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CONVERGENCE OF A HIGH-ORDER COMPACT FINITE DIFFERENCE
SCHEME FOR A NONLINEAR BLACK–SCHOLES EQUATION

Bertram Düring1, Michel Fournié2 and Ansgar Jüngel1

Abstract. A high-order compact finite difference scheme for a fully nonlinear parabolic differential
equation is analyzed. The equation arises in the modeling of option prices in financial markets with
transaction costs. It is shown that the finite difference solution converges locally uniformly to the
unique viscosity solution of the continuous equation. The proof is based on a careful study of the
discretization matrices and on an abstract convergence result due to Barles and Souganides.
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1. Introduction

In an idealized financial market the price of a European option can be obtained as the solution of the
celebrated Black-Scholes equation [6,24]. This equation also provides a hedging portfolio that perfectly replicates
the contingent claim. However, the Black-Scholes equation has been derived under quite restrictive assumptions
(for instance, frictionless, liquid and complete markets). In recent years, some of these assumptions have
been relaxed in order to model, for instance, the presence of transaction costs [3, 8, 12], feedback effects due
to large traders [14–16, 20, 26, 28], and incomplete markets [23]. In this paper we are concerned with the
numerical discretization of a nonlinear Black-Scholes equation modeling transaction costs arising in the hedging
of portfolios.

If transaction costs are taken into account perfect replication of the contingent claim is no longer possible, and
it has been shown in [29] that further restrictions are needed in the model. A popular approach is to introduce
preferences by assuming that the investor’s behavior is characterized by a given utility function. In [17] it has
been shown that the option price can be obtained as the cash increment which offsets the difference between the
maximum utility of terminal wealth when there is no option liability and when there is such a liability. Davis
et al. [12] extended this approach to markets with transaction costs (see also [3,32]). It has the disadvantage that
the option price depends on the special choice of the utility function but Constantinides and Zariphopoulou [9]
obtained universal bounds independent of the utility function.

Using this utility maximization approach, the following model has been proposed by Barles and Soner [3].
Assuming an exponential utility function U(x) = 1−exp(−x/ε) with ε = 1/γN > 0, where γ is the risk aversion
factor and N the number of options to be sold, they perform an asymptotic analysis in the limit ε → 0, µ → 0
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such that a = µ/
√

ε is a constant transaction cost parameter, deriving the following nonlinear Black-Scholes
equation for the option price V (S, τ)

Vτ +
1
2
σ(VSS)2S2VSS + ρSVS − ρV = 0, (1)

where the nonlinear volatility σ(VSS) is given by

σ(VSS) = σ0

(
1 + Ψ

[
exp(ρ(τ0 − τ))a2S2VSS

])
. (2)

Here, ρ denotes the risk-free interest rate and τ0 the maturity. The function Ψ is the solution of the nonlinear
initial-value problem

Ψ′(A) =
Ψ(A) + 1

2
√

AΨ(A) − A
, A �= 0, Ψ(0) = 0. (3)

Equation (1) is solved for the price S ≥ 0 of the underlying asset and time τ0 ≥ τ ≥ 0, i.e. backward in time.
The terminal condition is

V (S, τ0) = V0(S), S ≥ 0. (4)
The equation is derived in [3] for European Call options, i.e. V0(S) = max(0, S−E), where E > 0 is the exercise
price. The “boundary” conditions are as follows

V (0, τ) = 0, V (S, τ) ∼ S − Eeρ(τ−τ0) (S → ∞), τ0 ≥ τ ≥ 0. (5)

The last condition has to be understood in the sense

lim
S→∞

V (S, τ)
S − Eeρ(τ−τ0)

= 1,

uniformly for τ0 ≥ τ ≥ 0. In [3] the existence of a unique continuous viscosity solution V to this problem has
been shown.

In [13] we discretized the nonlinear Black-Scholes equation (1) with volatility (2) and proposed a new high-
order compact finite difference scheme generalizing a scheme of Rigal [27]. The nonlinearity was treated ex-
plicitly, i.e., the final scheme is semi-implicit. We studied the properties of the new compact scheme R3C and
showed that the scheme is unconditionally stable (in the sense of von Neumann) and non-oscillatory. It turned
out that it gives significantly better results than classical schemes. The compact scheme R3C combines good
properties (stability, non-oscillations) with a high order of accuracy. It can be considered as more efficient since
the relation between CPU time and �2-error is better compared with classical schemes (see [13] for details).

