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A LEGENDRE SPECTRAL COLLOCATION METHOD
FOR THE BIHARMONIC DIRICHLET PROBLEM
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Abstract. A Legendre spectral collocation method is presented for the solution of the biharmonic
Dirichlet problem on a square. The solution and its Laplacian are approximated using the set of
basis functions suggested by Shen, which are linear combinations of Legendre polynomials. A Schur
complement approach is used to reduce the resulting linear system to one involving the approximation
of the Laplacian of the solution on the two vertical sides of the square. The Schur complement system
is solved by a preconditioned conjugate gradient method. The total cost of the algorithm is O(N3).
Numerical results demonstrate the spectral convergence of the method.

Mathematics Subject Classification. 65N35, 65N22.

Received: March 17, 1999. Revised: November 23, 1999.

1. Introduction

The numerical solution of fourth order problems by spectral methods has been the subject of numerous
studies in recent years. A review of various spectral formulations for fourth order problems in one and two
dimensions is given in [1]. Spectral collocation methods have been particularly popular in applications to physical
problems since, in contrast to spectral Galerkin methods, they do not require the evaluation or approximation
of integrals. In [2], spectral collocation methods are studied for the solution of a one dimensional fourth
order problem. In [4], a Legendre spectral collocation method is proposed and analyzed for the biharmonic
equation on a square. However, no algorithm for the solution of the corresponding approximate problem is
discussed. The improvement in the poor conditioning of the spectral discretization of the biharmonic equation
is examined in [10]. A Chebyshev spectral collocation method is applied to the driven cavity problem in [16].
The application of Chebyshev spectral collocation methods with domain decomposition to the steady-state
Navier-Stokes equations (stream function formulation) in complex geometries is investigated in [11,13]. In [12],
a fully conforming Chebyshev spectral collocation scheme is developed for the biharmonic equation in two and
three dimensions. Finally, a spectral collocation method has been applied to fourth order problems in circular
domains in [14]. Further references to the application of spectral methods to fourth order problems can be
found in [7] and [3]. The formulation of the biharmonic Legendre spectral collocation problem in this paper
and the method of its solution are similar to those developed in [15] and [5] for orthogonal spline collocation
with piecewise Hermite bicubics.
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In this study we consider the biharmonic Dirichlet problem

∆2u = f in Ω, u = ∂u/∂n = 0 on ∂Ω, (1.1)

where ∆ denotes the Laplacian, Ω = (−1, 1)× (−1, 1), ∂Ω is the boundary of Ω, and ∂/∂n is the outer normal
derivative on ∂Ω.

In contrast to [4], we use the mixed formulation of (1.1) to obtain approximations to both u and ∆u.
Specifically, we set v = ∆u and discretize a coupled pair of Poisson’s equations in u and v using a Legendre
spectral collocation method with polynomials of degree ≤ N . As collocation points we take the nodes of the
N − 1-point Legendre-Gauss quadrature rather than the Legendre-Gauss-Lobatto points (cf. [4]). Employing
a Schur complement approach, we reduce the collocation problem to a Schur complement system involving an
approximation to v on the two vertical sides of ∂Ω and an auxiliary collocation problem for a related biharmonic
problem with v, instead of ∂u/∂n, specified on the two vertical sides of ∂Ω. The matrix in the Schur complement
system is symmetric and positive definite. (This is not the case when the Legendre-Gauss-Lobatto nodes are used
as collocation points). Consequently, the Schur complement system is solved by the preconditioned conjugate
gradient (PCG) method. A preconditioner is obtained from the auxiliary collocation problem. We conjecture
that the preconditioner is spectrally equivalent to the Schur complement matrix. The cost of multiplying the
Schur complement matrix by a vector and the cost of solving a linear system with the preconditioner are O(N2)
each. With the number of PCG iterations proportional to logN , the cost of solving the Schur complement
system is therefore O(N2 logN). The solution of the auxiliary collocation problem is obtained with cost O(N3)
using separation of variables and the solution of a simple generalized eigenvalue problem which reduces to two
symmetric eigenvalue problems with tridiagonal matrices. The total cost of our algorithm is therefore O(N3).
The algorithm is well suited for parallel implementation since many of its steps involve independent matrix-
vector multiplications. Numerical results demonstrate the spectral convergence rate of the approximations to u
and v in the maximum norm. In comparison, the method of [5], the cost of which is O(N2 logN) on an N ×N
partition, yields fourth order approximations to u and v.

In Section 2 we introduce three polynomial spaces, the corresponding basis functions, and collocation matri-
ces. In Section 3 we develop an efficient method for solving a 1-d spectral collocation problem. The biharmonic
spectral collocation problem and its solution are discussed in Sections 4 and 5, respectively. Numerical results
and conclusions are given in Sections 6 and 7, respectively.

2. Preliminaries

ForN ≥ 4, let {ξi}N−1
i=1 and respectively {wi}N−1

i=1 be the nodes and weights of the N−1-point Legendre-Gauss
quadrature on (−1, 1), and let

D = diag(w1, . . . , wN−1). (2.1)

For p and q defined on {ξi}N−1
i=1 , let

〈p, q〉 =
N−1∑
i=1

wi(pq)(ξi). (2.2)

It follows from the exactness property of the Legendre-Gauss quadrature that

〈p, q〉 =
∫ 1

−1

(pq)(x) dx, pq ∈ P2N−3, (2.3)
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where Pk denotes the set of polynomials of degree ≤ k on (−1, 1). Lemma 3.1 in [8] implies also that

−〈p′′, q〉 =
∫ 1

−1

(p′q′)(x) dx− p′q|1−1 + CNp
(N)q(N), p, q ∈ PN , (2.4)

where CN denotes a generic positive constant that may depend on N .
Let

P 0
N = {p ∈ PN : p(±1) = 0}, P 00

N = {p ∈ P 0
N : p′(±1) = 0}.

(Note that the dimensions of PN , P 0
N , and P 00

N are N + 1, N − 1, and N − 3, respectively.) Following (2.7) and
(3.4) of [17], we introduce the basis {φk}Nk=2 for P 0

N and the basis {ψk}Nk=4 for P 00
N with

φk(x) = ck[Lk−2(x)− Lk(x)], k = 2, . . . , N, (2.5)

ψk(x) = dk [Lk−4(x) + akLk−2(x) + bkLk(x)] , k = 4, . . . , N, (2.6)

where Lk(x) is the kth degree Legendre polynomial normalized by
∫ 1

−1
L2
k(x) dx = 2/(2k + 1), and

ck =
1√

4k − 2
, dk =

1√
2(2k − 5)2(2k − 3)

, ak = −2
2k − 3
2k − 1

, bk =
2k − 5
2k − 1

. (2.7)

Augmenting the basis {ψk}Nk=4 for P 00
N by ψ2, ψ3 ∈ P 0

N such that

ψ′2(−1) = 1, ψ′2(1) = 0, ψ′3(−1) = 0, ψ′3(1) = 1, (2.8)

we obtain the basis {ψk}Nk=2 for P 0
N . Since ψ2, ψ3 ∈ P 0

N and since {φk}Nk=2 is a basis for P 0
N ,

ψ2(x) =
N∑
k=2

αkφk(x), ψ3(x) =
N∑
k=2

βkφk(x), (2.9)

for some {αk}Nk=2 and {βk}Nk=2. Later we will consider a particular choice of {αk}Nk=2 and

βk = (−1)k−1αk, k = 2, . . . , N. (2.10)

Using (2.5)–(2.7) it is easy to verify that

ψk(x) = dk
[
c−1
k−2φk−2(x)− bkc−1

k φk(x)
]
, k = 4, . . . , N. (2.11)

Thus it follows from (2.9)–(2.11) that

[ψ2(x), . . . , ψN (x)] = [φ2(x), . . . , φN (x)]M, (2.12)

where the nonsingular matrix M has the structure shown in Figure 1.
Augmenting the basis {ψk}Nk=2 for P 0

N by

ψ0(x) =
1
2

[L0(x)− L1(x)], ψ1(x) =
1
2

[L0(x) + L1(x)], (2.13)
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Figure 1. Structure of the (N − 1)× (N − 1) matrix M .

we obtain the basis {ψk}Nk=0 for PN , where

ψ0(−1) = 1, ψ0(1) = 0, ψ1(−1) = 0, ψ1(1) = 1. (2.14)

Let

Aψ = (−ψ′′k(ξi))
N−1,N
i=1,k=2, Bψ = (ψk(ξi))

N−1,N
i=1,k=2, (2.15)

Aψ,t = (−ψ′′k(ξi))
N−1,1
i=1,k=0, Bψ,t = (ψk(ξi))

N−1,1
i=1,k=0, (2.16)

Aφ = (−φ′′k(ξi))
N−1,N
i=1,k=2, Bφ = (φk(ξi))

N−1,N
i=1,k=2, (2.17)

where i and k are the row and column indices, respectively. Clearly, (2.16) and (2.13) imply

Aψ,t = 0. (2.18)

It follows from (2.15), (2.17), and (2.12) that

Aψ = AφM, Bψ = BφM. (2.19)

Let

A′φ = BTφDAφ, B′φ = BTφDBφ, (2.20)

where D is given by (2.1). Clearly, B′φ is symmetric and positive definite.

