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Abstract. In [C.W. Gear, T.J. Kaper, I.G. Kevrekidis and A. Zagaris, SIAM J. Appl. Dyn. Syst. 4
(2005) 711–732], we developed a class of iterative algorithms within the context of equation-free meth-
ods to approximate low-dimensional, attracting, slow manifolds in systems of differential equations with
multiple time scales. For user-specified values of a finite number of the observables, the mth member of
the class of algorithms (m = 0, 1, . . .) finds iteratively an approximation of the appropriate zero of the
(m + 1)st time derivative of the remaining variables and uses this root to approximate the location of
the point on the slow manifold corresponding to these values of the observables. This article is the first
of two articles in which the accuracy and convergence of the iterative algorithms are analyzed. Here,
we work directly with fast-slow systems, in which there is an explicit small parameter, ε, measuring
the separation of time scales. We show that, for each m = 0, 1, . . ., the fixed point of the iterative algo-
rithm approximates the slow manifold up to and including terms of O(εm). Moreover, for each m, we
identify explicitly the conditions under which the mth iterative algorithm converges to this fixed point.
Finally, we show that when the iteration is unstable (or converges slowly) it may be stabilized (or its
convergence may be accelerated) by application of the Recursive Projection Method. Alternatively, the
Newton-Krylov Generalized Minimal Residual Method may be used. In the subsequent article, we will
consider the accuracy and convergence of the iterative algorithms for a broader class of systems – in
which there need not be an explicit small parameter – to which the algorithms also apply.
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1. Introduction

The long-term dynamics of many complex chemical, physical, and biological systems simplify when a low-
dimensional, attracting, invariant slow manifold is present. Such a slow manifold attracts all nearby initial
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data exponentially, and the reduced dynamics on it govern the long term evolution of the full system. More
specifically, a slow manifold is parameterized by observables which are typically slow variables or functions of
variables. All nearby system trajectories decompose naturally into a fast component that contracts exponentially
toward the slow manifold and a slow component which obeys the reduced system dynamics on the manifold. In
this sense, the fast variables become slaved to the observables, and knowledge of the slow manifold and of the
reduced dynamics on it suffices to determine the full long-term system dynamics.

The identification and approximation of slow manifolds is usually achieved by employing a reduction method.
We briefly list a number of these: Intrinsic Low Dimensional Manifold (ILDM), Computational Singular Per-
turbation (CSP), Method of Invariant Manifold (MIM), Approximate Inertial Manifold approaches, and Fraser-
Roussel iteration, and we refer the reader to [6,9,20,21] for a more extensive listing.

1.1. A class of iterative algorithms based on the zero-derivative principle

In [6], we developed a class of iterative algorithms to locate slow manifolds for systems of ordinary differential
equations (ODEs) of the form

u′ = p(u, v), u ∈ RNs ,
v′ = q(u, v), v ∈ RNf ,

(1.1)

where Ns+Nf ≡ N. We treated the variables u as the observables (that is, as parameterizing the slow manifold we
are interested in), and we assumed that there exists an Ns-dimensional, attracting, invariant, slow manifold L,
which is given locally by the graph of a function v = v(u). For specified values of u, the algorithm finds
approximations to v(u). However, we emphasize that we did not need explicit knowledge of which variables are
fast and which are slow, only that the variables u suffice to parameterize L.

To leading order, the location of a slow manifold L is obtained by setting v′ = 0, i.e., by solving q(u, v) = 0
for v. Of course, the manifold defined by this equation is in general not an invariant slow manifold under the
flow of the full system (1.1). It is only approximately invariant, and higher-order derivatives with respect to the
(fast) time t are, in general, large on it. If one requires that v′′ vanishes, then the solutions with initial conditions
at the points defined by this condition depend only on the slow time to one order higher, as v′ also remains
bounded in the vicinity of this manifold. Similarly, demanding that successively higher-order time derivatives
vanish, we obtain manifolds where all time derivatives of lower order remain bounded. The solutions with
these initial conditions depend only on the slow time to successively higher order and thus approximate, also to
successively higher order, solutions on the slow manifold. In other words, demanding that time derivatives of
successively higher order vanish, we filter out the fast dynamics of the solutions to successively higher orders. In
this manner, the approximation of the slow manifold L is improved successively, as well. This idea may be traced
back at least to the work of Kreiss [1,12,13], who studied systems with rapid oscillations (asymptotically large
frequencies) and introduced the bounded derivative principle to find approximations of slow manifolds as the
sets of points at which the derivatives are bounded (not large). The requirement here that the derivatives with
respect to the (fast) time t vanish (or be small) is the analog for systems (1.1) with asymptotically stable slow
manifolds. A similar idea was introduced independently by Lorenz in [14], where he used a simple functional
iteration scheme to approximate the zero of the first derivative, then used the converged value of this scheme to
initialize a similar scheme that approximates the zero of the second derivative, and so on until successive zeroes
were found to be virtually identical. See also [3,7] for other works in which a similar condition is employed.

