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ERROR ESTIMATES FOR MODIFIED LOCAL SHEPARD’S FORMULAS
IN SOBOLEV SPACES
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Abstract. Interest in meshfree methods in solving boundary-value problems has grown rapidly in
recent years. A meshless method that has attracted considerable interest in the community of com-
putational mechanics is built around the idea of modified local Shepard’s partition of unity. For these
kinds of applications it is fundamental to analyze the order of the approximation in the context of
Sobolev spaces. In this paper, we study two different techniques for building modified local Shepard’s
formulas, and we provide a theoretical analysis for error estimates of the approximation in Sobolev
norms. We derive Jackson-type inequalities for h-p cloud functions using the first construction. These
estimates are important in the analysis of Galerkin approximations based on local Shepard’s formulas
or h-p cloud functions.
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Introduction

The idea of meshless methods for numerical analysis of partial differential equations (PDEs) has become
quite popular over the last decade. In most computer-aided design work, the generation of an appropriate mesh
constitutes the costliest portion of the process. For this reason, the development of techniques which do not
rely on traditional mesh concepts is still very appealing.

In meshless method, h-p (spectral) types of approximations are built around a collection of nodes sprinkled
within the domain on which a boundary-value problem has been posed. Associated with each node, there is
an open set (cloud) that forms the support for the approximation basis functions built around the node. The
boundary-value problem is then solved using these h-p cloud functions and a Galerkin method. For this kind
of application, it is fundamental to analyze the order of the approximation in the context of Sobolev spaces.

A meshless method that has attracted significant interest in the community of computational mechanics is
built around the idea of local Shepard’s partition of unity (see [5]). In [13], Shepard introduced an interpolation
scheme which is easily programmable. Given any arbitrarily spaced points x1, x2, ..., xN ∈ R

n and values
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u(x1), u(x2), ..., u(xN ) of a function u, the first version of Shepard’s formula is given by

S0
ku(x) =

N∑
i=1

u(xi) · Wi(x),

with basis functions

Wi(x) =
||x− xi||−k∑
j ||x− xj ||−k

·

Here k > 1, and ||.|| is the Euclidean norm.
In practical applications, the global character of Shepard’s interpolation formula is totally undesirable. This

disadvantage is avoided by using a local version of Shepard’s formula, where the basis functions Wi have small
compact supports which may even depend on the local distribution of data points [12]. Another drawback is
that the interpolating function S0

ku has flat spots in the neighborhood of all data points. This drawback can be
avoided by using Taylor polynomials of degree m at the data points. The generalized Shepard’s formula is

STmk u(x) =
N∑
i=1

Tmi (x) · Wi(x), (0.1)

where Taylor polynomials Tmi (x) =
∑

0≤|α|≤m aα(x − xi)α are selected in some way. On the other hand, the
space Xm, consisting of all functions which have the form (0.1), is considered in h-p cloud methods.

In this paper, we mainly consider two different ways of building approximations (0.1) in Sobolev spaces. In
the first one, polynomials Tmi are Verfürth’s averaged polynomials [14]. Interpolation operators built in this
way are of theoretical interest: error estimates obtained in this case are used to derive Jackson-type inequalities
for h-p cloud functions. The second one deals with a widely used interpolation method: polynomials Tmi are
built by a least square fit of a function

Tmi [u](x) = ui +
∑

1≤|α|≤m
aα(x− xi)α, (0.2)

to function values on a set of nearby nodes of node xi. The set of nearby nodes of node xi where the weighed
least square approximation (0.2) is made, is called the star of xi. In [15], we have defined a condition number
of the star, which is practically computable. The condition number is a measure for the quality of the star
and it is strongly related to the approximating power of the modified Shepard’s interpolation formula in the
uniform norm [15]. We investigate here the approximation power of this construction in Sobolev spaces. It is
well known that error estimates and the Céa’s lemma [2, 3] give a priori error estimates for the approximate
solutions of boundary-value problems. A more detailed analysis of this and related questions will be developed
in a forthcoming paper. Moreover, we do not discuss here numerical tests, but it is worthwhile mentioning
that there is an extensive literature in the computational mechanic community confirming the theoretical error
estimates obtained in [5, 6, 9, 10].

The paper is organized as follows. In Section 1, we present local Shepard’s partition of unity and local
Shepard’s formulas, we state some conditions for the partition of unity which will be considered in this work.
Section 2 deals with polynomial approximation of functions in Sobolev spaces in star-shaped domains. In
Section 3, we analyze error estimates for the local Shepard’s formula modified with Verfürth’s averaged polyno-
mials. An application to h-p cloud functions is discussed therein and the results of Duarte–Oden are improved.
Section 4 is dedicated to the local Shepard’s formula modified with least square fits of Taylor’s polynomials.
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1. Local Shepard’s formulas

Let Ω be an open bounded domain in R
n and QN denote an arbitrarily chosen set of N points xi ∈ Ω referred

to as nodes :

QN = {x1, x2, ..., xN} , xi ∈ Ω.

