_i &= \frac{1}{x_{i+1} - x_i}; \quad \bar{\gamma}_j = \frac{1}{y_{j+1} - y_j},
\end{aligned}
\]

and \(f_{i,j} = f(x_i, y_j) \). We recall the definition of the incremental unknowns:
Definition 1: The incremental unknowns consist of the nodal values \(Y_{2i,2j} = u_{2i,2j} \) at the coarse grid points and of appropriate incremental quantities \(Z_{\omega,\psi} \) \((\omega \text{ or } \psi \text{ odd})\) at the points that are on the complementary grid, where

\[
Z_{2i,2j+1} = u_{2i,2j+1} - \frac{1}{\alpha_{2j+1}} (\beta_{2j+1} + \gamma_{2j+1} u_{2i,2j+2})
\]

at the points of type \(f1 \);

\[
Z_{2i+1,2j} = u_{2i+1,2j} - \frac{1}{\alpha_{2i+1}} (\beta_{2i+1} + \gamma_{2i+1} u_{2i+2,2j})
\]

at the points of type \(f2 \);

\[
Z_{2i,1+2j+1} = u_{2i,1+2j+1} - \frac{1}{\alpha_{2j+1}} (\beta_{2j+1} + \gamma_{2j+1} u_{2i+2,2j+2})
\]

at the points of type \(f3 \).

3.2.1. A Priori estimates

We multiply (3.7) by \(u_{i,j} \) and sum on all indices. Using the relations \(\alpha_i = \beta_i + \gamma_i \) and \(\alpha_j = \beta_j + \gamma_j \), we obtain

\[
A = \sum_{i,j=1}^{2N-1} \gamma_i \left(\frac{y_{j+1} - y_{j-1}}{2} \right) \left(u_{i+1,j} - u_{i,j} \right) u_{i,j} - \sum_{i,j=1}^{2N-1} \beta_i \left(\frac{y_{j+1} - y_{j-1}}{2} \right) \left(u_{i,j} - u_{i-1,j} \right) u_{i,j}
\]

\[
+ \sum_{i,j=1}^{2N-1} \gamma_j \left(\frac{x_{i+1} - x_{i-1}}{2} \right) \left(u_{i,j+1} - u_{i,j} \right) u_{i,j} - \sum_{i,j=1}^{2N-1} \beta_j \left(\frac{x_{i+1} - x_{i-1}}{2} \right) \left(u_{i,j} - u_{i,j-1} \right) u_{i,j}
\]

\[
= \sum_{i,j=1}^{2N-1} \left(\frac{y_{j+1} - y_{j-1}}{2} \right) \left(\frac{x_{i+1} - x_{i-1}}{2} \right) f_{i,j} u_{i,j}.
\]

We deduce, setting for convenience \(x_{-1} = y_{-1} = 0 \)

\[
A = \sum_{i=0}^{2N-2} \sum_{j=1}^{2N-1} \left(\frac{y_{j+1} - y_{j-1}}{2} \right) \left(\frac{x_{i+1} - x_{i-1}}{2} \right) f_{i,j} u_{i,j}.
\]
Since \(y_t = \beta_{t+1} \) and \(\bar{y}_j = \bar{\beta}_{j+1} \), the previous expression is reduced to

\[
A = \sum_{i=0}^{2N-1} \sum_{j=0}^{2N-1} \gamma_i \left(\frac{y_{j+1} - y_{j-1}}{2} \right) \left(u_{i+1,j} - u_{i,j} \right)^2 + \sum_{i=0}^{2N-1} \sum_{j=0}^{2N-1} \bar{\gamma}_j \left(\frac{x_{i+1} - x_{i-1}}{2} \right) \left(u_{i,j+1} - u_{i,j} \right)^2
\]

\[
= \sum_{i,j=1}^{2N-1} \left(\frac{y_{j+1} - y_{j-1}}{2} \right) \left(x_{i+1} - x_{i-1} \right) \frac{f_{i,j} \cdot u_{i,j}}{2}.
\]

We set

\[
h = \max_{1 \leq i,j \leq 2N-1} \sqrt{(x_{i+1} - x_{i-1}) \left(y_{j+1} - y_{j-1} \right)},
\]

\[
\delta h = \min \left(\frac{\delta x}{\delta y}, \frac{\delta y}{\delta x} \right),
\]

where \(\delta x = \min_{0 \leq i \leq 2N-1} (x_{i+1} - x_i) \) and \(\delta y = \max_{0 \leq i \leq 2N-1} (x_{i+1} - x_i) \) (\(\delta y \) and \(\delta y \) are defined similarly). We have

\[
\sum_{i=0}^{2N-1} \sum_{j=0}^{2N-1} \gamma_i \left(y_{j+1} - y_{j-1} \right) \left(u_{i+1,j} - u_{i,j} \right)^2 + \sum_{i=0}^{2N-1} \sum_{j=0}^{2N-1} \bar{\gamma}_j \left(x_{i+1} - x_{i-1} \right) \left(u_{i,j+1} - u_{i,j} \right)^2
\]

\[
\leq \sum_{i,j=1}^{2N-1} \left(y_{j+1} - y_{j-1} \right) \left(x_{i+1} - x_{i-1} \right) f_{i,j} \cdot u_{i,j},
\]

\[
\leq \left(\text{thanks to Cauchy} - \text{Schwarz inequality} \right),
\]

\[
\leq \sqrt{\frac{1}{4} \sum_{i,j=1}^{2N-1} \left(y_{j+1} - y_{j-1} \right)^2 \left(x_{i+1} - x_{i-1} \right)^2} \cdot \sqrt{\sum_{i,j=1}^{2N-1} \left(y_{j+1} - y_{j-1} \right) \left(x_{i+1} - x_{i-1} \right) u_{i,j}^2}.
\]

At this point we introduce the following Poincaré inequalities:

Lemma 2: Let \(u_{i,j}, i,j = 0, \ldots, 2N \) be a sequence of real numbers such that \(u_{\phi, \psi} = 0 \) if \(\phi \) or \(\psi \) takes the values \(0 \) or \(2N \). Then we have

\[
\sum_{i,j=1}^{2N-1} \left(x_{i+1} - x_{i-1} \right) \left(y_{j+1} - y_{j-1} \right) u_{i,j}^2 \leq 2 \sum_{i=0}^{2N-1} \sum_{j=1}^{2N-1} \left(y_{j+1} - y_{j-1} \right)^2 \frac{\left(u_{i+1,j} - u_{i,j} \right)^2}{x_{i+1} - x_i},
\]

and

\[
\sum_{i,j=1}^{2N-1} \left(x_{i+1} - x_{i-1} \right) \left(y_{j+1} - y_{j-1} \right) u_{i,j}^2 \leq 2 \sum_{i=1}^{2N-1} \sum_{j=0}^{2N-1} \left(x_{i+1} - x_{i-1} \right)^2 \frac{\left(u_{i,j+1} - u_{i,j} \right)^2}{y_{j+1} - y_j}.
\]

Here \(x_i \) and \(y_j \) are the sequences introduced in Section 2.
Proof:

We have

\[
\sqrt{(x_{i+1} - x_{i-1}) (y_{j+1} - y_{j-1})} |u_{i,j}| = \sqrt{(x_{i+1} - x_{i-1}) \sum_{k=0}^{i-1} (|u_{k+1,j}| - |u_{k,j}|)} \cdot \sqrt{(y_{j+1} - y_{j-1})}
\]

\[
\leq \sqrt{x_{i+1} - x_{i-1}} \sum_{i=0}^{2N-1} \sqrt{(y_{j+1} - y_{j-1})} \frac{|u_{i+1,j} - u_{i,j}|}{\sqrt{x_{i+1} - x_{i}}} \sqrt{x_{i+1} - x_{i}}
\]

\[
\leq \sqrt{(x_{i+1} - x_{i-1})} \sqrt{\sum_{i=0}^{2N-1} (y_{j+1} - y_{j-1})} \frac{(u_{i+1,j} - u_{i,j})^2}{x_{i+1} - x_{i}}.
\]

Therefore

\[
\sum_{i,j=1}^{2N-1} (x_{i+1} - x_{i-1}) (y_{j+1} - y_{j-1}) u_{i,j}^2 \leq \left(\sum_{i=1}^{2N-1} (x_{i+1} - x_{i-1}) \right) \sum_{i=0}^{2N-1} (y_{j+1} - y_{j-1}) \frac{(u_{i+1,j} - u_{i,j})^2}{x_{i+1} - x_{i}},
\]

which finally yields

\[
\sum_{i,j=1}^{2N-1} (x_{i+1} - x_{i-1}) (y_{j+1} - y_{j-1}) u_{i,j}^2 \leq 2 \sum_{i=0}^{2N-1} \sum_{j=1}^{2N-1} (y_{j+1} - y_{j-1}) \frac{(u_{i+1,j} - u_{i,j})^2}{x_{i+1} - x_{i}}.
\]

Similarly we have

\[
\sum_{i,j=1}^{2N-1} (x_{i+1} - x_{i-1}) (y_{j+1} - y_{j-1}) u_{i,j}^2 \leq 2 \sum_{i=1}^{2N-1} \sum_{j=0}^{2N-1} (x_{i+1} - x_{i-1}) \frac{(u_{i+1,j} - u_{i,j})^2}{y_{j+1} - y_{j}}.
\]

