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COMPUTING GUIDED MODES FOR AN UNBOUNDED STRATIFIED MEDIUM
IN INTEGRATED OPTICS

FABRICE MAHE!

Abstract. We present a finite element method to compute guided modes in a stratified medium. The
major difficulty to overcome is related to the unboundedness of the stratified medium. Our method
is an alternative to the use of artificial boundary conditions and to the use of integral representation
formulae. The domain is bounded in such a way we can write the solution on its lateral boundaries in
terms of Fourier series. The series is then truncated for the computations over the bounded domain.
The problem is scalar and 2-dimensional.
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INTRODUCTION

To compute a solution for a 2-dimensional problem set in an unbounded domain, we can use artificial
boundary conditions: Dirichlet, Neumann, Fourier conditions. It is the simplest way to program but it needs
large computational domains in order to reduce the computing error. Moreover, it doesn’t work for all the
examples. We can find examples of such finite element computations for integrated optics in [9,13].

On the other hand, we can try to write an exact condition on a boundary which can be chosen arbitrarily.
Indeed, we are usually interested in knowing the solution in a small area around the center of the phenomenon.
The coupling method between finite elements and an integral representation, and the localized finite element
method are such numerical methods.

The coupling method between finite elements and an integral representation has been introduced by Jami
and Lenoir in hydrodynamics [8]. It needs the calculation of the Green function for the 2-dimensional problem.
In guided optics, this function has been determined for an homogeneous medium and a diopter, which is a
medium composed of two layers with different refractive index [7]. But, for a complete stratified medium with
three layers or more, this work is hard and time expensive.

The localized finite element method consists in using a series expansion of the solution in the exterior domain.
This method was introduced and studied by Lenoir and Tounsi [10] in hydrodynamics, then, in guided optics, by
Bonnet [1,4] for the optical fiber with an homogeneous cladding and Gmati [7] for the diopter. For a complete
stratified medium, this method leads to difficulties of the same order than the calculation of the Green function
but we have adapted it in a method which is possible to use.
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In fact, we present here an hybrid method between the localized finite element method and the homogeneous
Dirichlet condition. Indeed, we don’t need to write an exact condition on all the boundary because we can use
the properties of the stratified medium. In the case of an unbounded stratified medium we know the solutions
are extensive in the direction of the strata (horizontally) and well confined on the other direction (vertically).
So, we choose a rectangular domain with the upper boundary parallel with the strata of the medium, writing an
homogeneous Dirichlet (or Neumann) condition on the horizontal boundaries and an exact condition, coming
from the localized finite element method, on the others. Contrarily to the method with a Dirichlet condition,
this method allows to compute laterally extensive solutions and to study numerically structures of optical guide
which couldn’t be considered otherwise.

This numerical study completes the one started in [11] and is the continuation of the mathematical study
which can be found in [2,3]. In Section 1 we present the problem and the mathematical results useful to
understand the method and interpret the numerical results. We give, in Section 2, the study of the vertical
one-dimensional problem used in the method to write the exact boundary condition. The numerical study of
this one-dimensional problem is not straightforward and present a non trivial algorithm; indeed, it is in this part
that the difficulty associated to the stratified medium is numerically solved. Then, we describe the numerical
method in Section 3. In last section, we present numerical tests which illustrate the mathematical results.

1. MODELING AND MATHEMATICAL RESULTS

Integrated optics is a scientific and technical field where one tries to reduce the dimensions of components
guiding light waves and to lay down the maximum of components on a minimum of area. It is the optical
alternative to integrated electronics for the treatment of information, like optical fibers are the alternative to
electric wires for the transmission of information for large distances.

The waveguides considered here are composed of layers of different materials. These materials differ for the
light propagation by their refractive index. A guide is assumed to be invariant in the propagation direction
(Ozx3), see Figure 1. Then, it is completely defined by the distribution of the refractive index in a transverse
section. We speak about refractive index profile and it is noted n(x1, z2) or n(z). In the transverse section, the
guide appears like a compact perturbation K, the core of the guide, of a stratified medium, the cladding of the
guide. The cladding is said dispersive when waves of different frequencies k propagate with different velocities.

o

Nt )
n(xsy) <x3 /l—:cl)

FI1GURE 1. Stratified optical guide.

The stratified medium is supposed unbounded in the transverse directions because the dimensions of the core
are small compared to the dimensions of the cladding and because we are interested in the modes guided by
this device, which are waves with a transverse energy confined in a neighborhood of the perturbation. Thus,
we define n(z1,72) as a positive function in L°(R?). Let 7 € L°°(R) be a function with positive values,

n:é€R— a(f) e RS
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such that

wo={r & 25 mao>o 1)

ny if &< —c £€R

for some positive c¢. The values n;, n, play the same role and without loss of generality we choose

Ny > Nyg.
The function n satisfies the following assumptions
n € L>®(R?), inf n(z) >0, (2)
z€R?
and there exists a compact set K C R? such that
for all x = (21, 22) € K, n(z) = n(x2). (3)
Let ny denote the essential supremum of n,
ny = [l ro-

A mode is a non trivial solution of the Maxwell equations with the following form:

(gﬂ) (x1 22,23 ,t) = Re ((5) (21, 22) ei(kclt_ﬁm)) ) )

where E and H are the electric and magnetic fields, ¢; is the speed of the light in the vacuum, k is the wave
number, and ( is the propagation constant of the mode which propagates with a velocity v = ’% We say that
a mode is guided if it propagates without attenuation and has a finite transverse energy, that is

kE, BcR and E, Hc (L*(R?))3.

If the transverse energy is not finite, the mode is a radiation mode. Roughly speaking a light wave propagating
inside the guide is decomposed in the guided modes which are guided inside the core and the radiation modes
which disperse into the cladding.