Lemma 2.1. The matrix B′φ has the structure shown in Figure 2 and

A′φ = diag(1, . . . , 1,×), (2.21)

where the element × is positive.

Proof. Equations (2.20), (2.17), and (2.1), imply that the coefficients of B′φ = (b′k,l)
N
k,l=2 and A′φ = (a′k,l)

N
k,l=2

are given by the formulas

b′k,l =
N−1∑
i=1

wi(φkφl)(ξi), a′k,l = −
N−1∑
i=1

wi(φ′′kφl)(ξi), k, l = 2, . . . , N.
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Figure 2. Structure of the (N − 1)× (N − 1) matrix B′φ.

Hence it follows from (2.2), (2.3), and Lemma 2.1 in [17] that in order to prove both claims it suffices to show
that

b′N,N−1 = 0, a′N,N > 0.

For N odd (N − 1 even), we have

bN,N−1 =
(N−1)/2∑
i=1

wi(φNφN−1)(ξi) +
(N−1)/2∑
i=1

wi(φNφN−1)(−ξi) = 0,

where the first identity follows from the symmetry of {wi}N−1
i=1 and the antisymmetry of {ξi}N−1

i=1 about 0, and
the second identity follows from (φNφN−1)(−x) = −(φNφN−1)(x) which is a consequence of (2.5) and (2.7).

For N even (N − 1 odd), using arguments similar to those for odd N , we have

bN,N−1 =
(N−2)/2∑
i=1

wi(φNφN−1)(ξi) +
(N−2)/2∑
i=1

wi(φNφN−1)(−ξi) + (φNφN−1)(0)w1+(N−2)/2 = 0,

where in the last step we also used φN−1(0) = 0 which follows from (2.5) and Lk(0) = 0 for odd k.
Finally, (2.4) applied to p = q = φN and (2.2) imply a′N,N > 0.

Let

A′ψ = BTφDAψ, B′ψ = BTφDBψ. (2.22)

Then it follows from (2.19) and (2.20) that

A′ψ = A′φM, B′ψ = B′φM. (2.23)

Let

B′ψ,t = BTφDBψ,t. (2.24)

Then (2.17), (2.1), (2.16), (2.2), (2.3), (2.5), (2.13), and orthogonality of the Legendre polynomials imply that
that B′ψ,t has the structure shown in Figure 3. Let

Aψ,e = [Aψ,t|Aψ], Bψ,e = [Bψ,t|Bψ], (2.25)
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Figure 3. Structure of the (N − 1)× 2 matrix B′ψ,t.

and let

A′ψ,e = BTφDAψ,e, B′ψ,e = BTφDBψ,e. (2.26)

Then it follows from (2.18), (2.24), (2.22), and (2.23) that

A′ψ,e = [0|A′φM ], B′ψ,e = [B′ψ,t|B′φM ]. (2.27)

3. 1-D Spectral Collocation Problem

Solving the biharmonic problem requires the solution of the following 1-d spectral collocation problem.
For given λ > 0, {gi}N−1

i=1 , {fi}N−1
i=1 , α, and β, consider the problem of finding p ∈ P 0

N and q ∈ PN such that

p(ξi)− λp′′(ξi) + λq(ξi) = gi, i = 1, . . . , N − 1, (3.1)
q(ξi)− λq′′(ξi) = fi, i = 1, . . . , N − 1. (3.2)

p′(−1) = α, p′(1) = β. (3.3)

Theorem 3.1. For λ > 0, there exist unique p ∈ P 0
N and q ∈ PN satisfying (3.1)–(3.3).

Proof. Since in (3.1)–(3.3), the number of unknowns, which is 2N , is equal to the number of equations, we
assume gi = fi = 0, i = 1, . . . , 2N , α = β = 0 and show that p = q = 0. Taking the inner product 〈·, ·〉 with q
on both sides of (3.1) and with p on both sides of (3.2), respectively, we obtain

〈p, q〉 − λ〈p′′, q〉+ λ〈q, q〉 = 0,
〈q, p〉 − λ〈q′′, p〉 = 0. (3.4)

It follows from (2.4) and p(±1) = p′(±1) = 0 that 〈p′′, q〉 = 〈q′′, p〉. Hence (3.4) gives 〈q, q〉 = 0, which implies

q(ξi) = 0, i = 1, . . . , N − 1. (3.5)

From (3.2) and (3.5), we have q′′(ξi) = 0, i = 1, . . . , N − 1, which yields q′′ = 0 since q′′ ∈ PN−2. Thus q ∈ P1

and hence (3.5) and N ≥ 3 imply q = 0.
From (3.1) and (3.5), we have

〈p, p〉 − λ〈p′′, p〉 = 0.

Since, by (2.4), −〈p′′, p〉 ≥ 0, it follows that 〈p, p〉 = 0. Thus p(ξi) = 0, i = 1, . . . , N − 1, which along with
p(±1) = 0 implies p = 0.



A LEGENDRE SPECTRAL COLLOCATION METHOD FOR THE BIHARMONIC DIRICHLET PROBLEM 643

In the remainder of this section we consider a matrix-vector form of (3.1)–(3.3), assuming that {ψk}Nk=2 and
{ψk}Nk=0 are respectively bases for P 0

N and PN introduced in Section 2. Substituting

p(x) =
N∑
k=2

pkψk(x), q(x) =
N∑
k=0

qkψk(x),

into (3.1)–(3.3), and using (2.15), (2.16), (2.25), (2.8), and ψ′k(±1) = 0, k = 4, . . . , N , we obtain

(Bψ + λAψ)~p+ λBψ,e~qe = ~g, (Bψ,e + λAψ,e)~qe = ~f, p2 = α, p3 = β, (3.6)

where

~p = [p2, . . . , pN ]T , ~qe = [q0, . . . , qN ]T , (3.7)

~g = [g1, . . . , gN−1]T , ~f = [f1, . . . , fN−1]T .

Multiplying the first two equations of (3.6) by BTφD, with Bφ and D defined in (2.17) and (2.1), respectively,
and using (2.22), (2.26), we obtain

(B′ψ + λA′ψ)~p+ λB′ψ,e~qe = ~gφ, (B′ψ,e + λA′ψ,e)~qe = ~fφ, p2 = α, p3 = β, (3.8)

where

~gφ = BTφD~g,
~fφ = BTφD

~f. (3.9)

Rewriting ~qe of (3.7) as

~qe = [q0, q1, ~q]T , ~q = [q2, . . . , qN ]T ,

and using (2.23), (2.27), (2.8), ψ′k(±1) = 0, k = 4, . . . , N , and (2.12), we obtain

(B′φ + λA′φ)~pM + λB′φ~qM + λB′ψ,t[q0, q1]T = ~gφ,

(B′φ + λA′φ)~qM +B′ψ,t[q0, q1]T = ~fφ, (3.10)

Cφ~pM = [α, β]T ,

where

~pM = M~p, ~qM = M~q, (3.11)

and

Cφ =
[
φ′2(−1) φ′3(−1) . . . φ′N (−1)
φ′2(1) φ′3(1) . . . φ′N (1)

]
.

Equations (3.10) can be rewritten as

S11 [~pM , ~qM ]T + S12 [q0, q1]T =
[
~gφ, ~fφ

]T
, (3.12)

S21 [~pM , ~qM ]T = [α, β]T , (3.13)
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where

S11 =
[
B′φ + λA′φ λB′φ

O B′φ + λA′φ

]
, (3.14)

and

S12 =
[
λB′ψ,t
B′ψ,t

]
, S21 =

[
Cφ O

]
.