We deduce from Lemma 2 that

\[
\sum_{i=0}^{2N-1} \sum_{j=1}^{2N-1} \gamma_i (y_{j+1} - y_{j-1}) (u_{i+1,j} - u_{i,j})^2 + \sum_{i=1}^{2N-1} \sum_{j=0}^{2N-1} \gamma_j (x_{i+1} - x_{i-1}) (u_{i,j+1} - u_{i,j})^2
\]

\[
\leq \sqrt{\sum_{i,j=1}^{2N-1} (x_{i+1} - x_{i-1}) (y_{j+1} - y_{j-1})}^2
\]

\[
\times \sqrt{\sum_{i=0}^{2N-1} \sum_{j=1}^{2N-1} \gamma_i (y_{j+1} - y_{j-1}) (u_{i+1,j} - u_{i,j})^2 + \sum_{i=1}^{2N-1} \sum_{j=0}^{2N-1} \gamma_j (x_{i+1} - x_{i-1}) (u_{i,j+1} - u_{i,j})^2},
\]

which implies that

\[
\frac{1}{2} \sum_{i=0}^{2N-1} \sum_{j=1}^{2N-1} \gamma_i (y_{j+1} - y_{j-1}) (u_{i+1,j} - u_{i,j})^2 + \frac{1}{2} \sum_{i=1}^{2N-1} \sum_{j=0}^{2N-1} \gamma_j (x_{i+1} - x_{i-1}) (u_{i,j+1} - u_{i,j})^2
\]

\[
\leq \frac{1}{8} \sum_{i,j=1}^{2N-1} (x_{i+1} - x_{i-1}) (y_{j+1} - y_{j-1})^2 f_{i,j}.
\]
and thus

\[
\sum_{i=0}^{2N-1} \sum_{j=1}^{2N-1} (u_{i+1,j} - u_{i,j})^2 + \sum_{i=1}^{2N-1} \sum_{j=0}^{2N-1} (u_{i,j+1} - u_{i,j})^2 \leq \frac{1}{4} \max \left(\frac{Ax}{\partial y}, \frac{Ay}{\partial x} \right) \sum_{i,j=1}^{2N-1} (x_{i+1} - x_i) (y_{j+1} - y_j) f_{i,j}^2.
\]

We now set

\[
\mathcal{L} = \sum_{i=0}^{2N-1} \sum_{j=1}^{2N-1} (u_{i+1,j} - u_{i,j})^2 + \sum_{i=1}^{2N-1} \sum_{j=0}^{2N-1} (u_{i,j+1} - u_{i,j})^2,
\]

and we split \(\mathcal{L}\) as follows:

\[
\mathcal{L} = \mathcal{L}_a + \mathcal{L}_b + \mathcal{L}_c + \mathcal{L}_d,
\]

where

\(\mathcal{L}_a\) corresponds to the points of type \(f0\),

\(\mathcal{L}_b\) corresponds to the points of type \(f1\),

\(\mathcal{L}_c\) corresponds to the points of type \(f2\),

\(\mathcal{L}_d\) corresponds to the points of type \(f3\).

We then introduce the Incremental Unknowns and we find:

\[
\mathcal{L}_a = \sum_{i,j=0}^{N-1} \left\{ \frac{1}{\alpha_{2i+1} \alpha_{2j+1}} \left(\gamma_{2i+1,2j+1} - 2 \gamma_{2i+1,2j} + 2 \gamma_{2i+1,2j+2} \right) \right\}^2 + \sum_{i,j=0}^{N-1} \left\{ \frac{1}{\alpha_{2i+1} \alpha_{2j+1}} \left(\frac{\gamma_{2i+1,2j+1} + 2 \gamma_{2i+1,2j} + \gamma_{2i+1,2j+2}}{\beta_{2i+1,2j+1} + \gamma_{2i+1,2j} + \gamma_{2i+1,2j+2}} \right) \right\}^2,
\]

\[
\mathcal{L}_b = \sum_{i=0}^{N-1} \sum_{j=0}^{N-1} \left(Z_{2i+1,2j+1} - Z_{2i+1,2j} + g_{i,j} \right)^2 + \sum_{i=0}^{N-1} \sum_{j=0}^{N-1} \left\{ - \frac{\beta_{2i+1,2j+1} + 2 \gamma_{2i+1,2j} + \gamma_{2i+1,2j+2}}{\alpha_{2i+1} \alpha_{2j+1}} \left(Y_{2i+1,2j+2} + 2 - Y_{2i+1,2j} \right) \right\}^2,
\]

where

\[
g_{i,j} = \frac{1}{\alpha_{2i+1} \alpha_{2j+1}} \left\{ 2 \gamma_{2i+1,2j+1} Y_{2i+1,2j+1} + \gamma_{2i+1,2j} + \gamma_{2i+1,2j} + \gamma_{2i+1,2j+2} + \gamma_{2i+1,2j+2} \right\};
\]

\[
\mathcal{L}_c = \sum_{i=0}^{N-1} \sum_{j=0}^{N-1} \left(Z_{2i+1,2j+1} - Z_{2i+1,2j} + g'_{i,j} \right)^2 + \sum_{i=0}^{N-1} \sum_{j=0}^{N-1} \left\{ - \frac{\beta_{2i+1,2j+1} + 2 \gamma_{2i+1,2j} + \gamma_{2i+1,2j+2}}{\alpha_{2i+1} \alpha_{2j+1}} \left(Y_{2i+1,2j+2} - Y_{2i+1,2j} \right) \right\}^2,
\]

vol. 32, n° 5, 1998
where
\[g'_{h,j} = \frac{1}{\alpha_{2i} + 1} \left\{ \gamma_{2i} + Y_{2i} + 2,2j + 2 - \gamma_{2i} + Y_{2i} + 2,2j + 2 - \beta_{2i} + Y_{2i} + 2,2j + 2 - \beta_{2i} + Y_{2i} + 2,2j \right\} ; \]
\[\mathcal{L}_d = \sum_{i=0}^{N-1} \sum_{j=0}^{N-1} \left\{ Z_{2i} + 1,2j + 1 - Z_{2i} + 1,2j + 1 + h_{i,j} \right\}^2 + \sum_{i=0}^{N-1} \sum_{j=0}^{N-1} \left\{ Z_{2i} + 1,2j + 2 - Z_{2i} + 1,2j + 1 + h'_{i,j} \right\}^2 , \]
where
\[h_{i,j} = \frac{1}{\alpha_{2i} + 1} \left\{ \gamma_{2i} + Y_{2i} + 2,2j + 2 + \beta_{2i} + Y_{2i} + 2,2j + 2 - \beta_{2i} + Y_{2i} + 2,2j \right\} , \]
and
\[h'_{i,j} = \frac{1}{\alpha_{2i} + 1} \left\{ \gamma_{2i} + Y_{2i} + 2,2j + 2 - \gamma_{2i} - Y_{2i} + 2,2j + 2 - \beta_{2i} - Y_{2i} + 2,2j \right\} . \]
We can write
\[g_{h,j} = \frac{\gamma_{2i} + 1}{\alpha_{2i} + 1} q_{i,j} , \quad h_{i,j} = \frac{\gamma_{2i} + 1}{\alpha_{2i} + 1} q_{i,j} , \quad g'_{h,j} = \frac{\gamma_{2i} + 1}{\alpha_{2i} + 1} q'_{i,j} , \quad h'_{i,j} = \frac{\gamma_{2i} + 1}{\alpha_{2i} + 1} q'_{i,j} , \]
where
\[q'_{i,j} = \frac{1}{\alpha_{2i} + 1} \left\{ \gamma_{2i} + Y_{2i} + 2,2j + 2 + \beta_{2i} + Y_{2i} + 2,2j - \gamma_{2i} + Y_{2i} + 2,2j \right\} , \]
and
\[q_{i,j} = \frac{1}{\alpha_{2i} + 1} \left\{ \gamma_{2i} + Y_{2i} + 2,2j + 2 - \gamma_{2i} - Y_{2i} + 2,2j + 2 - \beta_{2i} + Y_{2i} + 2,2j \right\} . \]
Developing these expressions and setting
\[\mathcal{L} = \mathcal{L}_a + \mathcal{L}_b + \mathcal{L}_c + \mathcal{L}_d = \sum_{i,j=0}^{N-1} \mathcal{L}_{i,j} , \]
we obtain
\[\mathcal{L}_{i,j} = 2 \cdot Z_{2i}^2 + 1,2j + 2 \cdot Z_2^2 + 1,2j + \frac{\beta_{2i} + 1}{\alpha_{2i} + 1} \left(Y_{2i} + 2,2j - Y_{2i} + 2,2j \right) + \frac{\beta_{2i} + 1}{\alpha_{2i} + 1} \left(Y_{2i} + 2,2j + 2 - Y_{2i} + 2,2j \right) \]
\[+ \left(Z_{2i} + 1,2j + 1 - Z_{2i} + 1,2j + 1 - \gamma_{2i} + 1 \frac{\gamma_{2i} + 1}{\alpha_{2i} + 1} \right)^2 + \left(Z_{2i} + 1,2j + 1 - Z_{2i} + 1,2j + 1 + \beta_{2i} + 1 \frac{\beta_{2i} + 1}{\alpha_{2i} + 1} \right)^2 \]
\[+ \left(Z_{2i} + 1,2j + 2 - Z_{2i} + 1,2j + 2 + \gamma_{2i} + 1 \frac{\gamma_{2i} + 1}{\alpha_{2i} + 1} \right)^2 + \left(Z_{2i} + 1,2j + 2 - Z_{2i} + 1,2j + 2 + \beta_{2i} + 1 \frac{\beta_{2i} + 1}{\alpha_{2i} + 1} \right)^2 \]
\[+ 2 \cdot \frac{\beta_{2i} + 1 - \gamma_{2i} + 1}{\alpha_{2i} + 1} Z_{2i} + 1,2j \left(Y_{2i} + 2,2j + Y_{2i} + 2,2j \right) + 2 \cdot \frac{\beta_{2i} + 1 + \gamma_{2i} + 1}{\alpha_{2i} + 1} Z_{2i} + 1,2j \left(Y_{2i} + 2,2j - Y_{2i} + 2,2j \right) . \]
We now consider the term

\[P_{i,j} = 2 \cdot \frac{\beta_{i+1} - \gamma_{i+1}}{\alpha_{i+1}} Z_{2i+1,2j} \cdot (Y_{2i+2,2j} - Y_{2i,2j}) + 2 \cdot \frac{\tilde{\beta}_{j+1} - \tilde{\gamma}_{j+1}}{\tilde{\alpha}_{j+1}} Z_{2i,2j+1} \cdot (Y_{2i,2j+2} - Y_{2i,2j}) . \]