Let IN := {ωi}Ni=1 denote a finite open covering of Ω consisting of N clouds with center at xi, i = 1, ..., N, and
let SN := {φi}Ni=1 be a class of functions having the following properties:

φi ∈ Cs0(Rn), s ≥ 0 or s = +∞;
spt (φi) = ωi, where we have denoted;
spt (φi) the support of φi:
φi (x) > 0, x ∈ ωi.

In particular, for every x ∈ Ω, there is at least one φj so that φj(x) > 0.
For a fixed positive integer k and every i = 1, ..., N, we define functions νi, Wi by

νki (x) = ||x− xi||−k · φi(x), for x 6= xi

and

Wk
i (x) =

νki (x)
N∑
j=1

νkj (x)
, if x /∈ QN .

The sets ωi, i = 1, ..., N, are called clouds in meshless methods community [5].
The diameter of ωi, di := supx,y∈ωi

{||x − y||}, and h := maxi=1,...,N{di} will be key ingredients in error
estimates.

The class of functions Wk
N :=

{
Wk
i

}N
i=1

is called a Shepard’s partition of unity [5, 6], subordinated to the
open covering IN and it has the following well known properties:

Every Wk
i can be defined by continuity at nodes xj in such a way that the Kronecker-delta property is

verified; that is, Wk
i (xj) = δij . From this definition and the above assumptions, it follows that

• Wk
i ∈ Ck−1

0 (Rn) in general and Wk
i ∈ C∞0 (Rn) if k is an even number and s = ∞.

• Wk
i is (k − 1)-flat at nodes xj . In particular, DνWk

i (xj) = 0, for every multi-index ν, 1 ≤ |ν| < k.

• SN is a partition of unity on Ω:
∑N

i=1Wk
i (x) = 1, for every x ∈ Ω.

Assumption. In what follows, we shall not deal with question related to the differentiability of functions Wk
i .

For the sake of simplicity, from now on, we make the assumption that k is an even number, Wk
i ∈ C∞0 (Rn) ,

i = 1, ..., N, and we will omit any reference to the number k in our notation.

Thus, Wi = Wk
i , and so on. This assumption requires the constant s above be equal to ∞.

Let m be any integer ≥ 0. For i = 1, ..., N, let Pmi denotes the vector space of m-Taylor’s polynomials at xi

Pmi :=

Q : Q(x) =
∑

0≤|ν|≤m
aν (x − xi)ν

 ·

Let F be some space of functions. Given a linear operator

T m : F →
N∏
i=1

Pmi , (1.1)
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the associated m-modified local Shepard’s interpolation operator is the linear operator ST m : F → C∞(Ω)
defined by

ST m(u) :=
N∑
i=1

Tmi (u) · Wi, u ∈ F and T m(u) = (T mi (u))i=1,...,N .

In this work, we are mainly interested in the case where (F , || · ||F ) is some normed space of functions over Ω
and in estimating the interpolation error:

||u− ST m(u)||F .
Sections 3 and 4 are dedicated to our main examples of m-modified local Shepard’s interpolation operators.
The first one deals with the use of local averaged Taylor’s polynomials of Sobolev functions. The second one
deals with continuous functions and is related to the methodology described in the introduction, and which was
analyzed in [15] in the context of Cm-spaces. For this purpose, we need to state some regularity properties of
the class {Wi} which will be useful later.

In establishing error estimates the following constants are cornerstones:
A1: Constants Gm,i > 0 satisfying

||DβWj ||L∞(Rn) ≤
Gm,i

d
|β|
j

, |β| ≤ m, ∀j : j ∈ î .

In deriving uniform error estimates, conditions A2 is changed to:
A1U: A constant Gm satisfying

||DβWi||L∞(Rn) ≤
Gm
h|β|

, |β| ≤ m, i = 1, ..., N .

In the next section we will discuss other conditions related to the geometry of Ω and the open covering
IN := {ωi}Ni=1 which will play an important role in error estimates.

2. Polynomial approximation in Sobolev spaces

Given u ∈ D′(Ω) and α ∈ N
n
0 we denote, as usual,

Dαu =
(

∂

∂x1

)α1

...

(
∂

∂xn

)αn

u, |α| = α1 + ...+ αn, α! = α1! · · · αn!.

For p ≥ 1 and m ∈ N0, we call Wm
p (Ω) the Sobolev space which consists of all the functions u ∈ Lp(Ω) such

that Dαu ∈ Lp(Ω) for |α| ≤ m. Given j ∈ N0, we define

|u | j,p =

 ∑
|α|=j

||Dαu ||pLp(Ω)

1/p

and, therefore, the usual norm in Wm
p (Ω) is defined by

||u ||m,p =

 m∑
j=0

|u |pj,p

1/p

.

