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ON THE CONVERGENCE OF A LINEAR TWO-STEP FINITE ELEMENT
METHOD FOR THE NONLINEAR SCHRÖDINGER EQUATION ∗

Georgios E. Zouraris
1

Abstract. We discretize the nonlinear Schrödinger equation, with Dirichlet boundary conditions, by
a linearly implicit two-step finite element method which conserves the L2 norm. We prove optimal
order a priori error estimates in the L2 and H1 norms, under mild mesh conditions for two and three
space dimensions.
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1. Introduction

1.1. The i.b.v. problem

Let d = 1, 2 or 3, and Ω ⊂ Rd be a bounded domain with smooth boundary ∂Ω. For t∗ > 0, we set I∗ := [0, t∗]
and consider the following initial and boundary value problem for the nonlinear Schrödinger equation:

wt = i∆w + if(|w|2)w in Ω× I∗,
w = 0 on ∂Ω× I∗, (1.1)

w(x, 0) = w0(x) for x ∈ Ω,

where w0 : Ω−→C and f ∈ C3([0,+∞);R) are given functions. The nonlinear Schrödinger equation, often,
appears as a model in mathematical physics (see [1, 7, 8, 16, 22, 26]); for more information on the theory and
applications we refer to [5, 6, 10, 14, 15, 17, 19, 21, 25] and the references therein. In the sequel, we will assume
that problem (1.1) admits a unique solution which is sufficiently smooth for our purposes.

1.2. Notation and preliminaries

For integer s ∈ N0, we denote by Hs(Ω) the Sobolev space consisting of complex-valued functions which,
along with their distributional derivatives of order up to s, are in L2(Ω), and by ‖ · ‖s the corresponding norm.
The inner product on L2(Ω) = H0(Ω) is denoted by (·, ·) and the associated norm by ‖ · ‖. H1

0 (Ω) consists of
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the functions of H1(Ω) that vanish at ∂Ω in the sense of trace. In addition, for m ∈ N and for u, v ∈ (L2(Ω))m

we use (u, v) :=
∑m
j=1(uj , vj) and ‖u‖ := {(u, u)}1/2. Finally, we set H := H1

0 (Ω) ∩ C(Ω), and denote by | · |p
the standard norm on Lp(Ω) for p ≥ 2 (i.e. | · |2 = ‖ · ‖).

We mention the Poincaré–Friedrichs inequality

‖v‖ ≤ CΩ‖∇v‖, ∀v ∈ H1
0 (Ω), (1.2)

and the Sobolev–type inequalities

|v|∞ ≤ C1,∞‖∇v‖
1
2 ‖v‖ 1

2 , ∀v ∈ H1
0 (Ω), d = 1, (1.3)

and

|v|s ≤ C2,s ‖∇v‖
s−2
s ‖v‖

2
s , ∀s ∈ [2,+∞), ∀v ∈ H1

0 (Ω), d = 2. (1.4)

For an integer r ≥ 2, let {Sh}h∈(0,1) be a family of finite dimensional subspaces of H satisfying

inf
χ∈Sh

{
‖v − χ‖+ h‖v − χ‖1

}
≤ C hs‖v‖s, ∀v ∈ Hs(Ω) ∩H1

0 (Ω), s = 2, . . . , r, ∀h ∈ (0, 1).

For h ∈ (0, 1), we define the discrete Laplacian ∆h : Sh−→Sh by

(∆hϕ, χ) = −(∇ϕ,∇χ), ∀ϕ, χ ∈ Sh,

an elliptic projection operator Rh : H1(Ω)−→Sh by

(∇Rhv,∇χ) = (∇v,∇χ), ∀v ∈ H1(Ω), ∀χ ∈ Sh,

and finally Ph will be the L2–projection operator onto Sh. The elliptic projection Rh has the following approx-
imation property (cf., e.g., [23])

‖Rhv − v‖+ h‖Rhv − v‖1 ≤ CR hs‖v‖s, ∀v ∈ Hs(Ω) ∩H1
0 (Ω), s = 2, . . . , r, ∀h ∈ (0, 1), (1.5)

and obviously satisfies

‖∇Rhv‖ ≤ ‖∇v‖, ∀v ∈ H1(Ω), ∀h ∈ (0, 1). (1.6)

We will say that f has the property (D), if there exists % ≥ 1 such that

|f ′(x2)x| ≤ C
D

(
1 + x%−1

)
, ∀x > 0. (1.7)

1.3. The numerical method

Let h ∈ (0, 1), N ∈ N, k := t∗

N , tn := nk for n = 0, . . . , N , and t1/2 := t0 + k
2 . Let, also, W 0

h ∈ Sh be a given
approximation of w0. First, we construct an approximation W 1/2

h ∈ Sh of w(·, t1/2) by

W
1/2
h −W 0

h

(k/2)
= i∆h

(
W

1/2
h +W 0

h

2

)
+ iPh

[
f(|W 0

h |2)

(
W

1/2
h +W 0

h

2

)]
. (1.8a)

Then, for m = 1, . . . , N , we define an approximation Wm
h ∈ Sh to w(·, tm) recursively by

W 1
h −W 0

h

k
= i∆h

(
W 1
h +W 0

h

2

)
+ iPh

[
f(|W 1/2

h |2)
(
W 1
h +W 0

h

2

)]
(1.8b)
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and

Wn
h −Wn−2

h

2k
= i∆h

(
Wn
h +Wn−2

h

2

)
+ iPh

[
f(|Wn−1

h |2)
(
Wn
h +Wn−2

h

2

)]
, n = 2, . . . , N. (1.8c)

Remark 1.1. By dropping (1.8a) and setting W 1/2
h = W 0

h in (1.8b), an alternative method is obtained. For
this method, our analysis also applies, but W 1

h is a suboptimal order approximation of w(·, t1) in the H1 norm.
This is the reason that the “fractional” step (1.8a) has been introduced.

Remark 1.2. Let h ∈ (0, 1). For given ϕ ∈ Sh and λ > 0, we define Th(λ, ϕ; ·) : Sh−→Sh by

Th(λ, ϕ;χ) := χ− ikλ∆hχ− iλkPh(f(|ϕ|2)χ) for χ ∈ Sh.

To ensure that the method (1.8) is well-defined
(
i.e. the existence and uniqueness of W 1/2

h and {Wn
h }Nn=1

)
,

it is enough to show that Th(λ, φ; ·) is invertible. Let ψ ∈ Sh be such that Th(λ, ϕ;ψ) = 0. Then, we have
Re(Th(λ, ϕ;ψ), ψ) = 0, or Re

[
‖ψ‖2 + iλk‖∇ψ‖2 − iλk(f(|ϕ|2), |ψ|2)

]
= ‖ψ‖2 = 0, which yields ψ = 0. Hence,

we conclude that Th(λ, ϕ; ·) is one–to–one. Since Th(λ, ϕ; ·) is linear and the space Sh has finite dimension, the
fact that it is one-to-one yields its invertibility.

Remark 1.3. Taking the L2 inner product of (1.8a) with W
1/2
h +W 0

h , of (1.8b) with W 1
h +W 0

h and of (1.8c)
with Wn

h +Wn−2
h , and then real parts, we conclude that ‖W 1/2

h ‖ = ‖W 0
h‖ and ‖W `

h‖ = ‖W 0
h‖ for ` = 0, . . . , N .

Thus the method (1.8) is L2 conservative.