We obtain using Young’s inequality

\[P_{i,j} \geq -\epsilon_1 Z_{2i+1,2j}^2 \left| \frac{\beta_{i+1} - \gamma_{i+1}}{\alpha_{i+1}} \right| - \frac{1}{\epsilon_1} (Y_{2i+2,2j} - Y_{2i,2j})^2 \]

\[-\epsilon_2 Z_{2i,2j+1}^2 \left| \frac{\tilde{\beta}_{j+1} - \tilde{\gamma}_{j+1}}{\tilde{\alpha}_{j+1}} \right| (Y_{2i,2j+2} - Y_{2i,2j})^2 , \]

where, as in the one dimensional case, \(\epsilon_1 \) and \(\epsilon_2 \) are two positive constants which will be fixed later. We set \(\xi(i) = \frac{\beta_{i+1}}{\gamma_{i+1}} \) and \(\eta(j) = \frac{\tilde{\beta}_{j+1}}{\tilde{\gamma}_{j+1}} \) and we introduce the following functions:

\[g_1(x, \epsilon) = 2 - \epsilon \left| \frac{1-x}{1+x} \right| \quad \text{and} \quad g_2(x, \epsilon) = \frac{1+x^2}{(1+x)^2} - \frac{1}{\epsilon} \left| \frac{1-x}{1+x} \right| . \]

We thus have

\[\mathcal{L}_{i,j} \geq g_1(\xi(i), \epsilon_1) Z_{2i+1,2j}^2 + g_1(\eta(j), \epsilon_2) Z_{2i,2j+1}^2 \]

\[+ g_2(\xi(i), \epsilon_1) (Y_{2i+2,2j} - Y_{2i,2j})^2 + g_2(\eta(j), \epsilon_2) (Y_{2i,2j+2} - Y_{2i,2j})^2 \]

\[+ \left(Z_{2i+1,2j+1} - Z_{2i,2j+2} + \frac{\gamma_{i+1}}{\alpha_{i+1}} q_{i,j} \right)^2 + \left(Z_{2i+2,2j+1} + \frac{\beta_{i+1}}{\alpha_{i+1}} q_{i,j} \right)^2 \]

\[+ \left(Z_{2i,2j+2} - Z_{2i+1,2j+1} + \frac{\tilde{\gamma}_{j+1}}{\tilde{\alpha}_{j+1}} q_{i,j} \right)^2 + \left(Z_{2i+1,2j+1} - Z_{2i+2,2j+1} + \frac{\tilde{\beta}_{j+1}}{\tilde{\alpha}_{j+1}} q_{i,j} \right)^2 . \]

As in space dimension one, we can chose \(\epsilon_1 \) and \(\epsilon_2 \) such that the functions \(g_1 \) and \(g_2 \) are bounded from below by a strictly positive constant which is independent of the mesh. Therefore

\[\mathcal{L}_{i,j} \geq C \cdot Z_{2i+1,2j}^2 + C \cdot Z_{2i,2j+1}^2 + C \cdot (Y_{2i+2,2j} - Y_{2i,2j})^2 + C \cdot (Y_{2i,2j+2} - Y_{2i,2j})^2 \]

\[+ \left(Z_{2i+1,2j+1} - Z_{2i,2j+2} + \frac{\gamma_{i+1}}{\alpha_{i+1}} q_{i,j} \right)^2 + \left(Z_{2i+2,2j+1} + \frac{\beta_{i+1}}{\alpha_{i+1}} q_{i,j} \right)^2 \]

\[+ \left(Z_{2i,2j+2} - Z_{2i+1,2j+1} + \frac{\tilde{\gamma}_{j+1}}{\tilde{\alpha}_{j+1}} q_{i,j} \right)^2 + \left(Z_{2i+1,2j+1} - Z_{2i+2,2j+1} + \frac{\tilde{\beta}_{j+1}}{\tilde{\alpha}_{j+1}} q_{i,j} \right)^2 , \]

where \(C \) is an absolute strictly positive constant. We now introduce the following technical lemma:

Lemma 3: Let \(s, t \in \mathbb{R} \) be such that \(s^2 + t^2 \neq 0 \), \(s + t \neq 0 \). Then for every \(a, b, c, d \in \mathbb{R} \) and for every \(k \geq 1 \):

\[(a - b + s \cdot c)^2 + (d - a + t \cdot c)^2 \geq \frac{1}{k} \left(\frac{(s+t)^2}{s^2+t^2} \left(\frac{1}{2} a^2 - \frac{2 \cdot \frac{t^2}{(s+t)^2} b^2 - 2 \cdot \frac{s^2}{(s+t)^2} d^2} \right) \right) . \]
Proof:
We have
\[
(a - b + se)^2 + (d - a + te)^2 = (a - b)^2 + (d - a)^2 + (s^2 + t^2) c^2 \\
+ 2 sc(a - b) + 2 tc(d - a)
\]
\[
= (a - b)^2 + (d - a)^2 \\
+ (s^2 + t^2) \left(c^2 + \frac{2s}{s^2 + t^2} c(a - b) + \frac{2t}{s^2 + t^2} c(d - a) \right)
\]
\[
= (a - b)^2 + (d - a)^2 \\
+ (s^2 + t^2) \left(c + \frac{2s}{s^2 + t^2} c(a - b) + \frac{2t}{s^2 + t^2} c(d - a) \right)^2
\]
\[
- \frac{s^2}{s^2 + t^2} (a - b)^2 - \frac{t^2}{s^2 + t^2} (d - a)^2 - 2 \frac{st}{s^2 + t^2} (a - b) (d - a)
\]
\[
= \frac{t^2}{s^2 + t^2} (a - b)^2 + \frac{s^2}{s^2 + t^2} (d - a)^2 - 2 \frac{st}{s^2 + t^2} (a - b) (d - a)
\]
\[
+ (s^2 + t^2) \left(c + \frac{2s}{s^2 + t^2} c(a - b) + \frac{2t}{s^2 + t^2} c(d - a) \right)^2
\]
\[
= \frac{1}{s^2 + t^2} (t(a - b) - s(d - a))^2
\]
\[
+ (s^2 + t^2) \left(c + \frac{2s}{s^2 + t^2} c(a - b) + \frac{2t}{s^2 + t^2} c(d - a) \right)^2
\]
Thus
\[
(a - b + sc)^2 + (d - a + tc)^2 \geq \frac{(s + t)^2}{s^2 + t^2} \left(a - \frac{t}{s + t} b - \frac{s}{s + t} d \right)^2,
\]
and for all \(k \geq 1 \) we have
\[
(a - b + sc)^2 + (d - a + tc)^2 \geq \frac{1}{k} \frac{(s + t)^2}{s^2 + t^2} \left(a - \frac{t}{s + t} b - \frac{s}{s + t} d \right)^2.
\]
Now
\[
\left(a - \frac{t}{s + t} b - \frac{s}{s + t} d \right)^2 = a^2 + \left(\frac{t}{s + t} b + \frac{s}{s + t} d \right)^2 - 2 a \left(\frac{t}{s + t} b + \frac{s}{s + t} c \right)
\]
\[
\geq \frac{1}{2} a^2 - \left(\frac{t}{s + t} b + \frac{s}{s + t} d \right)^2
\]
\[
\geq \frac{1}{2} a^2 - 2 \frac{t^2}{(s + t)^2} b^2 - 2 \frac{s^2}{(s + t)^2} d^2,
\]
hence the result.
We note here that the boundary conditions imply.

\[Z_{2i,2j+1} = Y_{2i,2j+1} = 0 \quad \text{for} \quad i = 0 \text{ or } N, \]

\[Z_{2i+1,2j} = Y_{2i+1,2j} = 0 \quad \text{for} \quad j = 0 \text{ or } N. \]

Consequently we can replace, in the expression of \(\mathcal{L}_{i,j} \),

\[C \cdot Z^2_{2i+1,2j} + C \cdot Z^2_{2i,2j+1} \]

by

\[\frac{C}{2} \left(Z^2_{2i+1,2j} + Z^2_{2i+2,2j+1} + Z^2_{2i,2j+1} + Z^2_{2i+1,1+2j+1} \right). \]

We set

\[s_i = \frac{\gamma_{2i+1}}{\alpha_{2i+1}}, \quad t_i = \frac{\beta_{2i+1}}{\alpha_{2i+1}}, \quad \bar{s}_j = \frac{\gamma_{2j+1}}{\alpha_{2j+1}}, \quad \bar{t}_j = \frac{\beta_{2j+1}}{\alpha_{2j+1}}, \]

and we obtain using Lemma 3 and the relations \(s_i + t_i = 1 \) and \(\bar{s}_j + \bar{t}_j = 1 \):

\[\mathcal{L}_{i,j} \geq C \cdot \left(Z^2_{2i+1,2j} + Z^2_{2i+2,2j} + Z^2_{2i,2j+1} + Z^2_{2i+1,2j+2} \right) + C \cdot \left(Y^2_{2i+1,2j} - Y^2_{2i,2j} \right)^2 + C \cdot \left(Y^2_{2i,2j+1} - Y^2_{2i+1,2j} \right)^2 \]

\[+ \frac{1}{2 k(s_i^2 + t_i^2)} Z^2_{2i+1,2j+1} - \frac{2 t_i^2}{k(s_i^2 + t_i^2)} Z^2_{2i+2,2j+1} - \frac{2 s_i^2}{k(s_i^2 + t_i^2)} Z^2_{2i,2j+1} \]

\[+ \frac{1}{2 k(s_j^2 + t_j^2)} Z^2_{2i+1,2j+1} - \frac{2 t_j^2}{k(s_j^2 + t_j^2)} Z^2_{2i+2,2j+1} - \frac{2 s_j^2}{k(s_j^2 + t_j^2)} Z^2_{2i,2j+1}. \]

We then choose \(k \) such that for all \(i, j \):

\[\frac{2 t_i^2}{k(s_i^2 + t_i^2)} \leq \frac{C}{2}, \quad \frac{2 t_j^2}{k(s_j^2 + t_j^2)} \leq \frac{C}{2}, \]

\[\frac{2 s_i^2}{k(s_i^2 + t_i^2)} \leq \frac{C}{2}, \quad \frac{2 s_j^2}{k(s_j^2 + t_j^2)} \leq \frac{C}{2}. \]