The way in which the wave propagates in the direction (Oz3) and with respect to time is fixed by (4). The
guide is invariant in this direction. Thus the problem depends only on the coordinates x; and x. Under
the assumption of weak guidance (i.e. large wave number and weak variations of the index), for zero order
approximation of the Maxwell system, the electro-magnetic field is transverse and each component u satisfies
the scalar equation:

—Au—k*nu=—p%, in R (5)

see for instance [1,15,17]. Thus the guided modes are associated with the eigenpairs (A, u) of the unbounded
operator Ay : H*(R?) C L?(R?) — L?(R?) depending on the positive real parameter k and defined for u in
the usual Sobolev space H?(R?) by:

Apu = —Au— kK*n’u
(A = —fp?%). The operator Ay is self-adjoint, bounded from below and with non compact resolvent. The
spectrum of Ay, is noted o(Ay) C [—k*n?, oo and consists of a continuum, the essential spectrum oess(Ax),
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and of a discrete set, the discrete spectrum o4(Ay), which is the set of isolated eigenvalues of finite multiplicity.

See [1,3,11]. The essential spectrum is given by
2 _
[ {ier - eatior} ay
Tess(Ar) = [11(k), +oo[ with 7y (k)= inf =F

penl® / Iol? dy
R

See [3] for all the mathematical results. The values of the essential spectrum of Ay, correspond to the propagation
constants of radiation modes.

The guidance comes from differences of speed of light in the various materials with different indices (the
velocity in a medium with index n, is v = ;—i) Indeed, to have guidance, the index of the material in the core
must be greater than the index of the cladding. The waves propagate slower in the core and accumulate. If the
greatest index is ny and the smallest is n_, the velocity of the guided mode v = % lies between Tf—i and ;7L

The eigenproblem (5) is equivalent to the variational formulation: find A € R and u € H!(R?), u # 0, such
that

a(k;u,v) = A(u,v)o gz, for allv e H'(R?), (6)

where the bilinear form a(k;.,.) : H'(R?) x H'(R?) — R is given by: for u,v € H'(R?)
a(k;u,v) = / (VuVo — k*nuv) dz.
R2

We have necessarily —k?n% < X < —k?nj. We have described and computed a case in [6,11] where v (k) <
A < —k?nZ. Here we are 1nterested in computlng the eigenpairs (A, u) such that A < ~;(k). These values are
characterlzed by the min-max principle [14]

k.
M) = it RO
veHL®2) (v,v)0.r2

and for m > 1
a(k;v,v)

Am (k) = inf — 1 7
m (k) Hmeﬁi‘?l:,l(Hl(R2)) s, (v,v)or2’
v#0

where 7, (H*(R?)) is the set of m-dimensional subspaces of H!(R?). Then

and if \; (k) = (k) for some j > 1 then A has at most (j — 1) eigenvalues below i (k). If A;(k) < v1(k), then
M (k), ..., \j(k) are the first j eigenvalues of Ay. Moreover the numbers A, (k), m > 1, can be characterized by
k.
Am (k) = sup inf M,
V1, Um—1EL2(R2) weH (R2),w#0 (w, 'LU)O’]RQ
welvy,..., Vm—1]+
where [v1,...,v,m_1]" is the orthogonal complement in L?(R?) to v1,...,vy,_1. In particular when \,,_1(k) <
~1(k) then
k.
(k) = mf AEw©)

weH (k2),w#0 (w, w)o R2 ’
1+ '
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where uy, ..., u,—1 are eigenvectors associated to the eigenvalues A1 (k), ..., Apm—1(k).

We need now to report a comparison method described and used in [3]. We compare the solutions of problems
stated in two subdomains of R? containing K to the one stated in R2.

Let a,b € RT be such that K C (—a,a) x (—b,b). We define the two different sets

Q = {zeR%|m <d}, (7)
QG = (7(1)(1) X (*da d)a (8)

where d = max(b, ¢) with ¢ defined in (1).

Let n € L>°(R?) be an index function satisfying (2) and (3). On the set Q and €2, we consider eigenproblems
with homogeneous Dirichlet or Neumann boundary conditions.

We define the problem (P?): find A € R, u € Hi (Q), u # 0, such that

aqa(k;u,v) = Mu,v)o.q, forallve H}(Q)

where the bilinear form agq(k;u,v) : H'(2) x H'(Q) — R is given by
aq(k;u,v) = / {VuVv — K*n*uv} dz.
Q

We denote by Ag the operator given by the spectral formulation. We define the quantities, associated with the
problem (P?),
aq (ka v, ’U)

AP (k) = inf iR s
m(#) Hmeﬁz}’:(Hém)) vs%% (v,v)0,0
v#0

Similarly, we define (P9), A4, \34(k) in replacing by €.
We now define the problem (P"): find A € R, u € H'(Q2), u # 0, such that

aq(k;u,v) = Mu,v)o o forallve H' (Q).
We denote by A} the operator given by the spectral formulation. As before we associate with the eigenproblem

(P™) the quantities

k.
s, 2alkiv,0).

)\N k _
m (k) Hme%}’nrq,l(Hl(Q)) /ueHI,),L (v,v)0,0
v#£0

In the same way we define (P™™), A", A" (k) in replacing 2 by €. Using the min-max principle we prove the
following proposition.

Proposition 1. Then for all m € N*, k € R, the following holds

min(y1 (k), A (k) < min(y(k), A7, (k) < A (k) < A7 (k) < AZT(R). (9)

2. ONE DIMENSIONAL PROBLEM

We study in this section the vertical one-dimensional problem used in Section 3 to write the exact boundary
condition. It comes from the 2-dimensional equation (5) set in the domain where the function n is only dependent
on xs.
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2.1. Mathematical results

A function 7 € E*°(R) satisfying (1) is associated with n satisfying (2) and (3). Likewise, with the problem (5)
is associated the following one dimensional problem: find real numbers 3 and functions ¢ € H? (R), u # 0, such
that

P ez, _go R 10
“E n“p=—p%, iR (10)
To solve (10) is to find the eigenpairs (7, ) of the unbounded operator By : H*(R) C L?(R) — L?(R) defined
for ¢ € H*(R) by
By =—¢" — k’n’p.
This operator is self-adjoint, bounded from below and cess(By) = [—k:2n§, 400 [, see [3] for all the mathematical
results of this section. The eigenvalues of By are characterized by

b(k;
Y (k) = inf sup M, m > 1,
Hin € () ot (| 2llo g

where b(k; p,¥) = [ @'V — k*n*pydy and J4,(H! (R)) is the set of m-dimensional subspaces of H' (R).
Indeed, if v, (k) < —k?ni then 7., (k) is the m-th eigenvalue of By, and if v,,,(k) = —k?n} then By has at
most (m — 1) eigenvalues. Moreover, if fiy = n; then By has no eigenvalue and if 7ip > ny then o,(By) C
|- k2n3_, —k?n?2[. So, we suppose now that

