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DOMAIN DECOMPOSITION ALGORITHMS FOR TIME-HARMONIC
MAXWELL EQUATIONS WITH DAMPING
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Abstract. Three non-overlapping domain decomposition methods are proposed for the numerical
approximation of time-harmonic Maxwell equations with damping (i.e., in a conductor). For each
method convergence is proved and, for the discrete problem, the rate of convergence of the iterative
algorithm is shown to be independent of the number of degrees of freedom.
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1. Introduction

The time-harmonic Maxwell equations are derived from the complete Maxwell equations assuming that
both the electric field E and the magnetic field H are of the form E(t,x) = Re[E(x) exp(iωt)], H(t,x) =
Re[H(x) exp(iωt)], where ω 6= 0 is a given angular frequency. Let Ω ⊂ R3 be a bounded Lipschitz polyhedron
with unit outward normal n. Let ε(x), µ(x) and σ(x) denote respectively the dielectric constant, the magnetic
permeability and the conductivity of the medium. The time-harmonic Maxwell equations reads:{

(iωε+ σ)E− rot H = J in Ω
iωµH + rot E = 0 in Ω, (1)

where J = J(x) is a known function specifying the applied current density. (See [9] for a complete presentation
of time-harmonic Maxwell equations.)

In the general case of anisotropic inhomogeneous media the coefficients ε, µ and σ are 3× 3 symmetric real
matrices with entries in L∞(Ω). The matrices ε and µ are assumed to be uniformly positive definite in Ω. (A
matrix ζ(x) is uniformly positive definite in Ω if there exists a constant ζ∗ > 0 such that

∑3
l,m=1 ζl,m(x)ξlξm ≥

ζ∗|ξξξ|2 for almost all x ∈ Ω and for all ξξξ ∈ C3.) The conductivity σ is an uniformly positive definite matrix in a
conductor and it is equal to 0 in an insulator.

As µ is non-singular we may eliminate the magnetic field H in (1) to obtain

rot (µ−1rot E)− ω2εE + iωσE = iωJ. (2)
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2 Dipartimento di Matematica, Università degli Studi di Trento, 38050 Povo (Trento), Italy. e-mail: valli@science.unitn.it

c© EDP Sciences, SMAI 2001



826 A. ALONSO RODRIGUEZ AND A. VALLI

We shall also assume that the boundary of Ω is a perfect conductor so that

E× n = 0 on ∂Ω. (3)

Though this is not the most relevant physical situation, we have preferred to consider it for the sake of simplicity.
A more realistic boundary value problem is presented in Section 5, and the results we are going to prove for the
case of a perfectly conducting boundary also hold in that situation.

To state the weak formulation of this boundary value problem (2–3) we introduce the spaces

H(rot ; Ω) := {v ∈ (L2(Ω))3 | rot v ∈ (L2(Ω))3}

H0(rot ; Ω) := {v ∈ H(rot ; Ω) | (v× n)|∂Ω = 0},

and we consider the following bilinear form in H(rot ; Ω)

a(w,v) := (µ−1rot w, rot v) − ω2(εw,v) + iω(σw,v) , (4)

where (·, ·) denotes the (L2(Ω))3-scalar product for complex-valued vector functions. Assuming J ∈ (L2(Ω))3,
and setting, for simplifying notation, F = iωJ, the weak formulation of the boundary value problem (2–3) reads:{

Find E ∈ H0(rot ; Ω) :
a(E,v) = (F,v) ∀v ∈ H0(rot ; Ω). (5)

When σ is uniformly positive definite (namely, we are considering a conductor Ω), it is easily seen that the
bilinear form a(·, ·) is continuous and coercive in H(rot ; Ω) and, as a consequence of the Lax-Milgram lemma
for complex Hilbert spaces, we can state the following theorem, which is also valid for unbounded domains (see,
e.g., [18]):

Theorem 1.1. Let Ω be an arbitrary domain in R3. If µ, ε and σ are symmetric real matrices with coefficients
in L∞(Ω) and µ and σ are uniformly positive definite in Ω, then there exists a unique solution of (5).

For the numerical approximation of problem (5), the edge elements introduced in [21] and [22] can be used.
In [20] the use of these finite elements has been considered for problem (5), either for the case where σ is assumed
uniformly positive definite, or for the case σ ≡ 0. In both cases an optimal order error estimate is proved.

In the last years some domain decomposition methods for the numerical solution of the time-harmonic
Maxwell equations have been proposed (see [15, 16, 24, 25], see also [3] and [4]). In [16] an iterative non-
overlapping domain decomposition method with Robin type transmission condition is given for the equation (2)
in an insulator ( i.e., σ ≡ 0), with non-reflecting boundary conditions. In [15] a new iteration scheme is
introduced for the same problem modifying the interface conditions proposed in [16]. In [3] and [4] we study
iterative domain decomposition methods for the low-frequency model (namely, the case where the term −ω2εE
is neglected), both for the case of a conductor and for the case of the coupling insulator-conductor (eddy-current
problem).

In this paper we are interested in domain decomposition methods for the problem in conductor, i.e., the
complete equation (2) is considered and σ is assumed to be uniformly positive definite in Ω.

As we have already remarked, the presence of the damping term iωσE ensures that the problem is coercive,
and this property will play a crucial role in the rest of our analysis.

However, we note that the bilinear form a(·, ·) is not Hermitian symmetric. Moreover, if we split it as
a(w,v) = aR(w,v) + iaI(w,v), with aR(w,v) := (µ−1rot w, rot v) − ω2(εw,v) and aI(w,v) := ω(σw,v),
though it is coercive, neither aR(·, ·) nor aI(·, ·) is so. In [3], we find the same situation with a relevant difference:
there aR(·, ·) is positive semidefinite, while in the present situation this property is not satisfied. Therefore, the
arguments used in [3] to prove convergence of a Dirichlet/Neumann iteration for the low-frequency model do
not work in the present case.
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We are going to see in the sequel that the main difficulty arises from the fact that the bilinear form a(·, ·)
is not Hermitian symmetric. We recall that, for non-overlapping domain decomposition methods, an analysis
of convergence (also concerning the independence of the convergence rate of the mesh size) is based in general
on the assumption that the problem is Hermitian symmetric (indeed, most often on the assumption that the
problem is real and symmetric).

In this paper we aim to present a complete convergence analysis when the problem is complex and not Hermit-
ian symmetric. More precisely, we introduce and analyse two families of non-overlapping domain decomposition
methods: γ-Dirichlet/Robin methods and γ-Robin/Robin methods. These domain decomposition procedures
are both related to algorithms used for advection–diffusion equations. The first one is related to the γ-DR
method introduced in [5] and the second one is related to the modified γ-Robin-Robin method studied in [6]
(which is a generalization of the well-known Neumann/Neumann method [1, 10]). We also present briefly a
modified Neumann/Neumann method analogous to the one presented in [7] for advection-diffusion equations.

The paper is organized as follows. In Section 2 we give an equivalent formulation of problem (5) in term of a
new bilinear form which turns out to be more useful for our purposes. We state also an equivalent two-domain
formulation for both continuous and discrete problems. In Section 3 we consider a general class of problems
including those introduced in Section 2, and we present the non-overlapping domain decomposition methods
that we shall analyse: γ-Dirichlet/Robin, γ-Robin/Robin and modified Neumann/Neumann. In Section 4 we
study the convergence of the methods introduced in Section 3. In Section 5 all the methods are applied to the
discrete time-harmonic Maxwell problem and, briefly, to other problems. Finally, in Section 6 we present some
numerical tests concerning the γ-Dirichlet/Robin method: we show its efficiency and robustness, especially for
the case γ = 0 (the simplest one, as for that choice the algorithm reduces to the well-known Dirichlet/Neumann
iterative scheme).