If p = 2, we denote, as usual, Wm
2 (Ω) = Hm(Ω). Moreover, when an explicit reference to the domain is needed,

we denote instead ||u ||m,p = ||u ||Ω,m,p and |u | j,p = |u |Ω, j,p.
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Let U ⊂ R
n be an open set with diameter d. In this section, we are interested in sharp upper bounds of the

constant cm,j in the Jackson-type inequalities

sup
u∈Wm+1

p (U)

inf
p∈Pm

|u− p|j,p
|u|m+1,p

≤ cm,jd
m+1−j ∀ 0 ≤ j ≤ m, (2.1)

when U is star-shaped w.r.t. a point in U. Here, Pm is the space of all polynomials in n variables of degree at
most m. The best estimates of cm,j, which are known to us, are due to Verfürth [14] and Durán [7], which is a
modification of Dupont–Scott’s approach.

Verfürth’s bounds do not depend on eccentricity in case U is a convex set. Moreover, for non-convex domains
with a re-entrant corner, the bounds are uniform w.r.t. the exterior angle. We will need later, however, a bound
in the L∞-norm which we could not obtain with Verfürth’s approach. For this reason, we shall expose here
both approach.

Verfürth’s projection operator

Let B ⊂ U be a set of positive measure |B|. For any integer m and p ≥ 1, a projection operator QmB
of Wm

p (U) onto Pm can be built, which has the following properties:

Dβ (QmBu) = Qm−jB

(
Dβu

)
, (2.2)∫

B

Dβ (u−QmBu) (y) dy = 0 (2.3)

for all u ∈Wm
p (Ω), all 0 ≤ j ≤ m, and all β ∈ N

n with |β| = j.
We denote by

πB( f ) :=
1
|B|

∫
B

f(y) dy

the mean value of f w.r.t. B. For any u ∈ Wm
p (Ω), we recursively define polynomials qmB , ..., q

0
B in Pm by

qmB (u) :=
∑
|α|=m

1
α!
xαπB(Dαu)

and for k = m,m− 1, ..., 1

qk−1
B (u) := qkB(u) +

∑
|α|=k−1

1
α!
xαπB(Dαu− qkB(u)).

Finally, we set
QmB u := q0B(u).

Using (2.2) and (2.3), it is easily proved that QmB is really a projection operator.

Proposition 2.1. Let B ⊂ U be a set of positive measure |B|. For any integer m and P ∈ Pm, QmBP = P.

Definition 2.2. Given u ∈Wm
p (Ω) and Pm,B u, the remainder term is Rmu := u− Pm,B u.

Definition 2.3. A set U is star-shaped w.r.t. a set B if, for all x ∈ U, the closed convex hull of {x} ∪ B is a
subset of U.

The star-shaped condition is a key ingredient in polynomial approximation in Sobolev spaces. In order to
state Verfürth’s results for non-convex but star-shaped domains we need to state some more definitions. For
z ∈ U we define

χ(z) := max
y∈∂U

||y − z|| / min
y∈∂U

||y − z||.
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Now, assume that U is non-convex but star-shaped w.r.t. one point, and

SU := { z ∈ U : U is star-shaped w.r.t. z}·

It is clear that there exists a point zm ∈ U such that χ(zm) = minz∈S{χ(z)}. Then, the number θ is defined by

θ := χ(zm).

The main Verfürth’s result in [14] is:

Theorem 2.4. Let U be a domain with diameter dU and which is star-shaped w.r.t. one point. For 1 ≤ p ≤ ∞
and m ∈ N0, there exist constants cm,j, 0 ≤ j ≤ m, such that

||u−QmBU
u || j,p ≤ cm,j d

m+1−j
U |u |m+1,p , ∀u ∈Wm+1

p (U).

When U is a convex domain, BU = U and cm,j = cm,j(n,m), i.e., the bounds cm,j depend only on n and m. In
the non-convex case, BU = B(zm, %), % =dist(zm, ∂U), and cm,j = cm,j(n,m, θ).

Dupont–Scott’s representation formula

Let B = B(x0, %). A function σ ∈ C∞c (Rn) with the properties (i) spt σ = B and
∫

Rn σ(x)dx = 1 will be
called a cut-off function.

Given a function u of class Cq, its Taylor polynomial of order q at y will be denoted by T qyu.

Definition 2.5. Suppose u has weak derivatives of order q in a domain U and B ⊂⊂ U, the (σ, q)-Taylor
polynomial of u averaged over B is defined as

Qqu(x) :=
∫
B

T qy u(x)σ(y) dy.

As before, the mth-order remainder term is given by

Rqu := u−Qqu.

Let U be star-shaped w.r.t. B and u ∈ Cq+1(U). Taylor’s theorem gives us an error representation of
u(x)−Qqu(x) which is very useful in order to obtain error estimates [2]. A key parameter in Dupont–Scott’s
estimates is the chunkiness of U .