ﬁ+ > Np.
More precisely, with n, > n, there exists ki, such that v,,(k) = —k*n for all k < ky,, and v,,,(k) < —k?*n} for
all k > k,,. We can also give a convergence result. If there exists 0 < 7 < ¢ such that

n(y) < iy otherwise,

then
2,2 2,2

mAm 9 o M
P and v, (k) +E*ny — P

As we have associated Aﬁ and A} with Ay, we associate with By, the two operators with compact resolvent B,‘f
and B} defined by

Y (k) + k*0% < as k — oo.

2
D(B}) = H*(I4) N Hy(1s),  Bju= —j—;; — k*n%u
and
n 2 / / n d%u 5 9
D(BY) ={ue H*(I;);u'(—d) =u'(d) =0}, Bjpu= 2 — k*n*u.
Then we define the numbers for m > 1
7 (k) = i up 2 0) " (k) = - sup M,

n R = mn
Hin € (H3 (1)) wettn || @llo,1, Hin € (M 10) vt 2l 1,

characterizing the eigenvalues of Bf and BJ. Each operator has an increasing sequence of eigenvalues tending
to 0o. They give upper and lower bounds for the eigenvalues of By:

min(y,, (k), —k*ng) < ym(k) < v (k).

Moreover, if 71 (k) < —k?n? we have 7i¥ (k) < 71 (k).
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2.2. Numerical study

For the numerical study we are only interested in the case of the three layers with

ny ify > ¢,
ay) = g if —e<y<e,
np if y < —¢,

where .y > ny > ny > 0. To compute 7, (k), we solve the equation

d?p
——L —k*n%p =
dy? Y=
successively in the intervals | — co, —c[,] — ¢, ¢[, and ]¢, oo[, and impose the continuity of v and its derivative at
y = —¢, y = ¢. Then the eigenvalues v, (k) are the solutions 7 of the dispersion equation which can be written

in the form

with @ = 2¢y /v + k2n% € [0,m] and

tan(z) = F(x)

o (VAP + VA=)

I e e
here )y = 2key /7 — ng, ny = 2key /73 — n?. The function F has a pole at the point

2kc\/(n2‘+ —n2)(n2 —n2)

Tp =
\/(ﬁ%r —n?)+ (PR3 —n})

F(x)

and is decreasing on both intervals [0, z,[ and |xp,7m1]. Then, to get the v, (k), we compute by dichotomy the
intersection between a decreasing function and an increasing function on each interval where there is at most
one intersection, see Figure 2.

2.0

tan(z) =7 ©3(y)

40—

FIGURE 2. Curves for computing the three eigenvalues and the eigenvectors on | — 0o, o0.
To give an numerical illustration, we take the following data

ny =3, mp=2, my=1, ¢c=1, k=2, (11)
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and we compute three eigenvalues +y, see after for the values. We can deduce the eigenvectors, see Figure 2,

with
v(y) = Cre™ if y €] — o0, —],
= Cysin(ky) + Cs cos(ky) ifye]—e(,
= Cye™ % if y €, +o00],

where three of the constants Cy, Cs, C3, Cy are depending of v and

=\/y+k03, a=\/-y—k¥n}, 4= \/—'y—ilﬁnt2

In the rest of the paper, to have a simpler notation, the bounded domain in the direction (Oxs) is Iy =] — d, d|
a symmetrical set. It is not always the case and here we are going to consider a more general one, replacing

Iy by I, =] — di,dz[. To compute the eigenpairs of B and B we need to distinguish three intervals dividing
[—k2n2 4,00l the interval containing the eigenvalues,

L= [-k*n%, —k*ng), I = [-K*nf, —k*nf], Iz = [~k*nf, ool.
Firstly, we detail the results for B{. With the same method than with the unbounded domain, adding the

boundary conditions v(—hi) = v(h2) = 0 and replacing the intervals | — 0o, —¢[ and |¢, oo[ by | — h1, —c[ and
le, hal, we get three different dispersion equations depending on the interval I;, j =1,2,3

tan(x) = Fj(z), ifx eIy,
where

hl 1 h2 1

[n2 2 [p2 _ g2t 2 [n2 _ 22 2 _ 202 _ 2
- IE{ ni—x COth|: N —x (2 2)]+ ns—x coth[ N —x (20 2)}}
1\r) = )

h h 1

= \fuf =t \Jo = coth | \fuf = (5 = )| oth |/~ (32~ )]
x{\/xznfcotan[ :Ezfnf(g—z %)}Jr n%a:Qcoth{ 77%:52(}2%%)]}
F(e) = h 1 5 hy 1]

T —\/IQ n? \/772—362 cotan —n3 (%—5) coth n2—$2(%—§)

Fg(I) =

h 1 h 1
m{\/JUQ — 7} cotan {\/352 -5 (2—2 - 5)] + /2% — n3 cotan [\/xQ —n3 (2Z — 5)]}
h 1 h 1 ’

z? — \/IE2 —n? \/IE2 — 13 cotan {1/332 777%(—2; - 5)} cotan [1/332 — 3 (2 - 3

For B} we have the same expressions in replacing coth with tanh and cotan with — tan. In I, 4 (k) and 7 (k)
are approximation of v,,(k), while in I and I3 they give a discretization of gess(By)-

Numerically, we use the same method as for the unbounded domain, but it’s more complicated because it
is not easy to find the intervals where there is at most one intersection, see Figure 3. In the interval I;, F; as
only one pole that we determine by dichotomy, and it is the same than above. We give some precisions for I3
because it is the most complicated. Firstly, we need to find the poles of F3. The poles and zeros of the function

x — cotan [\/ —n? (—f%)] are, for m € N,

2c
Pt = 3 C\/m27r2 + (A3 = ng)k2(hi — ¢)?,

2c 1
Zma = hl_c\/(m+§)2w2+(ﬁ+ )kQ(hl—c)
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Replacing h; with he and n, with n:, we get p,, 2 and z, 2 the poles and zeros of the function z +—

cotan {\/IEZ —n3 (% — é)} The principle is to arrange the P, 1, Zm,1, Pm,2; 2m,2 Which define intervals where
there is at most one pole of F5. We get the poles and then between two successive poles there is one intersection
between tan(z) and F5(z).