1.4. Main results and relations to previous work

The time discretization in (1.8c) in conjuction with a finite difference method for the space discretization is
proposed in [9] for the numerical approximation of a nonlinear Schrödinger equation in one space dimension and
with periodic boundary conditions. An optimal order error bound of O(k2 + h2) in a discrete L2 norm is, also,
given, only in the case of a cubic Schrödinger equation, where f(x) = λx and λ ∈ R. This convergence result is
based on the fact that the method conserves a discrete Hamiltonian which for d = 1 yields boundedness of the
numerical approximations in the discrete L∞ norm by a constant which is independent of the partition of the
time and space intervals (cf. (5) in [9] and Rem. 2.22 in Sect. 2.5). In the case of a general nonlinearity this
conservation property fails and thus a different technique is needed to prove convergence.

The paper at hand is devoted to the convergence analysis of the method (1.8). We prove an optimal order
error bound of O(k2 + hr) in the L2 norm and of O(k2 + hr−1) in the H1 norm, whithout conditions when
d = 1, and under the following mild mesh conditions√

| ln(h)| hr−1 ≤ C2,a and
√
| ln(h)| (k 3

2 + hr) ≤ C2,b when d = 2, (1.9)

or

hr−1 ≤ C3,a

√
h and k

3
2 + hr ≤ C3,b

√
h when d = 3; (1.10)

here C2,a, C2,b, C3,a and C3,b are constants which depend only on the solution and the data, and h is the
minimum of the diameter of the elements of the partition of Ω over which the finite element space is constructed
(see Th. 2.14, Th. 2.15 and Rem. 2.16). Also, if d = 2 and f satisfies (D), then we prove an optimal order error
bound O(k2 + hr) in the L2 norm and a suboptimal one of O(k

3
2 + hr−1 + k−

1
2 hr) in the H1 norm, provided

that

k2 + hr ≤ C
√
k, (1.11)



392 G.E. ZOURARIS

where C is a constant which depends only on the solution and the data (see Th. 2.21).
Usually, the analysis of numerical methods for the nonlinear Schrödinger equation is based on inverse in-

equalities between norms on the finite element spaces for quasiuniform or local quasiuniform partitions of Ω
(see, e.g., [2, 3, 11–13, 18, 20, 24]). Here, when d = 1, or d = 2 and f has a polynomial growth satisfying (D),
we obtain, for the method (1.8), optimal order of convergence in the L2 norm, avoiding inverse inequalities or
assumptions on the finite element spaces (as e.g. the H1-boundedness assumption of the L2-projection Ph used
in [12]) besides those of Section 1.2. However, for general f and d = 2 or 3, we need an inverse inequality
between the L∞ and the H1 norm, and therefore h appears in (1.9) and (1.10).

To arrive at the mesh conditions (1.9), (1.10) or (1.11), we prove convergence estimates in the L2 and H1

norm, for the approximations generated by a modified scheme which is a nonlinear perturbation of (1.8) at the
linearized term (see (Λ) and (Υ) in Sect. 2.3). Then the mesh conditions, exhibited above, are introduced to
ensure that the modified approximations are bounded in the L∞ or in the H1 norm, by a constant independent
of the discretization parameters. Having this boundness property the modified scheme coincides with (1.8)
and hence the convergence estimates for it hold also for (1.8). The analysis here has been inspired from the
works [12] and [24], but there the methods under consideration, the techniques used and the results obtained
are different.

The analysis and the results of the paper extend, easily, to the method obtained substituting (1.8c) by

Wn
h −Wn−2

h

2k
= i∆h

(Wn
h +Wn−2

h

2

)
+ iPh

[
f(|Wn−1

h |2)Wn−1
h

]
which is a nonconservative implicit-explicit method and, as (1.8), yields only one linear system of algebraic
equations at every time level, but the matrix remains unchanged.

An overview of the paper is as follows. Section 2 is divided in five parts. In Section 2.1, we prove some
function inequalities often used in the convergence analysis, and in Section 2.2 present a consistency result
for the time discretization. Section 2.3 contains the definition of the modified schemes and Section 2.4 the
convergence theorems for a general function f . Finally, in Section 2.5 we investigate the special case where
d = 2 and f satisfies the property (D).

2. Convergence analysis

2.1. Function inequalities

We present here some function inequalities that we will often use later.

Lemma 2.1. For u1, u2 ∈ C(Ω) and g ∈ C1([0,+∞);R), we have

‖g(|u1|2)− g(|u2|2)‖ ≤ sup
x∈I(u1,u2)

|g′(x)| (|u1|∞ + |u2|∞) ‖u1 − u2‖ (2.1)

with I(u1, u2) :=
[
0,max{|u1|2∞, |u2|2∞}

]
.

Lemma 2.2. For u1, u2, w1, w2 ∈ C(Ω) and g ∈ C2(R;R), we have

‖g(u1)− g(u2)− g(w1) + g(w2)‖ ≤ sup
|x|∈I1(u1,u2,w1,w2)

|g′′(x)| |w1 − w2|∞
(
‖u1 − w1‖+ ‖u2 − w2‖

)
+ sup
|x|∈I2(u1,u2)

|g′(x)| ‖(u1 − u2)− (w1 − w2)‖, (2.2)

with I1(u1, u2, w1, w2) :=
[
0,max{|u1|∞ + |u2|∞, |w1|∞ + |w2|∞}

]
and I2(u1, u2) :=

[
0, |u1|∞ + |u2|∞

]
.
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Proof. (2.2) follows directly from the following expansion

g(u1)− g(u2)− g(w1) + g(w2) = (w1 − w2)
∫ 1

0

[
g′((1− τ)u2 + τu1)− g′((1− τ)w2 + τw1)

]
dτ

+
[
(u1 − u2)− (w1 − w2)

] ∫ 1

0

g′((1− τ)u2 + τu1)dτ.

Lemma 2.3. For u1, u2, w1, w2 ∈ C(Ω), we have∥∥|u1|2 − |u2|2 − |w1|2 + |w2|2
∥∥ ≤ 2|w1 − w2|∞‖u2 − w2‖

+B(u1, u2, w1, w2)‖(u1 − w1)− (u2 − w2)‖, (2.3)

with B(u1, u2, w1, w2) := max{|u1|∞ + |w1|∞, |u2|∞ + |w2|∞}.

Proof. We obtain (2.3) observing that

(|u1|2 − |w1|2)− (|u2|2 − |w2|2) = Re
{[

(u1 − w1)− (u2 − w2)
]
(u1 + w1)

+(u2 − w2)
[
(u1 − w1)− ( u2 − w2 )

]
+2(u2 − w2)( w1 − w2 )

}
.