Definition 2.6. Suppose U has diameter dU and is star-shaped w.r.t. an open ball B. Let

%max := sup{% : U is star-shaped w.r.t. a ball } ·

Then, the chunkiness parameter of U is defined by

γU :=
dU
%max

·

Dupont–Scott’s error estimates are proportional to γnU . Their main results (see [2]) are:

Theorem 2.7. Suppose U has diameter dU and is star-shaped w.r.t. an open ball B. There exists a constant
C = C(n, q, γU ) such that

||Rqu ||U,j,p ≤ C dq+1−j
U |u |U,q+1,p

for every u ∈W q+1
p (U) and 0 ≤ j ≤ q.
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Theorem 2.8. Let U be star-shaped w.r.t an open ball B. If 0 < p < ∞ and (q + 1) > n/p or p = 1 and
(q + 1) ≥ n, then there exists a constant C = C(n, q, γU ) such that

||Rqu ||L∞(U) ≤ C d
q+1−n/p
U |u |U,q+1,p

for every u ∈W q+1
p (U).

The star-shaped property is, as we have seem, a key tool in approximating by polynomials. We will need
some conditions in the domain and clouds in order to guaranty the appropriate use of this property.

A2: Ω has a Lipschitz continuous boundary ∂Ω [1].
If Ω has satisfies A2, it can be proved that there exists a number εΩ > 0, such that the intersection

Ω ∩B(x, r), x ∈ Ω,

is star-shaped w.r.t an open ball, provides r < εΩ. If Ω is a convex set, εΩ = ∞.

3. Taylor averaged local Shepard’s formulas

Throughout this section we assume the following:

Condition 3.1. Given the partition of unity SN := {Wi}Ni=1 over Ω, the clouds {ωi} have been defined before
with the condition ωi =spt ϕi. In what follows, it is better to have the condition that every ωi is an open ball.
So, if this is not the case, the symbol ωi is reassigned in the following way:

ωi := B(xi, rmin),

where
rmin := min{r : ωi ⊂ B(xi, r)}·

Remark 3.2. The equality above must be understood in the context of computer science, not in a mathematical
sense.

For future use, we set ω̃i := ωi ∩ Ω , and î := {j : ωi ∩ ωj 6= ∅} . The following condition is crucial in this
section.

A3: A2 is satisfies and h := maxi=1,...,N{di} ≤ εΩ.

In particular, if A3 is satisfies, every set ω̃i is star-shaped w.r.t. an open ball.
Therefore, for each i, i = 1, ...N, we can choose a subset Bi ⊂ ω̃i where Verfürth’s projection operator applies

(see Th. 2.4). We assume that Bi = ω̃i in case ω̃i is a convex set.
Given an integer m ≥ 0 and p ≥ 1, an m-modified local Shepard’s interpolation operator is a linear operator

ST m : Wm+1
p (Ω) → C∞(Ω), called from now on, a T A(m) local Shepard’s interpolation operator. We will

define now our first T A(m) local Shepard’s interpolation operator using Verfürth’s projection operators.
Let u ∈Wm+1

p (Ω). For i = 1, ..., N, we set Qmi u = QmBi
u . Then,

ST m(u) =
N∑
i=1

Qmi uWi . (3.1)

Remark 3.3. Note that, even when u ∈ Wm+1
p (Ω) ∩ C(Ω), ST m(u)(xi) 6= u(xi), so ST m(u) is an interpolant

of u in a generalized sense.

Remark 3.4. In this section we will never use the delta-krocneker property of the Shepard’s partition of
unity {Wi}. As a matter of fact, all the results here are also valid assuming that {Wi} is a partition of unity.
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A natural and crucial parameter in error estimates is a measure of the overlap of clouds :

A4: A measure of the overlap of clouds:

M = sup
i=1,...,N

{# î},

where #S denote the number of elements in a finite set S.

Remark 3.5. Other authors [5, 8], use the pointwise condition A4P:

M = sup
x∈Ω

{#(j : x ∈ ωj)}·

In fact, A4 and A4P are different requirements. We could not obtain these results here with A4P.

For every i, i = 1, ...N, we have a set of bounds cm,j(i) given by theorem 2.4. We define:

C̃m,i := max
0≤j≤m

{cm,j(i)}, (3.2)

and
C̃m := max

i=1,...N
{C̃m,i}· (3.3)

We are interested in estimating the error u − ST m(u) in Sobolev norms. The following result will be useful in
passing from local to global estimates.

Lemma 3.6. Let f, g ∈ L1(Ω) be two positive functions. Suppose that, for every i = 1, ..., N, n(i) is a subset
of indexes such that:

#n(i) ≤M. (3.4)

If ∫
ωi

f(x)dx ≤
∑
j∈n(i)

∫
ωj

g(x)dx , ∀i : i, ..., N,

then ∫
Ω

f(x)dx ≤M2

∫
Ω

g(x)dx.