2. Equivalent formulation of the problem

As we already noticed, the bilinear form associated to the time-harmonic Maxwell problem can be written
as a(·, ·) = aR(·, ·) + iaI(·, ·). Due to the assumption that ε, µ and σ are symmetric real matrices with entries in
L∞(Ω) and uniformly positive definite, both aR(·, ·) and aI(·, ·) are Hermitian symmetric, continuous bilinear
forms in H(rot ; Ω); neither aR(·, ·) nor aI(·, ·) is coercive in H(rot ; Ω). However, we can multiply the equation
by a complex number A − iB in order to arrive to a new bilinear form b(·, ·) which can be split as b(·, ·) =
bR(·, ·) + ibI(·, ·), with bR(·, ·) Hermitian symmetric, continuous and coercive, and bI(·, ·) Hermitian symmetric
and continuous. Hence, b(·, ·) is real coercive, i.e., there exists a positive constant αR such that Re[b(v,v)] ≥
αR‖v‖2H(rot ;Ω)

for each v ∈ H(rot ; Ω). We notice that this property is one of the assumptions we need for
proving the convergence results in Section 4 (see Ths. 4.2 and 4.4); at this level, the positivity assumption on
σ ( i.e., the damped character of the problem) turns out to be crucial.

Let b(·, ·) be defined as

b(w,v) := (A− iB)a(w,v)

=
∫

Ω

[Aµ−1rot w · rot v + (Bωσ −Aω2ε)w · v] + i
∫

Ω

[(Aωσ +Bω2ε)w · v−Bµ−1rot w · rot v]

= bR(w,v) + i bI(w,v).

The bilinear forms bR(·, ·) and bI(·, ·) are clearly Hermitian symmetric and continuous in H(rot ; Ω). Moreover
we have

Proposition 2.1. If µ−1, ε and σ are symmetric matrices with entries in L∞(Ω) and µ−1, σ are uniformly
positive definite in Ω, then there exists a positive constant K such that for each A > 0 and Bω > K the bilinear
form

bR(w,v) :=
∫

Ω

[Aµ−1rot w · rot v + (Bωσ −Aω2ε)w · v]

is coercive in H(rot ; Ω).
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Proof. Since µ−1 is uniformly positive definite in Ω it follows that Aµ−1 is uniformly positive definite for each
A > 0. Moreover, since σ is uniformly positive definite in Ω and ε has entries in L∞(Ω), there exists positive
constants σ∗ and ε∗ such that

σ(x)ξξξ · ξξξ ≥ σ∗|ξξξ|2,
ε(x)ξξξ · ξξξ ≤ ε∗|ξξξ|2,

for almost all x ∈ Ω and for all ξξξ ∈ C3. Since A > 0 and assuming Bω > 0 we have

[(Bωσ −Aω2ε)ξξξ] · ξξξ = Bωσξξξ · ξξξ −Aω2εξξξ · ξξξ ≥ (Bωσ∗ −Aω2ε∗)|ξξξ|2.

Hence, choosing

A > 0 and Bω > A
ω2ε∗

σ∗
=: K > 0,

the bilinear form bR(·, ·) is coercive in H(rot ; Ω).
For simplicity in the sequel we take A = 1. Defining G := (1− iB)F we have thus transformed the original

problem (1) into {
Find E ∈ H0(rot ; Ω) :
b(E,v) = (G,v) ∀v ∈ H0(rot ; Ω). (6)

Two-domain formulation

Let the bounded domain Ω be decomposed in two subdomains Ω1 and Ω2 such that both Ω1 and Ω2 are
Lipschitz polyhedrons, Ω = Ω1 ∪Ω2 and Ω1 ∩Ω2 = ∅. We will set Γ := Ω1 ∩Ω2. On Γ we consider nΓ, the unit
outward normal vector of Ω1.

We introduce the spaces
Vj := {vj ∈ H(rot ; Ωj) | (vj × n)|∂Ωj\Γ = 0},

the bilinear forms in H(rot ; Ωj)

bj(wj ,vj) :=
∫

Ωj

[µ−1rot wj · rot vj + (Bωσ − ω2ε)wj · vj] + i
∫

Ωj

[(ωσ +Bω2ε)wj · vj −Bµ−1rot wj · rot vj ]

and the linear forms

Lj(vj) :=
∫

Ωj

G · vj ,

for j = 1, 2.
Set

XΓ := {[nΓ × (v1 × nΓ)]|Γ : v1 ∈ V1} = {[nΓ × (v2 × nΓ)]|Γ : v2 ∈ V2},
and let us introduce the trace operators Trj : Vj → XΓ

Trj vj := [nΓ × (vj × nΓ)]|Γ ∀ vj ∈ Vj ,

and extension operators  Rj : XΓ → Vj

Trj(Rjξξξ) = ξξξ ∀ ξξξ ∈ XΓ .

The characterization of XΓ can be found in [14] for regular domains and in [12, 13] for Lipschitz polyhedrons.
It turns out that XΓ is a Hilbert space, intrinsically dependent on Γ and not on Ω1 or Ω2, strictly contained in
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(H−1/2(Γ))3, the dual space of (H1/2(Γ))3. Just to give an idea, in the case Γ ∩ ∂Ω = ∅ the characterization
result reads:

XΓ = {ξξξ ∈ (H−1/2(Γ))3 | ξξξ · n = 0 and rot τξξξ ∈ H−1/2(Γ)} .

For the construction of continuous extension operators Rj see [2]. There the following assumptions on the
geometry of the domain Ω are required: ∂Ω is Lipschitz and H(rot ; Ω) ∩ H0(div ; Ω) ⊂ (H1(Ω))3. This last
hypothesis is satisfied if ∂Ω ∈ C1,1 or Ω is a convex polyhedron. However, using the results in [12,13] and the
same arguments of [2], it is possible to drop the hypothesis H(rot ; Ω)∩H0(div ; Ω) ⊂ (H1(Ω))3 and to construct
a continuous extension operator in a Lipschitz polyhedron, not necessarily convex.

The two-domain formulation of problem (6) reads:



find (E1,E2) ∈ V1 × V2 :

b1(E1,v1) = L1(v1) ∀ v1 ∈ H0(rot ; Ω1)

Tr1 E1 = Tr2 E2

b2(E2,v2) = L2(v2) ∀ v2 ∈ H0(rot ; Ω2)

b2(E2,R2ξξξ) = L2(R2ξξξ) + L1(R1ξξξ)− b1(E1,R1ξξξ) ∀ ξξξ ∈ XΓ .

(7)

The equivalence of the formulations (6) and (7) can be easily proved (see, for instance, Alonso and Valli [3],
where a similar situation is considered).

For the numerical approximation we will use the edge elements introduced by Nédélec (see [21] and [22]).
They are rot-conforming finite elements. We consider a family of triangulations {Th}h>0 of Ω matching in the
interface, i.e., we assume that each element of Th only intersects either Ω1 or Ω2. In this way we construct finite
dimensional spaces Vj,h ⊂ Vj , V 0

j,h := Vj,h ∩H0(rot ; Ωj) and on the interface we have the finite elements

XΓ,h := {[nΓ × (v1,h × nΓ)]|Γ | v1,h ∈ V1,h} = {[nΓ × (v2,h × nΓ)]|Γ | v2,h ∈ V2,h}.