Our main goal in this article is to prove the convergence of the numerical solution obtained by the compact
scheme R3C to the unique viscosity solution of (1)–(5). In the literature, unlike for many standard finite
difference schemes, there are very few results concerning the convergence of high-order compact finite difference
schemes. In [7] compact finite difference methods for initial-boundary-value problems for mixed systems of
strongly parabolic and strictly hyperbolic equations are studied. Assuming the existence of a smooth solution, a
pilot function [25,30] is constructed which leads to convergence results. Il’in [18] studies compact finite difference
schemes for linear convection-diffusion equations and gives error estimates. Wang and Liu [31] propose a fourth-
order scheme for the two-dimensional, incompressible Navier-Stokes equations in vorticity formulation and prove
its convergence using energy estimates. The convergence of approximation schemes for fully nonlinear second
order equations is studied in a general setting in [4]. The originality of this paper consists in the combination
of high-order compact finite difference schemes and techniques for viscosity solutions.

This article is organized in the following way. To provide the tools needed later, we study in Section 2 the
properties of the discretization matrices and prove the positivity of numerical solutions. Since the numerical
solution involves an approximation process for (3), we prove in Section 3.1 an analytical convergence result
using the “half-relaxed limits” technique. Finally, in Section 3.2, we show our main result, the convergence of
the compact scheme R3C, using the results of [4].
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2. Compact scheme R3C

In this section we reformulate the problem (1)–(5) using a variable transformation, recall the compact finite
difference scheme R3C [13] and provide the tools for the convergence results in the next section.

2.1. Definition of the scheme

To overcome a possible degeneration at S = 0 and to obtain a forward parabolic problem, we use the variable
transformations

x(S) = ln
( S

E

)
, t(τ) =

1
2
σ2

0(τ0 − τ), u = exp(−x)
V

E
·

Equation (1) is hereby transformed into

ut −
(
1 + Ψ

[
exp(Kt + x)a2E(uxx + ux)

])
(uxx + ux) − Kux = 0, (6)

with

x ∈ R, 0 ≤ t ≤ T = σ2
0τ0/2, K =

2ρ

σ2
0

·

For the computation we replace R by Ω̄ = [−R, R] with R > 0. For simplicity, we consider a uniform grid
Z = {xi ∈ [−R, R] : xi = ih, i = −N, . . . , N} consisting of 2N + 1 grid points, with R = Nh and with space
step h and time step k, where T = Mk. Let Un

i denote the approximate solution of (6) in xi at time tn = nk

and set Un = (Un
i )2N+1

i=1 and U = (Un)M
n=1.

The problem is completed by the following initial and boundary conditions

u(x, 0) = max(1 − exp(−x), 0), (7)
u(−R, t) = 0, (8)

u(R, t) = 1 − exp(−R − Kt). (9)

The latter condition corresponds to the asymptotic value of the exact solution of the equation for a = 0. More
precisely, the solution of (6) satisfies (see (5))

u(x, t) ∼ 1 − exp(−x − Kt) as x → ∞.

Approximately, we expect to have u(R, t) ≈ 1 − exp(−xN − Kt) for sufficiently large R > 0. The nonlinear
correction of the volatility in (1) is a function of the second derivative, so we assume that the influence of the
nonlinearity at the boundary can be neglected for large R. The error caused by boundary conditions imposed
on an artificial boundary for a class of Black-Scholes equations has been studied rigorously in [21].

We use a Dormand-Prince-4-5 Runge-Kutta scheme to solve the ordinary differential equation (3) and a cubic
spline interpolation to obtain the values of Ψ for arbitrary arguments.