Lemma 2.4. Let F : C2−→C be defined by F (z, ω) := f̃(|z|)ω where f̃(x) := f(x2) for x ∈ R. If d = 2 and f
satisfies (1.7), then, for u1, u2, w1, w2 ∈ C(Ω) with u1 − w1, u2 − w2 ∈ H1

0 (Ω), we have

‖F (u1, u2)− F (w1, w2)‖ ≤ C
(
‖u1 − w1‖+ ‖u2 − w2‖

)[
1 +

2∑
j=1

(
|wj |%∞ + ‖∇(uj − wj)‖%

)]
. (2.4)

Proof. Let u1, u2, w1, w2 ∈ C(Ω) with u1 − w1, u2 − w2 ∈ H1
0 (Ω). Observing that

|F (z1, z2)− F (ω1, ω2)| ≤ C
(
|z1 − ω1|+ |z2 − ω2|

)[
1 +

(
|ω1|+ |ω2|+ |z1 − ω1|+ |z2 − ω2|

)%]
for z1, z2, ω1, ω2 ∈ C, and using (1.4), we obtain

‖F (u1, u2)− F (w1, w2)‖ ≤ C
[∫

Ω

[
1 + (|w1|+ |w2|)2%

](
|u1 − w1|+ |u2 − w2|

)2dx

+
∫

Ω

(
|u1 − w1|+ |u2 − w2|

)2%+2dx
]1/2

≤ C
[(

1 + |w1|2%∞ + |w2|2%∞
)(
‖u1 − w1‖2 + ‖u2 − w2‖2

)
+ ‖u1 − w1‖2‖∇(u1 − w1)‖2% + ‖u2 − w2‖2‖∇(u2 − w2)‖2%

]1/2
which yields (2.4).
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2.2. Consistency

We continue by presenting a consistency result concerning the time discretization.
For n = 0, . . . , N , we define σn ∈ L2(Ω) by

w`
∗
n − wj∗n
λnk

=
i
2

∆(w`
∗
n + wj

∗
n) +

i
2
f(|wi∗n |2)(w`

∗
n + wj

∗
n) + σn, (2.5)

where w1/2 := w(·, t1/2), wm := w(·, tm) for m = 0, . . . , N , λ0 := 1/2, λ1 := 1, λm := 2 for m = 2, . . . , N ,
`∗0 := 1/2, `∗m := m for m = 1, . . . , N , i∗0 := 0, i∗1 := 1/2, i∗m := m − 1 for m = 2, . . . , N , and j∗0 := 0, j∗1 := 0,
j∗m := m− 2 for m = 2, . . . , N . Then, using Taylor expansions, we arrive at

max
1≤n≤N

‖σn‖+ k‖σ0‖ ≤ Ck2 and max
4≤n≤N

‖σn − σn−2‖ ≤ Ck3. (2.6)

2.3. Modified Schemes

Modifying properly the linearized term in the numerical method (1.8), we construct two modified schemes,
(Λ) and (Υ), which we will use later in the convergence analysis. A modified scheme is connected to a real
parameter δ > 0 and a given norm of H, and it is not a numerical method. When the approximations that the
scheme furnishes are bounded in that norm by δ, then they coincide with those that (1.8) produces provided, of
course, that the initial approximation is the same. Even that the original method (1.8) is linear, the modified
scheme will be nonlinear. Hence, we cannot ensure the existence of the modified approximations following the
argument of Remark 1.2. For this reason, we shall employ the following Brouwer-type fixed-point lemma, for a
proof of which we refer to [3].

Lemma 2.5. Let (X , (·, ·)X ) be a finite-dimensional inner product space and ‖ · ‖X the associated norm. Let
µ : X−→X be continuous and assume that there exists α > 0 such that for every z ∈ X with ‖z‖X = α there
holds Re(µ(z), z)X ≥ 0. Then, there exists a z∗ ∈ X such that µ(z∗) = 0 and ‖z∗‖X ≤ α.

• Modified Scheme (Λ): Let δ > supt∈I∗ |w(·, t)|∞ and gδ be an increasing C2(R;R) function, with bounded
derivatives up to second order, satisfying

gδ(x) :=
{
x, if |x| ≤ δ
2 x
|x|δ, if |x| > 2δ and gδ(x) ∈

{
[δ, 2δ] if x ∈ [δ, 2δ]
[−2δ,−δ] if x ∈ [−2δ,−δ] for x ∈ R.

Then, we define a function γδ : C−→C by γδ(z) = gδ(Rez) + igδ(Imz).
For h ∈ (0, 1) and m = 0, 1/2, 1, . . . , N , let Λmδ,h ∈ Sh be specified inductively by

Λ0
δ,h = Rhw

0 (2.7a)

and

Λ`
∗
m

δ,h − Λj
∗
m

δ,h

λmk
= i∆h

(
Λ`
∗
m

δ,h + Λj
∗
m

δ,h

2

)
+ iPh

[
f(|γδ(Λi

∗
m

δ,h)|2)γδ

(
Λ`
∗
m

δ,h + Λj
∗
m

δ,h

2

)]
(2.7b)

for m = 0, . . . , N .

Remark 2.6. It is easily seen that γδ(w(·, τ)) = w(·, τ) and γδ(
w(·,τ1)+w(·,τ2)

2 ) = w(·,τ1)+w(·,τ2)
2 for τ, τ1, τ2 ∈ I∗,

where w is the solution of (1.1). Thus, the consistency argument for the method (1.8) (cf. Sect. 2.2) holds also
for (2.7).
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Remark 2.7. Assuming that |Λ0
δ,h|∞ ≤ δ and |Λ`

∗
m

δ,h|∞ ≤ δ for m = 0, . . . , N , we obtain f(|γδ(Λi
∗
m

δ,h)|2) =

f(|Λi
∗
m

δ,h|2) and γδ
(Λ

`∗m
δ,h+Λ

j∗m
δ,h

2

)
=

Λ
`∗m
δ,h+Λ

j∗m
δ,h

2 for m = 0, . . . , N . Hence, if W 0
h = Rhw

0, then Λ`
∗
m

δ,h = W
`∗m
h for

m = 0, . . . , N .

We ensure the existence of a Λ`
∗
m

δ,h ∈ Sh which solves the nonlinear system in (2.7b), by an argument based
on Lemma 2.5. In particular, let m ∈ {0, . . . , N}, h ∈ (0, 1), (X , (·, ·)X ) = (Sh, (·, ·)) and Πm

δ,h : X−→X be an
operator given by

Πm
δ,h(χ) := χ− Λj

∗
m

δ,h −
i
2
λmk∆hχ−

i
2
λmkPh

[
f(|γδ(Λi

∗
m

δ,h)|2)γδ(χ)
]
;

Πm
δ,h is continuous, since γδ is continuous and Sh has finite dimension. Then, we obtain

Re(Πm
δ,h(χ), χ) ≥ ‖χ‖

(
‖χ‖ − ‖Λj

∗
m

δ,h‖ − λmkBδ
)
, ∀χ ∈ Sh,

where Bδ :=
√

2δ|Ω|1/2 supx∈[0,8δ2] |f(x)| and |Ω| is the area of Ω. Therefore, we have Re(Πm
δ,h(χ), χ) > 0 for

every χ ∈ Sh with ‖χ‖ = 1 + ‖Λj
∗
m

δ,h‖ + λmkBδ. Applying Lemma 2.5 with µ = Πm
δ,h, we conclude that there

exists a χmδ,h ∈ Sh such that Πm
δ,h(χmδ,h) = 0. Thus Λ`

∗
m

δ,h = 2χmδ,h − Λj
∗
m

δ,h is a solution of (2.7b).
In Remark 2.7, we explained that when the approximations produced by (Λ) are bounded in the L∞ norm by

δ and W 0
h = Rhw

0, then they are the numerical approximations of the method (1.8). Next, we present another
modified scheme that has this property for any norm ν on H, instead of the L∞ one.

• Modified Scheme (Υ): Let ν be a norm on H, δ > supt∈I∗ ν(w(·, t)) be a given constant, and ξδ : R−→R be
a continuous function defined by

ξδ(x) :=

 1, if x ≤ 2δ
−xδ + 3, if x ∈ [2δ, 3δ]
0, if x > 3δ

for x ∈ R.