The finite dimensional approximation problem reads:



find (E1,h,E2,h) ∈ V1,h × V2,h :

b1(E1,h,v1,h) = L1(v1,h) ∀ v1,h ∈ V 0
1,h

Tr1 E1,h = Tr2 E2,h

b2(E2,h,v2,h) = L2(v2,h) ∀ v2,h ∈ V 0
2,h

b2(E2,h,R2,hξξξh) = L2(R2,hξξξh)
+ L1(R1,hξξξh)− b1(E1,h,R1,hξξξh) ∀ ξξξh ∈ XΓ,h ,

(8)

where Rj,h is any extension operator from XΓ,h to Vj,h, j = 1, 2.
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3. Non-overlapping domain decomposition methods

Now we consider an abstract problem whose structure is the same of problems (7) and (8):

find (u1, u2) ∈ V1 × V2 :

A1(u1, v1) = L1(v1) ∀ v1 ∈ V0
1

Tr 1 u1 = Tr 2 u2

A2(u2, v2) = L2(v2) ∀ v2 ∈ V0
2

A2(u2,R2ξ) = L2(R2ξ) + L1(R1ξ)−A1(u1,R1ξ) ∀ ξ ∈ X ,

(9)

where for j = 1, 2, Vj and X are complex Hilbert spaces, Tr j : Vj → X is a linear and continuous trace
operator, Rj : X → Vj is a linear and continuous extension operator (hence Tr j(Rjξ) = ξ for all ξ ∈ X ),
V0
j := {vj ∈ Vj : Tr jvj = 0} and Lj is a continuous linear form in Vj . Aj is a bilinear form such that
Aj(·, ·) = AR,j(·, ·) + iAI,j(·, ·), where AR,j and AI,j are Hermitian and continuous bilinear forms and AR,j is
coercive.

In the sequel we will use the following notation: if X is a complex Hilbert space and X ′ is its dual space, we
denote by (·, ·)X the inner product in X , by ‖ · ‖X the associated norm and by 〈·, ·〉 the duality pairing between
X ′ and X .

The two-domain problem (9) can be also formulated in term of the Steklov-Poincaré operators. For j = 1, 2,
we consider the extension Ej : X → Vj defined in the following way: for each ξ ∈ X , Ejξ is the unique solution of

Ejξ ∈ Vj :

Aj(Ejξ, vj) = 0 ∀ vj ∈ V0
j

Tr j (Ejξ) = ξ.

Then the local Steklov-Poincaré operators Sj : X → X ′ is defined as follows:

〈Sjξ, ν〉 := Aj(Ejξ, Ejν), ∀ ξ, ν ∈ X , (10)

and we also set S = S1 + S2.
Let Ψj be the solution of 

Ψj ∈ V0
j :

Aj(Ψj, vj) = Lj(vj) ∀ vj ∈ V0
j .

Now we can define Υ ∈ X ′ as

〈Υ, ξ〉 :=
2∑
j=1

[Lj(Ejξ)−Aj(Ψj , Ejξ)].

It is clear that the solution of (9) can be written as

uj = Ejζ + Ψj ,

where

(S1 + S2)ζ = Υ. (11)
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We are going to construct the solution of (11) as the limit of the Richardson method with a preconditioner.
The different algorithms we propose correspond to different preconditioners.

3.1. The γ-Dirichlet/Robin method

This is, in fact, a family of methods depending on a real parameter γ. At each step we have a boundary
value problem in Ω1 with a Dirichlet condition on Γ and a boundary value problem in Ω2 with Robin boundary
condition on Γ. Given γ ∈ R, γ ≥ 0, we propose the following iteration: being given ζ0 ∈ X , for each n ≥ 0
solve 

un+1
1 ∈ V1 :

A1(un+1
1 , v1) = L1(v1) ∀ v1 ∈ V0

1

Tr 1 u
n+1
1 = ζn,

(12)

then 

un+1
2 ∈ V2 :

A2(un+1
2 , v2) = L2(v2) ∀ v2 ∈ V0

2

A2(un+1
2 ,R2ξ) + γ(Tr 2u

n+1
2 , ξ)X = L2(R2ξ)

+L1(R1ξ)−A1(un+1
1 ,R1ξ) + γ(Tr 1u

n+1
1 , ξ)X ∀ ξ ∈ X ,

(13)

finally set

ζn+1 = (1− θ)ζn + θTr 2u
n+1
2 . (14)

If, for any k ∈ R we consider the operators Skj : X → X ′

〈Skj ξ, ν〉 := 〈Sjξ, ν〉+ k(ξ, ν)X ,

j = 1, 2, it is easy to see that
Sγ2 (Tr 2u

n+1
2 ) = Υ− S−γ1 ζn,

hence
ζn+1 = (1− θ)ζn + θ(Sγ2 )−1(Υ− S−γ1 ζn)

= ζn + θ(Sγ2 )−1[Υ− (S−γ1 + Sγ2 )ζn]

= ζn + θ(Sγ2 )−1(Υ− Sζn).

The iterative procedure (12–14) is therefore equivalent to the Richardson method for problem (11) using Sγ2 as
preconditioner. The iteration operator is

Tθ = I − θ(Sγ2 )−1S.

3.2. The γ-Robin/Robin method

We consider another family of methods, depending on a real parameter γ ≥ 0, that will be called γ-
Robin/Robin (a generalization of the Neumann/Neumann method [1, 10]): being given ζ0 ∈ X for each n ≥ 0
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solve for j = 1, 2 
un+1
j ∈ Vj :

Aj(un+1
j , vj) = Lj(vj) ∀ vj ∈ V0

j

Tr j un+1
j = ζn,

(15)

then 

Φn+1
j ∈ Vj :

Aj(Φn+1
j , vj) = 0 ∀ vj ∈ V0

j

Aj(Φn+1
j ,Rjξ) + γ(Tr jΦn+1

j , ξ)X = L1(R1ξ)−A1(un+1
1 ,R1ξ)

+L2(R2ξ)−A2(un+1
2 ,R2ξ) ∀ ξ ∈ X ,

(16)

finally set

ζn+1 = ζn + θ(Tr 1Φn+1
1 + Tr 2Φn+1

2 ). (17)

In order to write this iteration as a preconditioned Richardson method for the Steklov-Poincaré problem (11),
it is easy to see that

Sγj (Tr jΦn+1
j ) = Υ− (S1 + S2)ζn, j = 1, 2,

so
ζn+1 = ζn + θ[(Sγ1 )−1 + (Sγ2 )−1](Υ− Sζn).

Then the iterative procedure (15–17) is equivalent to the Richardson method for problem (11) using [(Sγ1 )−1 +
(Sγ2 )−1]−1 as a preconditioner. In particular the iteration operator in (17) is given by

T̃θ = I − θ[(Sγ1 )−1 + (Sγ2 )−1]S.

3.3. The modified Neumann/Neumann method

Another domain decomposition method that we can consider is the following modification of Neumann/Neumann
method: being given ζ0 ∈ X for each n ≥ 0 solve for j = 1, 2

un+1
j ∈ Vj :

Aj(un+1
j , vj) = Lj(vj) ∀ vj ∈ V0

j

Tr j un+1
j = ζn,

(18)

then 

Φn+1
j ∈ Vj :

AR,j(Φn+1
j , vj) = 0 ∀ vj ∈ V0

j

AR,j(Φn+1
j ,Rjξ) = L1(R1ξ)−A1(un+1

1 ,R1ξ)
+L2(R2ξ)−A2(un+1

2 ,R2ξ) ∀ ξ ∈ X ,

(19)
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finally set

ζn+1 = ζn + θ(Tr 1Φn+1
1 + Tr 2Φn+1

2 ). (20)

We recall that Aj(·, ·) = AR,j(·, ·) + iAI,j(·, ·), where AR,j and AI,j are Hermitian symmetric and continuous
bilinear forms and AR,j is coercive.

In order to write the iteration in terms of a preconditioned Richardson method for the Steklov-Poincaré
problem (11), we consider a new operator associated to the bilinear forms AR,j(·, ·). For j = 1, 2, let us define
the extension Fj : X → Vj such that for all ξ ∈ X , Fjξ is the unique solution of

Fjξ ∈ Vj :

AR,j(Fjξ, vj) = 0 ∀ vj ∈ V0
j

Tr j (Fjξ) = ξ.