Since B′φ + λA′φ is positive definite, S11 is nonsingular. Hence, using (3.12), we obtain

[~pM , ~qM ]T = S−1
11

[
~gφ, ~fφ

]T
− S−1

11 S12 [q0, q1]T , (3.15)

which upon substitution into (3.13) gives

S [q0, q1]T = S21S
−1
11

[
~gφ, ~fφ

]T
− [α, β]T , (3.16)

where S is the 2× 2 Schur complement matrix given by

S = S21S
−1
11 S12. (3.17)

Thus we have the following algorithm for solving (3.8), assuming that ~gφ and ~fφ are known. (We focus on (3.8),
rather than (3.6), since it is (3.8) which arises in the solution of the 2-d problem.)

Algorithm I.
Step 1: Compute columns of S using (3.17).
Step 2: Compute the right hand side of (3.16).
Step 3: Solve (3.16) for [q0, q1]T .
Step 4: Compute [~pM , ~qM ]T using (3.15).
Step 5: Compute ~p and ~q using (3.11).

Note that in steps 1 and 2 we can save S−1
11 S12 and S−1

11 [~gφ, ~fφ]T which are used in step 4. By (3.14), solving,
in steps 1 and 2, linear systems with S11 involves solving two linear systems with B′φ + λA′φ and multiplication
by λB′φ. It follows from (2.21) and the structure of B′φ (see Fig. 2) that solving a linear system with B′φ + λA′φ
reduces to solving two linear systems with tridiagonal symmetric and positive definite matrices. Step 3 involves
solving a linear system of two equations in two unknowns. It follows from the structure of M (see Fig. 1) that
in step 5, M~p = ~pM (similarly M~q = ~qM ) can be decoupled into two systems, one for p2 − p3 and pk with even
k ≥ 4, and the other for p2 + p3 and pk with odd k ≥ 5. The matrices in these two systems have the structure
shown in Figure 4 and hence each system can be solved with cost O(N). Since each step of Algorithm I requires
at most O(N) operations, the total cost of solving (3.8) is O(N). Of course the cost of computing ~gφ and ~fφ of
(3.9) is O(N2).

4. Biharmonic spectral collocation problem

Introducing v = ∆u in (1.1), we obtain the coupled problem

−∆u+ v = 0 in Ω, −∆v = −f in Ω, u = ∂u/∂n = 0 on ∂Ω. (4.1)
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Figure 4. Structure of the matrices in decoupled systems for M~p = ~pM .

The Legendre spectral collocation problem corresponding to (4.1) consists of finding U ∈ P 00
N ⊗ P 00

N and
V ∈ PN ⊗ PN such that

−∆U(ξi, ξj) + V (ξi, ξj) = 0, −∆V (ξi, ξj) = −f(ξi, ξj), i, j = 1, . . . , N − 1, (4.2)

and

V (a, b) = Vy(a, b) = 0, a, b = ±1. (4.3)

We prove existence and uniqueness of the solution to (4.2)–(4.3) following the proof of Theorem 5.1 in [15]. To
this end, we require an additional notation and two lemmas. For p and q defined on {(x, y) : x, y ∈ {ξi}N−1

i=1 },
let

〈〈p, q〉〉 =
N−1∑
i=1

N−1∑
j=1

wiwj(pq)(ξi, ξj). (4.4)

Lemma 4.1. If U ∈ P 00
N ⊗ P 00

N and V ∈ PN ⊗ PN , then

〈〈−∆U, V 〉〉 = 〈〈U,−∆V 〉〉.

Proof. Since Ux(a, y) = 0, a = ±1, y ∈ [−1, 1], using (2.4), we have

〈〈−Uxx, V 〉〉 = −
N−1∑
j=1

wj〈Uxx(·, ξj), V (·, ξj)〉

=
N−1∑
j=1

wj

[∫ 1

−1

(UxVx)(x, ξj) dx+ CN

(
∂NU

∂xN
∂NV

∂xN

)
(·, ξj)

]
.

In a similar way, using (2.4) and U(a, y) = 0, a = ±1, y ∈ [−1, 1], we obtain

〈〈−Vxx, U〉〉 =
N−1∑
j=1

wj

[∫ 1

−1

(VxUx)(x, ξj) dx+ CN

(
∂NV

∂xN
∂NU

∂xN

)
(·, ξj)

]
.

Therefore 〈〈−Uxx, V 〉〉 = 〈〈U,−Vxx〉〉. By symmetry in x and y we also have 〈〈−Uyy, V 〉〉 = 〈〈U,−Vyy〉〉. Hence
the desired result follows.
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Lemma 4.2. If V ∈ PN ⊗ PN satisfies

V (a, b) = Vy(a, b) = 0, a, b = ±1, (4.5)

then

〈〈Vxx, Vyy〉〉 = 〈〈V, Vxxyy〉〉. (4.6)

Proof. Applying (2.4) with respect to y to the left-hand side of (4.6), we have

〈〈Vxx, Vyy〉〉 =
N−1∑
i=1

wi〈Vyy(ξi, ·), Vxx(ξn, ·)〉

= −
N−1∑
i=1

wi

∫ 1

−1

(VyVxxy)(ξi, y) dy

+
N−1∑
i=1

wi(VyVxx)(ξi, y)|y=1
y=−1 − CN

N−1∑
i=1

wi

(
∂NV

∂yN
∂N+2V

∂yN∂x2

)
(ξi, ·).

(4.7)

Applying (2.4) to the second term on the right-hand side in (4.7), we obtain, for y = ±1,

N−1∑
i=1

wi(VyVxx)(ξi, y) = 〈Vxx(·, y), Vy(·, y)〉

= −
∫ 1

−1

(VxVyx)(x, y) dx+ (VxVy)(x, y)|x=1
x=−1 − CN

(
∂NV

∂xN
∂N+1V

∂xN∂y

)
(·, y).

(4.8)

Applying (2.4) to the first term on the right-hand side in (4.8), we obtain, for y = ±1,

−
∫ 1

−1

(VyxVx)(x, y) dx =
N−1∑
i=1

wi(VyxxV )(ξi, y)− (VyxV )(x, y)|x=1
x=−1 + CN

N−1∑
i=1

wi

(
∂N+1V

∂xN∂y

∂NV

∂xN

)
(·, y). (4.9)

Substituting (4.9) into (4.8) and using (4.5), we have

N−1∑
i=1

wi(VyVxx)(ξi, y) =
N−1∑
i=1

wi(VyxxV )(ξi, y), y = ±1. (4.10)

Applying (2.4) with respect to y to the right-hand side of (4.6), we also obtain

〈〈V, Vxxyy〉〉 =
N−1∑
i=1

wi〈Vxxyy(ξi, ·), V (ξi, ·)〉

= −
N−1∑
i=1

wi

∫ 1

−1

(VxxyVy)(ξi, y) dy

+
N−1∑
i=1

wi(VxxyV )(ξi, y)|y=1
y=−1 − CN

N−1∑
i=1

wi
∂N+2V

∂yN∂x2

∂NV

∂yN
(ξi, .)·

(4.11)

Comparing the right-hand sides of (4.7) and (4.11), and using (4.10), we obtain (4.6).

Theorem 4.3. There exist unique U ∈ P 00
N ⊗ P 00

N and V ∈ PN ⊗ PN satisfying (4.2)–(4.3).
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Proof. Since the number of unknown coefficients in U and V , which is N2 − 4N + 10, is equal to the number
of equations in (4.2)–(4.3), it suffices to show that if U and V satisfy (4.2)–(4.3) with f = 0, then U = V = 0.

Taking the inner product 〈〈·, ·〉〉 with V on both sides of the first equation in (4.2), we obtain

〈〈−∆U, V 〉〉 + 〈〈V, V 〉〉 = 0. (4.12)

Similarly, taking the inner product 〈〈·, ·〉〉 with U on both sides of the second equation in (4.2), we obtain

〈〈−∆V,U〉〉 = 0. (4.13)

From (4.12), (4.13), and Lemma 4.1, we have 〈〈V, V 〉〉 = 0, which implies

V (ξi, ξj) = 0, i, j = 1, . . . , N − 1. (4.14)

Thus, by the first equation in (4.2),

−∆U(ξi, ξj) = 0, i, j = 1, . . . , N − 1.

Using this equation, (2.4) with respect to x and y, and U = 0 on ∂Ω, we have

0 = 〈〈−∆U,U〉〉 = −
N−1∑
j=1

wj〈Uxx(·, ξj), U(·, ξj)〉 −
N−1∑
i=1

wi〈Uyy(ξi, ·), U(ξi, ·)〉

≥
N−1∑
j=1

wj

∫ 1

−1

U2
x(x, ξj) dx+

N−1∑
i=1

wi

∫ 1

−1

U2
y (ξi, y) dy,

which along with U = 0 on ∂Ω implies that U = 0 on the horizontal and vertical lines passing through the
points (ξi, ξj), i, j = 1, . . . , N−1. This and U = 0 on ∂Ω imply further that U = 0 on all horizontal and vertical
lines passing through Ω, and hence U = 0.