Then, for t ∈ I∗, we define a map gν,δ(t; ·) : H−→H by

gν,δ(t;ω) := ω ξδ(ν(ω − w(·, t))) + w(·, t) (1− ξδ(ν(ω − w(·, t)))) for ω ∈ H,

where w is, always, the solution of problem (1.1).
For h ∈ (0, 1) and m = 0, 1/2, 1, . . . , N , we specify functions Υm

δ,h ∈ Sh, inductively by

Υ0
δ,h = Rhw

0 (2.8a)

and

Υ`∗m
δ,h −Υj∗m

δ,h

λmk
= i∆h

(
Υ`∗m
δ,h + Υj∗m

δ,h

2

)
+ iPh

[
f(|gν,δ(ti

∗
m ; Υi∗m

δ,h)|2)
gν,δ(t`

∗
m ; Υ`∗m

δ,h) + gν,δ(tj
∗
m ; Υj∗m

δ,h)
2

]
(2.8b)

for m = 0, . . . , N .

Remark 2.8. Since gν,δ(t;w(·, t)) = w(·, t) for t ∈ I∗, the consistency argument for (2.8) is the same with that
for (1.8) (cf. Sect. 2.2).

Remark 2.9. Assuming that ν(Υ0
δ,h) ≤ δ and ν(Υ`∗m

δ,h) ≤ δ for m = 0, . . . , N , we have ν(Υ0
δ,h − w(·, t)) < 2δ

and ν(Υ`∗m
δ,h − w(·, t)) ≤ 2δ for m = 0, . . . , N and t ∈ I∗. Thus, we obtain gν,δ(t; Υ`∗m

δ,h) = Υ`∗m
δ,h for m = 0, . . . , N

and t ∈ I∗. In that case, if W 0
h = Rhw

0, then a simple induction argument yields Υ`∗m
δ,h = W

`∗m
h for m = 0, . . . , N .
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Lemma 2.10. Let ν be a norm on H and δ > supt∈I∗ ν(w(·, t)). Then, for t ∈ I∗ and ω ∈ H, we have

ν(gν,δ(t;ω)) ≤ 4δ. (2.9)

Proof. Let t ∈ I∗ and ω ∈ H. If ν(ω − w(·, t)) ≥ 3δ then ν(gν,δ(t;ω)) = ν(w(·, t)) ≤ δ. We assume, now, that
ν(ω − w(·, t)) < 3δ. Then we have ν(ω) ≤ 4δ, and

ν(gν,δ(t;ω)) ≤ ν(ω) ξδ(ν(ω − w(·, t))) + ν(w(·, t)) (1− ξδ(ν(ω − w(·, t))))
≤ 3 δ ξδ(ν(ω − w(·, t))) + δ

≤ 4 δ.

Lemma 2.11. Let ν be a norm on H and δ > supt∈I∗ ν(w(·, t)). For t ∈ I∗, the operator gν,δ(t; ·) : H−→H is
continuous on (H, ν).

Proof. For t ∈ I∗ and ω1, ω2 ∈ H, we have

ν
(
gν,δ(t;ω1)− gν,δ(t;ω2)

)
≤ ν(ω1 − ω2)+

[
ν(w(·, t)) + ν(ω2)

] ∣∣ξδ(ν(ω1 − w(·, t))) − ξδ(ν(ω2 − w(·, t)))
∣∣

which, together with the continuity of ξδ, yields the continuity of gν,δ(t; ·) on (H, ν).

As for (Λ), we discuss, now, the existence of a solution for the nonlinear system in (2.8b) following a similar
argument. Let m ∈ {0, . . . , N}, h ∈ (0, 1), (X , (·, ·)X ) = (Sh, (·, ·)) and Φmδ,h : X−→X given by

Φmδ,h(χ) := χ−Υj∗m
δ,h −

i
2
λmk∆hχ−

i
4
λmkPh

[
f
(
|gν,δ(ti

∗
m ; Υi∗m

δ,h)|2
)[
gν,δ(t`

∗
m ; 2χ−Υj∗m

δ,h) + gν,δ(tj
∗
m ; Υj∗m

δ,h)
]]
,

which is continuous, since gν,δ(t`
∗
m ; ·) is continuous (cf. Lem. 2.11) and Sh has finite dimension. Also, in Sh

the norms ν and | · |∞ are equivalent, and hence there exists an h–dependent constant Ch,∞,ν , such that
|χ|∞ ≤ Ch,∞,ν ν(χ) for χ ∈ Sh. Using (2.9), we arrive at the following general estimates

|gν,δ(τ ;ω)|∞ ≤ B̃1,h,δ := 4δCh,∞,ν, ∀τ ∈ I∗, ∀ω ∈ H,

and ∥∥f(|gν,δ(τ1;ω1)|2
) [
gν,δ(τ2;ω2) + gν,δ(τ3;ω3)

]∥∥ ≤ B̃2,h,δ := 2B̃1,h,δ

√
|Ω| sup

[0,( eB1,h,δ)2]

|f |,

for τ1, τ2, τ3 ∈ I∗ and ω1, ω2, ω3 ∈ H. Thus, we obtain

Re(Φmδ,h(χ), χ) ≥ ‖χ‖
(
‖χ‖ − ‖Υj∗m

δ,h‖ − λmk
4 B̃2,h,δ

)
, ∀χ ∈ Sh.

Therefore, we have Re(Φmδ,h(χ), χ) > 0 for every χ ∈ Sh with ‖χ‖ = 1 + ‖Υj∗m
δ,h‖+ λmk

4 B̃2,h,δ, and by Lemma 2.5,

with µ = Φmδ,h, we conclude the existence of a χmδ,h ∈ Sh such that Φmδ,h(χmδ,h) = 0. Finally, Υ`∗m
δ,h = 2χmδ,h −Υj∗m

δ,h

is a solution of (2.8b).
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2.4. L2- and H1-convergence

Next we will prove the following optimal order error estimates for the method (1.8):

max
0≤m≤N

‖Wm
h − wm‖ ≤ CA(k2 + hr) and max

0≤m≤N
‖∇(Wm

h − wm)‖ ≤ C
A

(k2 + hr−1) (2.10)

for h ∈ (0, h0) and N ≥ N0. Here h0 ∈ (0, 1), N0 ∈ N and C
A

is a constant independent of h and N .
The basic step in the convergence analysis is the estimation of the differences ϑ1/2

Λ,δ,h := Λ1/2
δ,h − Rhw1/2 and

ϑnΛ,δ,h := Λnδ,h −Rhwn, n = 0, . . . , N , where due to (2.7a), we have ϑ0
Λ,δ,h = 0.

Proposition 2.12. Let d = 1, 2 or 3, and δ > supt∈I∗ |w(·, t)|∞. Then, there exists Nδ ∈ N such that

‖ϑ1/2
Λ,δ,h‖ ≤ CA,δ(k2 + khr) and max

1≤m≤N
‖ϑmΛ,δ,h‖ ≤ CA,δ(k2 + hr), ∀h ∈ (0, 1), ∀N ≥ Nδ. (2.11)

The constant CA,δ is independent of h and N , but depends on δ, the solution or its derivatives, and the data.