Then ŜR,j : X → X ′ is defined as

〈ŜR,jξ, ν〉 := AR,j(Fjξ,Fjν) ∀ ξ, ν ∈ X .

It is easy to see that
ŜR,j(Tr jΦn+1

j ) = Υ− (S1 + S2)ζn,

therefore
ζn+1 = ζn + θ(Ŝ−1

R,1 + Ŝ−1
R,2)[Υ− Sζn].

Then the iterative procedure (18–20) is equivalent to the Richardson method for problem (11) using (Ŝ−1
R,1 +

Ŝ−1
R,2)−1 as preconditioner. The iterative operator in (20) is given by

T̂θ = I − θ(Ŝ−1
R,1 + Ŝ−1

R,2)S.

4. Convergence results

4.1. The γ-Dirichlet/Robin method

In order to prove the convergence of the γ-Dirichlet/Robin method we prove the following abstract result.

Theorem 4.1. Let X be a complex Hilbert space, X ′ its dual space and Q,Q2 : X → X ′ linear operators. We
assume that

1. Q,Q2 are continuous, i.e.,
1.a: there exist β > 0 such that

|〈Qη, λ〉| ≤ β‖η‖X‖λ‖X ∀ η, λ ∈ X ,

1.b: there exist β2 > 0 such that

|〈Q2η, λ〉| ≤ β2‖η‖X‖λ‖X ∀ η, λ ∈ X ;

2. Q2 is real coercive, i.e., there exists αR2 > 0 such that

Re〈Q2η, η〉 ≥ αR2‖η‖2X ∀ η ∈ X ;
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3. there exists a constant κ∗ > 0 such that

Re[〈Q2η,Q−1
2 Qη〉+ 〈Qη, η〉] ≥ κ∗‖η‖2X ∀ η ∈ X .

Then for any η0 in X the sequence
ηn+1 = ηn − θQ−1

2 Qηn

converges to 0 in X , provided that

0 < θ <
κ∗α2

R2

β2β2
·

Proof. First we notice that Q2 is coercive because

|〈Q2η, η〉| ≥ |Re〈Q2η, η〉| ≥ αR2‖η‖2X .

Hence from 1.b and 2 there exists Q−1
2 .

We introduce the scalar product

(η, λ)Q2 :=
1
2

(〈Q2η, λ〉+ 〈Q2λ, η〉),

with the corresponding norm
‖η‖2Q2

:= (η, η)Q2 = Re〈Q2η, η〉,
which is equivalent to the norm ‖η‖X , i.e.;

αR2‖η‖2X ≤ ‖η‖2Q2
≤ β2‖η‖2X .

We shall prove that, choosing θ in a suitable interval, the map Tθ : X → X defined as

Tθη := η − θQ−1
2 Qη

is a contraction with respect to the norm ‖ · ‖Q2 . Assuming that 0 ≤ θ, we have

‖Tθη‖2Q2
= Re[〈Q2η, η〉+ θ2〈Qη,Q−1

2 Qη〉 − θ(〈Q2η,Q−1
2 Qη〉+ 〈Qη, η〉)]

≤ ‖η‖2Q2
+ θ2 β2

αR2
‖η‖2X − θκ∗‖η‖2X

≤
(

1 + θ2 β2

α2
R2

− θκ
∗

β2

)
‖η‖2Q2

.

By imposing the condition

1 + θ2 β2

α2
R2

− θκ
∗

β2
< 1,

the thesis follows.
Now, we are in position to prove

Theorem 4.2. Assuming that for j = 1, 2
H1. Aj : Vj × Vj → R is a bilinear form such that

Aj(·, ·) = AR,j(·, ·) + iAI,j(·, ·),
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where AR,j and AI,j are Hermitian symmetric and continuous bilinear forms, i.e., there exist constants
ΛLj > 0 such that

AL,j(vj , wj) ≤ ΛLj‖vj‖Vj‖wj‖Vj ∀ vj , wj ∈ Vj, L = R, I, j = 1, 2,

and AR,j is coercive, i.e., there exist constants ∆Rj > 0 such that

AR,j(vj , vj) ≥ ∆Rj‖vj‖2Vj ∀ vj ∈ Vj , j = 1, 2 ;

H2. the trace operator Tr j : Vj → X is continuous, i.e., there exist constants CTrj > 0 such that

‖Tr jvj‖X ≤ CTrj‖vj‖Vj ∀ vj ∈ Vj , j = 1, 2 ;

H3. there exist extension operators Rj : X → Vj, which are continuous, i.e., there exist constants CRj > 0
such that

‖Rjη‖Vj ≤ CRj‖η‖X ∀ η ∈ X , j = 1, 2,

then there exists γ∗ ∈ R such that for each γ ≥ 0, γ > γ∗ and for each ζ0 ∈ X the iterative scheme (12–14) is
convergent in X , provided that the relaxation parameter θ is chosen in a suitable interval (0, θγ).

Proof. We apply Theorem 4.1 taking

〈Qη, λ〉 = A1(E1η, E1λ) +A2(E2η, E2λ) (Q = S1 + S2)
〈Q2η, λ〉 = A2(E2η, E2λ) + γ(η, λ)X (Q2 = Sγ2 ).

In particular,

Re〈Q2η, η〉 = AR,2(E2η, E2η) + γ(η, η)X .

We notice that from H1 and H3 the extension operator used in the definition of the Steklov-Poincaré operator
is continuous; in fact,

∆Rj‖Ejη‖2Vj ≤ |Aj(Ejη, Ejη)| = |Aj(Ejη,Rjη)| ≤ (ΛRj + ΛIj)‖Ejη‖Vj‖Rjη‖Vj ,

so

‖Ejη‖Vj ≤ CEj‖η‖X , (21)

with CEj = ΛRj+ΛIj
∆Rj

CRj . Hence it is clear that assumptions 1 and 2 of Theorem 4.1 are satisfied with constants

β = (ΛR1 + ΛI1)C2
E1 + (ΛR2 + ΛI2)C2

E2

β2 = (ΛR2 + ΛI2)C2
E2 + γ =: β̃2 + γ

αR2 =
∆R2

C2
Tr2

+ γ =: α̃R2 + γ.

We notice that β, β̃2 and α̃R2 are independent of γ.
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Now we shall prove that there exists γ∗ ∈ R such that for each γ > γ∗, and γ ≥ 0 assumption 3 of Theorem 4.1
is satisfied. We notice that

Re[〈Q2η,Q−1
2 Qη〉+ 〈Qη, η〉]

= Re[〈Q2η,Q−1
2 Qη〉 − 〈Qη, η〉] +Re[〈Qη, η〉+ 〈Qη, η〉]

= 2Re〈Qη, η〉+Re[〈Q2η,Q−1
2 Qη〉 − 〈Qη, η〉]

≥ 2Re〈Qη, η〉 − |Re[〈Q2η,Q−1
2 Qη〉 − 〈Qη, η〉]|.

Moreover

Re〈Qη, η〉 = AR1(E1η, E1η) +AR2(E2η, E2η) ≥
(∆R1

C2
Tr1

+
∆R2

C2
Tr2

)
‖η‖2X = α‖η‖2X ,

where we have set α := ∆R1
C2
Tr1

+ ∆R2
C2
Tr2

. Taking λ = Q−1
2 Qη we have, by a straightforward computation,

|Re[〈Q2η,Q−1
2 Qη〉 − 〈Qη, η〉]| = |Re[〈Q2η, λ〉 − 〈Q2λ, η〉]|

= |Re[A2(E2η, E2λ) + γ(η, λ)X −A2(E2λ, E2η)− γ(λ, η)X ]|

= |Re[2iAI,2(E2η, E2λ)]| ≤ 2|AI,2(E2η, E2λ)|

≤ 2ΛI2C2
E2‖η‖X‖λ‖X = 2βI2‖η‖X‖λ‖X ,

where we have set βI2 := ΛI2C2
E2 . Since ‖λ‖X = ‖Q−1

2 Qη‖X ≤ β
αR2
‖η‖X , we have

Re[〈Q2η,Q−1
2 Qη〉+ 〈Qη, η〉] ≥ 2

(
α− βI2

β

αR2

)
‖η‖2X .