To show that V = 0, we use the second equation in (4.2) (with f = 0), Lemma 4.2 , and (4.14) to obtain

0 = 〈〈∆V,∆V 〉〉 = 〈〈Vxx, Vxx〉〉+ 2〈〈Vxx, Vyy〉〉+ 〈〈Vyy , Vyy〉〉
= 〈〈Vxx, Vxx〉〉+ 2〈〈V, Vxxyy〉〉+ 〈〈Vyy , Vyy〉〉 = 〈〈Vxx, Vxx〉〉+ 〈〈Vyy, Vyy〉〉.

Hence

Vxx(ξi, ξj) = Vyy(ξi, ξj) = 0, i, j = 1, . . . , N − 1,

which along with (4.14) implies that V = 0 on the horizontal and vertical lines passing through the points
(ξi, ξj), i, j = 1, . . . , N − 1. This and V (a, b) = 0, a, b = ±1, imply in turn that V = 0 on ∂Ω. Therefore, V = 0
on all horizontal and vertical lines passing through Ω, and hence V = 0.

Let the functions {ψk}Nk=0 be as in Section 2 with {αk}Nk=2 of (2.9) yet to be specified and {βk}Nk=2 as in
(2.10). Since {ψk}Nk=4, {ψk}Nk=2, and {ψk}Nk=0 form bases for P 00

N , P 0
N , and PN , respectively, and since ψ0, ψ1

and ψ2, ψ3 satisfy (2.14) and (2.8), respectively, for U ∈ P 00
N ⊗ P 00

N and V ∈ PN ⊗ PN satisfying (4.3), we have

U(x, y) =
N∑
k=2

N∑
l=4

uk,lψk(x)ψl(y) (4.15)

with

u2,l = u3,l = 0, l = 4, . . . , N, (4.16)
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and

V (x, y) =
N∑
k=2

N∑
l=0

vk,lψk(x)ψl(y) +
1∑
k=0

N∑
l=4

vk,lψk(x)ψl(y). (4.17)

Note that in (4.15) we included

3∑
k=2

N∑
l=4

uk,lψk(x)ψl(y)

assuming (4.16) and we did not include

1∑
k=0

3∑
l=0

vk,lψk(x)ψl(y) (4.18)

in (4.17) since (4.3), ψ2(±1) = ψ3(±1) = 0, (2.14), and (2.8) imply that all the coefficients in (4.18) are zero.
Corresponding to (4.15) and (4.17) we introduce the vectors

~u = [u2,4, . . . , u2,N , . . . , uN,4, . . . , uN,N ]T , (4.19)

~u2,· = [u2,4, . . . , u2,N ]T , ~u3,· = [u3,4, . . . , u3,N ]T , (4.20)

~v = [v2,0, . . . , v2,N , . . . , vN,0, . . . , vN,N ]T , (4.21)

~v0,· = [v0,4, . . . , v0,N ]T , ~v1,· = [v1,4, . . . , v1,N ]T . (4.22)

Note that ~u2,· and ~u3,· of (4.20) are the first two subvectors of ~u in (4.19).
Let Aψ, Bψ, Aψ,t, Bψ,t, and Aψ,e, Bψ,e be the matrices introduced in (2.15), (2.16), and (2.25), respectively,

and let the two additional matrices Aψ,r, Bψ,r be defined by

Aψ,r = (−ψ′′k(ξi))
N−1,N
i=1,k=4, Bψ,r = (ψk(ξi))

N−1,N
i=1,k=4. (4.23)

Substituting (4.15) and (4.17) into (4.2), using the matrix definitions, (2.18), and (4.16), we obtain

(Aψ ⊗Bψ,r +Bψ ⊗Aψ,r)~u+ (Bψ ⊗Bψ,e)~v + (Bψ,t ⊗Bψ,r) [~v0,·, ~v1,·]
T = ~0, (4.24)

(Aψ ⊗Bψ,e +Bψ ⊗Aψ,e)~v + (Bψ,t ⊗Aψ,r) [~v0,·, ~v1,·]
T = ~f, (4.25)

~u2,· = −~u3,· = ~0, (4.26)

where

~f = [f1,1, . . . , f1,N−1, . . . , fN−1,1, . . . , fN−1,N−1]T (4.27)

with fi,j = −f(ξi, ξj).
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5. Solving the biharmonic spectral collocation problem

In this section we present a method for solving (4.24)–(4.26).

5.1. Formulation of the method

Let Ik be the k × k identity matrix. Multiplying (4.24) and (4.25) by BTφD ⊗ BTφD, (4.26) by BTψ,rDBψ,r
and using (2.22)–(2.24), (2.26), we obtain

(A′φ ⊗B′ψ,r +B′φ ⊗A′ψ,r)(M ⊗ IN−3)~u+ (B′φ ⊗B′ψ,e)(M ⊗ IN+1)~v + (B′ψ,t ⊗B′ψ,r) [~v0,·, ~v1,·]
T = ~0, (5.1)

(A′φ ⊗B′ψ,e +B′φ ⊗A′ψ,e)(M ⊗ IN+1)~v + (B′ψ,t ⊗A′ψ,r) [~v0,·, ~v1,·]
T = ~fφ, (5.2)

BTψ,rDBψ,r~u2,· = −BTψ,rDBψ,r~u3,· = ~0, (5.3)

where

A′ψ,r = BTφDAψ,r, B′ψ,r = BTφDBψ,r, (5.4)

~fφ = (BTφD ⊗BTφD)~f. (5.5)

Lemma 5.1. The matrix of the linear system (5.1)–(5.3) is nonsingular.

Proof. Clearly, Bψ of (2.15) is nonsingular since p = 0 is the only p ∈ P 0
N such that p(ξi) = 0, i = 1, . . . , N − 1.

Hence the rank of the (N − 1) × (N − 3) matrix Bψ,r of (4.23) is N − 3. This implies nonsingularity of the
(N−3)×(N−3) matrix BTψ,rDBψ,r since BTψ,rDBψ,r ~w = ~0 yields ~wT (D1/2Bψ,r)TD1/2Bψ,r ~w = 0, D1/2Bψ,r ~w =
~0, Bψ,r ~w = ~0, and ~w = ~0. The desired result follows now from the nonsingularity of BTφD, BTψ,rDBψ,r, and the
matrix in (4.24)–(4.26), which is guaranteed by the uniqueness of the solution to (4.2)–(4.3).

Equations (5.1)–(5.3) can be written as

S11 [~u,~v]T + S12 [~v0,·, ~v1,·]
T =

[
~0, ~fφ

]T
, (5.6)

S21 [~u,~v]T = ~0, (5.7)

where

S11 =
[

(A′φ ⊗B′ψ,r +B′φ ⊗A′ψ,r)(M ⊗ IN−3) (B′φ ⊗B′ψ,e)(M ⊗ IN+1)
O (A′φ ⊗B′ψ,e +B′φ ⊗A′ψ,e)(M ⊗ IN+1)

]
, (5.8)

S12 =
[
B′ψ,t ⊗B′ψ,r
B′ψ,t ⊗A′ψ,r

]
, (5.9)

S21 =
[
BTψ,rDBψ,r O O

O −BTψ,rDBψ,r O

]
. (5.10)

Note that the two blocks BTψ,rDBψ,r in S21 of (5.10) correspond to multiplications by ~u2,· and ~u3,· in (5.3).
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Lemma 5.2. The matrix S11 of (5.8) is nonsingular.

Proof. With ~u and ~v of the forms (4.19) and (4.21), respectively, the equations

(Aψ ⊗Bψ,r +Bψ ⊗Aψ,r)~u+ (Bψ ⊗Bψ,e)~v = ~0, (Aψ ⊗Bψ,e +Bψ ⊗Aψ,e)~v = ~0,

are the matrix-vector representations of the following spectral collocation problem: find U ∈ P 0
N ⊗ P 00

N , V ∈
P 0
N ⊗ PN , such that

−∆U(ξi, ξj) + V (ξi, ξj) = 0, −∆V (ξi, ξj) = 0, i, j = 1, . . . , N − 1.

It can be shown, using an approach similar to the proof of Theorem 4.3, that the only solution to this problem
is U = V = 0 which gives ~u = ~v = ~0. This and the nonsingularity of BTφD imply the nonsingularity of S11.