Proof. Let h ∈ (0, 1). For m = 0, . . . , N , we define σmΛ,δ,h ∈ Sh by

ϑ
`∗m
Λ,δ,h − ϑ

j∗m
Λ,δ,h

λmk
= i∆h

(ϑ`∗mΛ,δ,h + ϑ
j∗m
Λ,δ,h

2

)
+ σmΛ,δ,h. (2.12)

Combining (2.12), (2.5), Remark 2.6, and (1.8), we obtain

σmΛ,δ,h = −Ph(σm + ωmw ) + iPhωmΛ,δ, m = 0, . . . , N, (2.13)

with

ωmw := Rh

(w`∗m − wj∗m
λmk

)
−
(w`∗m − wj∗m

λmk

)
(2.14)

and

ωmΛ,δ := f(|γδ(Λi
∗
m

δ,h)|2) γδ
(

Λ
`∗m
δ,h

+Λ
j∗m
δ,h

2

)
− f(|wi∗m |2) γδ

(
w`
∗
m+wj

∗
m

2

)
. (2.15)

Taking real parts of the L2 inner product of (2.12) with ϑ`
∗
m

h + ϑ
j∗m
h and using (2.13), for m = 0, . . . , N , we have

‖ϑ`
∗
m

Λ,δ,h‖2 − ‖ϑ
j∗m
Λ,δ,h‖2 = −λmk

[
Re(σm + ωmw , ϑ

`∗m
Λ,δ,h + ϑ

j∗m
Λ,δ,h) + Im(ωmΛ,δ, ϑ

`∗m
Λ,δ,h + ϑ

j∗m
Λ,δ,h)

]
. (2.16)

By (1.5) and the Taylor formula, we conclude that

max
0≤m≤N

‖ωmw ‖ ≤ Chr. (2.17)

Let m ∈ {0, . . . , N}. To estimate ωmΛ,δ in the L2 norm, we split it as follows:

ωmΛ,δ = ωmΛ,δ,1 + ωmΛ,δ,2
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with

ωmΛ,δ,1 :=
[
f(|γδ(Λi

∗
m

δ,h)|2)− f(|wi∗m |2)
]
γδ
(

Λ
`∗m
δ,h

+Λ
j∗m
δ,h

2

)
and ωmΛ,δ,2 := f(|wi∗m |2)

[
γδ
(

Λ
`∗m
δ,h

+Λ
j∗m
δ,h

2

)
−γδ

(
w`
∗
m+wj

∗
m

2

)]
.

Using (2.1), the mean value theorem and (1.5), we obtain

‖ωmΛ,δ,1‖ ≤ C δ(1 + δ) sup
x∈[0,8δ2]

|f ′(x)| ‖γδ(Λi
∗
m

δ,h)− γδ(wi
∗
m )‖

≤ Cδ sup
|x|∈[0,2δ]

|g′δ(x)|
(
hr + ‖ϑi

∗
m

Λ,δ,h‖
)
,

and

‖ωmΛ,δ,2‖ ≤ C sup
|x|∈[0,2δ]

|g′δ(x)|
(
hr + ‖ϑ`

∗
m

Λ,δ,h‖+ ‖ϑj
∗
m

Λ,δ,h‖
)
.

Thus, we get the following estimate

‖ωmΛ,δ‖ ≤ Cδ(hr + ‖ϑ`
∗
m

Λ,δ,h‖+ ‖ϑj
∗
m

Λ,δ,h‖+ ‖ϑi
∗
m

Λ,δ,h‖). (2.18)

From (2.16), (2.17), (2.6) and (2.18), it follows that

‖ϑ1/2
Λ,δ,h‖+ ‖ϑ1

Λ,δ,h‖ ≤ C̃δk(‖ϑ1/2
Λ,δ,h‖+ ‖ϑ1

Λ,δ,h‖) + Cδ(k2 + khr) (2.19a)

and

(1− C̃δk)(‖ϑmΛ,δ,h‖+ ‖ϑm−1
Λ,δ,h‖) ≤ (1 + C̃δk)(‖ϑm−1

Λ,δ,h‖+ ‖ϑm−2
Λ,δ,h‖) + Cδk(k2 + hr), m = 2, . . . , N. (2.19b)

Finally, assuming that C̃δk ≤ 1
3 and applying a discrete Grönwall argument on (2.19a-b), we arrive at (2.11).

Proposition 2.13. Let d = 1, 2 or 3, and δ > supt∈I∗ |w(·, t)|∞. Then there exists an integer Ñδ ≥ Nδ such
that

‖∇ϑ1/2
Λ,δ,h‖ ≤ CA,δ(k

3
2 + k

1
2hr) and max

1≤m≤N
‖∇ϑmΛ,δ,h‖ ≤ CA,δ(k2 + hr), ∀h ∈ (0, 1), ∀N ≥ Ñδ. (2.20)

The constant CA,δ is independent of h and N , but depends on δ, the solution or its derivatives, and the data.

Proof. Let h ∈ (0, 1) and N ≥ Nδ (cf. Prop. 2.12). For m = 0, . . . , N , we define σmΛ,δ,h, ωmw and ωmΛ,δ as in
(2.12), (2.14) and (2.15), respectively.

Taking the L2-inner product of (2.12) by ϑ`
∗
m

Λ,δ,h − ϑ
j∗m
Λ,δ,h and then imaginary parts, we obtain

‖∇ϑ1/2
Λ,δ,h‖2 = 2Im(σ0

Λ,δ,h, ϑ
1/2
Λ,δ,h), ‖∇ϑ1

Λ,δ,h‖2 = 2Im(σ1
Λ,δ,h, ϑ

1
Λ,δ,h), (2.21)

and

‖∇ϑmΛ,δ,h‖2 + ‖∇ϑm−1
Λ,δ,h‖2 = ‖∇ϑm−1

Λ,δ,h‖2 + ‖∇ϑm−2
Λ,δ,h‖2 + 2Im(σmΛ,δ,h, ϑ

m
Λ,δ,h − ϑm−2

Λ,δ,h), m = 2, . . . , N. (2.22)
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Hence, summing with respect to m in (2.22), it follows that

‖∇ϑnΛ,δ,h‖2 + ‖∇ϑn−1
Λ,δ,h‖2 ≤ ‖∇ϑ1

Λ,δ,h‖2 + ‖∇ϑ0
Λ,δ,h‖2

+ max
2≤m≤N

‖σmΛ,δ,h‖2 +
( n∑
m=2

‖ϑmΛ,δ,h − ϑm−2
Λ,δ,h‖

)2

, n = 2, . . . , N. (2.23)

Next, we will estimate the quantities at the right-hand side of (2.23).
• Estimation of ‖σmΛ,δ,h‖: From (2.18) and (2.11), we obtain

max
0≤m≤N

‖ωmΛ,δ‖ ≤ Cδ(k2 + hr)

which, together with (2.13), (2.6) and (2.17), implies

‖σ0
Λ,δ,h‖ ≤ Cδ(k + hr) and max

1≤m≤N
‖σmΛ,δ,h‖ ≤ Cδ(k2 + hr). (2.24)

• Estimation of ‖ωmw − ωm−2
w ‖: Using (1.5), we have

‖ωmw − ωm−2
w ‖ ≤ C

hr

2k
‖wm − 2wm−2 + wm−4‖r

≤ C
hr

2k

∥∥∥∫ 2k

0

∫ tm−2+t

tm−4+t

wtt(τ)dτdt
∥∥∥
r
, m = 4, . . . , N,

which yields

max
4≤m≤N

‖ωmw − ωm−2
w ‖ ≤ Ckhr. (2.25)

• Estimation of ‖ϑmΛ,δ,h − ϑm−2
Λ,δ,h‖: For simplicity, we set zmΛ,δ,h := ϑmΛ,δ,h − ϑm−2

Λ,δ,h for m = 2, . . . , N . Then,
(2.12) yields

zmΛ,δ,h − zm−2
Λ,δ,h

2k
=

i
2

∆h(zmΛ,δ,h + zm−2
Λ,δ,h) + δmΛ,δ,h, m = 4, . . . , N, (2.26)

where

δmΛ,δ,h := −Ph(σm − σm−2)− Ph(ωmw − ωm−2
w ) + iPh(ωmΛ,δ − ωm−2

Λ,δ ).