This is possible since the function \(\frac{t^2}{t^2 + (1-t)^2} \) is bounded for \(t \in [0, 1] \). Furthermore the function \(\frac{(1+x)^2}{1+x^2} \) is bounded from below by 1 for \(x \in [0, \infty[. \) We deduce that there exists a constant \(c \) independent of \(Ax \) and \(Ay \) such that

\[\mathcal{L}_{i,j} \geq c \cdot \left(Z^2_{2i+1,2j} + Z^2_{2i+2,2j} + 1 + Z^2_{2i,2j+1} + (Y_{2i,2j+1} - Y_{2i+1,2j})^2 + (Y_{2i,2j+2} - Y_{2i+1,2j})^2 \right). \]
Therefore

\[
\sum_{i,j=0}^{N-1} \left\{ Z_{2i+1,2j+1}^2 + Z_{2i+1,2j+1}^2 \right\} + \sum_{i,j=0}^{N-1} \left\{ (Y_{2i+2,2j} - Y_{2i,2j})^2 + (Y_{2i,2j+2} - Y_{2i,2j})^2 \right\} \\
\leq \frac{c}{\delta h} \sum_{i,j=0}^{2N-1} (x_{i+1} - x_i)(y_{j+1} - y_j) f_{i,j}^2.
\]

If we replace \(f_{i,j} = f(x_i, y_j) \) by \(f_{i,j} = \frac{1}{(x_{i+1} - x_i)(y_{j+1} - y_j)} \int_{x_i}^{x_{i+1}} \int_{y_j}^{y_{j+1}} f(x, y) \, dx \, dy \), we obtain

\[
\sum_{i,j=0}^{N-1} \left\{ Z_{2i+1,2j+1}^2 + Z_{2i+1,2j+1}^2 \right\} + \sum_{i,j=0}^{N-1} \left\{ (Y_{2i+2,2j} - Y_{2i,2j})^2 + (Y_{2i,2j+2} - Y_{2i,2j})^2 \right\} \\
\leq \frac{c}{\delta h} |f|_{L^2}^2,
\]

where \(c \) is again a constant independent of \(\Delta x \) and \(\Delta y \). Finally we obtain the following result:

Proposition 2: The second order Incremental Unknowns associated to the discretization of (3.6) satisfy the following a priori estimates:

\[
\sum_{i,j=0}^{N-1} \left\{ Z_{2i+1,2j+1}^2 + Z_{2i+1,2j+1}^2 \right\} \leq \frac{c}{\delta h} |f|_{L^2}^2,
\]

\[
\sum_{i,j=0}^{N-1} (Y_{2i+2,2j} - Y_{2i,2j})^2 \leq \frac{c}{\delta h} |f|_{L^2}^2,
\]

\[
\sum_{i,j=0}^{N-1} (Y_{2i,2j+2} - Y_{2i,2j})^2 \leq \frac{c}{\delta h} |f|_{L^2}^2,
\]

where \(\delta h \) is defined above and \(c \) is a constant independent of the mesh.

In particular, we find

\[
\sum_{i,j=0}^{N-1} \left\{ (x_{2i+2} - x_{2i+1}) (y_{2j+1} - y_{2j}) Z_{2i+2,2j+1}^2 + (x_{2i+1} - x_{2i}) (y_{2j+2} - y_{2j+1}) Z_{2i,2j+1}^2 \right\} \\
+ \sum_{i,j=0}^{N-1} (x_{2i+2} - x_{2i+1}) (y_{2j+2} - y_{2j+1}) Z_{2i+2,2j+1}^2 \\
\leq \frac{c \times h^2}{\delta h} |f|_{L^2}^2.
\]

In that way, as in the one dimensional case, we obtain estimates that are similar to those established in the uniform case. Furthermore, if \(\frac{h}{\sqrt{\delta h}} \to 0 \), the incremental unknowns are small as expected. We note that this assumption is satisfied for the meshes that are usually used for boundary layer problems (Chebyshev and a tanh like meshes).

4. Hierarchical Preconditioning

In this section, we propose a construction of hierarchical preconditioners for the Laplacian associated to a nonuniform mesh. In particular, we try to recover the usual asymptotic condition number of the matrix obtained for uniform grids. This approach is typical of the finite differences method.
4.1. The one dimensional case

4.1.1. Construction of the preconditioner

For the sake of simplicity, we only consider the one dimensional case; the two dimensional case will follow by extension.

The basic idea is to construct a hierarchical preconditioner which, as in the regular mesh case, gives a H^1_0 orthogonality type property. From the point of view of the matricial framework, this construction can be summarized by the determination of two matrices S and T under and upper triangular respectively such that

$$^T T A S$$

is block diagonal, A being the discretization matrix of the Laplacian. We note that $T = S$ when A is symmetric.

We consider the Dirichlet problem:

$$\begin{align*}
-\frac{\partial^2 u}{\partial x^2} &= f \text{ in } \Omega =]0, 1[, \\
u(0) &= u(1) = 0.
\end{align*}$$

(4.8)

We discretize (4.8) by finite differences with a three-points scheme. We obtain a system of the form:

$$\begin{align*}
\alpha_1 u_1 - \gamma_2 u_2 &= f_1, \\
\alpha_2 u_2 - \beta_2 u_1 - \gamma_2 u_3 &= f_2, \\
\vdots \\
\vdots \\
\alpha_i u_i - \beta_i u_{i-1} - \gamma_i u_{i+1} &= f_i, \\
\vdots \\
\vdots \\
\alpha_{N-1} u_{N-1} - \beta_{N-1} u_{N-2} - \gamma_{N-1} u_{N} &= f_{N-1}, \\
\alpha_N u_N - \beta_{N-1} u_{N-1} &= f_N,
\end{align*}$$

(4.9)

where α_i, β_i and γ_i can be different from the numbers introduced in Section 3.

Construction of $^T T$ and S

We proceed by a block procedure. We first consider two grid levels. The discretization matrix A is written with the hierarchical ordering in the form

$$\tilde{A} = \begin{pmatrix}
A_1 & B_1 \\
B_2 & A_2
\end{pmatrix},$$

(4.10)

where A_i, $i = 1, 2$ are invertible diagonal matrices.

Construction of S

We want to construct a matrix S of the form:

$$S = \begin{pmatrix}
I & 0 \\
G_1 & I
\end{pmatrix},$$

(4.11)
and such that $\hat{A}S$ is upper triangular. We have

$$\hat{A}S = \begin{pmatrix} A_1 & B_1 \\ B_2 & A_2 \end{pmatrix} \begin{pmatrix} I & 0 \\ G_1 & I \end{pmatrix} = \begin{pmatrix} A_1 + B_1 G_1 B_1 \\ B_2 + A_2 G_1 A_2 \end{pmatrix}.$$

(4.12)

Therefore the under-matrix G_1 satisfies

$$G_1 = -A_2^{-1}B_2,$$

hence

$$S = \begin{pmatrix} I & 0 \\ -A_2^{-1}B_2 & I \end{pmatrix}.$$

(4.13)

Construction of $^T \hat{T}$

We now want to construct a matrix $^T \hat{T}$ of the form:

$$^T \hat{T} = \begin{pmatrix} I & G_2 \\ 0 & I \end{pmatrix},$$

(4.14)

and such that $^T \hat{T} A \cdot S$ is bloc diagonal. We have

$$^T \hat{T} S = (^T \hat{T} A) = \begin{pmatrix} I & G_2 \\ 0 & I \end{pmatrix} \begin{pmatrix} A_1 + B_1 G_1 B_1 \\ 0 & A_2 \end{pmatrix} = \begin{pmatrix} A_1 + B_1 G_1 B_1 + G_2 \cdot A_2 \\ 0 & A_2 \end{pmatrix},$$

(4.15)

and then G_2 must satisfy

$$B_2 + G_2 A_2 = 0.$$

Thus

$$^T \hat{T} = \begin{pmatrix} I & -B_2 A_2^{-1} \\ 0 & I \end{pmatrix},$$

(4.16)

and \hat{A} can be written in the form

$$\hat{A} = ^T \hat{T} A = ^T \hat{T} = \begin{pmatrix} A_1 + B_1 G_1 & 0 \\ 0 & A_2 \end{pmatrix}.$$

(4.17)

The first diagonal bloc of \hat{A} is still tridiagonal and we can repeat recursively the reduction procedure described above by considering now $d + 1$ grid levels. This procedure is easily accomplished when one knows the coefficients of \hat{A}.

Computation of the coefficients of $^T T A S$

We first consider two grid levels. We restart from (4.9), and we introduce the following Incremental Unknowns (that can differ from those introduced in Section 3: the problem considered here is more general)

$$Z_{2.i+1} = u_{2.i+1} - \frac{1}{\alpha_{2.i+1}} (\beta_{2.i+1} u_{2.i} + \gamma_{2.i+1} u_{2.i+2}).$$
Injecting this relation into (4.9), we obtain

For the fine grid points:

\[\alpha_{2i} + 1 u_{2i+1} - \beta_{2i} + 1 u_{2i} - \gamma_{2i} + 1 u_{2i+2} = f_{2i+1}, \]

that is to say

\[\alpha_{2i} + 1 Z_{2i+1} = f_{2i+1}. \]

For the coarse grid points:

\[\alpha_{2i} u_{2i} - \beta_{2i} u_{2i-1} - \gamma_{2i} u_{2i+1} = f_{2i}. \]

Since

\[u_{2i+1} = Z_{2i+1} + \frac{1}{\alpha_{2i+1}}(\beta_{2i+1} u_{2i} + \gamma_{2i+1} u_{2i+2}), \]

and

\[u_{2i-1} = Z_{2i-1} + \frac{1}{\alpha_{2i-1}}(\beta_{2i-1} u_{2i-2} + \gamma_{2i-1} u_{2i}), \]

we find

\[\left(\frac{\alpha_{2i}}{\alpha_{2i-1}} - \frac{\beta_{2i}}{\alpha_{2i-1}} - \frac{\gamma_{2i}}{\alpha_{2i+1}} \right) u_{2i} - \frac{\beta_{2i}}{\alpha_{2i-1}} u_{2i-2} - \frac{\gamma_{2i}}{\alpha_{2i+1}} u_{2i+2} = \gamma_{2i} \cdot Z_{2i+1} + \beta_{2i} \cdot Z_{2i-1} + f_{2i}, \]