Since S11 is nonsingular, eliminating [~u,~v]T from (5.6)–(5.7), we obtain

S [~v0,·, ~v1,·]
T = S21S

−1
11

[
~0, ~fφ

]T
, (5.11)

where S is the 2(N − 3)× 2(N − 3) Schur complement matrix given by

S = S21S
−1
11 S12. (5.12)

Lemma 5.3. The matrix S of (5.12) is nonsingular.

Proof. The matrix S is nonsingular since it is the Schur complement of the nonsingular S11 (see Lem. 5.2) in

the nonsingular
[
S11 S12

S21 O

]
(see Lem. 5.1).

We arrive at the following algorithm for solving (4.24)–(4.26).

Algorithm II.
Step 1: Compute ~fφ of (5.5).
Step 2: Compute the right-hand side of (5.11).
Step 3: Solve (5.11) for ~v0,· and ~v1,·.
Step 4: Solve (5.6) for ~u and ~v.

In the following subsections we explain how to solve linear systems with S11 (involved in steps 2,4) and S
(involved in step 3).

5.2. Solving systems with S11

Let vectors ~u, ~v, and ~f be of the forms (4.19), (4.21), and (4.27), respectively, and let

~g = [g1,1, . . . , g1,N−1, . . . , gN−1,1, . . . , gN−1,N−1]T . (5.13)

Then, by (5.8), the system

S11 [~u,~v]T =
[
~g, ~f
]T

(5.14)

is equivalent to

(A′φ ⊗B′ψ,r +B′φ ⊗A′ψ,r)(M ⊗ IN−3)~u+ (B′φ ⊗B′ψ,e)(M ⊗ IN+1)~v = ~g,

(A′φ ⊗B′ψ,e +B′φ ⊗A′ψ,e)(M ⊗ IN+1)~v = ~f.
(5.15)



A LEGENDRE SPECTRAL COLLOCATION METHOD FOR THE BIHARMONIC DIRICHLET PROBLEM 651

We rewrite (5.15) as

(A′φ ⊗B′ψ +B′φ ⊗A′ψ)(M ⊗ IN−1)~ue + (B′φ ⊗B′ψ,e)(M ⊗ IN+1)~v = ~g,

(A′φ ⊗B′ψ,e +B′φ ⊗A′ψ,e)(M ⊗ IN+1)~v = ~f,

BTψDBψ~u·,2 = ~α, −BTψDBψ~u·,3 = ~β,

(5.16)

where

~ue = [u2,2, u2,3, . . . , u2,N , . . . , uN,2, uN,3, . . . , uN,N ]T , (5.17)

~u·,2 = [u2,2, u3,2 . . . , uN,2]T , ~u·,3 = [u2,3, u3,3 . . . , uN,3]T , (5.18)

and

~α = [α2, . . . , αN ]T , ~β = [β2, . . . , βN ]T . (5.19)

Note that ~ue in (5.17) is an extension of ~u in (4.19) with the components of ~u·,2 and ~u·,3 in (5.18) added to ~u.
Consequently, (5.16) is obtained from (5.15) by replacing ~u, A′ψ,r, and B′ψ,r with ~ue, A′ψ, and B′ψ, respectively,
and by adding two additional equations for ~u·,2 and ~u·,3.

Note also that (5.14) (equivalently (5.15)) is a special case of (5.16) with ~α = ~β = ~0.

Lemma 5.4. The matrix of the linear system (5.16) is nonsingular.

Proof. The desired result follows easily from nonsingularity of BTψDBψ and S11.

Since A′φ and B′φ of (2.20) are symmetric and A′φ is positive definite, it follows from Corollary 8.7.2 in [9]
that there exists a real nonsingular (N − 1)× (N − 1) matrix Z and real

Λ = diag(λ2, . . . , λN ) (5.20)

such that

ZTA′φZ = IN−1, ZTB′φZ = Λ. (5.21)

Since Z of (5.21) and M of (2.12) are nonsingular, (5.16) is equivalent to

(ZT ⊗ IN−1)(A′φ ⊗B′ψ +B′φ ⊗A′ψ)(Z ⊗ IN−1)~u′e + (ZT ⊗ IN−1)(B′φ ⊗B′ψ,e)(Z ⊗ IN+1)~v′ = ~g′,

(ZT ⊗ IN−1)(A′φ ⊗B′ψ,e +B′φ ⊗A′ψ,e)(Z ⊗ IN+1)~v′ = ~f ′, (5.22)

ZTM−TBTψDBψM
−1Z~u′·,2 = ~α′, −ZTM−TBTψDBψM−1Z~u′·,3 = ~β′,

where ~u′e and ~v′ are such that

~ue = (W ⊗ IN−1)~u′e, ~v = (W ⊗ IN+1)~v′, ~u·,2 = W~u′·,2, ~u·,3 = W~u′·,3, (5.23)

with

W = M−1Z, (5.24)
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and

~g′ = (ZT ⊗ IN−1)~g, ~f ′ = (ZT ⊗ IN−1)~f, ~α′ = WT ~α, ~β′ = WT ~β. (5.25)

The vectors ~u′e, ~v′, ~u′·,2, ~u′·,3, ~g′, ~f ′, and ~α′, ~β′ have the same forms as ~ue of (5.17), ~v of (4.21), ~u·,2, ~u·,3 of (5.18),
~g of (5.13), ~f of (4.27), and ~α, ~β of (5.19), respectively. In the following, the components of the primed vectors
are denoted by the primed letters corresponding to the unprimed vectors. For example,

~u′e = [u′2,2, u
′
2,3, . . . , u

′
2,N , . . . , u

′
N,2, u

′
N,3, . . . , u

′
N,N ]T .

Using (2.19), (2.20), and (5.21) in (5.22), we obtain

(IN−1 ⊗B′ψ + Λ⊗A′ψ)~u′e + (Λ⊗B′ψ,e)~v′ = ~g′,

(IN−1 ⊗B′ψ,e + Λ⊗A′ψ,e)~v′ = ~f ′,

Λ~u′·,2 = ~α′,−Λ~u′·,3 = ~β′,

which, by (5.20), become

(B′ψ + λkA
′
ψ)~u′k,· + λkB

′
ψ,e~v

′
k,· = ~g′k,·, (B

′
ψ,e + λkA

′
ψ,e)~v

′
k,· = ~f ′k,·, u

′
k,2 = α′k/λk, u

′
k,3 = −β′k/λk, (5.26)

for k = 2, . . . , N , where

~u′k,· = [u′k,2, . . . , u
′
k,N ]T , ~v′k,· = [v′k,0, . . . , v

′
k,N ]T ,

and

~g′k,· = [g′k,1, . . . , g
′
k,N−1]T , ~f ′k,· = [f ′k,1, . . . , f

′
k,N−1]T .

Since B′φ is positive definite, it follows from the second equation in (5.21) that Λ is also positive definite and
hence, by (5.20), λk > 0, k = 2, . . . , N . Clearly (5.26) is of the same form as (3.8) with λ > 0.

It follows from (2.21) and the structure of B′φ (see Fig. 2) that the computation of Λ and Z satisfying (5.20)
and (5.21) reduces to solving two symmetric eigenvalue problems with tridiagonal matrices. With the use of the
QR algorithm for evaluating eigenvalues and the inverse iteration for evaluating the corresponding eigenvectors,
Λ and Z can be precomputed with cost O(N2). Also W of (5.24) can be precomputed with cost O(N2) since
solving a linear system with M requires O(N) operations.

We are now in a position to formulate the following algorithm for solving (5.16).

Algorithm III.
Step 1: Compute ~g′, ~f ′, ~α′, and ~β′ using (5.25).
Step 2: For k = 2, . . . , N , solve (5.26) using Algorithm I of Section 3 for solving (3.8).
Step 3: Compute ~ue and ~v using (5.23).

Steps 1 and 3 require O(N3) operations each while the cost of step 2 is O(N2). Hence the total cost of
Algorithm III is O(N3).

In the remainder of this section we discuss the cost of Algorithm III for two special cases of (5.16).
In the first special case we assume that ~α = ~β = ~0 and that ~g, ~f are such that

gk,l = fk,l = 0, k = 3, . . . , N − 1, l = 1, . . . , N − 1. (5.27)

Also we assume that only components {u2,l}Nl=4 and {u3,l}Nl=4 of ~ue need to be computed when solving (5.16).
Let

~g·,l = [g1,l, . . . , gN−1,l]T , ~f·,l = [f1,l, . . . , fN−1,l]T , l = 1, . . . , N − 1.