With

β = 1 + Ψ
[
exp(Kt + xi)a2E(∆2U

n
i + ∆0U

n
i )

]
, λ = β + K,

where

∆0U
n
i =

Un
i+1 − Un

i−1

2h
, ∆2U

n
i =

Un
i+1 − 2Un

i + Un
i−1

h2
,

the “semi-discretized” equation (6) at x = xi takes the form ut = βuxx − λux. Below we study this equation
for arbitrary values β, λ > 0. We use the following abbreviations

α =
λh

2
, r =

k

h2
, µ =

λk

h
· (10)
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We define the two-level three-point scheme R3C as in [13] by

DtU
n
i = β

(
1
2

+ A1

)
∆2U

n
i + β

(
1
2

+ A2

)
∆2U

n+1
i − λ

(
1
2

+ B1

)
∆0U

n
i − λ

(
1
2

+ B2

)
∆0U

n+1
i , (11)

where DtU
n
i = (Un+1

i − Un
i )/k, and Ai, Bi are real constants given by

B1 = −B2,

A1 = − 1
12kβ

(−2h2 + 6λ2k2B2 − k2λ2 − 12kβB2),

A2 = − 1
12kβ

(2h2 + 6λ2k2B2 + k2λ2 + 12kβB2),

B2 = −1 + 4r2α2

12βr
·

Then the R3C scheme can be written in the form

AnUn+1 = BnUn, An = [a−1, a0, a1], Bn = [b−1, b0, b1], (12)

where the notation [a, b, c] denotes a tridiagonal matrix whose diagonals have constant entries a, b, and c,
respectively. The coefficients ai, bi are given by

a−1 = −β
(r

2
+ rA2

)
− µ

4
− µ

B2

2
, b−1 = β

(r

2
+ rA1

)
+

µ

4
+ µ

B1

2
,

a0 = 1 + β(r + 2rA2), b0 = 1 − β(r + 2rA1), (13)

a1 = −β
(r

2
+ rA2

)
+

µ

4
+ µ

B2

2
, b1 = β

(r

2
+ rA1

)
− µ

4
− µ

B1

2
,

or, more explicitly, by

a−1 = −12rβ2 − 2β + rλ2h2 + r3λ4h4 + 6rλhβ − λh − r2λ3h3

24β
,

a0 =
10β + 12rβ2 + rλ2h2 + r3λ4h4

12β
,

a1 = −12rβ2 − 2β + rλ2h2 + r3λ4h4 − 6rλhβ + λh + r2λ3h3

24β
, (14)

b−1 =
12rβ2 + 2β + rλ2h2 + r3λ4h4 + 6rλhβ + λh + r2λ3h3

24β
,

b0 = −−10β + 12rβ2 + rλ2h2 + r3λ4h4

12β
,

b1 =
12rβ2 + 2β + rλ2h2 + r3λ4h4 − 6rλhβ − λh − r2λ3h3

24β
·

2.2. Properties of the scheme

We recall the following result from [13].

Theorem 1 [13]. The resulting scheme R3C is an unconditionally stable (in the sense of von Neumann),
non-oscillatory and forward diffusive scheme of order O(k2 + h4).
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In the following we prove some properties of the discretization matrices needed in the convergence proof in
Section 3. To simplify the presentation, we only consider the case K = 0 which corresponds to zero interest rate.
Notice that this implies λ = β. In the general case, similar conditions as in Lemma 2 below can be obtained,
with bounds depending on h, β, and λ.

Lemma 2. If h < 2 and

1
6β

≤ r <
1
2β

, (15)

then Bn is a positive matrix (i.e., all elements are positive) and An is an M-matrix. More specifically,
a0, b−1, b0, b1 are positive, a−1, a1 are negative or zero, An is non-singular, and (An)−1 is a positive matrix.

Proof. The coefficients a0, b−1 are always positive. It follows from (14) that b0 and b1 are positive if

10β − 12rβ2 − rβ2h2 − β4h4r3 > 0, (16)

12rβ + 2 + rβh2 + β3h4r3 − 6βhr − h − β2h3r2 > 0, (17)

respectively, and a−1, a1 are negative or zero if

12rβ2 − 2β + rβ2h2 + β4h4r3 + 6β2hr − βh − β3h3r2 ≥ 0, (18)

12rβ2 − 2β + rβ2h2 + β4h4r3 − 6β2hr + βh + β3h3r2 ≥ 0, (19)

respectively.
First, we study (17). Consider the polynomial p(β) = h4r3β2 − h3r2β + rh2 − 6hr + 12r. It is positive for

all h �= 4, since its leading coefficient is positive and its discriminant is −3r4h4(h − 4)2, which is negative for
h �= 4. Hence, p(β)β + 2 − h > 0 and thus (17) follows if h < 2.