Proof. First, we have
∫
Ω

f =
∫
Ω

f
(∑N

i=1Wi

)
≤

∑N
i=1

∫
ωi

f Wi ≤
∑N
i=1

∫
ωi

f . By the hypotheses, we have

N∑
i=1

∫
ωi

f ≤
N∑
i=1

∑
j∈n(i)

∫
ωj

g .

Condition (3.4) implies that each
∫
ωj

g appears no more than M times in
∑N

i=1

∑
j∈n(i)

∫
ωj

g. So,

N∑
i=1

∑
j∈n(i)

∫
ωj

g ≤M

N∑
j=1

∫
ωj

g .
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Now,

N∑
j=1

∫
ωj

g =
N∑
j=1

∫
ωj

g

∑
kj∈ĵ

Wkj


≤

N∑
j=1

∑
kj∈n(j)

∫
ωkj

gWkj .

Applying another time (3.4), it follows that each
∫
ωk

gWk appears no more thanM times in
N∑
j=1

∑
kj∈n(j)

∫
ωkj

gWkj .

Therefore,

N∑
j=1

∑
kj∈n(j)

∫
ωkj

gWkj ≤ M
N∑
k=1

∫
ωk

gWk

= M

∫
Ω

g

and the lemma is proved. �
Our first global error estimate is:

Theorem 3.7. Assume A1U, A3, A4 and let p ≥ 1, l ≤ m. If u ∈ Wm+1
p (Ω), then

|u− ST m(u)|l,p ≤ Cm,l h
m+1−l|u |m+1,p ,

where
Cm,l = (#{α : |α| = l})1/pM2/pC(n,m)Gm C̃m .

The value of constant C(n,m) will be clarified along the proof of the theorem.

Proof. Given α ∈ N
n
0 , |α| = l, we will estimate ||Dα(u− ST m(u))||Lp(Ω). We have

∫
Ω

|Dα(u− ST m(u))(x)|pdx ≤
N∑
i=1

∫
ω̃i

|Dα(u − ST m(u))(x)|pWi(x)dx

≤
N∑
i=1

∫
ω̃i

|Dα(u − ST m(u))(x)|pdx .

For x ∈ ω̃i, we can write

u(x)− ST m(u)(x) =
∑
j∈̂i

(
u(x)−Qmj (u)(x)

)
Wj(x)

=
∑
j∈̂i

Rmj (u)(x)Wj(x) .

Therefore, ∫
ω̃i

|Dα(u− ST m(u))(x)|pdx ≤
∑
j∈̂i

∫
ω̃j

|Dα(Rmj (u)Wj)(x)|pdx .
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We will now turn to
∫̃
ωj

|Dα(Rmj (u)Wj)(x)|pdx, for a fixed j ∈ î. Given γ ∈ N
n
0 , γ ≤ α, by (2.4) we have

||Dγ(Rmj (u))||pLp(ω̃j)
≤ C̃pm h

(m+1−|γ|)p|u |pω̃j,m+1,p .

Taking into account that

||DδWj ||L∞ ≤ Gm
h|δ|

, |δ| ≤ m

and Leibniz’s rule, it follows that

Dα(Rmj (u)Wj) =
∑

γ+δ=α

C(α, γ, δ)DγRmj (u)DδWj ,

where

C(α, γ, δ) =
n∏
i=1

(
αi
δi

)
.

By choosing a constant C(n,m) satisfying
∑

γ+δ=αC(α, γ, δ)p ≤ C(n,m)p for all |α| ≤ m, we get

||Dα(Rmj (u)Wj) ||pLp(ω̃j)
≤

(
C(n,m)Gm C̃m

)p
h(m+1−l)p|u |pω̃j,m+1,p .

Now, we can use Lemma 3.6 with

f = |Dα(Rmj (u)Wj)|p

and

g =
(
C(n,m)CD,m C̃m

)p
h(m+1−l)p

 ∑
|β|=m+1

|Dβu|p


in order to get

||Dα(Rmj (u)Wj) ||pLp(Ω) ≤M2 (C(n,m)Gm C̃m)p h(m+1−l)p |u |pm+1,p.

Hence

|Dα(Rmj (u)Wj) |l,p ≤ (#{α : |α| = l})1/pM2/p (C(n,m)Gm C̃m)hm+1−l |u |m+1,p

and the theorem is proved. �

The next local error estimate follows easily from the method of proof of the previous theorem.

Theorem 3.8. Assume A1, A3 and A4 and let p ≥ 1, l ≤ m. If u ∈ Wm+1
p (Ω), then

|u− ST m(u) |ω̃i,l,p ≤ Cm,l,i h
m+1−l
i |u |ω̂i,m+1,p ,

where

Ci,m,l = M1/p(C(n,m)Gm,i Ĉm,i) (#{α : |α| = l)1/p ,

hi = maxj∈̂i{dj}, and Ĉm,i = maxj∈̂i{C̃m,j}.
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3.1. Application to h-p cloud functions

In the h-p cloud method [5], the vectorial space Fm defined by

Fm =

{
v : v =

N∑
i=1

Pmi Wi, P
m
i ∈ Pmi , i = 1, ..., N

}
,

is utilized to solve elliptic PDEs in a Galerkin scheme over a Sobolev space Hm(Ω).
In the notation of Duarte–Oden, Fm corresponds to Fk=0,m

N . Numerical experiments performed in [4,5] have
shown that the family of functions Fk=0,m

N are the best choice for the h-p cloud method. We can use the error
estimates obtained here to improve the results of [4, 5].