We notice that α, β and βI2 do not depend on γ and that αR2 = α̃R2 + γ with α̃R2 > 0 independent of γ.
Hence, taking γ ≥ 0 and

γ >
βI2β

α
− α̃R2 =: γ∗,

assumption 3 of Theorem 4.1 is satisfied with

κ∗(γ) = 2
(
α− βI2

β

α̃R2 + γ

)
> 0.

Provided that θ ∈ (0, θγ) with

θγ = 2
α(α̃R2 + γ)− βI2β

(β̃2 + γ)β2
(α̃R2 + γ),

the iterative scheme (12–14) is convergent in X .

4.2. The γ-Robin/Robin method

We state an abstract result that will be used to prove the convergence of the γ-Robin/Robin method.

Theorem 4.3. Let X be a complex Hilbert space, X ′ its dual space and Q,Q1,Q2 : X → X ′ linear operators.
We assume that

1. Q and Qj for j = 1, 2, are continuous, i.e.,
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1.a: there exist β > 0 such that

|〈Qη, λ〉| ≤ β‖η‖X‖λ‖X ∀ η, λ ∈ X ,

1.b: there exist βj > 0 such that

|〈Qjη, λ〉| ≤ βj‖η‖X‖λ‖X ∀ η, λ ∈ X ;

2. Qj is real coercive for j = 1, 2, i.e., there exist αRj > 0 such that

Re〈Qjη, η〉 ≥ αRj‖η‖2X ∀ η ∈ X .

Assume moreover that the operator N := (Q−1
1 +Q−1

2 )−1 satisfies the condition

3. there exists a constant κ∗ > 0 such that

Re[〈Nη,N−1Qη〉+ 〈Qη, η〉] ≥ κ∗‖η‖2X ∀ η ∈ X .

Then there exists θ0 > 0 such that for each θ ∈ (0, θ0) and for any given η0 in X the sequence

ηn+1 = ηn − θN−1Qηn

converges to 0 in X .

Proof. As in Theorem 4.1 we notice that, since Qj is real coercive, it is coercive. Hence N is well defined and
it is continuous and coercive (see, e.g. [23], p. 108); more precisely,

|〈Nη, λ〉| ≤ βN‖η‖X‖λ‖X ∀ η, λ ∈ X

with βN =
(
αR1
β2

1
+ αR2

β2
2

)−1, and

|〈Nη, η〉| ≥ αN‖η‖2X ∀ η ∈ X

with αN =
(
αR1
β2

1
+ αR2

β2
2

)(
1
αR1

+ 1
αR2

)−2.
Now we shall prove that the following bilinear form

(η, λ)N :=
1
2

(〈Nη, λ〉 + 〈Nλ, η〉) ∀ η, λ ∈ X

is a scalar product in X and that the corresponding norm

‖η‖N :=
[
Re〈Nη, η〉

]1/2
is equivalent to the norm ‖η‖X .
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Given η ∈ X we set ψ = Nη and for j = 1, 2, λj = Q−1
j ψ. Then

‖η‖2N = Re〈Nη, η〉 = Re〈ψ, (Q−1
1 +Q−1

2 )ψ〉

= Re[〈Q1λ1, λ1〉+ 〈Q2λ2, λ2〉]

≥ αR1‖λ1‖2X + αR2‖λ2‖2X = αR1‖Q−1
1 ψ‖2X + αR2‖Q−1

2 ψ‖2X

≥
(αR1

β2
1

+
αR2

β2
2

)
‖ψ‖2X ′ =

1
βN
‖Nη‖2X ′

≥ α2
N
βN
‖η‖2X .

Moreover

‖η‖2N = Re〈Nη, η〉 ≤ |〈Nη, η〉| ≤ βN‖η‖2X ,

hence

α2
N
βN
‖η‖2X ≤ ‖η‖2N ≤ βN‖η‖2X .

As in Theorem 4.1, in order to prove the convergence of ηn, we show that the map T̃θ : X → X defined as

T̃θη := η − θN−1Qη

is a contraction with respect to the norm ‖ · ‖N . Assuming that 0 ≤ θ, we have

‖T̃θη‖2N = Re[〈Nη, η〉+ θ2〈Qη,N−1Qη〉 − θ(〈Nη,N−1Qη〉+ 〈Qη, η〉)]

≤ ‖η‖2N + θ2 β
2

αN
‖η‖2X − θκ∗‖η‖2X

≤
(

1 + θ2 β
2βN
α3
N
− θ κ

∗

βN

)
‖η‖2N .

Setting θ0 = κ∗α3
N

β2β2
N

we conclude that T̃θ is a contraction for all θ ∈ (0, θ0).

Applying Theorem 4.3 we can prove the convergence of the γ-Robin/Robin method.

Theorem 4.4. Assuming that H1, H2 and H3 in Theorem 4.2 hold, there exists γ] ∈ R such that for each
γ ≥ 0, γ > γ] and for each ζ0 ∈ X the iterative scheme (15–17) is convergent in X provided that the relaxation
parameter θ is chosen in a suitable interval (0, θ0

γ).

Proof. We apply Theorem 4.3 taking

〈Qη, λ〉 = A1(E1η, E1λ) +A2(E2η, E2λ) (Q = S1 + S2)
〈Qjη, λ〉 = Aj(Ejη, Ejλ) + γ(η, λ)X (Qj = Sγj )
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for j = 1, 2. As in Theorem 4.2 is easy to see that assumptions 1 and 2 of Theorem 4.3 are satisfied with
constants

β = (ΛR1 + ΛI1)C2
E1 + (ΛR2 + ΛI2)C2

E2 ,

βj = (ΛRj + ΛIj)C2
Ej + γ =: β̃j + γ,

αRj =
∆Rj

C2
Trj

+ γ =: α̃Rj + γ,

j = 1, 2. Note that β, β̃j and α̃Rj are independent of γ. Hence we shall show that there exists γ] ∈ R such that
for γ > γ] and γ ≤ 0, assumption 3 of Theorem 4.3 is satisfied.

Setting λj = Q−1
j Nη, νj = Q−1

j Qη we have

|Re[〈Nη,N−1Qη〉 − 〈Qη, η〉]|

= |Re[〈Q1λ1, ν1〉+ 〈Q2λ2, ν2〉 − 〈Q1ν1, λ1〉 − 〈Q2ν2, λ2〉]|

= |Re[2iAI,1(E1λ1, E1ν1) + 2iAI,2(E2λ2, E2ν2)]|

≤ 2|AI,1(E1λ1, E1ν1) +AI,2(E2λ2, E2ν2)|

≤ 2(ΛI1C2
E1‖Q

−1
1 Nη‖X‖Q−1

1 Qη‖X + ΛI2C2
E2‖Q

−1
2 Nη‖X‖Q−1

2 Qη‖X )

≤ 2
(ΛI1C2

E1
α2
R1

+
ΛI2C2

E2
α2
R2

)
‖Nη‖X‖Qη‖X

≤ 2
(ΛI1C2

E1
α2
R1

+
ΛI2C2

E2
α2
R2

)
βNβ‖η‖2X .