A LEGENDRE SPECTRAL COLLOCATION METHOD FOR THE BIHARMONIC DIRICHLET PROBLEM 653

In this case, in step 1 of Algorithm III, for each l = 1, . . . , N − 1, ZT~g·,l and ZT ~f·,l are obtained by computing
the corresponding liner combinations of the first 2 rows of Z. This can be done at a cost O(N2) for all l. As in
the general case, the cost of step 2 remains O(N2). In step 3, for each l = 4, . . . , N , u2,l and u3,l are obtained
by computing the inner products of the first two rows of W with [u′2,l, . . . , u

′
N,l]

T . This can be done at a cost
O(N2) for all l. Hence in this special case, the cost of Algorithm III is O(N2).

In the second special case we assume that ~g = ~f = ~0 and that only components {vk,0}Nk=4 and {vk,1}Nl=4 of ~v
need to be computed when solving (5.16). In step 1 of Algorithm III two multiplications by WT are performed
to obtain ~α′ and ~β′ at a cost O(N2). As in the general case, the cost of step 2 remains O(N2). In step 3 two
multiplications by W are performed to obtain {vk,0}Nk=2 and {vk,1}Nk=2 with cost O(N2). Hence, in this special
case, the total cost of Algorithm III for computing the desired components of ~v is O(N2).

5.3. Solving systems with S

First, following the proof of Theorem 4.1 in [5], we show that the matrix S of (5.12) is symmetric and positive
definite. We start by proving the following lemma.

Lemma 5.5. Assume U ∈ P 0
N ⊗ P 00

N and V ∈ PN ⊗ PN . Then

〈〈∆U, V 〉〉 = 〈〈U,∆V 〉〉+
N−1∑
j=1

wj(UxV )(·, ξj)|1−1,

where 〈〈·, ·〉〉 is defined in (4.4).

Proof. It follows from (2.4) and (2.2) that

N−1∑
i=1

wi(p′′q)(ξi) =
N−1∑
i=1

wi(pq′′)(ξi) + (p′q)|1−1 − (pq′)|1−1, p, q ∈ PN . (5.28)

Hence, using (5.28) and U(a, y) = 0, a = ±1, y ∈ [−1, 1], we have

N−1∑
i=1

wi(UxxV )(ξi, ξj) =
N−1∑
i=1

wi(UVxx)(ξi, ξj) + (UxV )(·, ξj)|1−1, j = 1, . . . , N − 1. (5.29)

In a similar way, using (5.28) and U(x, b) = Uy(x, b) = 0, x ∈ [−1, 1], b = ±1, we obtain

N−1∑
j=1

wj(UyyV )(ξi, ξj) =
N−1∑
j=1

wj(UVyy)(ξi, ξj), i = 1, . . . , N − 1. (5.30)

Multiplying (5.29) by wj , j = 1, . . . , N − 1, and summing with respect to j, and then multiplying (5.30) by wi,
i = 1, . . . , N − 1, and summing with respect to i, we obtain the desired result.

Theorem 5.6. The matrix S of (5.12) is symmetric and positive definite.

Proof. By (5.12), S = ST is equivalent to(
S21S

−1
11 S12

[
~v

(1)
0,· , ~v

(1)
1,·

]T
,
[
~v

(2)
0,· , ~v

(2)
1,·

]T)
R2(N−3)

=
(
S21S

−1
11 S12

[
~v

(2)
0,· , ~v

(2)
1,·

]T
,
[
~v

(1)
0,· , ~v

(1)
1,·

]T)
R2(N−3)

(5.31)

for any

~v
(n)
0,· = [v(n)

0,4 , . . . , v
(n)
0,N ]T , ~v

(n)
1,· = [v(n)

1,4 , . . . , v
(n)
1,N ]T , n = 1, 2.
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For n = 1, 2, let

~u(n) = [u(n)
2,4 , . . . , u

(n)
2,N , . . . , u

(n)
N,4, . . . , u

(n)
N,N ]T

and

~v(n) = [v(n)
2,0 , . . . , v

(n)
2,N , . . . , v

(n)
N,0, . . . , v

(n)
N,N ]T

be such that

S11

[
~u(n), ~v(n)

]T
+ S12

[
~v

(n)
0,· , ~v

(n)
2N+1,·

]T
= ~0. (5.32)

Then (5.31) becomes

−
(
S21

[
~u(1), ~v(1)

]T
,
[
~v

(2)
0,· , ~v

(2)
1,·

]T)
R2(N−3)

= −
(
S21

[
~u(2), ~v(2)

]T
,
[
~v

(1)
0,· , ~v

(1)
1,·

]T)
R2(N−3)

.

By (5.10), the last equation is the same as

(DBψ,r~u
(1)
3,· , Bψ,r~v

(2)
1,· )RN−1 − (DBψ,r~u

(1)
2,· , Bψ,r~v

(2)
0,· )RN−1

= (DBψ,r~u
(2)
3,· , Bψ,r~v

(1)
1,· )RN−1 − (DBψ,r~u

(2)
2,· , Bψ,r~v

(1)
0,· )RN−1 , (5.33)

where, for n = 1, 2,

~u
(n)
2,· = [u(n)

2,4 , . . . , u
(n)
2,N ]T , ~u

(n)
3,· = [u(n)

3,4 , . . . , u
(n)
3,N ]T .

To prove (5.33), we note, using (5.8) and (5.9), that (5.32) multiplied on the left by[
(BTφD)−1 ⊗ (BTφD)−1 O

O (BTφD)−1 ⊗ (BTφD)−1

]
is the matrix-vector form of the spectral collocation problem

−∆U (n)(ξi, ξj) + V (n)(ξi, ξj) = 0, −∆V (n)(ξi, ξj) = 0, i, j = 1, . . . , N − 1, (5.34)

where U (n) and V (n) are given by (4.15) and (4.17), respectively, with uk,l replaced by u
(n)
k,l and vk,l replaced

by v(n)
k,l . Since U (n) ∈ P 0

N ⊗ P 00
N and V (n) ∈ PN ⊗ PN , it follows from (5.34) and Lemma 5.5 that

〈〈V (1), V (2)〉〉 = 〈〈∆U (1), V (2)〉〉 =
N−1∑
j=1

wj(U (1)
x V (2))(·, ξj)|1−1.

In a similar way, we also have

〈〈V (1), V (2)〉〉 = 〈〈V (1),∆U (2)〉〉 =
N−1∑
j=1

wj(U (2)
x V (1))(·, ξj)|1−1,

and hence

N−1∑
j=1

wj(U (1)
x V (2))(·, ξj)|1−1 =

N−1∑
j=1

wj(U (2)
x V (1))(·, ξj)|1−1. (5.35)
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Using representations of U (n) and V (n) (cf. (4.15) and (4.17)), (2.8), and (2.14), it is easy to verify that (5.35)
is the same as (5.33). This completes the proof of S = ST .

To show that S is positive definite, we observe, using the first part of the proof with ~v(2)
0,· = ~v

(1)
0,· and ~v(2)

1,· = ~v
(1)
1,· ,

that (
S
[
~v

(1)
0,· , ~v

(1)
1,·

]T
,
[
~v

(1)
0,· , ~v

(1)
1,·

]T)
R2(N−3)

= (DBψ,r~u
(1)
3,· , Bψ,r~v

(1)
1,· )RN−1 − (DBψ,r~u

(1)
2,· , Bψ,r~v

(1)
0,· )RN−1

=
N−1∑
j=1

wj(U (1)
x V (1))(·, ξj)|1−1 = 〈〈V (1), V (1)〉〉,

which shows that S is nonnegative definite. Since S = ST and S is nonsingular (see Lem. 5.3), it follows that
S is positive definite.

It follows from Theorem 5.6 that the PCG method is a good candidate for solving the linear system with
S. Therefore, in the following, we discuss matrix-vector multiplications involving S, the selection of a precon-
ditioner, and the solution of a linear system with this preconditioner.