We solve the equations related to (16), (18), (19) for r, being cubic polynomials in r. For each equation we
obtain one real root and two complex roots. From the real root of the first equation we obtain the condition
r < c0(h)/β with

c0(h) =
1
3

x2/3 − 36 − 3h2

h2x1/3
,

where x = 135h2 + 3
√

3
√

1728 + 432h2 + 711h4 + h6. The function c0 is decreasing in h with minh∈[0,2] c0(h) =
1
2 , which gives the upper bound in (15).

The real roots of the other equations result in the condition max (c1(h), c2(h))/β ≤ r with

c1(h) =
1
3

y1/3

h2
− 2

3
18 + h2 + 9h

h2y1/3
+

1
3h

,

c2(h) =
1
3

z1/3

h2
− 2

3
18 + h2 − 9h

h2z1/3
− 1

3h
,

where

y = −54h + 10h3 + 6
√

3
√

432 + 423h2 + 648h + 12h4 + 126h3 + h6 + 2h5,

z = 54h − 10h3 + 6
√

3
√

432 + 423h2 − 648h + 12h4 − 126h3 + h6 − 2h5.

It can be seen that the functions c1 and c2 both attain their maximum at h = 0 with c1(0) = c2(0) = 1
6 . This

yields the lower bound in (15). Therefore, Bn is a positive matrix and An is an L-matrix if (15) holds. Since
a0 > |a−1| + |a1|, An is strictly diagonally dominant. Hence, An is an M-matrix which yields the claim. �
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Figure 1. The two surfaces represent the equations r = c0(h)/β and r = max(c1(h), c2(h))/β.

In Figure 1 the set max(c1(h), c2(h))/β ≤ r ≤ c0(h)/β is shown. As a by-product of Lemma 2, we obtain the
following corollary, which ensures the positivity of the numerical solutions.

Corollary 3. Let the assumptions of Lemma 2 hold. Then the linear, constant coefficient R3C scheme is
positive, i.e. for all n ∈ N:

Un ≥ 0 =⇒ Un+1 ≥ 0,

where the inequality holds for all components of the vectors.

Remark 4. A finite difference scheme of the form (12) is called positive if (An)−1Bn is a positive matrix.
Unlike for many second-order schemes, the matrices An and Bn resulting from fourth-order schemes generally
do not commute and positivity cannot be easily deduced. The positivity of the scheme holds if both matrices
(An)−1 and Bn are positive.

Remark 5. The conditions of Lemma 2 are sufficient but not necessary. Frequently, such conditions are too
restrictive in practice and the scheme will preserve the positivity for a larger set of discretization parameters [27].
We observed this also in our numerical experiments presented in [13].

3. Convergence results

For the convenience of the reader, we briefly recall the notion of viscosity solutions, introduced by Crandall
and Lions [10]. For a general presentation on viscosity solutions we refer to [11]. Following the notation of [4],
we can write (6) as

G(x, t, u(x, t), ut(x, t), ux(x, t), uxx(x, t)) = 0 in Ω̄ × [0, T ], (20)

where G is given by

G(x, t, u(x, t), ut(x, t), ux(x, t), uxx(x, t)) =


ut − (1 + Ψ
[
exp(Kt + x)a2E(uxx + ux)

]
)(uxx + ux) − Kux in Qt,

u(x, 0) − max(1 − exp(−x), 0) in Ω,

u(−R, t) in (0, T ),
u(R, t) − (1 − exp(−R − Kt)) in (0, T ),
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where Qt = Ω × (0, T ). Although we have assumed K = 0 in the previous section, the results of this section
hold for any K ≥ 0 provided that the conclusion of Lemma 2 holds. In the following, let z∗ and z∗ denote
the upper semi-continuous and lower semi-continuous envelope of the function z : C → R, where C is a closed
subset of R, defined by

z∗(x) = lim sup
y→x, y∈C

z(y), z∗(x) = lim inf
y→x, y∈C

z(y).