By analogy with the form of the reduced matrix, we can say that, for \(d \) grid levels, the coefficients of the matrix \(\hat{A}^d \) are

\[\hat{A}^d = \begin{pmatrix} p^d & 0 & \ldots & 0 \\ 0 & K^1 & 0 & \ldots \\ \vdots & \ddots & \ddots & \ddots \\ \vdots & \ddots & \ddots & K^d \end{pmatrix}, \] \hspace{1cm} (4.19)

where

\[p^d = \begin{pmatrix} \alpha_1^d & -\gamma_1^d \\ -\beta_2^d & \alpha_2^d & -\gamma_2^d \\ 0 & -\beta_3^d & \alpha_3^d & -\gamma_3^d \\ \vdots & \vdots & \ddots & \ddots \\ \vdots & \ddots & \ddots & \ddots \\ 0 & \ldots & -\beta_{N-2}^d & \alpha_{N-2}^d & -\gamma_{N-2}^d \\ 0 & \ldots & 0 & -\beta_{N-1}^d & \alpha_{N-1}^d \end{pmatrix}. \] \hspace{1cm} (4.20)
Furthermore the coefficients α^d_i, β^d_i, γ^d_i satisfy the following recursive relations:

\[
\begin{aligned}
\alpha^d_i &= \frac{\alpha^d_{i-1} - \beta^d_{2i-1} \gamma^d_{2i-1}}{\alpha^d_{2i-1}} - \frac{\beta^d_{2i+1} \gamma^d_{2i}}{\alpha^d_{2i+1}}; \quad i = 1, N - 1, \\
\beta^d_i &= \frac{\beta^d_{2i-1} \beta^d_{2i+1}}{\alpha^d_{2i-1}}; \quad i = 1, N - 1, \\
\gamma^d_i &= \frac{\gamma^d_{2i-1} \gamma^d_{2i+1}}{\alpha^d_{2i-1}}; \quad i = 1, N - 1, \\
K^d_i &= \frac{\alpha^d_{i-1}}{\alpha^d_{i+1}}; \quad i = 1, N, l = 1, \ldots, d - 1.
\end{aligned}
\]

(4.21)

Remark 3: Unlike in the uniform mesh case, the local change of variable depends here on the grid level via the coefficients of the under-matrix K^l.

Remark 4: The procedure described above is still valid when the discretization matrix A is not symmetric and it generalizes the hierarchical reduction for tridiagonal matrices.

5. NUMERICAL RESULTS

We introduce the following notation. We shall say that a grid has a C_k configuration if it is obtained with l dyadic refinements of a grid composed of k points in each direction of the domain. The fine grid is thus composed of $2^l(k + 1) - 1$ points in each direction.

5.1. Hierarchical preconditioning: the one dimensional case

5.1.1. Condition number of the matrix for some specific meshes

a) The Chebyshev mesh

We consider here the hierarchical preconditioning of the discretization matrix of the Laplacian on a Chebyshev-like mesh. The corresponding sequence x_i is defined by

\[x_i = \frac{1}{2} \left(\sin \left(\pi \left(i \cdot h - 0.5 \right) \right) + 1 \right), \quad i = 1, \ldots, N - 1,
\]

where $h = \frac{1}{N}$.

The discretization matrix of the Laplace operator is constructed using the formulae given in Section 3. We compare in the tabular hereafter $\text{Cond}(A)$ and $\text{Cond}(\text{T.A.S})$ for several grid levels. The grids are all of type $C_{1, l}$.

M² AN Modélisation mathématique et Analyse numérique
Mathematical Modelling and Numerical Analysis
Hierarchical preconditioning without diagonal preconditioning

Table 1. — Condition number of the matrix A.

<table>
<thead>
<tr>
<th>l</th>
<th>Nodal basis</th>
<th>Second order I.U.</th>
</tr>
</thead>
<tbody>
<tr>
<td>$l = 1$ ($N = 7$)</td>
<td>51.45</td>
<td>23.19</td>
</tr>
<tr>
<td>$l = 2$ ($N = 15$)</td>
<td>770.79</td>
<td>178.42</td>
</tr>
<tr>
<td>$l = 3$ ($N = 31$)</td>
<td>12 135.05</td>
<td>1 413.62</td>
</tr>
<tr>
<td>$l = 4$ ($N = 63$)</td>
<td>193 381.54</td>
<td>11 281.78</td>
</tr>
<tr>
<td>$l = 5$ ($N = 127$)</td>
<td>3 090 998.67</td>
<td>90 199.93</td>
</tr>
</tbody>
</table>

Table 2. — Asymptotic behaviour of $C(A)$.

<table>
<thead>
<tr>
<th>l</th>
<th>Nodal basis: $C(A)/N^4$</th>
<th>Second order IU $C(T.A.S)/N^3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$l = 1$ ($N = 7$)</td>
<td>0.01256</td>
<td>0.0529</td>
</tr>
<tr>
<td>$l = 2$ ($N = 15$)</td>
<td>0.0176</td>
<td>0.04359</td>
</tr>
<tr>
<td>$l = 3$ ($N = 31$)</td>
<td>0.01572</td>
<td>0.04314</td>
</tr>
<tr>
<td>$l = 4$ ($N = 63$)</td>
<td>0.01526</td>
<td>0.043036</td>
</tr>
<tr>
<td>$l = 5$ ($N = 127$)</td>
<td>0.01514</td>
<td>0.043010</td>
</tr>
</tbody>
</table>

Hierarchical preconditioning with a diagonal preconditioning

As we can see $C(T.A.S)$ is asymptotically in N^3 whereas $C(A)$ is in N^4 (like the discretization matrix of the Laplacian associated to the Chebyshev polynomials). The improvement of that hierarchical preconditioner is not totally convincing. For this reason, we propose to introduce a diagonal inner preconditioning, that is to say we consider

$T.D.A.S$ rather $T.A.S$,

where $D^{-1} = DIAG(A)$. We obtain the following results:

Table 3. — Condition number of the matrix $D.A.$

<table>
<thead>
<tr>
<th>l</th>
<th>Nodal basis</th>
<th>Second order I.U.</th>
</tr>
</thead>
<tbody>
<tr>
<td>$l = 2$ ($N = 7$)</td>
<td>12.95</td>
<td>2.6131</td>
</tr>
<tr>
<td>$l = 3$ ($N = 15$)</td>
<td>51.81</td>
<td>5.1258</td>
</tr>
<tr>
<td>$l = 4$ ($N = 31$)</td>
<td>207.45</td>
<td>10.2022</td>
</tr>
<tr>
<td>$l = 5$ ($N = 63$)</td>
<td>827.62</td>
<td>20.3800</td>
</tr>
<tr>
<td>$l = 6$ ($N = 127$)</td>
<td>3 308.09</td>
<td>40.7477</td>
</tr>
</tbody>
</table>

vol. 32, n° 5, 1998
Table 4. — Asymptotic behaviour of $C(D.A)$.

<table>
<thead>
<tr>
<th>l</th>
<th>Nodal basis: $C(D.A)/N^2$</th>
<th>Second order I.U. $C(T.D.A.S)/N$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$l = 2$</td>
<td>0.2024</td>
<td>0.3266</td>
</tr>
<tr>
<td>$l = 3$</td>
<td>0.2024</td>
<td>0.3203</td>
</tr>
<tr>
<td>$l = 4$</td>
<td>0.2025</td>
<td>0.3188</td>
</tr>
<tr>
<td>$l = 5$</td>
<td>0.2020</td>
<td>0.3184</td>
</tr>
<tr>
<td>$l = 6$</td>
<td>0.2019</td>
<td>0.3183</td>
</tr>
</tbody>
</table>

We observe that the asymptotic behaviour of $C(T.D.A.S)/N$ given in Table 4 is comparable to the uniform grid case.

b) The A tanh-type mesh

Hierarchical preconditioning without diagonal preconditioning

We consider an a tanh-like mesh. The sequence x_i is defined by

$$x_i = 0.5 \left(1 + \frac{1}{2} \tanh \left(a \tanh (a) \xi_i \right) \right),$$

where $a \tanh (a) = 2.3934$, $\xi_i = -1 + 2 \cdot i \cdot h$ and $h = \frac{1}{N}$.

This type of mesh is used, for example, for the numerical solution of the channel flow problem as in [15]. In the 2-D case, these authors study a flow with periodic boundary conditions in the x-direction and dirichlet boundary conditions in the y-direction. The mesh associated to this problem is then regular in the x-direction (periodicity) and refined around the boundary layer (an a tanh-type grid) in the y-direction. For further applications, it is then important to develop appropriate preconditioners for elliptic problems on the a tanh mesh. Indeed, elliptic operators (for instance the Laplacian) that appear in the formulation of the channel flow ([14]), are ill-conditioned on refined meshes of a tanh or Chebyshev type.

The discretization matrix of the Laplacian is constructed using the formulae given in Section 3. We compare in the tabular hereafter $\text{Cond}(A)$ and $\text{Cond}(T.A.S)$ for several grid levels. The grids are all of type $C_{1,r}$.

Table 5. — Condition number of the matrix.

<table>
<thead>
<tr>
<th>l</th>
<th>Nodal basis</th>
<th>Second order I.U.</th>
</tr>
</thead>
<tbody>
<tr>
<td>$l = 1$</td>
<td>145.18</td>
<td>8.94</td>
</tr>
<tr>
<td>$l = 2$</td>
<td>4 323.87</td>
<td>139.32</td>
</tr>
<tr>
<td>$l = 3$</td>
<td>88 314.07</td>
<td>2 136.43</td>
</tr>
<tr>
<td>$l = 4$</td>
<td>879 489.14</td>
<td>10 281.72</td>
</tr>
<tr>
<td>$l = 5$</td>
<td>31 959.34</td>
<td></td>
</tr>
</tbody>
</table>

M^2 AN Modélisation mathématique et Analyse numérique
Mathematical Modelling and Numerical Analysis
Table 6. — Asymptotic behaviour of \(C(A) \).