In each interval I; we have a different expression of the eigenvectors, see Figure 4 and 5 for an illustration.
We give these different expressions in the following table for B,‘f,

I Iy I3
Ji | 2Cre= M sinh(a(y + k1)) | Cs[sin(ay) + tan(ahy ) cos(ac)] | Co[sin(ay) + tan(ahy) cos(ac)]
Jo | Cysin(ky) + Cs cos(ky) Cs sin(ky) + Cr cos(ky) Cio sin(ky) + C11 cos(ky)
J3 | 2C4e®"2 sinh(5(y — hy)) 2Cge?2 sinh(6(y — ha)) Ci2[sin(dy) — tan(dhs) cos(dy))

where y € Jy =] — hy, —c[, Jo =] — ¢, ¢[ or J3 =]c, ha[, and

=\/k?n? + 7, 6 = /k2n2 + .

For B}, you replace sinh with cosh and tan with — cotan.
We consider the same data as in (11) with

O

hy =3 and ho = 4.

(12)

We give in Figure 3 the graphs of the functions tan, Fy, F, F3 for Bg.

The first eigenvectors are given in
Figure 4 for B{ and in Figure 5 for BJ.

40—
tan(x)
20
O%J o E/f”:%f/z O
20
6¢
-40—
Fi(z) Fy(z) Fy(z)
T T T — Tt T T T X
0 2 4 6 817110 7912 14 16 18 20

FIGURE 3. Bg - Functions tan, Fi, Fo and Fj.

In I; we compare the three eigenvalues of By, B,‘f and BP'. With a precision e = 1077, we get

m | 2 (k) + k*n2 | v (k) + k02 | 7% (k) + k*n2
1 1.70593 1.70593 1.70593
2 6.72892 6.72892 6.72892
3 14.64787 14.64807 14.64835
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There is only a small difference for the third, the eigenvectors are also similar, see Figure 4. So, usually, v¢(k)
and 7' (k) are good approximation of 1 (k). The approximation is not good if k is small or if hy and hy are

near c. With k= 0.5, hy = 3, ho = 4 we get one eigenvalue

m

(k) + R

Ym (k) + lﬁ:Qr‘LQ+

ALk T R

1

0.67664

0.69591

0.71770

But, for k = 0.5, if we take h; =

ho = 100 we get identical values

(k) + R

Ym (k) + lﬁ:Qr‘LQ+

AR

m
1

0.69591

0.69591

0.69591

With k£ = 2 but hy = he = 1.1, very close to ¢, we have

m |y (k) + k7% | ym(k) + k207 | 42 (k) + k*n7
1 1.21853 1.70593 2.06836
2 5.12910 6.72892 8.27228
3 12.20251 14.64807 18.60825
When h; = hy = ¢ we have an exact expression of 47 (k) and 72 (k):
(m —1)2r2 d m2m?

(k) = —k*n% + T (k) = —k*% + ———

4c? ’ 4c?

In I5, with the data (11) and (12), we get three eigenvalues.

Finally, we give the first four eigenvalues in I3.

m 4 5 6
(k) | —15.46142 | —12.47721 | —8.83024
74 (k) | —14.07743 | —10.95298 | —5.71381

m 7 8 9 10

v (k) | —3.75907

—2.48574 | —1.10804 | 2.29668

73 (k) | —2.91438

—0.25858 | 1.98146 | 5.67769

We explain the method in three steps. First we write the problem in a bounded domain, then it is discretized
with finite elements and finally we compute the eigenpairs for a matrix problem.

IR

FIGURE 4. Bg - eigenvectors in I7, I3 and Is.

3. THE NUMERICAL METHOD
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0.8
0.6
0.4+
0.2+

00— \

02— |

-0.5— Sog 054 (pg ,r‘; \‘;“ ,f" -0.4-|

0.6

FIGURE 5. B} - eigenvectors in Iy, I and I3.

3.1. The problem in a bounded domain

We consider (P?) and (P") as good approximations of (6) that we denote (P) (A (k) are the eigenvalues).
Moreover, by (9), we see that when A\, (k) < 71(k), the difference A% (k) — A (k) give the precision of the
approximation. We will see in the next subsection that some of the inequalities (9) hold also for the discretized
problems.

Now, we write problems (P%) and (P™) stated in the bounded domain €2, and equivalent to (P%) and (P™).
We use a series development of the solution in the exterior domain 2, = Q\; which is an exact representation
of the solution on the vertical boundaries ¥* = {#+a} x [~d, d]. It is the localized finite element method describe
by Lenoir and Tounsi [10] in hydrodynamics, and then by Bonnet and Gmati [1,4,7] in guided optics when the
medium is homogeneous or a diopter.

We describe the method for (P%), it is similar for (P™). We denote 'Y = [~a,a] x {#d} the horizontal

boundaries of Q, I'y = I‘Z’ Ul , see Figure 6.