Definition 6. A locally bounded function u : Ω̄ → R is a viscosity subsolution (respectively supersolution)
of (20) if and only if for all ϕ ∈ C2(Ω̄ × [0, T ]) and for all maximum (respectively minimum) points (x, t) of
u∗ − ϕ (respectively u∗ − ϕ), one has

G∗(x, t, u∗(x, t), ϕt(x, t), ϕx(x, t), ϕxx(x, t)) ≤ 0

(respectively G∗(x, t, u∗(x, t), ϕt(x, t), ϕx(x, t), ϕxx(x, t)) ≥ 0.)

A locally bounded function is a viscosity solution of (20) if it is a viscosity subsolution and a viscosity
supersolution.

3.1. Analytical convergence result

The solution of (6) involves two approximation processes. One is imposing the Dirichlet boundary condi-
tions (8) and (9). The existence and uniqueness proof in [3] uses the boundary conditions (5). It is easy to
carry over the existence and uniqueness proof with only small changes, so we omit the proof. The convergence
of the solution on a bounded domain to the solution on the half-space has been studied in [5, 22] for the linear
case, i.e. a = 0.

The other approximation arises when solving (3). Since the right-hand side of (3) is unbounded for A → 0,
it is necessary to solve the ordinary differential equation approximately with a bounded approximation of the
right-hand side. This gives rise to an approximate function Ψε which is used in the numerical solution of (6).
Thus, we are in fact solving an approximate problem,

ut −
(
1 + Ψε

[
exp(Kt + x)a2E(uxx + ux)

])
(uxx + ux) − Kux = 0, (21)

with (7)–(9). In the following we show that the solution of this approximate problem converges to the solution
of the original problem.

Proposition 7. Let Ψε be a monotone smooth approximation of Ψ with bounded derivative such that Ψε → Ψ
locally uniformly as ε → 0. Then the viscosity solution uε of (21) and (7)–(9) converges to the viscosity
solution u of (6) and (7)–(9) as ε → 0.

Proof. We use the “half-relaxed limits” technique which has been introduced by Barles and Perthame [1, 2]
and Ishii [19]. Let uε denote a solution to the approximate problem (21), (7)–(9) with ε > 0. We omit an
existence proof which is very similar to the one for the original problem. Since u1 ≡ 1 and u2 ≡ 0 are super-
and subsolutions, respectively, comparison arguments show that uε is bounded independently of ε. Then

u(x, t) = lim sup
ε→0

∗uε(x, t) = lim sup
ε′→0

{uε(x′, t′) : ε ≤ ε′, ‖(x, t) − (x′, t′)‖ ≤ ε′},
u(x, t) = lim inf

ε→0
∗uε(x, t) = lim inf

ε′→0
{uε(x′, t′) : ε ≤ ε′, ‖(x, t) − (x′, t′)‖ ≤ ε′},

are well-defined. By ([11], Lemma 6.1) both limits are discontinuous viscosity solutions of (6), (7)–(9), since
Ψε → Ψ locally uniformly as ε → 0. The strong comparison result for (6) in ([3], App. B, pp. 395) shows that
u = u = u. �
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3.2. Convergence of the compact scheme

The convergence of approximation schemes for fully nonlinear parabolic equations has been studied in an
abstract setting in [4]. We want to apply Theorem 2.1 in [4] to show the convergence of the compact scheme
R3C to the viscosity solution of (21), (7)–(9). We start by recalling the assumptions of Theorem 2.1 in [4]. The
numerical scheme R3C (11) approximating (20) can be written as

S(k, h, n, i, Un+1
i , U) = 0, (22)

where Un+1
i is the desired approximate solution that is computed using elements of U . Roughly speaking,

Theorem 2.1 in [4] states that any stable, consistent and monotone scheme converges to the solution of (20),
provided (20) satisfies a “strong uniqueness” condition. Therefore the scheme S is expected to have the following
properties, at least for some sequence (k, h) converging to zero.