<table>
<thead>
<tr>
<th>(l)</th>
<th>Nodal basis: (C(A)/N^3)</th>
<th>Second order IU (C\left(^t\text{T.A.S}\right)/N^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 ((N = 7))</td>
<td>2.3938</td>
<td>1.0539</td>
</tr>
<tr>
<td>2 ((N = 15))</td>
<td>3.1018</td>
<td>1.8987</td>
</tr>
<tr>
<td>3 ((N = 31))</td>
<td>3.2860</td>
<td>2.2121</td>
</tr>
<tr>
<td>4 ((N = 63))</td>
<td>3.2910</td>
<td>2.2212</td>
</tr>
<tr>
<td>5 ((N = 127))</td>
<td>2.1377</td>
<td></td>
</tr>
</tbody>
</table>

Hierarchical preconditioning with a diagonal preconditioning

As we can see \(C\left(^t\text{T.A.S}\right) \) is asymptotically in \(N^2 \) whereas \(C(A) \) is in \(N^3 \) (like the discretization matrix of the Laplacian associated to the Chebyshev polynomials). The improvement of that hierarchical preconditioner is not totally convincing. For this reason we again introduce a diagonal inner preconditioning, that is to say we consider

\[^t\text{T.D.A.S} \]

rather than \(^t\text{T.A.S} \),

where \(D^{-1} = \text{DIAG}(A) \). We obtain the following results:

Table 7. — Condition number of the matrix \(C(D.A) \).

<table>
<thead>
<tr>
<th>(l)</th>
<th>Nodal basis</th>
<th>Second order I.U.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 ((N = 7))</td>
<td>70.72</td>
<td>5.9140</td>
</tr>
<tr>
<td>3 ((N = 15))</td>
<td>546.72</td>
<td>10.972</td>
</tr>
<tr>
<td>4 ((N = 31))</td>
<td>3114.63</td>
<td>21.3438</td>
</tr>
<tr>
<td>5 ((N = 63))</td>
<td>14 901.41</td>
<td>42.4511</td>
</tr>
<tr>
<td>6 ((N = 127))</td>
<td>65 203.04</td>
<td>84.7839</td>
</tr>
</tbody>
</table>

Table 8. — Asymptotic behaviour of \(C(D.A) \).

<table>
<thead>
<tr>
<th>(l)</th>
<th>Nodal basis: (C(D.A)/N^2)</th>
<th>Second order I.U. (C\left(^t\text{T.D.A.S}\right)/N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 ((N = 7))</td>
<td>1.10511</td>
<td>0.739253</td>
</tr>
<tr>
<td>3 ((N = 15))</td>
<td>2.1355</td>
<td>0.681701</td>
</tr>
<tr>
<td>4 ((N = 31))</td>
<td>3.0416</td>
<td>0.661996</td>
</tr>
<tr>
<td>5 ((N = 63))</td>
<td>3.6380</td>
<td>0.663299</td>
</tr>
<tr>
<td>6 ((N = 127))</td>
<td>3.9796</td>
<td>0.662374</td>
</tr>
</tbody>
</table>

As for the Chebyshev-like meshes, we observe that the asymptotic behaviour of \(C\left(^t\text{T.D.A.S}\right)/N \) given in Table 8 is comparable to the uniform grid case, that is to say \(C\left(^t\text{T.D.A.S}\right) \approx C.N \).

vol. 32, n° 5, 1998
5.2. Hierarchical preconditioning: the two dimensional case

We extend the construction process of the hierarchical preconditioner considered in the one dimensional case to the two dimensional case. We consider here a bidimensional Chebyshev-like grid. This type of mesh was used for the solution of the Navier-Stokes equations in a driven cavity (see [2, 19]) because of its refinement near the corners and the boundaries where several vertex and details appear as the Reynolds number increases. As in the one dimensional case, the grid considered are all of type $C_{1,r}$. We study the preconditioning of the matrix DA. Here $h = 1/(N + 1)$.

Table 9. — Condition number of the matrix.

<table>
<thead>
<tr>
<th>l</th>
<th>Nodal basis (DA)</th>
<th>Second order I.U. $(^t T.D.A.S)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$l = 2$ (N = 7)</td>
<td>13.26354</td>
<td>5.85544</td>
</tr>
<tr>
<td>$l = 3$ (N = 15)</td>
<td>52.8609</td>
<td>10.03395</td>
</tr>
<tr>
<td>$l = 4$ (N = 31)</td>
<td>211.321659</td>
<td>17.49790</td>
</tr>
<tr>
<td>$l = 5$ (N = 63)</td>
<td>845.21288</td>
<td>33.42486</td>
</tr>
<tr>
<td>$l = 6$ (N = 127)</td>
<td>3 380.53602</td>
<td>68.053628</td>
</tr>
</tbody>
</table>

Unlike in the one dimensional case, we do not recover the same asymptotic behaviour of the condition number of the preconditioned matrix as the one obtained for uniform grids. However, we observe in Table 10 that the condition number asymptotically behaves like $\frac{N}{2}$ while that of the usual matrix written in the nodal basis is asymptotically in N^4 (using a diagonal preconditioner) and in N^4 (without using the diagonal preconditioner).

Table 10. — Asymptotic behaviour of $C(D.A)$.

<table>
<thead>
<tr>
<th>l</th>
<th>Nodal basis $C(DA).h^2$</th>
<th>Second order I.U. $C(^t T.D.A.S).h$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$l = 2$ (N = 7)</td>
<td>0.20724</td>
<td>0.731930</td>
</tr>
<tr>
<td>$l = 3$ (N = 15)</td>
<td>0.20648</td>
<td>0.62712</td>
</tr>
<tr>
<td>$l = 4$ (N = 31)</td>
<td>0.20636</td>
<td>0.546809</td>
</tr>
<tr>
<td>$l = 5$ (N = 63)</td>
<td>0.20635</td>
<td>0.52226</td>
</tr>
<tr>
<td>$l = 6$ (N = 127)</td>
<td>0.206331</td>
<td>0.5316689</td>
</tr>
</tbody>
</table>

5.3. Numerical solution of the 2D-Poisson problem

In this section, we present some numerical results concerning the solution of the two-dimensional Dirichlet problem on the unit square. The grid considered here is of Chebshev type. The discrete system to be solved is written in the form

$$A \cdot U = F. \quad (5.22)$$

We introduce the nonsymmetric hierarchical preconditioner presented above and we obtain the following equivalent linear system:

$$^t T.D.A.S.\hat{U} = ^t T.D.F, \quad (5.23)$$
where \(U = S \cdot \hat{U} \). Since the matrix \(\hat{A} = 'TAS \) is nonsymmetric, we use the Bi-Cgstab method [22] in order to solve (5.23).

For our experiments we have taken \(F = 0 \); there is indeed no loss of generality in taking a null source term. The initial guess is \(U_0 = \sin (16(1-x_i)(1-y_j)) e^{i \pi / N} \), \(i, j = 1, \ldots, 2N - 1 \). The computations were realized on the CRAY YMP of the Université de Paris XI, Orsay.

Figure 5 shows the evolution of the euclidian norm of the residual versus iterations (a) and versus the CPU time (b) for a \(255 \times 255 \) fine grid. We note that the efficiency of the hierarchical preconditioner increases with the number of grids (this phenomenon was already observed in the case of a uniform grid (see [10])).

Figure 5 shows the evolution of the residual versus iterations and the CPU time but here the finer grid is composed \(511 \times 511 \) points of discretization. We observe that the efficiency of the nonsymmetric IU hierarchical preconditioner is accentuated when compared with the previous case.

5.4. Compact schemes on nonuniform meshes

In this section we present briefly the construction of compact schemes (CS) in the nonuniform case. This construction is realized using compact schemes which were introduced for the simulation of turbulence, the solution of hyperbolic systems (see e.g. [3]) and the calculation of shocks ([4]) but mainly in order to obtain a high level accuracy in finite differences. This accuracy is close to the spectral accuracy and one of the advantages of the Compact Schemes is that they can be used for non periodic boundary conditions (see [16] and the references therein). The link between IUs and compact schemes established in [6] is aimed at generating high order IUs (their order is \(O(h^p) \), \(p = 2, \ldots, 10 \) instead of \(O(h^2) \)) but also at preconditioning high order accurate discretization matrices of elliptic selfadjoint operators. We describe here the construction of interpolation compact schemes and of compact schemes that are associated to the discretization of PDE’s on a nonuniform mesh. For that purpose, we first propose a general formulation of the compact scheme with which we recover the CS presented in [16] in the uniform case. Then, we extend this formulation for general meshes and we define fourth order IUs. Numerical results on compression of the data are also presented at the end of this section.

5.4.1. The uniform mesh case

For the sake of simplicity, we consider the one dimensional case and we restrict ourselves to compact schemes that are at most of tenth order of accuracy.

Let \(\mathcal{D} \) be a linear operator; \(\mathcal{D} \) can be a partial differential operator as well as an interpolation operator.

Let \(f \) be a regular function. We introduce the following discrete operators:
- \(D_{kh}(f_i) \) is a second order accurate centered difference approximation of \(\mathcal{D}f(x) \big|_{x=i\cdot h} \) associated to the step size \(kh \).
- \(I_{kh}(f(i,h)) \) is a second order accurate difference interpolation of \(U_i \) by \(f(i \pm k) \cdot h \).

Here \(h \) is the spatial mesh size. One can express the compact scheme associated to the discretization of \(\mathcal{D} \) at \(f_i \) as

\[
\mathcal{D}(f(ih)) + \alpha I_{kh}(f(ih)) + \beta D_{kh}(f(ih)) = a \cdot D_{h}(f_i) + b \cdot D_{2h}(f_i) + c \cdot D_{3h}(f_i),
\]

(5.24)

this formula being valid for internal points only.

We recover with (5.24) the compact schemes proposed by Lele in [16] as shown in the following examples.

a) Approximation of \(\frac{\partial f}{\partial x} \)

We have

\[
I_{kh}(f(i,h)) = \frac{f((i+k) \cdot h) + f((i-k) \cdot h)}{2}
\]

\[
D_{kh}(f(i,h)) = \frac{f((i+k) \cdot h) - f((i-k) \cdot h)}{2 \cdot k \cdot h}
\]

\[
\mathcal{D}f(ih) = \left. \frac{\partial f}{\partial x} \right|_{x=i\cdot h}.
\]
Figure 5. — Bi-Cgstab method with nonsymmetric hierarchical preconditioner.