+ T
IFb 2 T
Qe E Qb E Qe

- =

“i\ [ic "
: —d :
1—‘b

FIGURE 6. Bounded domain.
Let Iy =] — d,d[, (v&,(k),¢%), m > 1, are the eigenpairs of the one-dimensional operator B¢ : H? (I;) N

H} (1) — L (I,) defined by Bl ¢ = —‘fo — k2n%p, see Section 2. The set (%, )m>1 is an orthonormal basis
7 >
of L? (I3). Let u the solution of (P?%) and (z1,x2) € e, we have

w(wr, ma) = Y (1)@ (22),

m>1
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and (5) give

d*p 2-2 d d*am d d
S |- ) — et e (o)~ R ) =2 S (o) (o)
m2>1 2 1 m>1
By the definition of ¢& we deduce
d dan, d
S {0 00) = N (1) = T ()| ot (2) =0
i

m>1

and thus
— 0 (1) = (A = 721(k))a7rb($1)-
If A\ —~2 (k) > 0 there is no solution in L? (] — oo, —a[Ula, oo|), and if A — v4, (k) < 0 we get

am(r1) = CleV Atk e g > g,
= CreV Atk o if 27 < —a,

where C;f and C;, are constants to be determined. With uy+ = Z am (£a) @l (), we get

m>1
Ok = (u, 9o preV TR H e,
We now have a development of u in each half exterior domain QF =] —d, d[x]a, co[ or Q =] —d,d[x] — oo, —a]
dependent on the value of v on 1 or ¥
u(ry,x2) = Z (u, gofn)o,ziev =+ (k) (:F“Jr“)gofn(xg) for (z1,29) € Qei (13)

m>1
This series expansion allows to define the problem

Find u € H* (), u # 0, A € R such that:

—Au — k*n?u = M, in €y,
Pdl
(PY) u =0, on I'y,
au + +
5\2i = Q5 u, on X,

where v is the unit external normal and

Qxu= Y Flu,oh)oss\/—A+ 14 (k) @b (2).

m>1

With the same method as described in [10] we prove that, for A < v{(k), the operator Q3 is continuous from

Hz($%) in H—2 (%), with ||Qf u||2_l e = ||u|\2% o if u € H3(2%). The following proposition says how (P)
L :

is equivalent to (P%).

Proposition 2. Let A < {(k). If (u,\) is solution of (P%), then (ujq,, ) is solution of (P).
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Reciprocally, if (i, \) is solution of (P%), then the function u defined by:

=u, in Qb,
AL (k) d .
=D (@ pm)oszeV MW ERTIGE (4y), in Qe,
m2>1

is such that (u, \) is solution of (P?).

With the same steps we get that the problem (P™), obtained from (P¥) in replacing u = 0 with % =0
v

and (v4(k), ) with (v7,(k), %), is equivalent to (P™).
The condition on £# is non linear with respect to A\ which is the value to compute. So we need to consider
the solution as the invariant of a function. We define a sequence of problems (P{!) for a €] — k*n?,v¢(k)[:

Find v € H' (), u # 0, A € R such that:

—Au— k*n?u = M, in €y,
Pdl
(Py) u =0, on I'y,
ou 4 I
5\2i = Q3 u, on X™,

of which the variational form is

Find v € V, u # 0, A(«a) € R such that:
aq(u,v) = Ma)(u,v)o,q,, VeV,

where V = {u € H' (Q)/u =0 on I',} and

ao(u,v) = (Vu, Vo)oq, — k2(n*u,v)oq,
+ Z \/ o+l (k) (u, o )o,s+ (O, V)o,s+
m>1
+ Z -\ @ + ’Yg@(k) (u7 307er)0,2* (907er’ /U)O,E*-
m>1

Then, (A2 (o, k), u ) is solution of (P?) if and only if

Mo, k) = a. (14)

m

Proposition 3. let a fized «, the bilinear form a, is continuous on V. Moreover, Yu € V:
> |Vaull? o — E2n? ||ul?
aa(u,u) = [[Vullg o, = k"3 [lullg o, -

Consequently, the solutions of (P'), denoted (ul ., Al (a,k)), are a countable sequence such that A (o, k)
tends to oo with m, and the values N (a, k) are characterized by

A (k) = dalt,u) (15)

1 su 2 )
Hm €56, (V) ueHm ||U||o Qp

We deduce from the formulas (15) that the functions o — A% (a, k) are descending, they are also continuous,

see [5]. Consequently the equation (14) has at most one solution.
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3.2. Discretization

We use P Lagrange finite-elements to discretize all the previous problems. We show this for (PN, Let Ty,
be a triangulation of € such that Q = Urer, 7, Vi = {vn € C’O(Qb)/vhh €Py, Vr €Ty} and

V;?:{’Uh GVh/thOSur Fb}~

Then, we need to cut the series expansion of the boundary condition on ¥, retaining only a finite number M of
terms, and the discretized problem (Pg,) is:

(

PPy {Find u € VY, u#0, AR such that:
a,h

ao(u,vn) = Mu,vn)o.0,, Yo, € V}?,

with
o (u,v) = (Vu,Vo)oo, — kz(u,v)oygb

M
+ Z Ve vE k) (w0 )o,s+ (9, )0t -
=
+ Z - 7a+ﬁygL(k) (uacpg@)O,E* (‘P%a”)O,Za

m=1
For an eigenvalue problem, the convergence of the localized finite element method is studied in [4]: it is proved
that the error decreases faster than any power of ﬁ
We denote by Nj, the number of degrees of freedom (values of the function at the points of the triangulation
except these on the boundary I'y) of V)2, w;, i = 1,..., Nj, the usual basis functions of V}Y and U; the value of

w at the " point of the triangulation. Then we have

Nh

u = E ini
i=1

and (ngh) is a linear system
[A(@)| Uy = Mo, k)[M] Uy,

where U, = (Ui)lgigNh, [A(Oé)] = [R] + [M] + [L(a)], for 1 < 1,7 < Np:
Rij = / le . ij dl‘, Mij = —k‘2/ ’I’LQU}Z‘ - Wy d$, Mij = / Wi - Wy dz
Q Q Q

and

M
Lij= Y y/—a+7a (k) (wi, ¢ )o,ss (g, w;)o
m=1

If 7 or j is the number of a point not on X then L;; = 0. If the points on ¥ are numbered from 1 to Ny, the
matrix [L(«)] is a full block (L;j)1< j<ns- It is because the condition on %* is non local.
The problem (ngh) has N}, real eigenvalues, denoted )‘%,h(a’ k) and characterized by:

o (u,u)

/\%,h(%k) = 2
|ull,0,

in sup
Hy €0 (V) ueHm
u#0

Proposition 4. The functions o — )‘%,h(a’ k) are continuous and decreasing on ] — k*n? ¢ (k)[.
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When it exists, the fiz point

a=\", (a,k) (16)

m,h
is solution of the discretized problem (P):

al Findu eV, u#0, a €R such that:
(Fr)

o(u,vn) = alu,vp)o.q,, Yon € V.