It follows from (5.12) that in order to multiply by S, we have to first multiply by S12, then solve with S11,
and finally multiply by S21. Let ~v0,· and ~v1,· be of the forms given in (4.22) and let

[~g, ~f ]T = S12[~v0,·, ~v1,·]T ,

where ~g and ~f have the forms given in (5.13) and (4.27), respectively. Then, by (5.9),

~g = (B′ψ,t ⊗ IN−1)(I2 ⊗B′ψ,r)[~v0,·, ~v1,·]T (5.36)

and

~f = (B′ψ,t ⊗ IN−1)(I2 ⊗A′ψ,r)[~v0,·, ~v1,·]T . (5.37)

Hence the computation of ~g and ~f requires 2 multiplications by B′ψ,r, 2 multiplications by A′ψ,r, and 2(N − 1)

multiplications by B′ψ,t. It follows from (2.22), (2.15), (4.23), (5.4) that A′ψ = [
...
...|A′ψ,r] and B′ψ = [

...
...|B′ψ,r], where

the symbol
...
... denotes the first two columns of the matrix appearing on the left-hand side. Hence the products

of A′ψ,r and B′ψ,r with a vector can be obtained by computing the products of A′ψ and B′ψ with the augmented
vector whose first two components are set to zero. By (2.23), (2.21), and the structures of M and B′φ (see Figs.
1 and 2), all the required multiplications by A′ψ,r and B′ψ,r involve O(N) operations. It also follows from the
structure of B′ψ,t (see Fig. 3) that all the required multiplications by B′ψ,t take O(N) operations. Hence the
total cost of multiplying by S12 is O(N).

With ~u and ~v of the forms (4.19) and (4.21), it remains to solve (5.14) and then compute S21[~u,~v]T . Note
that only the subvectors ~u2,· and ~u3,· of ~u are needed for multiplication by S21 of (5.10). Moreover, (5.36),
(5.37), and the structure of B′ψ,t (see Fig. 3) imply that the components of ~g and ~f satisfy (5.27). Hence, it
follows from the discussion in Section 5.2 of the first special case of (5.16) that computing ~u2,· and ~u3,· requires

O(N2) operations. Finally, (2.15) and (4.23) imply that BTψDBψ = [
...
...|Bψ,r]TD[

...
...|Bψ,r]. But (2.19) and (2.20)

give BTψDBψ = MTB′φM . Hence BTψ,rDBψ,r~u2,· and BTψ,rDBψ,r~u3,· can be computed with cost O(N) by taking
advantage of the structures of M and B′φ (see Figs. 1 and 2).

Thus the total cost of multiplying a vector by S is O(N2).
In the remainder of this section we select a preconditioner for S and discuss the solution of a linear system

with this preconditioner. First, interchanging the roles of the x and y coordinates and replacing ~ue, ~u·,2, ~u·,3,
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and ~v with ~w, ~w2,·, ~w3,·, and ~z, respectively, we rewrite (5.16) with ~g = ~f = ~0 to obtain

(A′ψ ⊗B′φ +B′ψ ⊗A′φ)(IN−1 ⊗M)~w + (B′ψ,e ⊗B′φ)(IN+1 ⊗M)~z = ~0,
(A′ψ,e ⊗B′φ +B′ψ,e ⊗A′φ)(IN+1 ⊗M)~z = ~0,
BTψDBψ ~w2,· = ~α, −BTψDBψ ~w3,· = ~β,

(5.38)

where

~w = [w2,2, w2,3, . . . , w2,N , . . . , wN,2, wN,3, . . . , wN,N ]T ,

~w2,· = [w2,2, w2,3 . . . , w2,N ]T , ~w3,· = [w3,2, w3,3 . . . , w3,N ]T ,

~z = [z0,2, . . . , z0,N , . . . , zN,2, . . . , zN,N ]T . (5.39)

(Of course solving (5.38) is equivalent to solving (5.16) with ~g = ~f = ~0.) We split the vector ~z of (5.39) into
two parts,

~zr = [z2,2, . . . , z2,N , . . . , zN,2, . . . , zN,N ]T

and

~z0,· = [z0,2, . . . , z0,N ]T , ~z1,· = [z1,2, . . . , z1,N ]T .

(The vector ~zr can be viewed as a restriction of ~z with the components of ~z0,· and ~z1,· being removed from ~z.)
Then (5.38) can be written as

P11 [~w, ~zr]
T + P12 [~z0,·, ~z1,·]

T = ~0,

P21 [~w, ~zr]
T =

[
~α, ~β

]T
,

(5.40)

where

P11 =
[

(A′ψ ⊗B′φ +B′ψ ⊗A′φ)(IN−1 ⊗M) (B′ψ ⊗B′φ)(IN−1 ⊗M)
O (A′ψ ⊗B′φ +B′ψ ⊗A′φ)(IN−1 ⊗M)

]
, (5.41)

P12 is the block multiplying [~z0,·, ~z1,·]T , and

P21 =
[
BTψDBψ O O

O −BTψDBψ O

]
. (5.42)

Note that the two blocks BTψDBψ in P21 correspond to multiplications by ~w2,· and ~w3,·.

Lemma 5.7. The matrix P11 of (5.41) is nonsingular.

Proof. With ~ue of the form (5.17), the equation (Aψ⊗Bψ+Bψ⊗Bψ)~ue = ~0 is the matrix-vector representation
of the following spectral collocation problem: find U ∈ P 0

N ⊗ P 0
N such that

−∆U(ξi, ξj) = 0, i, j = 1, . . . , N − 1.

It can be shown, using an approach similar to the proof of Theorem 4.3, that the only solution to this problem
is U = 0 which implies the nonsingularity of (Aψ ⊗ Bψ + Bψ ⊗Aψ). Hence this, (2.22), (2.20), (2.19), and the
nonsingularity of BTφD imply the nonsingularity of P11.
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Since P11 is nonsingular, eliminating [~w, ~zr]
T from (5.40), we obtain

P [~z0,·, ~z1,·]
T = −

[
~α, ~β

]T
, (5.43)

where the 2(N − 1)× 2(N − 1) Schur complement matrix

P = P21P
−1
11 P12. (5.44)

Theorem 5.8. The matrix P is symmetric and positive definite.

Proof. The proof of this theorem is similar to that of Theorem 5.6. First we observe that P is nonsingular since

it is the Schur complement of the nonsingular P11 (see Lem. 5.7) in the nonsingular
[
P11 P12

P21 O

]
(see Lem.

5.4). Then we prove that P = PT and that P is nonnegative definite. This and the nonsingularity of P imply
that P is positive definite.

For arbitrary ~α and ~β, the solution of (5.43) can be obtained by solving (5.40) for ~z0,· and ~z1,· or, equivalently,
(5.16) with ~g = ~f = ~0, for the components {vk,0}Nk=2 and {vk,1}Nk=2 of ~v.

As a preconditioner for S we take the 2(N − 3)× 2(N − 3) matrix P̃ which arises from eliminating z0,2, z0,3,
z1,2, and z1,3 in (5.43). Clearly such a P̃ is symmetric and positive definite, being the Schur complement of a
symmetric and positive definite submatrix in the symmetric and positive definite P . Moreover, for arbitrary
{αk}Nk=4 and {βk}Nk=4, the solution of the system

P̃ [z0,4, . . . , z0,N , z1,4, . . . , z1,N ]T = −[α4, . . . , αN , β4, . . . , βN ]T (5.45)

can be obtained by solving (5.43), with α2 = α3 = β2 = β3 = 0, for {z0,k}Nk=4 and {z1,k}Nk=4. Hence, we find the
solution of (5.45) by solving (5.16) with ~g = ~f = ~0 and α2 = α3 = β2 = β3 = 0, for the components {vk,0}Nk=4

and {vk,1}Nk=4 of ~v. It follows from the discussion in Section 5.2 of the second special case of (5.16) that the
cost of computing these components is O(N2).

Finally, we explain how to select the functions ψ2 and ψ3 of (2.9) and (2.8). This selection is motivated by
making

κ2(P̃−1/2SP̃−1/2) = λmax(P̃−1S)/λmin(P̃−1S)

independent of N , where for symmetric and positive definite A, κ2(A) = λmax(A)/λmin(A). Equations (5.12)
and (5.10) imply that

S =
[

Ψr O
O Ψr

] [
R(1) R(2)

R(3) R(4)

]
, (5.46)

where

Ψr = BTψ,rDBψ,r,

[
R(1) R(2)

R(3) R(4)

]
=
[
IN−3 O O
O −IN−3 O

]
S−1

11 S12.

In a similar way, using (5.44) and (5.42), we have

P =
[

Ψ O
O Ψ

] [
Q(1) Q(2)

Q(3) Q(4)

]
, (5.47)
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Table 1. κ2(P̃−1/1S.P̃−1/2)

N κ2(P̃−1/2SP̃−1/2)

10 1.56
20 1.63
30 1.65
40 1.66
50 1.67
60 1.67
70 1.67

where

Ψ = BTψDBψ,

[
Q(1) Q(2)

Q(3) Q(4)

]
=
[
IN−1 O O
O −IN−1 O

]
P−1

11 P12.

It follows from (2.15), (4.23), (2.1), and (2.2) that

Ψ =
[

Ψ11 Ψ12

ΨT
12 Ψr

]
,

where

Ψ11 =
[
〈ψ2, ψ2〉 〈ψ2, ψ3〉
〈ψ3, ψ2〉 〈ψ3, ψ3〉

]
, Ψ12 =

[
〈ψ2, ψ4〉 · · · 〈ψ2, ψN−1〉
〈ψ3, ψ4〉 · · · 〈ψ3, ψN−1〉

]
.