(S1) For all (k, h), there exists a solution U of (22) that is bounded independently of (k, h).
(S2) For any smooth function φ and for any (x, t) in Ω̄ × [0, T ], it holds

lim inf
(k,h)→0, (xi,tn)→(x,t), ξ→0

S(k, h, n, i, φn+1
i + ξ, φ + ξ)

ρ(k, h)
≥ G∗(x, t, φ(x, t), φt(x, t), φx(x, t), φxx(x, t)),

lim sup
(k,h)→0, (xi,tn)→(x,t), ξ→0

S(k, h, n, i, φn+1
i + ξ, φ + ξ)

ρ(k, h)
≤ G∗(x, t, φ(x, t), φt(x, t), φx(x, t), φxx(x, t)),

for some function ρ(k, h) > 0 such that ρ(k, h) → 0 as (k, h) → 0.
(S3) If U ≥ V (the inequality holds for all components) and Un+1

i = V n+1
i , then

S(k, h, n, i, Un+1
i , U) ≤ S(k, h, n, i, V n+1

i , V )

for any k, h > 0, 1 ≤ n ≤ M , 1 ≤ i ≤ 2N + 1 and for all U, V ∈ R
M(2N+1).

(S4) If the locally bounded upper semi-continuous (lower semi-continuous) function u (v) is a viscosity
subsolution (supersolution) of (20) then

u ≤ v in Ω̄.

Our main result on the convergence of the compact scheme R3C is the following theorem.

Theorem 8. Assume that Ψ′ is bounded, the constant transaction cost parameter a is sufficiently small (see
below) and the assumptions of Lemma 2 are fulfilled. Then the solution U converges to the unique viscosity
solution of (21), (7)–(9) as (k, h) → 0, uniformly on each compact subset of Ω̄.

Proof. In order to be able to apply Theorem 2.1 in [4], we have to check the assumptions (S1)–(S4). The proof
of (S4) is given in ([3], App. B, pp. 395).

We show that ‖Un‖∞ is bounded for arbitrary n ∈ N if ‖U0‖∞ is bounded. For arbitrary n ∈ N let i0 ∈
{−N, . . . , N} be such that ‖Un+1‖∞ = |Un+1

i0
|. Employing Lemma 2 and using a−1+a0+a1 = b−1+b0+b1 = 1,

we can estimate

‖Un+1‖∞ = |Un+1
i0

| = a−1|Un+1
i0

| + a0|Un+1
i0

| + a1|Un+1
i0

|
≤ a−1|Un+1

i0−1| + a0|Un+1
i0

| + a1|Un+1
i0+1|

≤ |a−1U
n+1
i0−1 + a0U

n+1
i0

+ a1U
n+1
i0+1|

= |b−1U
n
i0−1 + b0U

n
i0 + b1U

n
i0+1|

≤ ||BnUn||∞ ≤ ||Bn||∞||Un||∞ = ||Un||∞,

where ||Bn||∞ is the row-sum norm of Bn. Thus, ||Un||∞ ≤ ‖U0‖∞ for n ∈ N, yielding (S1).
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The consistency assumption (S2) follows from Theorem 1. It remains to show that (S3) holds. For simplicity,
we will only consider the case K = 0. This relates to the case of zero interest rate in the financial model. The
case K > 0 can be proved analogously. Define F : R

4 → R by

F (∆2U
n+1
i , ∆0U

n+1
i , ∆2U

n
i , ∆0U

n
i ) =

β

[(
1
2

+ A1

)
∆2U

n
i +

(
1
2

+ A2

)
∆2U

n+1
i −

(
1
2

+ B1

)
∆0U

n
i −

(
1
2

+ B2

)
∆0U

n+1
i

]
.

Note that β, A1, A2, B1, B2 depend on U as well. Using this definition we can write (11) as

S(k, h, n, i, Un+1
i , U) = Un+1

i − Un
i − kF (∆2U

n+1
i , ∆0U

n+1
i , ∆2U

n
i , ∆0U

n
i ).

Let U, V ∈ R
M(2N+1) with U ≥ V and Un+1

i = V n+1
i . We need to show that

S(k, h, n, i, V n+1
i , V ) − S(k, h, n, i, Un+1

i , U) ≥ 0.