We denote it )\fl,iﬁh(k).

In the same way, we discretize the problems (P") and (P™), (P44) and (P™).
From the min-max formulae we can deduce the following inequalities for a triangulation T}, and M big enough:

A (k) < A (k) < 5 5 (R).

Moreover, if T}, is a triangulation included in another triangulation T}, (it means that each summit of T}, is
a summit of T}, and each triangle of T}, is included in a triangle of T}, ), we have

)\d

m

(k) < Xjna (k) < A g, (K).

m,ha m,hy

Same kind of inequalities hold for the other problems:

AR (k) < X, (k) < XM (R)y Ap(k) < A, (k) S Ay (R); - Am(k) < Ay, (k) < Ak, ().

m,hl

Since we have (9), for a triangulation accurate enough we will have
min(A7, (k), 71 (k) < min(\3, , (k), 71(k)) < A (k) < A (R) < A, (K).

Remark 1. When the eigenpair ()\fl,ll7h(k),uflrll7h) is computed, vy is known and (13) allows to compute the
eigenfunction in €.

3.3. Computing

To compute the eigenpairs we use the inverse power method with shift, see [18], which yields the eigenvalue
closest to shift . We consider the linear system [A(a) — MU = p[M]U instead of [A()]U = A[M]U, and the
inverse power method give the smallest value u. Then A = 0 + pu is the eigenvalue closest to 6.

The eigenvalues are in the interval | — k2ni,'yl (k)[. Thus to compute the first one we choose § = fk'zna_,
and for the others a 6 in the previous interval. Moreover, with this shift we have adimensional quantities
Am(k) + kzna_ which satisfy 0 < A, (k) + kzna_ <m(k)+ kzna_ < Z—; whereas A, (k) tends to —oo as k tends to
infinity.

The other question is to solve (16). We search o €]—k?n%,~; (k)[such that a« = g(«) where g(a) = A%

m,h

(o, k).

The function g is decreasing and continuous, we have g(—k?n3) > —k?*n% (because dq (u,u) > szniHuH(Q)’Qb),

then (16) has a solution if and only if

9((k)) < (k). (17)
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If (17) is satisfied we take ag = —k?n? as initial value and the iterative process is defined by
glas) —g(n(k
(k) - 2D ZINED) oo g
Qst1 = % — (k) (18)
9las) —g(k)) ’
as — M (k)
the convergence criterion being |as+1 — as| < &, where ¢ is the wanted accuracy.
We can now give the general algorithm where we take 7§ (k) as a good approximation of v, (k).
e Data: k, n(x), mesh of Q,, M, ¢, 6.
1., M, of the elementary finite element matrix, and assembling

e Step 1. Computing of (4, (k), p2,) for m =
of the matrix independent of a: [C] = [R] + [M] + 6[M].

e Step 2. Existence test: g(v{(k)) < v{ (k).
> a = ~{(k).
> Assignment of the terms /—a + %, (k).
> Assembling of the matrix [L(«)] and [A(«)] = [C] + [L(«)].
> Computing of g(v{(k)) by the inverse power method.
> If g(v{(k)) > v{(k) then STOP.

e Step 3. ap = kana_ and computing of g(ap) like in the step 2.

e Step 4. Iterations.
> Computation of asy; by (18).
> Convergence test:
o if |as41 — as| < € then A = a1 is the solution.
o else: a; := agy1 and Computing of g(a;) like in the step 2.

Remark 2. In the iterative process, « is modified, but to compute the matrix [L(a)] (and [A(«a)]) we need
only to change coefficients /—a + 74, (k) and assemble another time the matrix, because the elementary matrix
[E] = (Eim) 1<i<ny , such that E;p, = (w;, @%)Lz(z), is preserved and then

1<m<M
M
Lij = Z \/ —Oé+’ygl(k‘) Eim Emy-
m=1

It is important to remark, for the sake of accuracy, that the integrals giving Ej;, are computed with exact
formulas.

In the examples we have chosen, the domain is symmetrical and we compute only on a half domain with only
one boundary, X1, with a localized finite element condition.

For the implementation of this numerical method we have used and developed the finite element code MELINA,
see [12]. The computing is done in single precision with a SUN-Ultral. The visualization of the results is done
with GRAME developed by Pascal Gentil from University of Rennes I, for the result files of MELINA.

4. NUMERICAL RESULTS

In the first subsection we give numerical tests of the efficiency of the method and in the second subsection
we present cases where the exact condition on the vertical boundaries is essential.

Here we give results for functions 7(z2) taking only 3 values, we have (1) and 72(¢) = ny for €] < ¢, where
ny = |||, g > 1. Moreover we are going to consider the function n(zx) described in Figure 7, and we will give
values to the parameters hq, hy, H, a, I, L, np, n4, ny (the unit for the distances is the micrometer).
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FIGURE 7. Rib waveguide.

We denote u%ﬁh(k) the adimensional quantities /\%,h(k) + k?n?, and by analogy we have uﬁih(k), ,u;zlyh(k;)
and pp", (k). The computed eigenvectors U are such that |U;| < 1 and max; |U;| = 1. They are presented with
isovalues which are 0 on the horizontal boundaries and +1 at the center.

4.1. Tests

There is a difficulty to find the good test because to compare with an exact solution we need a simpler
problem where the dependence with respect to z2 of the solution is only one of the spectral functions 2, see
paragraph 4.1.1. To have a dependence with respect to x5 different from the functions ¢, we get a problem
without an exact solution. But we can compare the results between the problem stated in a big and a small
set, the second included in the first, see paragraph 4.1.2. In the paragraph 4.1.3 we present convergence studies
with respect to M and h the mesh size.