If Ψ12 = 0, then substituting (5.47) into (5.43) and eliminating [z0,2, z0,3]T , [z1,2, z1,3]T , we see that P̃ has the
form

P̃ =
[

Ψr O
O Ψr

] [
Q̃(1) Q̃(2)

Q̃(3) Q̃(4)

]
. (5.48)

Therefore, by (5.46) and (5.48), the block
[

Ψr O
O Ψr

]
is canceled in P̃−1S. For ψ2 and ψ3 of (2.9) satisfying

(2.8) and

〈ψ2, ψk〉 = 0, 〈ψ3, ψk〉 = 0, k = 4, . . . , N, (5.49)

the results of Table 1 show that κ2(P̃−1/2SP̃−1/2) is bounded from above by a positive constant which is
independent of N . For the simpler choice

ψ2(x) =
1
10

[L3(x) − L1(x)]− 1
6

[L2(x)− L0(x)], ψ3(x) =
1
10

[L3(x)− L1(x)] +
1
6

[L2(x)− L0(x)],

κ2(P̃−1/2SP̃−1/2) grows rapidly as N → ∞ since the block
[

Ψr O
O Ψr

]
is not canceled in P̃−1S and κ2(Ψr)

grows rapidly as N →∞.
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Figure 5. Structure of the matrices in decoupled systems for (5.50).

It follows from (2.9), (5.49), (2.8), (2.11), 〈φk, φl〉 = 0, k, l = 2, . . . , N , l 6= k, k ± 2, and φ′k(−1) =
(−1)k−1φ′k(1), k = 2, . . . , N , that finding {αk}Nk=2 is equivalent to solving the system



× × ×
× × ×

× × × ×
. . . . . . . . . . . .

× × × ×
× × ×

× × ×
−× × −× × −× · · · −× × −×
× × × × × · · · × × ×





α2

...

...

...

...

...

...

...
αN



=



0
...
...
...
...
...
0
1
0



. (5.50)

For {βk}Nk=2 the last two components on the right-hand side are to be switched which implies (2.10). System
(5.50) can be decoupled into two systems, one for αk with even k and the other for αk with odd k. The matrices
in these two systems have the structure shown in Figure 5 and hence each system can be solved with cost O(N).

5.4. Cost of solving the biharmonic spectral collocation problem

We now give the cost of solving (4.24)–(4.26) using Algorithm II of Section 5.1.
As discussed in Section 5.2, we precompute Λ and Z of (5.20) and (5.21) and W of (5.24) with cost O(N2).

Also, as discussed in Section 5.3, we precompute {αk}Nk=2 in (2.9) with cost O(N).
Step 1 of Algorithm II involves computing ~fφ of (5.5) and it requires O(N3) operations since Bφ is full.
Step 2 involves solving (5.14) with ~g = ~0 and then computing S21[~u,~v]T . Only the subvectors ~u2,· and ~u3,· of

~u are needed when solving (5.14). These subvectors are computed with cost O(N3) since the cost of computing
~f ′ in step 1 of Algorithm III is O(N3). (Note that ~g′, ~α′, ~β′ need not be computed in step 1 of Algorithm III
since they are ~0. Also, in step 3 of Algorithm III, ~u2,· and ~u3,· can be computed with cost O(N2).) Then, it
follows from the discussion in Section 5.3 that the cost of computing S21[~u,~v]T is O(N). Thus the cost of step 2
is O(N3).

Step 3 is carried out using the PCG method with P̃ as a preconditioner for S. It follows from Section 5.3
that the cost of each PCG iteration, involving multiplication by S and solution with P̃ , is O(N2). Hence with
the number of the PCG iterations proportional to logN the cost of step 3 is O(N2 logN).
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Table 2. Maximum absolute error for numerical example.

N ‖u− U‖∞ ‖v − V ‖∞
12 0.11(+1) 0.11(+3)
16 0.25(–1) 0.44(+1)
20 0.26(–3) 0.59(–1)
24 0.16(–5) 0.36(–3)
28 0.45(–8) 0.11(–5)
32 0.71(–11) 0.16(–8)

Table 3. CPU times.

N CPU time (secs)
16 0.52
32 3.09
48 9.59
64 21.23

In step 4, we first compute S12[~v0,·, ~v1,·]T and then solve with S11. It follows from Section 5.3 that the cost
of computing S12[~v0,·, ~v1,·]T is O(N). The cost of solving with S11 is O(N3) since the cost of computing ~f ′ in
step 1 of Algorithm III is O(N3). (Note that in step 1 of Algorithm III, ~g′ can be computed with cost O(N2)
since it follows from (5.36) and the structure of B′ψ,t (see Fig. 3) that the components of ~g are as in (5.27). Of
course ~α′ = ~β′ = ~0 and hence they need not be computed.) Hence step 4 costs O(N3).

Therefore, the total cost of solving the spectral collocation problem is O(N3).

6. Numerical results

We solved (1.1) with

f(x, y) = 128π4[cos(4πx) cos(4πy)− sin2(2πx) cos(4πy)− cos(4πx) sin2(2πy)].

The exact solution of this problem, which was also considered by Shen [17] and Bjørstad and Tjøstheim [6], is
u = sin2(2πx) sin2(2πy). The number of iterations in the PCG part of our method was taken to be 2 logN .
In Table 2 we present the maximum absolute error in u and v = ∆u on a uniform (0.02) × (0.02) grid for
different values of N . The exponential convergence achieved is shown in Figure 6 where we present the graph of
the logarithm of the maximum absolute error versus N. In Table 3, we present the CPU times required for the
solution of the problem on a RS6000-250 workstation for various values of N , including the cost of precomputing
the matrices Λ, Z, W , and the coefficients {αk}Nk=2. From the table it is clear that the CPU times grow roughly
like N3.

7. Conclusions

In this study we considered the numerical solution of the biharmonic Dirichlet problem on a square by
a Legendre spectral collocation method. A mixed formulation approach was used to rewrite the biharmonic
equation as a system of two coupled Poisson’s equations for the unknown solution and its Laplacian. The solution
of the Legendre spectral collocation problem for the two Poisson’s equations was reduced to the solution of a



A LEGENDRE SPECTRAL COLLOCATION METHOD FOR THE BIHARMONIC DIRICHLET PROBLEM 661

-30

-25

-20

-15

-10

-5

0

5

10 15 20 25 30

M
a
x
i
m
u
m
 
E
r
r
o
r

N

’U’
’V’

Figure 6. Logarithm of the maximum absolute error versus N.

Schur complement system for the Laplacian of the approximate solution on two vertical sides of the square.
Since the Schur complement matrix is symmetric and positive definite, the Schur system was solved by the PCG
method with the preconditioner obtained from an auxiliary problem. The total cost of the proposed algorithm is
O(N3) which is comparable to the cost of state-of-the-art spectral Galerkin methods. An important advantage
of the mixed formulation approach is that in addition to an approximation of the solution, we also obtain
automatically an approximation to its Laplacian. The spectral convergence of these two approximations is
demonstrated numerically on a test problem from the literature.

The extension of the proposed method to complex geometries is presently under investigation. So far we have
examined the application of the domain decomposition approach to the formulation and solution of a Legendre
spectral collocation problem for Poisson’s equation on a L-shaped region decomposed into three rectangles. The
approximate solution is continuous throughout the region and its normal derivatives coincide at the collocation
points on two interfaces. Firstly, the self-adjoint and positive definite approximate problem on the interfaces
is solved using the PCG method. Subsequently, three independent approximate problems on three rectangles
are solved efficiently using a matrix decomposition technique similar to the one described in this paper. We
hope that a similar domain decomposition approach will allow us to formulate and solve a Legendre spectral
collocation problem for the biharmonic equation on a L-shaped region and, in general, on regions which are
unions of rectangles with sides parallel to the coordinate axes.
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