With the abbreviations Wn+1
i = Un+1

i − V n+1
i , Wn

i = Un
i − V n

i we infer

S(k, h, n, i, V n+1
i , V ) − S(k, h, n, i, Un+1

i , U) = (Un
i − V n

i ) + k
[
F (∆2U

n+1
i , ∆0U

n+1
i , ∆2U

n
i , ∆0U

n
i )

− F (∆2V
n+1
i , ∆0V

n+1
i , ∆2V

n
i , ∆0V

n
i )

]
= Wn

i + k∇F (z)(∆2W
n+1
i , ∆0W

n+1
i , ∆2W

n
i , ∆0W

n
i ),

using the mean value theorem

F (∆2U
n+1
i , ∆0U

n+1
i , ∆2U

n
i , ∆0U

n
i ) − F (∆2V

n+1
i , ∆0V

n+1
i , ∆2V

n
i , ∆0V

n
i )

= ∇F (z)[(∆2U
n+1
i , ∆0U

n+1
i , ∆2U

n
i , ∆0U

n
i ) − (∆2V

n+1
i , ∆0V

n+1
i , ∆2V

n
i , ∆0V

n
i )]

for some
z ∈ [

(∆2U
n+1
i , ∆0U

n+1
i , ∆2U

n
i , ∆0U

n
i ), (∆2V

n+1
i , ∆0V

n+1
i , ∆2V

n
i , ∆0V

n
i )

]
,

where z = (z1, z2, z3, z4), and [p, q] denotes the line between p, q ∈ R
4. We compute

∇F (z) =




β(1
2 + A2)

−β(1
2 + B2)

β[(1
2 + A1) + c(a2)A1,βΨ′z3] + c(a2)Ψ′(1

2 + A1)z3

−β[(1
2 + B1) + c(a2)B1,βΨ′z4] − c(a2)Ψ′(1

2 + B1)z4


 ,

where β, A1, A2, B1, B2, Ψ′ and A1,β , B1,β, the derivatives with respect to β, are evaluated in z and c(a2) is a
positive constant depending on a2 with c(a2) → 0 as a → 0. We obtain

S(k, h, n, i, V n+1
i , V ) − S(k, h, n, i, Un+1

i , U) = Wn
i + kβT1 + c(a2)kT2, (23)

where

T1 =
(

1
2

+ A2

)
Wn+1

i+1 − 2Wn+1
i + Wn+1

i−1

h2
−

(
1
2

+ B2

)
Wn+1

i+1 − Wn+1
i−1

2h
+

(
1
2

+ A1

)
Wn

i+1 − 2Wn
i + Wn

i−1

h2

−
(

1
2

+ B1

)
Wn

i+1 − Wn
i−1

2h
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and

T2 =
[
βA1,βΨ′ + Ψ′

(
1
2

+ A1

)]
z3

Wn
i+1 − 2Wn

i + Wn
i−1

h2
−

[
βB1,βΨ′ + Ψ′

(
1
2

+ B1

)]
z4

Wn
i+1 − Wn

i−1

2h
·

The term T1 collects the terms known from the linear scheme (13), where β is simply a positive constant.
The term T2 involves additional expressions for the nonlinear case. Note also that the nonlinear terms only
involve the coefficients at time level n, since the nonlinearity is discretized explicitly. We will make use of this
observation in the following by employing Lemma 2 to obtain the positivity of T1 and use this to control the
term T2 for suitably small values of a.

We collect the terms in (23) according to the grid points, make use of Wn+1
i = 0 and obtain

S
(
k, h, n, i, V n+1

i , V
) − S

(
k, h, n, i, Un+1

i , U
)

=
[
1 − rβ(1 + 2A1) + c(a2)2r

(
βA1,βΨ′ + Ψ′

(
1
2

+ A1

))
z3

]
Wn

i

+
[
rβ

(
1
2

+ A2

)
− µ

2

(
1
2

+ B2

)]
Wn+1

i+1 +
[
rβ

(
1
2

+ A2

)
+

µ

2

(
1
2

+ B2

)]
Wn+1

i−1 +
[
rβ

(
1
2

+ A1

)