Comparing two vectors U and W with the same dimension IV, we consider two kind of errors, the quadratic
error I/, and the relative quadratic error F,.:

L ) 2 (22, - wp?)’
Eq(Uv W) = | % (Uz - Wz) ; Er(Ua W) = 10
<N = (ZX,v2)" + (s, we)®

=

4.1.1. With an exact solution

The domain is = R} x]0,d[= Q, U Q with Q, =]0,a[x]0,d[. We denote by z and y the space variables.
The boundaries of 2 are I'1(z = 0), T'2(y = 0), I's(y = d). Let ¥ = {a}x]0,d][.
We denote by p a non negative integer parameter. The solution of the problem

Find u € H* (Q), such that:

Au =0, in €,

u =0, onI'y,

% =g, onT'sUTg,
ov

where

g(y) = %ﬁ sin (%y) ;
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is
™ T
u(z,y) = e TZsin (%y) )

The solutions (7, @m) of the one-dimensional problem

Find ¢ € H} (]0,d[), ¢ # 0, v € R such that:
—¢"(y) =7 e(v),

are, for m > 1,
m2n? 2 . /mmw
Ym = 2 and  pp(y) = Esm (Ty) .
The localized finite element method leads to the variational problem
Find v € V| such that:

mm
(Vu, v'U)O,Qi + Z (u, SDm)O,ZTQDm(y)(SD'rmU)O,E = (ga 'U)O,Fla Y € V,
m2>1

where V = {v € H () /v(2,0) = v(z,d) = 0, ¥z € [0,a]}.
As previously, we denote M the order of the truncature of the series and we discretize the problem. There
is only one non trivial term in the series because

d mi .
(o =[5 and (o =0 im #

It’s why we get bad results if M < p and good ones if M > p.
We choose d = 7, ¢ = 1 and a mesh with 816 triangles and 451 nodes. We note Ugy the exact solution and
U the computed vector. We give E,.(U, Uey) in the following table, depending on M and p.

1 2 3 7
0.131% | 0.132% | 0.132% | 0.132%
13.552% | 0.632% | 0.632% | 0.631%
4.796% | 4.796% | 1.455% | 1.455%

=
W DN =
=

The eigenvector U has p oscillations, then, with a same mesh, the accuracy of the finite element approximation
decreases as p increases.

4.1.2. With a smaller set included in a bigger

We consider the function n(x) as in Figure 7 with ny = 3.44, np, = 3435, n, =1, hy = 3.5, H =6, [ = 2,
h, =5, L = 11.5. Let two values for a, a; = 3 and as = 10, associated with two sets 21 C Q5. With k = 4 we
compute the first eigenpair of (P) for the two domains, denoted (\q,,Uq,) and (Aq,,Uq,). We can measure
the efficiency of the method in comparing the results. The meshes of ; (932 triangles and 511 nodes) and
(2158 triangles and 1166 nodes) are the same on 1, see Figure 8.

With M =7, we get for the eigenvalue

|>‘91 - >‘Q2|

Ao, — Ao, | = 1.397x 1073, 0% T Al
| 1 2| %()\Ql + )\Qz)

= 0.400%,

and for the eigenvectors, see Figure 8

E,(Uq,,Uq,) = 1.460 x 1073, E,(Uq,,Uq,) = 0.308%.
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FIGURE 8. Mesh and first eigenvector of € and 5.1

If we plot Ey(Uq,,Uq,) against M, Figure 9, we see that for A > 7 the error remains unchanged.

Quadratic error
0.2-:]

0.15-

0.05-

FI1GURE 9. Quadratic error against M.

4.1.3. Convergence

Again, we consider a function n(z) as in Figure 7 with ny. =3, np, =2, n, =1, hy =04, H =0.6,1 = 0.2,
he =04, L=1anda=0.4. We set kK =10. We build a sequence of 5 meshes with a step h smaller and smaller.
We call them meshp with p = 2,4,8,16,32, see Figure 10. We obtain Mesh2p from Meshp in dividing each
triangle in 4, adding 3 nodes, the mid-point of each edge. Then the step of meshp is h = hy/p where hy = ¥

Firstly we are going to study the finite element convergence for the 4 different problems: (P"), (PM), (P)
and (Pffd). We give for M = 7 the first computed eigenvalue of these problems, with finite elements P; in the

first table and P, in the second.

w\p 2 4 8 16 32

Wi | 45.1437035 | 37.9420433 | 35.5640564 | 34.8692017 | 34.6836395
,u’flh - 40.0518761 | 38.1926460 | 37.6196823 | 37.4647102
,u,i”h - 40.0533180 | 38.1955109 | 37.6232567 | 37.4684792
pdd | 58.9479027 | 48.4830246 | 45.4838829 | 44.6389236 | 44.4158134

First eigenvalue computed with P; finite-elements.

IThe figure is in color at www.edpsciences.org/docinfos/M2AN
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FIGURE 10. Meshes for convergence study: p =2, 4, 8, 16, 32.

w\p 2 4 8 16 32

win | 35.7251358 | 34.7970390 | 34.6387024 | 34.6213951 | 34.6197395
prt | 38.3762856 | 37.5653000 | 37.4276657 | 37.4125214 | 37.4112396
pdl, | 38.4295959 | 37.5696564 | 37.4315186 | 37.4163399 | 37.4150276
pdd 1 45.9496460 | 44.5531921 | 44.3614311 | 44.3414268 | 44.3396988

First eigenvalue computed with P; finite-elements.

In the first table for p = 2 there isn’t a value for (P/"!) and (P?') because the mesh is not accurate enough,
the eigenvalue is increased too much and the existence test is not satisfied (g(y1(k)) > 71 (k)). We can see

that for each mesh we have uy’ < ,u?fh < ,u‘lifh < uilfih, for each problem pi1,p, > fi1,n,,, and the difference

i — M‘f,dh‘ ~ 10 stay big while u?,lh — ,uilfh) ~ 4 x 1073 is small. Indeed, for k great enough the condition

on the horizontal boundaries is not important, but in the boundary X it is. In Figure 11 we see the differences
between the eigenvectors: as for the eigenvalue, there is a big difference not between (P"') and (P) but with

the others.

FIGURE 11. Symmetrized eigenvectors: Ufd  Ud, =~ UM = UP - mesh16.!