Taking the L2 inner product of (2.26) by zmΛ,δ,h + zm−2
Λ,δ,h and then real parts we conclude that

‖zmΛ,δ,h‖+ ‖zm−1
Λ,δ,h‖ ≤ ‖z

m−1
Λ,δ,h‖+ ‖zm−2

Λ,δ,h‖+ 2k‖δmΛ,δ,h‖ for m = 4, . . . , N. (2.27)

By (2.6) and (2.25), we get

‖δmΛ,δ,h‖ ≤ ‖ωmΛ,δ − ωm−2
Λ,δ ‖+ Ck(k2 + hr), m = 4, . . . , N. (2.28)

Let m ∈ {4, . . . , N}. To estimate the difference ωmΛ,δ−ωm−2
Λ,δ in the L2 norm, we introduce the following splitting

ωmΛ,δ − ωm−2
Λ,δ =

4∑
j=1

T mj (2.29)
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where

T m1 : = γδ
(

Λmδ,h+Λm−2
δ,h

2

) [
f(|γδ(Λm−1

δ,h )|2)− f(|γδ(Λm−3
δ,h )|2)− f(|wm−1|2) + f(|wm−3|2)

]
,

T m2 : =
[
f(|wm−1|2)− f(|wm−3|2)

] [
γδ
(

Λmδ,h+Λm−2
δ,h

2

)
− γδ

(
wm+wm−2

2

)]
,

T m3 : = f(|γδ(Λm−3
δ,h )|2)

[
γδ
(

Λmδ,h+Λm−2
δ,h

2

)
− γδ

(
Λm−2
δ,h +Λm−4

δ,h

2

)
− γδ

(
wm+wm−2

2

)
+ γδ

(
wm−2+wm−4

2

)]
,

T m4 : = wm−wm−4

2

[
f(|γδ(Λm−3

δ,h )|2)− f(|wm−3|2)
]
.

Proceeding as in the proof of Proposition 2.12, we use (2.1), the mean value theorem and (1.5), to obtain

‖T m2 ‖ ≤ Cδk(hr + ‖ϑmΛ,δ,h‖+ ‖ϑm−2
Λ,δ,h‖) and ‖T m4 ‖ ≤ Cδk(hr + ‖ϑm−3

Λ,δ,h‖). (2.30a)

Combining (2.2), (2.3), the mean value theorem and (1.5), it follows that

‖T m3 ‖ ≤ C sup
x∈[0,8δ2]

|f(x)|
[
k sup
|x|∈[δ,2δ]

|g′′δ (x)|
(
hr + ‖ϑmΛ,δ,h‖+ ‖ϑm−2

Λ,δ,h‖+ ‖ϑm−4
Λ,δ,h‖

)
+ sup
|x|∈[0,2δ]

|g′δ(x)|
(
khr + ‖zmΛ,δ,h‖+ ‖zm−2

Λ,δ,h‖
)]
, (2.30b)

‖T m1 ‖ ≤ Cδ
[
k sup
|x|∈[0,16δ2]

|f ′′(x)| (1 + δ) sup
|x|∈[0,2δ]

|g′δ(x)|
(
hr + ‖ϑm−1

Λ,δ,h‖+ ‖ϑm−3
Λ,δ,h‖

)
+ sup
|x|∈[0,16δ2]

|f ′(x)|
∥∥|γδ(Λm−1

δ,h )|2 − |γδ(Λm−3
δ,h )|2 − |wm−1|2 + |wm−3|2

∥∥], (2.30c)

and ∥∥|γδ(Λm−1
δ,h )|2 − |γδ(Λm−3

δ,h )|2 − |wm−1|2 + |wm−3|2
∥∥

≤ C
[
k sup
|x|∈[0,2δ]

|g′δ(x)|
(
hr + ‖ϑm−3

Λ,δ,h‖
)

+ δ ‖γδ(Λm−1
δ,h )− γδ(Λm−3

δ,h )− γδ(wm−1) + γδ(wm−3)‖
]

≤ Cδ
[
k
(
hr + ‖ϑm−3

Λ,δ,h‖
)

+ k sup
|x|∈[δ,2δ]

|g′′(x)|
(
hr + ‖ϑm−1

Λ,δ,h‖+ ‖ϑm−1
Λ,δ,h‖

)
+ sup
|x|∈[0,2δ]

|g′(x)|
(
khr + ‖zm−1

Λ,δ,h‖
)]
. (2.30d)

Hence, (2.29), together with (2.30a-d) and (2.11), implies

‖ωmΛ,δ − ωm−2
Λ,δ ‖ ≤ Ĉδk(‖zmΛ,δ,h‖+ ‖zm−1

Λ,δ,h‖+ ‖zm−2
Λ,δ,h‖) + Cδk(k2 + hr). (2.31)

Now, by (2.27), (2.28) and (2.31) we obtain

(1− Ĉδk)(‖zmΛ,δ,h‖+ ‖zm−1
Λ,δ,h‖) ≤ (1 + Ĉδk)(‖zm−1

Λ,δ,h‖+ ‖zm−2
Λ,δ,h‖) + Cδk

2(k2 + hr), m = 4, . . . , N, (2.32a)

and by (2.19a-b) we conclude that

‖z3
Λ,δ,h‖+ ‖z2

Λ,δ,h‖ ≤ ‖ϑ3
Λ,δ,h‖+ ‖ϑ2

Λ,δ,h‖+ ‖ϑ1
Λ,δ,h‖

≤ Cδk(k2 + hr). (2.32b)
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Assuming that Ĉδk ≤ 1
3 , and then applying a discrete Grönwall argument on (2.32a-b), we get

max
2≤m≤N

‖ϑmΛ,δ,h − ϑm−2
Λ,δ,h‖ ≤ Cδk(k2 + hr). (2.33)

Finally, using (2.21), (2.11) and (2.24), we have

‖∇ϑ1/2
Λ,δ,h‖ ≤ Cδ

√
k(k + hr) and ‖∇ϑ1

Λ,δ,h‖ ≤ Cδ(k2 + hr), (2.34)

and (2.20) follows from (2.23), (2.34), (2.33) and (2.24).

We use, now, the estimates of Propositions 2.12 and 2.13 to obtain convergence results for the method (1.8).

Theorem 2.14. Let d = 1 and δ0 = sup
t∈I∗
|w(·, t)|∞ + sup

t∈I∗
‖w(·, t)‖r + 2. If W 0

h = Rhw
0 for h ∈ (0, h̃), and

C1,∞ CR h
r− 1

2 ≤ 1 and C1,∞
√
CA,δ0 CA,δ0 (k

7
4 + hr) ≤ 1, ∀N ≥ Ñ , ∀h ∈ (0, h̃), (2.35)

for some Ñ ≥ max{t∗, Ñδ0 } (cf. (2.20)) and h̃ ∈ (0, 1), then (2.10) holds. Here, C1,∞, CR, CA,δ0 and CA,δ0 are
the constants in (1.3), (1.5), (2.11) and (2.20), respectively.