If u ∈ Hm+1(Ω) is the exact solution of the boundary-value problem, by Céa’s lemma [2, 3], the error is
estimated by an expression like

C inf
v∈Fm

||u− v ||m,2 .

As ST m(u) ∈ Fm, the result above can be applied in order to obtain error estimates of the boundary-value
problem.

The following Jackson-type inequalities follow from Theorem 3.7 .

Corollary 3.1. Assume A1, A2U and A4. Let m be an integer > 0 and p ≥ 1. Then

sup
u∈Wm+1

p (Ω)

inf
v∈Fm

|u− v |l,p
|u |m+1,p

≤ Cm+1,l h
m+1−l ∀ 0 ≤ l ≤ m,

where
Cm+1,l = (#{α : |α| = l})1/pM2/p(C(n,m)Gm CMm).

4. Local Shepard’s formulas with least square fits

Let F := R
N be the set of possible values f = (fi)Ni=1 of functions at the nodes xi and let m be a positive

integer. In this section we study linear operators

T m : F →
N∏
i=1

Pmi

built by least squares fits of Taylor’s polynomial

Tmi [f ](x) = fi +
∑

1≤|α|≤m
aα(x− xi)α (4.1)

to function values on a set of nearby nodes of node xi. The set of nearby nodes of node xi where the weighed
least square approximation (4.1) is made, is called the star of xi [5].

Assume that we have functions Tmi : F → Pmi , i = 1, ..., N , such that:
• Tmi is a linear transformation.
• For every u∈F , Tmi (u)(xi) = ui. That is, the constant term a0 of Tmi (u) is equal to ui.
• If u=(1, 1, ..., 1) then Tmi (u) = 1, for every i = 1, ..., N.

Given u∈F , the m-modified local Shepard’s interpolating function of the data values u= (ui) is

ST m(u) =
N∑
i=1

Tmi (u) · Wi. (4.2)
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4.1. Shape functions

If {ei}i=1,...,N is the canonical basis of F , the functions {φi} defined by

φi := ST m(ei)

are called the shape functions of the modified local Shepard’s formula (4.2).
We list bellow some properties of the shape functions which are easily proved.

• The class {φi}i=1,...,N form a C∞ partition of unity.
• For i, j = 1, ..., N, φi(xj) = δij .
• For every u∈F

ST m(u)=
N∑
i=1

uiφi . (4.3)

In practical applications, a property of localization of Tmi is desirable. That is, every Tmi depends only on
values uj at nodes xj in a selected neighborhood of xi. So, it is assumed that:

Every node xi has a star of indexes of nodes

ST (i) = {i, j1(i), ..., jki(i)} , jk(i) 6= i,

selected in same way, such that Tmi depends only on values

ri( f) :=(fi, fj1(i), ..., fjki
(i)) .

However, Tmi can be considered as defined in all F by the standard linear extension scheme.
A natural candidate for star ST (i) is clearly {j : xj ∈ ωi} , but this is not necessarily the best choice. Renka

obtained good results with ωi = BR1(i)(xi) and ST (i) =
{
j : xj ∈ BR2(i)(xi)

}
with R1(i) 6= R2(i) [11].

In this work however, we always assume that ST (i) = {j : xj ∈ ωi} .

4.2. Building T m
i by least square fitting

Let u be a function defined in Ω. We set ri(u) := (uj)j∈ST (i) , where we have written uj = u(xj) in order to
simplify.

Let V = {pt}1≤t≤Nm be a basis of the set of polynomial of degree at most m. An efficient scheme for
approximating derivatives of a function consists in seeking a polynomial function

Tmi [ri(u)](x) = ui +
Nm∑
t=1

atpt(x− xi) (4.4)

that satisfies

Tmi [ri(u)](xj) =ls uj (4.5)

on the set of nodes of the reduced star ST ′(i) in a weighed least square sense. Here,

ST ′(i) := ST (i)\{i} ,

and the precise meaning of symbol =ls is defined bellow. Note that we exclude i from our calculus because
value ui is fixed at xi.
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Let w : R\{0} → R be a selected weigh function. The symbol =ls in (4.5) means that Tmi [ri(u)] is chosen
in order to minimize the function

E(a) =
1
2

∑
j∈ST ′(i)

w(||xj − xi||) · (Tmi [ri(u)](xj)− uj)
2
, (4.6)

where a = (at)1≤t≤Nm .
A common and recommended selection for w is w(x) = 1/x2.
Let Bi = Bi(V) be the Vandermonde matrix

(pt (xj − xi))1≤t≤Nm, j∈ST ′(i) ,

and W the diagonal matrix with
Wkk = ||xjk − xi||−2 .