If we took the solution P with p = 32 as an exact solution, we get, with the first table, the P; finite element
convergence h?, see Figure 12.
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151

dd

05 dl

log10(error)
=)

-1k

-15 L L
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. . . )
-1.2 -1 -0.8 -0.6 -0.4
log10(h)

FiGUurge 12. Convergence curves P; for the 4 problems.

Secondly, we study the dependence with respect to M. For M from 1 to 9, we give in the following tables
,uffh computed with P; and P, finite-elements.

M| 1 2 3 4 5 6 7 8 9
2 -
4 [40.0480 | 40.0513 | 40.0523 | 40.0523 | 40.0528 | 40.0532 | 40.0533 | 40.0561 | 40.0562
8 | 38.1891 | 38.1948 | 38.1953 | 38.1954 | 38.1955 | 38.1955 | 38.1955 | 38.1957 | 38.1957
16 | 37.6164 | 37.6229 | 37.6232 | 37.6232 | 37.6232 | 37.6232 | 37.6233 | 37.6232 | 37.6233
32 | 37.4614 | 37.4682 | 37.4684 | 37.4684 | 37.4685 | 37.4685 | 37.4685 | 37.4685 | 37.4685

u‘ffh - P; Finite-elements.

M| 1 2 3 4 5 6 7 8 9

38.4088 | 38.4153 | 38.4169 | 33.4181 | 38.4227 | 38.4287 | 38.4296 | 38.4325 | 33.4384
37.5627 | 37.5693 | 37.5696 | 37.5696 | 37.5696 | 37.5697 | 37.5697 | 37.5697 | 37.5697
8 | 37.4245 | 37.4313 | 37.4315 | 37.4315 | 37.4316 | 37.4315 | 37.4315 | 37.4315 | 37.4315
16 | 37.4093 | 37.4161 | 37.4164 | 37.4164 | 37.4164 | 37.4164 | 37.4163 | 37.4164 | 37.4164
32 | 37.4079 | 37.4148 | 37.4151 | 37.4151 | 37.4150 | 37.4149 | 37.4151 | 37.4150 | 37.4150

u‘ffh - P, Finite-elements.

[\)

N

We can see in these tables that, for a mesh accurate enough, the five first terms of the series only are
important.

4.2. Results

We have proved in [2] that when k increases, the eigenvector is more and more confined in the area where
n(xz) = ny. When 714 < ng this area is bounded and the results are the same than with a constant function
fi(xz2) and an homogeneous Dirichlet conditions is adequate on all the boundaries, see paragraph 4.2.1. But
when n4 = ny, the eigenvector can be less and less confined horizontally and the exact condition is useful, see
paragraphs 4.2.2 and 4.2.3.

4.2.1. Ezxample 1

Let the function n(z) as in Figure 13 with ny = 3.44, iy = 3.38, ny, = 3.17, ny = 1, hy = 1, H = 1.5,
l=1,hy =15, L = 3.2 and a = 2. The mesh has 981 triangles and 524 nodes. We give in Figure 14 the
representation of the functions k — N%, n(k) for m = 1,2, 3, and in Figure 15 the three associated eigenvectors
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for k = 10. When £ is big enough, the stratified medium doesn’t play an important role and the exact condition
on Y is not useful.

| Qp
[}
oo !
| [}
Ng ny ! :L
! [}
- | : -
" : : hy
I 1
: :
nb ! ha :
l [}
PR L
a
sn(k)__
Honlk) __ B}
1 ] k
45 50

FIGURE 14. Example 1 - Functions k& — ufl,ll7h(k) form=1,2,3.

F1GURE 15. Example 1 - Symmetrized eigenvectors: U{“,L, UQdfh, Uéi_lh -k=101!
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4.2.2. Ezample 2

Let n(x) the same function and the same mesh than in the previous paragraph in replacing ny = 3.44 with
n. = 3.38 and n4 = 3.38 with ny = 3.44, see Figure 13. So, we have ny = n4 and an unbounded area
where n(x) = ny. Theoretically, see [2], the first eigenpair exists for each k > 0 with an eigenvector which is
less and less confined horizontally but more and more vertically as k increases. Numerically we find back this
result: when k increases, the eigenvector concentrates vertically but not horizontally. In fact it concentrates

horizontally up to about k¥ = 5, when ’)\‘ffh(k) - 'yf(k)’ is maximum, and then extends more and more, see

Figure 16 and 17. Here, the exact condition on ¥ is essential.

FIGURE 16. Example 2 - Function k — pu{", (k).

4.2.3. Ezample 3

We consider the function n(z) as in Figure 18 with ny =3.44, n, =3.38, np =3.17,ny =1, hy =1, H = 2,
=151, =05, hy =05, hy = 1.5, L = 3.7 and a = 2. It is a case where the first eigenvector exists for
0 < k < k. and disappears for k > k., see [2]. Numerically, we see that the eigenvector is more and more
confined in both directions up to about k = 2.5, then it splits in two parts and expands horizontally before it
vanishes for k£ > 9, see Figure 19 and 20. In this example, the exact condition on ¥ is also useful.

CONCLUSION

With the proposed method, we are able to study phenomena which are not well confined laterally like in the
examples 2 and 3 of Subsection 4.2. The lateral boundary condition allows to put the boundary close to the
core of the structure and, after computation, (13) give the solution in all the lateral exterior domain.

Moreover, the difference between the solutions of (P) and (P*') gives an estimate of the error coming from
the lower and upper boundary conditions. This difference is small because the energy is well confined in the
central layer of the guide.

The method is described and tested for a stratified medium with three layers. For a greater number of layers,
we need to determine the eigenpairs of the one-dimensional problem studied in Section 2, with the same steps
of calculation.

The scalar equation studied here is the weak guidance approximation of Maxwell system. The vectorial
problem presents other difficulties to write an exact condition on the lateral boundary. Indeed, using potentials,
the Maxwell system leads to three scalar equations similar to the one studied here [11], and so three series
expansion to combine for getting a condition with the vectorial unknown.
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FIGURE 17. Example 2 - First symmetrized eigenvector for k = 1, 3,5, 10, 15, 40.!
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FIGurE 18. Example 3 - n(x).
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