Proof. Let h ∈ (0, h̃), N ≥ Ñ and η` := Rhw
` − w` for ` = 0, 1/2, 1, . . . , N . Using (1.3), (1.5), (2.11), (2.20)

and (2.35), we have

|Λmδ0 ,h − w
m|∞ ≤ |ϑmΛ,δ0 ,h|∞ + |ηm|∞

≤ C1,∞
(
‖ϑmΛ,δ0 ,h‖

1
2 ‖∇ϑmΛ,δ0 ,h‖

1
2 + ‖ηm‖ 1

2 ‖∇ηm‖ 1
2
)

≤ C1,∞
[
(CA,δ0 CA,δ0 )

1
2 (k

7
4 + hr) + CR h

r− 1
2 ‖wm‖r

]
≤ 1 + sup

t∈I∗
‖w(·, t)‖r, m = 0, 1/2, 1, . . . , N.

Thus, we get |Λ0
δ0 ,h
|∞ < δ0 and max

0≤m≤N
|Λ`
∗
m

δ0 ,h
|∞ < δ0 . By Remark 2.7 we conclude that Λ`

∗
m

δ0 ,h
= W

`∗m
h for

m = 0, . . . , N . Then, combining (2.11), (2.20) and (1.5), the estimates in (2.10) directly follow.

Theorem 2.15. Let d = 2 or 3, and δ0 = sup
t∈I∗
|w(·, t)|∞ + sup

t∈I∗
‖w(·, t)‖r + 3. Also, assume that

|χ|∞ ≤ C∞ ψ̃(h) ‖∇χ‖, ∀χ ∈ Sh, ∀h ∈ (0, h̃), (2.36)

C∞ CR ψ̃(h) hr−1 ≤ 1, ∀h ∈ (0, h̃), (2.37)

and

inf
χ∈Sh

{
|w(·, t) − χ|∞ + C∞ ψ̃(h) ‖∇(w(·, t) − χ)‖

}
≤ 1, ∀h ∈ (0, h̃), ∀t ∈ I∗, (2.38)

for some h̃ ∈ (0, 1). If W 0
h = Rhw

0 for h ∈ (0, h̃∗), and

CA,δ0 C∞ ψ̃(h) (k
3
2 + hr) ≤ 1, ∀N ≥ Ñ , ∀h ∈ (0, h̃∗), (2.39)

for some Ñ ≥ max{t∗, Ñδ0} (cf. (2.20)) and h̃∗ ∈ (0, h̃), then (2.10) holds. Here, CR and CA,δ0 are the constants
in (1.5) and (2.20), respectively.
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Proof. Let h ∈ (0, h̃∗), N ≥ Ñ and η` := Rhw
` − w` for ` = 0, 1/2, 1, . . . , N . Using (2.36), for m =

0, 1/2, 1, . . . , N , we obtain

|Λmδ0 ,h − w
m|∞ ≤ |χ− wm|∞ + C∞ψ̃(h)‖∇(wm − χ)‖

+C∞ψ̃(h)
(
‖∇ϑmΛ,δ0 ,h‖+ ‖∇ηm‖

)
, ∀χ ∈ Sh. (2.40)

From (2.40), (2.38), (2.20), (2.39), (1.5) and (2.37), we conclude that |Λ0
δ0 ,h
|∞ < δ0 and max

0≤m≤N
|Λ`
∗
m

δ0 ,h
|∞ < δ0 .

Then, Remark 2.7 implies that Λ`
∗
m

δ0 ,h
= W

`∗m
h for m = 0, . . . , N , and we get (2.10) by (2.11), (2.20) and (1.5).

Remark 2.16. Assuming that the finite element spaces Sh consist of continuous piecewise polynomial functions
on a regular (nondegenerate) partition of Ω, the inverse inequality (2.36) holds with ψ̃(h) =

√
| ln(h)| when

d = 2, and ψ̃(h) = h−1/2 when d = 3 (cf. Chap. 5 in [23], Chap. 4.5 in [4]). Here, h is the minimum of the
diameter of the elements (e.g. triangles) of the partition of Ω corresponding to Sh. Also, (2.38) is established
by (2.37) and the approximation properties of the interpolant in the L∞ and H1 norms (cf. Chap. 4.4 in [4]).

Remark 2.17. Under the assumptions of Theorem 2.14 or Theorem 2.15, we use (2.33) and (1.5) to obtain

max
2≤m≤N

∥∥Wm
h −W

m−2
h

2k −wt(·, tm−1)
∥∥ = O(k2 + hr) which is an L2 approximation estimate for the time derivative

of the solution.

Remark 2.18. Taking the L2 product of (2.12) by ϑ`
∗
m

Λ,δ,h+ϑj
∗
m

Λ,δ,h and then imaginary parts we obtain ‖∇ϑ1/2
Λ,δ,h‖2

≤ C‖σ0
Λ,δ,h‖‖ϑ

1/2
Λ,δ,h‖, ‖∇ϑ1

Λ,δ,h‖2 ≤ C‖σ1
Λ,δ,h‖‖ϑ1

Λ,δ,h‖ and ‖∇(ϑmΛ,δ,h + ϑm−2
Λ,δ,h)‖2 ≤ C(‖σmΛ,δ,h‖ + 1

k‖ϑmΛ,δ,h −
ϑm−2

Λ,δ,h‖)‖ϑmΛ,δ,h+ϑm−2
Λ,δ,h‖ form = 2, . . . , N . Using (2.11), (2.24) and (2.33), we obtain (2.34) and max

2≤m≤N
‖∇(ϑmΛ,δ,h

+ ϑm−2
Λ,δ,h)‖ ≤ Cδ(k2 + hr). Thus, under the assumptions of Theorem 2.14 or Theorem 2.15, we arrive at an

optimal order “average” H1 estimate, i.e., max
2≤m≤N

‖∇
(Wm

h +Wm−2
h

2 − wm−1
)
‖ = O(k2 + hr−1), which is similar

to the one obtained in [24] for the nonlinear Crank-Nicolson method. The H1 estimate in (2.10) is stronger and
based on a different stability argument.

2.5. A special case

Assuming that d = 2 and the function f has the property (D), we are going to prove the following estimates

max
0≤m≤N

‖Wm
h − wm‖ ≤ CB (k2 + hr) and max

0≤m≤N
‖∇(Wm

h − wm)‖ ≤ C
B

(k
3
2 + hr−1 + k−

1
2hr) (2.41)

for h ∈ (0, h0) and N ≥ N0, where h0 ∈ (0, 1), N0 ∈ N, and C
B

is a constant independent of h and N .
The goal, here, is to get optimal order L2 convergence of the method (1.8) avoiding the use of extra assump-

tions on the finite element spaces to control L∞ norms (cf. (2.36), (2.37) and (2.38) in Theorem 2.15). To
do this we will work with the modified scheme (Υ) taking ν = ‖∇ · ‖ and estimate, in L2 and H1 norms, the
differences ϑ1/2

Υ,δ,h := Υ1/2
δ,h − Rhw1/2 and ϑnΥ,δ,h := Υn

δ,h − Rhwn, n = 0, . . . , N , where, due to (2.8a), we have
ϑ0

Υ,δ,h = 0.