−µ

2

(
1
2

+ B1

)]
Wn

i+1 + c
(
a2

) [
r

(
βA1,βΨ′ + Ψ′

(
1
2

+ A1

))
z3 − k

2h

(
βB1,βΨ′ + Ψ′

(
1
2

+ B1

))
z4

]
Wn

i+1

+
[
rβ

(
1
2

+ A1

)
+

µ

2

(
1
2

+ B1

)]
Wn

i−1 + c
(
a2

) [
r

(
βB1,βΨ′ + Ψ′

(
1
2

+ A1

))
z3

+
k

2h

(
βB1,βΨ′ + Ψ′

(
1
2

+ B1

))
z4

]
Wn

i−1

=
[
b0 + c(a2)2r

(
βA1,βΨ′ + Ψ′

(
1
2

+ A1

))
z3

]
Wn

i − ai+1W
n+1
i+1 − ai−1W

n+1
i−1

+
[
b1 + c(a2)

[
r

(
βA1,βΨ′ + Ψ′

(
1
2

+ A1

))
z3 − k

2h

(
βB1,βΨ′ + Ψ′

(
1
2

+ B1

))
z4

]]
Wn

i+1

+
[
b−1 + c(a2)

[
r

(
βA1,βΨ′ + Ψ′

(
1
2

+ A1

))
z3 +

k

2h

(
βB1,βΨ′ + Ψ′

(
1
2

+ B1

))
z4

]]
Wn

i−1

≥
[
b0 + c(a2)2r

(
βA1,βΨ′ + Ψ′

(
1
2

+ A1

))
z3

]
Wn

i +
[
b1 + c(a2)

[
r

(
βA1,βΨ′ + Ψ′

(
1
2

+ A1

))
z3

− k

2h

(
βB1,βΨ′ + Ψ′

(
1
2

+ B1

))
z4

]]
Wn

i+1 +
[
b−1 + c(a2)

[
r

(
βA1,βΨ′ + Ψ′

(
1
2

+ A1

))
z3

+
k

2h

(
βB1,βΨ′ + Ψ′

(
1
2

+ B1

))
z4

]]
Wn

i−1

where a−1, a1, b−1, b0, b1 are the coefficients of the linear scheme (13) and where we have employed Lemma 2 in
the last inequality. Making use of the assumption that Ψ′ is bounded, we can control the nonlinear terms by
the positive coefficients b−1, b0, and b1 if a is sufficiently small. We conclude

S(k, h, n, i, V n+1
i , V ) − S(k, h, n, i, Un+1

i , U) ≥ 0,

which completes the proof. �
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[13] B. Düring, M. Fournié and A. Jüngel, High order compact finite difference schemes for a nonlinear Black-Scholes equation.

Int. J. Appl. Theor. Finance 6 (2003) 767–789.
[14] R. Frey, Perfect option hedging for a large trader. Finance Stoch. 2 (1998) 115–141.
[15] R. Frey, Market illiquidity as a source of model risk in dynamic hedging, in Model Risk, R. Gibson Ed., RISK Publications,

London (2000).
[16] G. Genotte and H. Leland, Market liquidity, hedging and crashes. Amer. Econ. Rev. 80 (1990) 999–1021.
[17] S.D. Hodges and A. Neuberger, Optimal replication of contingent claims under transaction costs. Rev. Future Markets 8 (1989)

222–239.
[18] V.P. Il’in, On high-order compact difference schemes. Russ. J. Numer. Anal. Math. Model. 15 (2000) 29–46.
[19] H. Ishii, A boundary value problem of the Dirichlet type for Hamilton-Jacobi equations. Ann. Scuola Norm. Sup. Pisa 16

(1989) 105–135.

[20] R. Jarrow, Market manipulation, bubbles, corners and short squeezes. J. Financial Quant. Anal. 27 (1992) 311–336.
[21] P. Kangro and R. Nicolaides, Far field boundary conditions for Black-Scholes equations. SIAM J. Numer. Anal. 38 (2000)

1357–1368.
[22] D. Lamberton and B. Lapeyre, Introduction au calcul stochastique appliqué à la finance. 2e édn., Ellipses, Paris (1997).
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