The normal equations for problem (4.6) are, in matrix notation

Aa = C r̃i(u) , (4.7)

where
r̃i(u) :=

(
uj1 − ui, uj2 − ui, ..., ujki

− ui

)
,

A = BiWBTi and C = BiW .
A5: We assume from now on that all stars are regular in the sense that matrix A is non singular at every

node xi.
The next result gives us a necessary and sufficient condition to satisfy the assumption above in a generic

and stable way [15]. It should be remarked that a related issue was considered in [8,16] in the context of other
approximations also based on partition of unity.

Definition 4.1. The set of nodes {xj}j∈ST ′(α) is called Pmi – unisolvent if the Vadermonde matrix satisfies
rank(Bi) = Nm.

It is clear that this property does not depend on the basis V .

Theorem 4.2. A necessary and sufficient condition for the satisfaction of condition A5 is that the set of nodes
{xj}j∈ST ′(i) is Pmi - unisolvent ∀i : i = 1, ..., N.

Corollary 4.3. If m = 1, {xj}j∈ST ′(i) is P1
i - unisolvent if and only if the set of vectors {xj − xi}

j∈ST ′(i)

contains a subset of n lineally independent vectors.

At node xi, the Taylor’s polynomial (4.4) will be now denoted by

Tmi [r(u)](x) = ui +
∑

1≤|ν|≤m
aν(x− xi)ν . (4.8)

A crucial ingredient in error estimates in [15] was a measure of the quality of the approximating Taylor’s
polynomial (4.8). Taking into account that we have set here ST (i) = {j : xj ∈ ωi} , we have

max
j∈ST (i)

{||xj − xi||} ≤ di.

The next result has been proved in [15].
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Theorem 4.4. Assume A5 and m ≤ 2. Then, for every i = 1, ...., N, there exists a number C(ST (i)), which
is algebraically computable, such that

|aν | ≤ C(ST (i)) d−|ν|i ||r̃i(u)||, |ν| = 1, ...,m, (4.9)

where (aν)1≤|ν|≤m is the solution of (4.7).

The number C(ST (i)) is called the condition number of the star ST (i).

Remark 4.5. Strictly speaking, we have proved Theorem 4.4 for m ≤ 2. But, by inspecting the proof, the
result is true in general. In practice however, only low order approximations are used because of the notorious
polynomial snaking problem.

Assuming A5 and m ≤ 2, the m-modified local Shepard’s interpolation operator (4.3) obtained by least square
fits as described in this subsection will be called a LS(m) local Shepard’s interpolation operator.

The next result is easily proved.

Theorem 4.6. Assuming A5 and m ≤ 2, the LS(m) local Shepard’s interpolation operator is m-reducible.
That is, for every polynomial P of degree at most m, we have

P (x) =
N∑
i=1

P (xi)φi(x), ∀x ∈ Ω .

We will only prove in this section a global estimate. Then, all conditions will be stated in a global setting. We
denote Ci = C(ST (i)), i = 1, ..., N, and let

Ĉ := max
i=1,...N

{CN i}· (4.10)

We will need a constant A > 0 such that

d−1
i ≤ Ah−1, i = 1, ..., N. (4.11)

Theorem 4.7. Assume A1U, A3, A4, A5 and m ≤ 2. Then, there are constants C̃ = C̃(n,m, Ĉ, Gm,M,A)
such that

||Dαφi||L∞(Rn) ≤ C̃ h−|α| , i = 1, ..., N and |α| ≤ m.

Proof. Given i and α, spt (φi) ⊂ ∪j∈̂iωj and we can write

φi =
∑
j∈̂i

Tmj (ei)Wj . (4.12)

If
Tmj (ei) =

∑
0≤|ν|≤m

aijν (x− xj)ν

then, for any β, β ≤ α,

DβTmj (ei) =
∑

0≤|ν|≤m,β≤ν
C(n, α, ν) aijν (x− xj)ν−β .

We now choose a constant C = C(n,m) such that∑
0≤|ν|≤m,β≤ν

C(n, β, ν) ≤ C, |β| ≤ m, |ν| ≤ m. (4.13)
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Now, given x ∈ spt (φi) and s ∈ î, we have

|DβTms (ei)(x)| ≤
∑

0≤|ν|≤m,β≤ν
C(n, β, ν) |aisν | ||x− xs|||ν|−|β|

≤
∑

0≤|ν|≤m,β≤ν
C(n, β, ν) Cs d−|β|s

≤ C ĈAh−|β| .

Among constants Ĉ and A, we have used here Theorem 4.4.
By Leibniz’s rule it follows that

|Dα (Tms (ei)Ws) (x)| ≤
∑

β+γ=α

C(n, β, γ)|DβTms (ei)(x)| |DγWs(x)|

≤
∑

β+γ=α

C(n, β, γ)
(
C Ĉ Ah−|β|

)(
GmAh

−|γ|
)
.