Hence, setting βIj := ΛIjC2
Ej

|Re[〈Nη,N−1Qη〉+ 〈Qη, η〉]| ≥ 2
[
α−

( βI1
α2
R1

+
βI2
α2
R2

)
βNβ

]
‖η‖2X = 2κ∗(γ)‖η‖2X ,

where
κ∗(γ) = 2

[
α−

( βI1
(α̃R1 + γ)2

+
βI2

(α̃R2 + γ)2

)( α̃R1 + γ

(β̃1 + γ)2
+

α̃R2 + γ

(β̃2 + γ)2

)−1

β
]
,

with α, β, βIj , β̃j and α̃Rj independent on γ. Since( βI1
(α̃R1 + γ)2

+
βI2

(α̃R2 + γ)2

)( α̃R1 + γ

(β̃1 + γ)2
+

α̃R2 + γ

(β̃2 + γ)2

)−1

tends to zero when γ tends to infinity, there exist γ] such that κ∗(γ) > 0 for each γ > γ].

4.3. The modified Neumann/Neumann method

We can also prove the following:

Theorem 4.5. Let X be a complex Hilbert space, X ′ its dual space and Q, P1, P2 : X → X ′ linear operators.
Suppose that for j = 1, 2, Pj is Hermitian symmetric, i.e., 〈Pjη, λ〉 = 〈Pjλ, η〉 for each η, λ ∈ X . We assume
that
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1. Q is continuous, i.e., there exist β > 0 such that

|〈Qη, λ〉| ≤ β‖η‖X‖λ‖X ∀ η, λ ∈ X ;

2. for j = 1, 2, Pj is continuous and coercive, i.e.,
2.a: there exist βPj > 0 such that

|〈Pjη, λ〉| ≤ βPj‖η‖X‖λ‖X ∀ η, λ ∈ X ,

2.b: there exist αPj > 0 such that

〈Pjη, η〉 ≥ αPj‖η‖2X ∀ η ∈ X ;

3. Q is real coercive, i.e. there exist αR > 0 such that

Re〈Qη, η〉 ≥ αR‖η‖2X ∀ η ∈ X .

Then there exists θ0 such that for each θ ∈ (0, θ0) and for any η0 in X the sequence

ηn+1 = ηn − θ(P−1
1 + P−1

2 )−1Qηn

converges to 0 in X .

The proof is similar to that of Theorem 4.3, taking Pj instead of Qj, and taking into account that the
operators Pj are Hermitian symmetric.

Assuming that H1, H2 and H3 of Theorem 4.2 are satisfied, the convergence of the iterative scheme (18–20)
can be proven by applying Theorem 4.5 with

Q = S1 + S2

Pj = ŜR,j , j = 1, 2.

5. Application to time-harmonic Maxwell equations and other problems

Going back to the discrete time-harmonic Maxwell problem, the γ-Dirichlet/Robin procedure reads: being
given ζζζ0

h ∈ XΓ,h, for n ≥ 0 solve
En+1

1,h ∈ V1,h :

b1(En+1
1,h ,v1,h) = L1(v1,h) ∀ v1,h ∈ V 0

1,h

Tr1 En+1
1,h = ζζζnh,

(22)

then 

En+1
2,h ∈ V2,h :

b2(En+1
2,h ,v2,h) = L2(v2,h) ∀ v2,h ∈ V 0

2,h

b2(En+1
2,h ,R2,hξξξh) + γ(Tr2 En+1

2,h , ξξξh)XΓ = L2(R2,hξξξh)
+L1(R1,hξξξh)− b1(En+1

1,h ,R1,hξξξh) + γ(Tr1 En+1
1,h , ξξξh)XΓ ∀ ξξξh ∈ XΓ,h ,

(23)
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finally set

ζζζn+1
h = (1− θ)ζζζnh + θTr2 En+1

2,h . (24)

Theorem 5.1. There exists a constant γ∗ ∈ R and for each γ ≥ 0, γ > γ∗ there exists an interval Iγ = (0, θγ)
such that for each ζζζ0

h ∈ XΓ,h and for each θ ∈ Iγ the iterative procedure (22–24) converges. Moreover the rate
of convergence is independent of h.

Proof. We are going to apply Theorem 4.2 with Vj = Vj,h, Aj(·, ·) = bj(·, ·) and X = XΓ,h. The assumptions
H1 and H2 are trivially satisfied, while we need to verify that H3 holds, namely, to construct a suitable
extension operator from XΓ,h to Vj,h uniformly continuous with respect to h. In [3] such an extension operator
is constructed when Nédélec finite elements of the first kind are used. (Indeed, the result in [3] concerns the
interface condition v × n on Γ; the construction of an extension operator for the condition n × (v × n) on Γ
can be done in a similar way.) An analogous construction is also possible using Nédélec finite elements of the
second kind. The thesis follows from Theorem 4.2.

If Z = 1 − iB, multiplying the iteration (22–24) by Z−1 the iterative procedure can also be written in the
following way: being given ζζζ0

h ∈ XΓ,h, for each n ≥ 0 solve



En+1
1,h ∈ V1,h :

a1(En+1
1,h ,v1,h) =

∫
Ω1

F · v1,h ∀ v1,h ∈ V 0
1,h

Tr1 En+1
1,h = ζζζnh ,

(25)

then



En+1
2,h ∈ V2,h :

a2(En+1
2,h ,v2,h) =

∫
Ω2

F · v2,h ∀ v2,h ∈ V 0
2,h

a2(En+1
2,h ,R2,hξξξh) + Z−1γ(Tr2 En+1

2,h , ξξξh)XΓ

=
∫

Ω2

F ·R2,hξξξh +
∫

Ω1

F ·R1,hξξξh − a1(En+1
1,h ,R1,hξξξh)

+Z−1γ(Tr1 En+1
1,h , ξξξh)XΓ ∀ ξξξh ∈ XΓ,h,

(26)

where the bilinear forms aj(·, ·) are the restrictions of the bilinear form a(·, ·) to Ωj, and finally set

ζζζn+1
h = (1− θ)ζζζnh + θTr2 En+1

2,h . (27)

Remark 5.2. We can modify algorithm (25–27) substituting in (26) the scalar product in XΓ by the scalar
product in L2(Γ). Since all the norms in a finite dimensional space are equivalent, it is not difficult to prove that
also this algorithm converges; however, we can not prove that the rate of convergence of the modified iterative
scheme is independent on h.
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The γ-Robin/Robin method for the discrete time-harmonic Maxwell problem reads: being given ζζζ0
h ∈ XΓ,h,

for n ≥ 0 solve for j = 1, 2 
En+1
j,h ∈ Vj,h :

bj(En+1
j,h ,vj,h) = Lj(vj,h) ∀ vj,h ∈ V 0

j,h

Trj En+1
j,h = ζζζnh,

(28)

then 

ΦΦΦn+1
j,h ∈ Vj,h :

bj(ΦΦΦ
n+1
j,h ,vj,h) = 0 ∀ vj,h ∈ V 0

j,h

bj(ΦΦΦ
n+1
j,h ,Rj,hξξξh) + γ(TrjΦΦΦ

n+1
j,h , ξξξh)XΓ = L1(R1,hξξξh)

−b1(En+1
1,h ,R1,hξξξh) + L2(R2,hξξξh)− b2(En+1

2,h ,R2,hξξξh) ∀ ξξξh ∈ XΓ,h ,

(29)

and finally set

ζζζn+1
h = ζζζnh + θ(Tr1 ΦΦΦn+1

1,h + Tr2 ΦΦΦn+1
2,h ). (30)

Theorem 5.3. There exist a constant γ] ∈ R and for each γ ≥ 0, γ > γ] there exist an interval Iγ = (0, θ0
γ)

such that for each ζζζ0
h ∈ XΓ,h and for each θ ∈ Iγ the iterative procedure (28–30) converges. Moreover the rate

of convergence is independent of h.