Proposition 2.19. Let ν = ‖∇ · ‖ and δ > supt∈I∗ ‖∇w(·, t)‖. If d = 2 and f satisfies (D), then there exists
Mδ ∈ N such that

‖ϑ1/2
Υ,δ,h‖ ≤ CB,δ (k2 + khr) and max

1≤m≤N
‖ϑmΥ,δ,h‖ ≤ CB,δ (k2 + hr), ∀h ∈ (0, 1), ∀N ≥Mδ. (2.42)

The constant CB,δ is independent of h and N , but depends on δ, the solution or its derivatives, and the data.
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Proof. Let h ∈ (0, 1). We proceed as in the proof of Proposition 2.12, to obtain

‖ϑ1/2
Υ,δ,h‖ ≤ Ck

(
k + hr + ‖ω0

Υ,δ‖
)
, ‖ϑ1

Υ,δ,h‖ ≤ Ck
(
k2 + hr + ‖ω1

Υ,δ‖
)

(2.43a)

and

‖ϑmΥ,δ,h‖ − ‖ϑm−2
Υ,δ,h‖ ≤ Ck

(
k2 + hr + ‖ωmΥ,δ‖

)
for m = 2, . . . , N, (2.43b)

with

ωmΥ,δ := 1
2

[
F
(
gν,δ(ti

∗
m ; Υi∗m

δ,h), gν,δ(t`
∗
m ; Υ`∗m

δ,h) + gν,δ(tj
∗
m ; Υj∗m

δ,h)
)
− F

(
wi
∗
m , w`

∗
m + wj

∗
m
)]
. (2.44)

Let m ∈ {0, . . . , N}. By (2.4) and Lemma 2.10, it follows that

‖ωmΥ,δ‖ ≤ Cδ
[
ξδ
(
‖∇(Υ`∗m

δ,h − w`
∗
m)‖

)
‖Υ`∗m

δ,h − w`
∗
m‖+ ξδ

(
‖∇(Υi∗m

δ,h − wi
∗
m)‖

)
‖Υi∗m

δ,h − wi
∗
m‖

+ξδ
(
‖∇(Υj∗m

δ,h − wj
∗
m )‖

)
‖Υj∗m

δ,h − wj
∗
m‖
]

which, together with (1.5), yields

‖ωmΥ,δ‖ ≤ Cδ
(
hr + ‖ϑ`

∗
m

Υ,δ,h‖+ ‖ϑi
∗
m

Υ,δ,h‖+ ‖ϑj
∗
m

Υ,δ,h‖
)
. (2.45)

Substituting (2.45) in (2.43a-b), we get

‖ϑ1/2
Υ,δ,h‖+ ‖ϑ1

Υ,δ,h‖ ≤ Cδ (k2 + khr),

(1− Cδk)(‖ϑmΥ,δ,h‖+ ‖ϑm−1
Υ,δ,h‖) ≤ (1 + Cδk) (‖ϑm−1

Υ,δ,h‖+ ‖ϑm−2
Υ,δ,h‖) + Cδ k(k2 + hr), m = 2, . . . , N.

Finally, taking Cδk ≤ 1
3 , (2.42) follows by a discrete Grönwall argument.

Proposition 2.20. Let ν = ‖∇ · ‖ and δ > supt∈I∗ ‖∇w(·, t)‖. If d = 2 and f satisfies (D), then there exists
an integer M̃δ ≥Mδ such that

‖∇ϑ1/2
Υ,δ,h‖ ≤ CB,δ (k

3
2 + k

1
2 hr) and max

1≤m≤N
‖∇ϑmΥ,δ,h‖ ≤ CB,δ k−

1
2 (k2 + hr), ∀h ∈ (0, 1), ∀N ≥ M̃δ. (2.46)

The constant CB,δ is independent of h and N , but depends on δ, the solution or its derivatives, and the data.

Proof. Let h ∈ (0, 1) and N > Mδ (cf. Prop. 2.19). For m = 0, . . . , N , we define ωmΥ,δ as in (2.44). Now,
proceeding along the lines of the proof of Proposition 2.13 (cf. (2.21) and (2.22)), we conclude that

‖∇ϑ1/2
Υ,δ,h‖2 ≤ C(k + hr + ‖ω0

Υ,δ‖)‖ϑ
1/2
Υ,δ,h‖, ‖∇ϑ1

Υ,δ,h‖2 ≤ C(k2 + hr + ‖ω1
Υ,δ‖)‖ϑ1

Υ,δ,h‖ (2.47a)

and

max
2≤m≤N

‖∇ϑmΥ,δ,h‖2 ≤ ‖∇ϑ1
Υ,δ,h‖2 + Ck−1

(
k2 + hr + max

2≤`≤N
‖ω`Υ,δ‖

)
max

1≤m≤N
‖ϑmΥ,δ,h‖. (2.47b)

Also, from (2.45) and (2.42), we obtain

max
0≤m≤N

‖ωmΥ,δ‖ ≤ Cδ(k2 + hr). (2.48)

Substituting (2.48) and (2.42) in (2.47a-b), (2.46) follows.
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Closing the section, we will use Propositions 2.19 and 2.20 to obtain the estimates in (2.41). For that result
we do not need any inverse inequality between norms on the finite element spaces.

Theorem 2.21. Let d = 2, ν = ‖∇ · ‖ and δ0 = supt∈I∗ ‖∇w(·, t)‖ + 3, and assume that f satisfies (D). If
W 0
h = Rhw

0 for h ∈ (0, h̃), and

CB,δ0 (k2 + hr) ≤
√
k, ∀N ≥ Ñ , ∀h ∈ (0, h̃), (2.49)

for some Ñ ≥ max{t∗, M̃δ0
} (cf. (2.46)) and h̃ ∈ (0, 1), then (2.41) holds. Here, CB,δ0 is the constant in (2.46).

Proof. For h ∈ (0, h̃) and N ≥ Ñ , (2.49), (1.6) and (2.46) imply ‖∇Υ0
δ0 ,h
‖ < δ0 and max

0≤m≤N
‖∇Υ`∗m

δ0 ,h
‖ < δ0 .

Hence, by Remark 2.9 we have Υ`∗m
δ0 ,h

= W
`∗m
h for m = 0, . . . , N , and (2.41) follows from (2.42), (2.46) and

(1.5).

Remark 2.22. Let d = 2. In the case of the cubic Schrödinger equation, i.e. f(x) = λx and λ ∈ R, it is easily
seen that H̃(Wm

h ,W
m−1
h ) = H̃(W 1

h ,W
0
h ) for m = 0, . . . , N , and H̃(W 1/2

h ,W 0
h ) = H̃(W 1

h ,W
1/2
h ) = H̃(W 0

h ,W
0
h ),

where H̃(v1, v2) := ‖∇v1‖+‖∇v2‖
2 − λ

2 (|v1|2, |v2|2) for v1, v2 ∈ H1
0 (Ω) (cf. also [9]). Then, choosing W 0

h = Rhw
0

and using the Gagliardo–Nirenberg inequality |v|44 ≤ CGN ‖v‖2‖∇v‖2, ∀v ∈ H1
0 (Ω), we see that there exists a

constant δ̃ > 0, independent of h and N , such that ‖∇W `∗m
h ‖ ≤ δ̃ for m = 0, . . . , N , when (i) λ ≤ 0, or (ii)

λ > 0 with ‖w0‖ <
(

2
λC
GN

) 1
2 . In these cases, for δ > δ̃ + supt∈I∗ ‖∇w(·, t)‖ and ν = ‖∇ · ‖, the method (1.8) is

written in the form (2.8), and (2.41) is obtained from (1.5) and the estimates of Propositions 2.19 and 2.20. In
this way, (2.49) is avoided.
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