The fine grid is C_f^7 (i.e.) composed of 255×255 points.
Figure 6. — Bi-Cgstab method with nonsymmetric hierarchical preconditioner. The fine grid is C^2_8 (i.e.) composed of 511×511 points.
The general form of the associated compact scheme is then
\[
f_i' + \alpha \frac{f_{i+1}' + f_{i-1}'}{2} + \beta \frac{f_{i+2}' + f_{i-2}'}{2} = \frac{f_{i+1} - f_{i-1}}{2h} + \frac{b f_{i+2} - f_{i-2}}{4h} + \frac{c f_{i+3} - f_{i-3}}{6h}
\]
(5.25)

where \(f_i = f(i, h) \) and \(f_i' = \frac{\partial f}{\partial x} \bigg|_{x = i, h} \).

b) Approximation of \(\frac{\partial^2 f}{\partial x^2} \)

We have here
\[
I_{kh}(f(i, h)) = \frac{f((i + k) \cdot h) + f((i - k) \cdot h)}{2},
\]
\[
D_{kh}(f(i, h)) = \frac{f((i + k) \cdot h) + f((i - k) \cdot h) - 2 \cdot f(i, h)}{(k \cdot h)^2},
\]
\[
\partial f(ih) = \frac{\partial^2 f}{\partial x^2} \bigg|_{x = i, h}.
\]

The general form of the associated compact scheme is then
\[
f_{i''} + \alpha \frac{f_{i+1}'' + f_{i-1}''}{2} + \beta \frac{f_{i+2}'' + f_{i-2}''}{2} = a \frac{f_{i+1} + f_{i-1} - 2 \cdot f_i}{h^2} + b \frac{f_{i+2} + f_{i-2} - 2 \cdot f_i}{4h^2}
\]
\[
+ \frac{f_{i+3} + f_{i-3} - 2 \cdot f_i}{9h^2},
\]
(5.26)

with obvious notations.

c) High order interpolation schemes

One of the main steps of the construction of Incremental Unknowns is the use of an appropriate interpolation scheme: the complementary grid components are interpolated by the coarse grid components. If we set
\[
D_{kh}(f(i, h)) = \frac{f((i + k) \cdot h) + f((i - k) \cdot h)}{2},
\]
\[
I_{kh}(f(i, h)) = \frac{f((i + 2k) \cdot h) + f((i - 2k) \cdot h)}{2},
\]
\[
\partial f(ih) = f(ih),
\]
we obtain the following scheme:
\[
f_{2i+1} + \alpha \frac{f_{2i+3} + f_{2i-1}}{2} + \beta \frac{f_{2i+5} + f_{2i-3}}{2} = a \frac{f_{2i+1} + f_{2i+2}}{2} + b \frac{f_{2i+2} + f_{2i+4}}{2}
\]
\[
+ \frac{f_{2i-4} + f_{2i+6}}{2}.
\]
(5.27)
Hence, we recover in cases a) and b) the stencil of the compact scheme proposed by Lele [16] and in case c) that of the interpolation scheme used in [6] for defining high order IUs.

d) Boundary schemes

Of course all these formulae must be completed with boundary schemes (or closure formulae) for the points that are near the boundary, when the boundary conditions are not periodic.

Following the same approach, we can recover the boundary schemes given by Lele in [16]. We define the following operators:

- \(I_{kh}^b \) is a second order interpolation scheme which interpolates \(f \) with \(f_0 \) and \(f_{k+1} \).
- \(D_{kh}^b(f_1) \) corresponds to a first or second order accurate discretization of \(\mathscr{D}(f(h)) \) in which the boundary term \(f_0 \) appears; the first order is used for the approximation of a PDE’s operator and the second order for an interpolation scheme.

We can now write the boundary scheme (or the closure formula) in the general following form:

\[
\mathscr{D}(f(h)) + \alpha \mathscr{D}(I_{kh}^b(f(h))) + \beta \mathscr{D}(I_{2kh}^b(f(h))) = \sum_{k=1}^{p} a_k D_{kh}^b(f_1) .
\] (5.28)

The real numbers \(\alpha, \beta \) and \(a_k, k=1, \ldots, p \) are computed in order to obtain the same accuracy as in (5.24).

Let us now apply this formula to the construction of compact schemes associated to the discretization of the operators that we have considered in a), b) and c), where homogeneous Dirichlet boundary conditions are considered, (i.e.) \(f_0 = 0 \). For the sake of simplicity, we restrict ourselves to the fourth accuracy case.

1. Closure formula for \(\frac{\partial}{\partial x} \)

We have

\[
f'_1 + \frac{f''_1 + 0}{2} = a_1 \frac{f_1 - f_0}{h} + a_2 \frac{f_2 - f_0}{2h} + a_3 \frac{f_3 - f_0}{3h} + a_4 \frac{f_4 - f_0}{4h} .
\]

We recover the boundary scheme given by Lele by taking \(\alpha = \frac{1}{4} \).

2. Closure formula for \(\frac{\partial^2}{\partial x^2} \)

We have

\[
f''_1 + \alpha \frac{f''_1 + 0}{2} = a_1 \frac{f_2 + f_0 - 2 \cdot f_1}{h^2} + a_2 \frac{f_3 + 2 \cdot f_0 - 3 \cdot f_1}{3 h^2} + a_3 \frac{f_4 + 3 \cdot f_0 - 4 \cdot f_1}{6 h^2} + a_4 \frac{f_5 + 4 \cdot f_0 - 5 \cdot f_1}{10 h^2} .
\]

We recover the boundary scheme given by Lele by taking \(\alpha = \frac{1}{2} \).

3. High Order Interpolation Boundary scheme

We have

\[
f_1 + \alpha \frac{f_2 + f_0 - 2 \cdot f_1}{3} = a_1 \frac{f_2 + f_0}{2} + a_2 \frac{f_3 + 3 \cdot f_0 - 4 \cdot f_1}{4} + a_3 \frac{f_4 + 5 \cdot f_0}{6} .
\]

Taking \(\alpha = \frac{1}{3} \), we recover exactly the coefficients of the closure formula given in [6].
There are many advantages of such a formulation: firstly, it can be extended to nonuniform meshes as we shall see hereafter and secondly, the size of the linear system to be satisfied by the boundary coefficients is generally lower than that obtained when we express the right hand side as \(\sum_{k=0}^{p} a_k f_k \) as, e.g., in [16] for the operators \(\frac{\partial^k}{\partial x^k}, k = 1, 2 \) and in [6] for the interpolation.

5.4.2. The nonuniform mesh case

We now consider a nonuniform mesh characterized by the sequence \(x_i, i = 1, \ldots, 2N - 1 \). In this case, the use of centered schemes for a second accurate approximation of an operator is not appropriate. Futhermore the odd terms of the Taylor's extension of a given scheme are present because of the nonuniformity of the mesh. Consequently, we can not use directly the formalism presented above for the construction of the compact scheme and the order of accuracy is expected to be lower. However we shall see that few modifications of formula (5.24) can give compact schemes with an indeed compact stencil in the fourth accurate case to which we focus. We concentrate on the interpolation schemes; compact schemes for the approximation of PDE's operators will be studied and exploited in a forthcoming work.

a) Definition of \(I_{hk} \) and of \(D_{hk} \)

We set \(f_i = f(x_i) \).

Let \(k \in \mathbb{N}^* \). The Taylor expansions give, setting for convenience \(\partial^p = \frac{\partial^p u}{\partial x^p} \mid x = x_i \):

\[
\begin{align*}
 f_{i+k} - f_i &= f_i + \frac{1}{2} (x_{i+k} - x_i)^2 \partial^2 + \frac{1}{6} (x_{i+k} - x_i)^3 \partial^3 + \frac{1}{24} (x_{i+k} - x_i)^4 \partial^4 + O((\Delta x)^5), \\
 f_{i-k} - f_i &= f_i - \frac{1}{2} (x_{i-k} - x_i)^2 \partial^2 + \frac{1}{6} (x_{i-k} - x_i)^3 \partial^3 + \frac{1}{24} (x_{i-k} - x_i)^4 \partial^4 + O((\Delta x)^5).
\end{align*}
\]

Hence, setting \(a = x_i - x_{i-k} \) and \(b = x_{i+k} - x_i \), we have

\[
I_{hk}^a(f_i) = \frac{a \cdot f_{i+k} + b \cdot f_{i-k}}{a + b} = f_i + \frac{1}{2} ab \partial^2 + \frac{1}{6} ab(b - a) \partial^3 + \frac{1}{24} ab(b^2 - ab + a^2) \partial^4 + O((\Delta x)^5),
\]

for the second accuracy case, and

\[
I_{hk}^b(f_i) = f_{i+k} \quad \text{and} \quad I_{hk}^b(f_i) = f_{i-k}
\]

for the first accuracy case.