Proof. The result is based on Theorem 4.4. In the proof of Theorem 5.1, we have already verified that H1-H3
are satisfied.

As for the γ-Dirichlet/Robin method, by multiplying (28) and (29) by Z−1 we can write the γ-Robin/Robin
method using the original bilinear form a(·, ·). Moreover, we can substitute in (29) the scalar product in XΓ,h

by the scalar product in L2(Γ), at the cost of loosing the proof that the rate convergence is independent of h.

The modified Neumann/Neumann method for the discrete time-harmonic Maxwell problem reads: being
given ζζζ0

h ∈ XΓ,h, for n ≥ 0 solve for j = 1, 2
En+1
j,h ∈ Vj,h :

bj(En+1
j,h ,vj,h) = Lj(vj,h) ∀ vj,h ∈ V 0

j,h

Trj En+1
j,h = ζζζnh,

(31)

then 

ΦΦΦn+1
j,h ∈ Vj,h :

bR,j(ΦΦΦ
n+1
j,h ,vj,h) = 0 ∀ vj,h ∈ V 0

j,h

bR,j(ΦΦΦ
n+1
j,h ,Rj,hξξξh) = L1(R1,hξξξh)− b1(En+1

1,h ,R1,hξξξh)
+L2(R2,hξξξh)− b2(En+1

2,h ,R2,hξξξh) ∀ ξξξh ∈ XΓ,h ,

(32)
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and finally set

ζζζn+1
h = ζζζnh + θ(Tr1 ΦΦΦn+1

1,h + Tr2 ΦΦΦn+1
2,h ). (33)

By means of Theorem 4.5, the following result can be proved.

Theorem 5.4. There exist θ0 > 0 such that for each θ ∈ (0, θ0) the iterative procedure (31–33) converges.
Moreover the rate of convergence is independent of h.

Finally, we notice that these three domain decomposition methods can be applied to other boundary value
problems: for instance, the wave problem in the frequency domain, and the time-harmonic Maxwell equations
in a conductor with Robin boundary conditions.

The wave problem in the frequency domain

The problem reads (see [17]): 
−∆u− P u+ iQu = f on Ω

∂u

∂n
−M1 u+ iM2 u = 0 in ∂Ω,

with P , Q ∈ L∞(Ω), M1, M2 ∈ L∞(∂Ω), and

Q(x) ≥ Q0 > 0 for almost all x ∈ Ω

M2(x′) ≥M2,0 > 0 for almost all x′ ∈ ∂Ω.

Assuming that f ∈ L2(Ω), the weak formulation of this problem reads find u ∈ H1(Ω) :

c(u, v) = g(v) ∀ v ∈ H1(Ω),
(34)

where

c(w, v) :=
∫

Ω

(∇w · ∇v − P w v)−
∫
∂Ω

M1w v + i
[∫

Ω

Qwv +
∫
∂Ω

M2w v

]
and

g(v) :=
∫

Ω

f v.

The bilinear form c(·, ·) is complex valued, continuous and coercive, but it is not Hermitian symmetric and
real coercive. However, by multiplying it by an appropriate complex constant we can arrive to an equivalent
formulation of problem (34) for which the arguments of Sections 3 and 4 can be repeated.

For the numerical approximation of problem (34) the standard Lagrange finite elements can be used. It
is well-known that for this kind of finite elements defined on a regular family of triangulations {Th}h>0 of Ω
which induces a quasi-uniform family of triangulations on Γ, assumption H3 of Theorem 4.2 is satisfied with
a constant independent of h (see, for instance, [8, 11, 19]). Moreover it is clear that assumptions H1 and H2
are satisfied with constants independent of h; hence, also for problem (34) we can prove the results reported in
Theorems 5.1, 5.3 and 5.4.

The time-harmonic Maxwell equations with damping with Robin boundary conditions

This problems reads (see [15,16] for the case σ = 0) rot (µ−1rot U)− ω2εU + iωσU = iωJ on Ω

µ−1rot U× n + iω n× (U× n) = g in ∂Ω,
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where J ∈ (L2(Ω))3, g ∈ (L2(∂Ω))3 and (g · n)|∂Ω = 0.
We consider the space

H(Ω) := {v ∈ H(rot ; Ω) | (v × n)|∂Ω ∈ (L2(∂Ω))3},
with the norm

‖v‖H(Ω) :=
(
‖v‖2L2(Ω) + ‖rotv‖2L2(Ω) + ‖v× n‖2L2(∂Ω)

)1/2
.

The weak formulation of this problem reads find U ∈ H(Ω) :

d(U,v) = G(v) ∀v ∈ H(Ω),
(35)

where

d(w,v) := a(w,v) + iω
∫
∂Ω

(w × n) · (v × n),

a(·, ·) is defined in (4), and

G(v) := iω
∫

Ω

J · v +
∫
∂Ω

(g× n) · (v× n).

The bilinear form d(·, ·) is complex valued, continuous and coercive, but it is not Hermitian symmetric and real
coercive. Then we need to multiply it by an appropriate complex constant in order to repeat the arguments of
Sections 3 and 4.

With the technical assumption Γ∩ ∂Ω = ∅ it is easy to see that, using the same finite elements employed for
problem (8), Theorems 5.1, 5.3 and 5.4 still hold for problem (35).

6. Numerical tests

In this Section we present some numerical tests illustrating the performances of the algorithms we have
proposed. We consider very simple geometric situations, with the only aim of verifying that the convergence of
the domain decomposition schemes is achieved, uniformly with respect to the mesh size h.

In particular, we have considered the simplest algorithms, always choosing the parameter γ equal to 0:
though this situation is not covered by the theory presented here, this choice is the easiest to implement and
reduces the γ-Dirichlet/Robin and the γ-Robin/Robin iterative schemes to the well-known Dirichlet/Neumann
and Neumann/Neumann ones, respectively. Numerical evidence will show that both the Dirichlet/Neumann
and the Neumann/Neumann schemes are indeed convergent, with a rate independent of the mesh size, and
the number of iterations is in general extremely small (provided that the acceleration parameter θ is properly
chosen). Consequently, it is apparent that other choices of the parameter γ are not necessary in numerical
computations.

The computational domain is always the parallelepiped Ω = (0, 2)× (0, 1)× (0, 1), which will be decomposed
into two subdomains Ω1 = (0, xΓ) × (0, 1) × (0, 1) and Ω2 = (xΓ, 2)) × (0, 1) × (0, 1). The numerical mesh
is uniform, and each element of the grid is a cube of side h. We employ the edge elements of Nédélec type
(see [21]), with 12 degrees of freedom for each element, one for each edge.

We consider three types of model problems: the first and most important one is the boundary value problem rot rot u + ω(iσ − ω) u = f in Ω

u× n = g on ∂Ω ,
(36)

which is the complete problem (2), (3) (taking, for simplicity, µ = 1, ε = 1).
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The second model problem is  rot rot u + i u = f in Ω

u× n = g on ∂Ω ,
(37)

which is the low-frequency problem analysed in [3] (here we have taken, for simplicity, µ = 1, σ = 1 and ω = 1).
In [3] we have proved that in this case the convergence of the Dirichlet/Neumann scheme is achieved, uniformly
with respect to the mesh size h.

The third model problem is  rot rot u + u = f in Ω

u× n = g on ∂Ω .
(38)

This is the best possible test case for the Dirichlet/Neumann iterative scheme for rot -conforming finite elements,
as the weak form associated to the operator rot rot + I is the scalar product in H(rot ; Ω), and therefore the
problem is hermitian and coercive. In this case, the theoretical results assure that the Dirichlet/Neumann
scheme is convergent, uniformly in h (see [23], Chap. 4).