Setting constant C in (4.13) greater than any sum
∑

β+γ=αC(n, β, γ) , the last inequality can be written

|Dα (Tms (ei)Ws) (x)| ≤ C h−|α|,

where C = C2Ĉ GmA2. Therefore, by (A1)

|Dαφi(x)| ≤
∑
s∈̂i

|Dα (Tms (ei)Ws) (x)|

≤ M C h−|α|.

Setting C̃ = M C, we get
||Dαφi||L∞ ≤ C̃ h−|α|

and the theorem is proved. �
A local version of the theorem above can be stated with obvious modification.

4.3. Sobolev error estimates for LS(m) operators

Through the rest of this section we assumem ≤ 2 without explicit mention to it. We assume also (m+1)p > n
if p > 1, or m+ 1 ≥ n if p = 1.

Let u ∈Wm+1
p (Ω), then by the Sobolev imbedding theorem, u ∈ C(Ω), and it is meaningful to use pointwise

values of u. We define the interpolation operator as in (4.3) by

ST m(u)=
N∑
i=1

uiφi.

In order to state our error estimations, we need here some condition similar to (3.1), but in a somewhat stronger
form. For simplifying writing, we set

• ψi :=spt φi.
• ψ̃i = ψi ∩ Ω.
• î := {j : ψi ∩ ψj 6= ∅}.
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Now, let %i be defined by
%i := min{ % : ψ̂i ⊂ B(xi, %)}.

A3’: A2 is satisfied and %i ≤ εΩ, i = 1, ..., N.
The overlapping condition is also stronger. We define n(i) by

n(i) := { j : ψj ∩B(xi, %i) 6= ∅},

and ψ̂i := ∪j∈n(i)ψj .

A4’: n(i) ≤M, i = 1, ..., N.
As before, if A3’ is satisfies, every set B(xi, %i) ∩ Ω is star-shaped w.r.t. an open ball. Furthermore, there

is a number γΩ > 0 which bound bellow all the chunkiness parameter γB(xi,%i)∩Ω. That is,

γΩ ≤ γB(xi,%i)∩Ω, ∀i : i = 1, ..., N. (4.14)

Then, given u ∈ Wm+1
p (Ω), we will consider, over each set B(xi, %i) ∩ Ω, the Dupont–Scott representation

u = Qmi (u) +Rmi (u).

Finally, let B > 0 such that maxi=1,...,N{ 2%i} ≤ Bh.
The next result have also been obtained in the context of moving least square and kernel reproducing particle

methods [8, 16].

Theorem 4.1. Assume A1U, A3, A4, A5. Then, there exits a constant C = C(n,m, γΩ,M,Gm, A, C̃) such
that

|u− ST m(u) |l,p ≤ C hm+1−l|u |m+1,p , 0 ≤ l ≤ m, u ∈ Wm+1
p (Ω).

Proof. For x ∈ ψ̃i, we can write

u(x)− ST m(u)(x) = Qmi (u)(x) −
N∑
j=1

Qmi (u)(xj)φj(x)

+Rmi u(x)−
∑
j∈̂i

Rmi u(xj)φj(x) .

By the polynomial reproducing property (4.6),

Qmi (u)(x) =
N∑
j=1

Qmi (u)(xj)φj(x) .

Thus,
u(x)− ST m(u)(x) = Rmi u(x)−

∑
j∈̂i

Rmi u(xj)φj(x) .

Hence
||u(x)− ST m(u) ||p

ψ̃i,l,p
≤ ||Rmi u||

p

ψ̃i,l,p
+ ||Rmi u||

p
L∞(B(xi,%i))

∑
j∈̂i

||φj ||p
ψ̃j ,l,p

.

By (2.7) and (2.8)
||Rmi u||

p
ω̃i,l,p

≤ C1(n,m, γΩ, B)h(m+1−l)p |u|B(xi,%i),m+1,p ,

||Rmi u||
p
L∞(B(xi,%i))

≤ C1(n,m, γΩ, B)h(m+1)p−n |u|B(xi,%i),m+1,p .



ERROR ESTIMATES FOR MODIFIED LOCAL SHEPARD’S FORMULAS IN SOBOLEV SPACES 989

On the other hand, since ψ̃j ⊂ B(xi, %i), we have

||φj ||p
ψ̃j ,l,p

≤ C(Gm, n, B,m)h−lp+n.

Now, since B(xi, %i) ⊂ ∪j∈n(i)ψ̃j , we get

||u(x)− ST m(u) ||p
ψ̃i,l,p

≤ C̃ h(m+1−l)p |u|ψ̂i,m+1,p .

In order to finish the proof of the theorem, we pass from this local estimate from the global one, in a similar
manner as in Theorem 3.7. �
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