For the construction of the closure formulae, we introduce the second order discrete boundary interpolation operator:

\[
I_{hk}^b(f_i) = \frac{(x_i - x_0) \cdot f_k + (x_k - x_1) \cdot f_0}{x_k - x_0}.
\]

The operator \(D_{hk}^1 \), which corresponds to the second order accurate discretization of \(\frac{\partial}{\partial x} \) is given by

\[
D_{hk}^1(f_i) = \frac{a^2 f_{i+k} - b^2 f_{i-k} + (b^2 - a^2) U_j}{ab(b + a)} = \partial^2 + \frac{1}{3} ab \partial^3 + \frac{1}{4} ab(b - a) \partial^4 + O((\Delta x)^5).
\]
Finally, the operator D_{h}^{2}, which corresponds to the second order accurate discretization of $\frac{\partial^2}{\partial x^2}$ is given by

$$D_{h}^{2}(f_i) = \frac{a \cdot f_{i+k} + b \cdot f_{i-k} - (a + b) f_i}{1/2 \cdot ab(a + b)} = \alpha^2 + \frac{1}{3} (b - a) \alpha^3 + \frac{1}{12} (b^2 - ab + a^2) \alpha^4 + O((\Delta x)^4).$$

Remark 5: The above schemes are indeed second order schemes in practical cases. If we assume that $x_t = \omega(i \cdot h)$, where $\omega \in C^2[0,1]$, h being the spatial step size, $h = \frac{1}{N+1}$ when N discretization points are considered, then $b - a = O(h^2)$. Indeed, we have

$$b - a = x_{i+k} + x_{i-k} - 2 \cdot x_i = \omega(i \cdot h + kh) + \omega(i \cdot h - kh) - 2 \cdot \omega(i \cdot h) = (kh)^2 \frac{\partial^2 \omega}{\partial x^2} + o(h^2).$$

We define the compact scheme associated to $\frac{\partial}{\partial x}$ or $\frac{\partial^2}{\partial x^2}$ by

$$\frac{\partial}{\partial x}(f(ih)) + \alpha(i) \frac{\partial^2}{\partial x^2}(f(ih)) = A(i).D_{h}(f_i) + B(i).D_{2h}(f_i).$$

The scheme (5.29) is at most third order accurate if we set $B(i) = 0 \forall i$ and at most fourth order accurate otherwise. The boundary schemes are defined as in (5.28).

Remark 6: We observe that the coefficients of the interpolation compact scheme depend on the indice i. This is not the case when the mesh is uniform.

b) **Fourth order IUs**

b.1 The internal points case

We can now define the fourth order compact schemes aimed at defining the IUs. We have

$$f_{2t+1} + \alpha(i) \cdot I_{2h}^2(f_{2t+1}) = A(i) \cdot I_{2h}^2(f_{2t+1}).$$

If we set $x = x_{2t+2} - x_{2t+1}$, $y = x_{2t+1} - x_{2t}$, $z = x_{2t+1} - x_{2t-1}$ and $t = x_{2t+3} - x_{2t+1}$ then the above scheme is fourth order accurate if $A(i)$ and $\alpha(i)$ satisfy the linear system:

$$\begin{align*}
1 + \alpha(i) &= A(i), \\
z \cdot t \cdot \alpha(i) &= x \cdot y \cdot A(i).
\end{align*}$$

We find $A(i) = \frac{z \cdot t}{z \cdot t - x \cdot y}$ and $\alpha(i) = \frac{x \cdot y}{z \cdot t - x \cdot y}$. Both $A(i)$ and $\alpha(i)$ are well defined since $zt > xy$.

Remark 7: We observe that, as for the approximation of PDE’s operators, the coefficients of the interpolation compact scheme depend on the indice i. Moreover if this process is repeated recursively, then these coefficients will also depend on the grid level.

B.2 The boundary points case

If the boundary conditions are not periodic, we must define an appropriate scheme for the interpolation near the boundaries. The general form of such a scheme is

$$f_1 + \alpha(1) \cdot I_{2h}^b(f_1) = A(1) \cdot I_{2h}^b(f_1) + B(1) \cdot I_{4h}^b(f_1) + C(1) \cdot I_{6h}^b(f_1),$$

vol. 32, n° 5, 1998
where $A(1), B(1), C(1)$ satisfy the system ($\alpha(1)$ is fixed):

$$
\begin{aligned}
1 + \alpha(1) &= A(1) + B(1) + C(1), \\
a \cdot \alpha(1) &= c \cdot A(1) + d \cdot B(1) + e \cdot C(1), \\
a \cdot (a - b) \alpha(1) &= c \cdot (c - b) \cdot A(1) + d \cdot (d - b) \cdot B(1) + e \cdot (e - b) \cdot C(1),
\end{aligned}
$$

(5.33)

where we have set $a = x_3 - x_1$, $b = x_1 - x_0$, $c = x_2 - x_1$, $d = x_4 - x_1$, and $e = x_6 - x_1$.

Of course an analogous system is satisfied for the points that are near the boundary $x = 1$; we do not explicit this system here and in the sequel. We can now define the fourth order IUs on a nonuniform mesh by:

Definition 2: The Incremental Unknowns are the numbers Z_{2i+1} defined by

$$
Z_{2i+1} = u_{2i+1} - \tilde{u}_{2i+1},
$$

where the numbers \tilde{u}_{2i+1} satisfy the linear system

$$
\begin{aligned}
\tilde{u}_1 + \alpha(1) I_{2h}^b(\tilde{u}_1) &= A(1) \cdot I_{2h}^b(u_1) + B(1) \cdot I_{4h}^b(u_1) + C(1) \cdot I_{6h}^b(u_1), \\
\tilde{u}_{2i+1} + \alpha(i) I_{2h}^b(\tilde{u}_{2i+1}) &= A(i) \cdot I_{2h}^b(u_{2i+1}), \quad i = 2, \ldots, N - 2 \\
\tilde{u}_{2N-1} + \alpha(N) I_{2h}^b(\tilde{u}_{2N-1}) &= A(N) \cdot I_{2h}^b(u_{2N-1}) + B(N) \cdot I_{4h}^b(u_{2N-1}) + C(N) \cdot I_{6h}^b(u_{2N-1}),
\end{aligned}
$$

(5.34)

and where $A(i)$ and $\alpha(i)$ are defined by (5.31)-(5.33).

Remark 8: It is possible that the problems (5.31)-(5.33) are very ill-conditioned for meshes that are locally very anisotropic (this is not the case of the Chebyshev-like mesh). The preconditioning of such problems will be addressed in a future work.

5.4.3. Numerical results: compression of the data

We present here some numerical results that illustrate the improvement of the compression of the data when fourth order IUs are used instead of second order IUs which were defined in the previous sections. We have fixed $\alpha = \frac{1}{6}$ in the boundary scheme; this is the value of α in the uniform mesh case. The mesh that we consider in the following examples is of Chebyshev type. We consider the functions:

- example 1: $f(x) = \sin(27 \pi x),$
- example 2: $f(x) = \sin(3 \pi x) e^{6 \sin(6 \pi x)},$
- example 3: $f(x) = \sin(144 \pi x \cdot (1 - x)).$

In examples 2 and 3 the finer grid is composed of 4095 discretization points and of 511 points in example 1.

In the numerical results we give hereafter, we focus on the one hand, on the decay of the euclidian norm of the IUs according to the associated grid level, and on the other hand to the asymptotic behaviour of the ratio

$$
r = \frac{\| Z \|}{\| Y \|} h^k = \sqrt{\frac{\sum_{p=0}^{N-1} Z_{2i+1}^2}{\sum_{p=1}^{N-1} Y_{2i}^2}},
$$

where $Y_{2i} = u_{2i}$, and Z_{2i+1} is the second order IU associated to u_{2i+1} if $k = 2$ and the fourth order IU if $k = 4$.

When $\lim_{h \to 0} r = C$, where C is a constant which depends only on the function u, we have

$$
\| Z \| = \mathcal{O}(h^k \| Y \|),
$$

for h small enough. This means that the numbers Z are indeed k-th order IUs.
Figure 7 — Data compression in space dimension one (a) Decay of the structures according to the grid level to which they belong. Comparison between the second and the fourth order IU's (b) Asymptotic behaviour of $\frac{\|Z\|}{\|Y\| h^k}$ vs the number of discretization points, $k = 2$ for the second order IU's and $k = 4$ for the fourth order ones. The grid is of type C^3_7.
Figure 8. — Data compression in space dimension one. (a) Decay of the structures according to the grid level to which they belong. Comparison between the second and the fourth order IUs. (b) Asymptotic behaviour of $\frac{\|Z\|}{\|Y\| h^k}$ vs the number of discretization points; $k = 2$ for the second order IUs and $k = 4$ for the fourth order ones. The grid is of type $C_{3,10}^3$.
Figure 9. — Data compression. (a) Decay of the structures according to the grid level to which they belong. Comparison between the second and the fourth order IUs. (b) Asymptotic behaviour of $\|Z\|_{\mathcal{H}}$ vs the number of discretization points; $k = 2$ for the second order IUs and $k = 4$ for the fourth order ones. The grid is of type C_{10}.
In figure 7a we consider the discretization of the oscillating function \(f(x) = \sin(2\pi x) \). The associated vector is written in both the IU2 and the IU4 base. We observe that the decay of the IU4 is much more accentuated than the one of the IU2. Indeed in the finest grid we can observe that there is about a factor 1000 between the magnitude of this two types of IUs. Furthermore we can conjecture that \(\lim_{h \to 0} r = C \) (fig. 7b).

In figure 8a the function considered, example 2, has strong gradients near the points \(x = 0.09, 0.42, 0.76 \). As in the previous example, we observe that, starting from a certain grid level, the decay of the magnitude of the IU4 is greater than that of the IU2. We find about a factor 1000. Here again we conjecture that \(\lim_{h \to 0} r = C \) (fig. 8b).

A comparable phenomenon is observed in figure 9a for the function given in example 3; this function, which has \(x = 1/2 \) as symmetric axe, has strong gradients near the points \(x = 0.01, 0.034, 0.057, 0.082, 0.11, 0.14, 0.17, 0.20, 0.24, 0.29, 0.354 \). There is about a factor 10 000 between the euclidian norm of the IU2 and that of the IU4 on the finer grid. As in the previous cases we can expect that \(\lim_{h \to 0} r = C \) (fig. 9b).

In all these 3 cases, we observe that, numerically, and starting from a certain grid level \(j \) we have
\[
\| Z^j \|_l = \mathcal{O}(\| Z^k \|_l^2),
\]
where \(\| Z^k \|_l \) is the euclidian norm of the IUs of order \(k \) on the \(l \)-th grid level.

6. CONCLUSION

In this article we have extended the IU method to the nonuniform case with an amphasis on the compression of data and on the preconditioning (for particular meshes, but we hope in the near future to generalize these hierarchical preconditioners).

We think that the techniques introduced here are new tools for the development and the implementation of Multiresolution methods for solving boundary layer problems in Computational Fluid Dynamics. Moreover, with the extension of the compact schemes, it is thinkable to solve these problems with an accuracy comparable to the spectral one but on more general meshes for which no spectral techniques can be used (typically on an a tanh-type grid). This is also a new illustration of the versatility of the IU method.

REFERENCES