For the numerical computations we used the standard tool-box sparfun of MATLABTM 5.2. In particular,
for solving the linear systems we adopt the gmres function, with TOL = 10−6.

In the iteration-by-subdomain procedure, we have used the following stopping test

2∑
i=1

||uk+1
i,h − uki,h||2H(rot ;Ωi)

||uk+1
i,h ||2H(rot ;Ωi)

≤ 10−4 . (39)

The first numerical test concerns the exact solution u(x, y, z) = (z2, x2, y2) (having computed consequently the
data f and g). We have considered problems (36), (37) and (38) (the first one with σ = 1 and ω = 1), with
different values of h (corresponding to the degrees of freedom indicated in Table 6.1).

Table 6.1. Choice of the mesh size h
(the correspondent degrees of freedom are also indicated).

h 1/4 1/6 1/8 1/10 1/12 1/14

DOF 240 960 2464 5040 8976 14560

Choosing xΓ = 0.5, θ = 0.5, the number of iterations of the 0-DR (DN) method has been always equal to 4.
We have repeated the computations for two other exact solutions (u(x, y, z) = (sin z, cosx, ey), u(x, y, z) =

(ez sin(xy), (y + z)ex, cos(xz))), for all problems (36), (37) and (38) (the first one with σ = 1 and ω = 1), and
h as in Table 6.1. For the set of problems with the exact solution u(x, y, z) = (sin z, cosx, ey) we have taken
xΓ = 0.5, and for the set of problems with the exact solution u(x, y, z) = (ez sin(xy), (y+ z)ex, cos(xz)) we have
taken xΓ = 1.5. Choosing as before θ = 0.5, the convergence results have been quite similar (always 4 iterations
to achieve convergence).

It is worthy of noting that the best choice of the relaxation parameter θ seems to be always very close to 0.5.
The next computations are made for the exact solution u(x, y, z) = (z2, x2, y2) of problem (36) (again with
σ = 1 and ω = 1), having chosen xΓ = 4/3.
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Table 6.2. Number of iterations for the 0-DR (DN) method
for different values of θ and h.

θ \ h (DOF ) 1/3 (84) 1/6 (960) 1/9 (3600)

0.4 5 6 6
0.45 5 5 5
0.5 4 4 4

0.55 4 5 5
0.6 5 6 6

For the solution u(x, y, z) = (sin z, cosx, ey), taking h = 1/6 (DOF = 960), the best choice of θ is reported
in Tables 6.3 and 6.4. Note that only choosing θ very close to 0.5 in problem (38) we have been able to obtain
a better rate of convergence than in the case θ = 0.5.

Table 6.3. Number of iterations for the 0-DR (DN) method
for different values of θ and xΓ (problem (36)).

θ \ xΓ 4/3 2/3

0.3 8 7
0.4 6 5
0.5 4 4
0.6 6 6
0.7 8 9

Table 6.4. Number of iterations for the 0-DR (DN) method
for different values of θ and xΓ (problem (38)).

θ \ xΓ 4/3 2/3

0.3 7 7
0.4 5 5

0.495 4 3
0.5 4 4

0.504 3 4
0.6 6 6
0.7 8 8

These results lead to a significant conclusion: in all cases we have analysed, the choice of relaxation parameter
θ equal to 0.5 can be considered optimal for the Dirichlet/Neumann method. Moreover, the method is quite
efficient also for a wide range of values of θ.

We have also verified that the 0-Robin/Robin scheme (which indeed is coincident with the classical
Neumann/Neumann scheme) is extremely efficient. In fact, we have considered the same exact solutions than
before for problem (36) (with σ = 1 and ω = 1), choosing xΓ = 1.5, θ = 0.25 (which seems to be optimal for
the Neumann/Neumann method), and the values of h indicated in Table 6.1. In all these cases, the number of
iterations has been always equal to 3.

The results for the modified Neumann/Neumann iterative scheme are less interesting. We have considered
the exact solutions u(x, y, z) = (sin z, cosx, ey) and u(x, y, z) = (ez sin(xy), (y + z)ex, cos(xz)) for problem (36)
(with σ = 1 and ω = 1). Choosing xΓ = 1, the convergence results are reported in Tables 6.5 and 6.6.
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Table 6.5. Number of iterations for the modified Neumann/Neumann method
for different values of θ and h (u(x, y, z) = (sin z, cosx, ey)).

θ \ h 1/4 1/6 1/8

0.05 33 35 37
0.10 NO NO NO
0.25 NO NO NO

Table 6.6. Number of iterations for the modified Neumann/Neumann method
for different values of θ and h (u(x, y, z) = (ez sin(xy), (y + z)ex, cos(xz))).

θ \ h 1/4 1/6 1/8

0.05 279 276 276
0.10 NO NO NO
0.25 NO NO NO

One can see that, as predicted by the theory, the scheme is indeed convergent for a suitable (interval of) θ.
However, since this value is rather small, convergence is quite slow. The reason is that the preconditioner
is relatively different from the given operator (the latter is not hermitian nor real coercive, the former is
real, symmetric and coercive). As a consequence, its preconditioning properties are poor (though the rate of
convergence is in fact independent of h).

In conclusion, the computations performed show that both the Dirichlet/Neumann and Neumann/Neumann
iterative schemes, though not covered by the theory, are extremely efficient and robust domain decomposition
methods for the time-harmonic Maxwell equations with damping.
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[9] A. Bossavit, Électromagnétisme, en vue de la modélisation. Springer–Verlag, Paris (1993).

[10] J.-F. Bourgat, R. Glowinski, P. Le Tallec and M. Vidrascu, Variational formulation and algorithm for trace operator in domain
decomposition calculations, in Domain Decomposition Methods, T.F. Chan et al., Eds., SIAM, Philadelphia (1989) 3–16.

[11] J.H. Bramble, J.E. Pasciak and A.H. Schatz, An iterative method for elliptic problems on regions partitioned into substructures.
Math. Comp. 46 (1986) 361–369.

[12] A. Buffa and P. Ciarlet, Jr., On traces for functional spaces related to Maxwell’s equations Part I: An integration by parts
formula in Lipschitz polyhedra. Math. Methods Appl. Sci. 24 (2001) 9–30.

[13] A. Buffa and P. Ciarlet, Jr., On traces for functional spaces related to Maxwell’s equations Part II: Hodge decompositions on
the boundary of Lipschitz polyhedra and applications. Math. Meth. Appl. Sci. 24 (2001) 31–48.



848 A. ALONSO RODRIGUEZ AND A. VALLI

[14] M. Cessenat, Mathematical methods in electromagnetism: Linear theory and applications. World Scientific Pub. Co., Singapore
(1996).

[15] P. Collino, G. Delbue, P. Joly and A. Piacentini, A new interface condition in the non-overlapping domain decomposition
method for the Maxwell equation. Comput. Methods Appl. Mech. Engrg. 148 (1997) 195–207.

[16] B. Després, P. Joly and J.E. Roberts, A domain decomposition method for the harmonic Maxwell equation, in Iterative
Methods in Linear Algebra, R. Beaurvens and P. de Groen, Eds., North Holland, Amsterdam (1992) 475–484.

[17] S. Kim, Domain decomposition iterative procedures for solving scalar waves in the frequency domain. Numer. Math. 79 (1998)
231–259.

[18] R. Leis, Exterior boundary-value problems in mathematical physics, in Trends in Applications of Pure Mathematics to Me-
chanics 11, H. Zorski, Ed., Pitman, London (1979) 187–203.

[19] L.D. Marini and A. Quarteroni, A relaxation procedure for domain decomposition methods using finite elements. Numer.
Math. 55 (1989) 575–598.

[20] P. Monk, A finite element method for approximating the time-harmonic Maxwell equations. Numer. Math. 63 (1992) 243–261.
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