The elements of the class of iterative algorithms introduced in [6] are indexed by m = 0, 1, . . . The mth
algorithm is designed to locate, for any fixed value of the observable u0, an appropriate solution, v = vm(u0),
of the (m + 1)st derivative condition (

dm+1v

dtm+1

)
(u0, v) = 0. (1.2)

Here, the time derivatives are evaluated along solutions of (1.1). In general, since condition (1.2) constitutes a
system of Nf nonlinear algebraic equations, the solution vm(u0) cannot be computed explicitly. Also, the explicit
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form of (1.1), and thus also an analytic formula for the (m + 1)st time derivative in equation (1.2), may be
unavailable (e.g., in equation-free or legacy code applications, see [5,11]). In this case, a numerical approximation
for it has to be used. The mth algorithm in the class generates an approximation v#

m of vm(u0), rather than
vm(u0) itself, using either an analytic formula for the time derivative or a finite difference approximation for it.
In either case, the approximation v#

m to vm(u0) is determined through an explicit functional iteration scheme,
which we now introduce.

The algorithm with general m is defined by the map F̃m : RNf → RNf ,

F̃m(v) = v − (−H)m+1

(
dm+1v

dtm+1

)
(u0, v). (1.3)

Here, H , which we label as the iterative step size, is an arbitrary positive number whose magnitude we fix below
for stability reasons. We initialize the iteration with some value v(1) and generate the sequence

{
v(r+1) ≡ F̃m(v(r))

∣∣∣ r = 1, 2, . . .
}
·

In addition, one prescribes a tolerance TOLm and terminates the iteration procedure when ‖v(r+1) − v(r)‖ <
TOLm for some r ≥ 1. The output of this mth algorithm is the last member of the sequence {v(r+1)}, denoted
by v#

m.
As we show in this article, not only is the point (u0, v

#
m) of interest for each individual m because it approx-

imates (u0, v(u0)), but the entire sequence {(u0, v
#
m)}m is also of interest because it converges to (u0, v(u0))

with a suitably convergent sequence {TOLm}m. Hence, the latter point can be approximated arbitrarily well
by members of that sequence, and the class of algorithms may be used as an integrated sequence of algorithms
in which the output v#

m of the mth algorithm can be used to initialize the (m+1)st algorithm. Of course, other
initializations are also possible, and we have carried out the analysis here in a manner that is independent of
which choice one makes.

Van Leemput et al. [18] employed the first (m = 0) algorithm in the class to initialize lattice Boltzmann
models (LBM) from sets of macroscopic data in a way that eliminates the stiff dynamics triggered by a bad
initialization. They showed that the algorithm they derived converges unconditionally to a fixed point close
to a slow manifold, and they used the algorithm to couple a LBM to a reaction-diffusion equation along the
interface with good results [19]. The algorithm has also been applied to a series of examples in [6]. It was found
that the mth algorithm converged exponentially for each value of m that was tried, and that the accuracy of
the approximation to (u0, v(u0)) improved as the order m was increased.

1.2. Iterative algorithms based on the zero-derivative principle for explicit
fast-slow-systems

A central assumption that we made in [6] is that we work with systems (1.1) for which there exists a smooth
and invertible coordinate change

z = z(w) with inverse w = w(z), (1.4)

where w = (u, v) and z = (x, y), which puts the system (1.1) into the explicit fast-slow form

x′ = f(x, y, ε), x ∈ RNs ,
εy′ = g(x, y, ε), y ∈ RNf .

(1.5)

We emphasize that, in general, we have no knowledge whatsoever of the transformation that puts system (1.1)
into an explicit fast-slow form. Here, f and g are smooth functions of their arguments, the manifold L is
transformed smoothly, and the matrix (Dyg)0(z) ≡ Dyg(z, 0) is non-singular, det(Dyg)0(z) �= 0, on the manifold
L[0] = {z|g(z, 0) = 0} (on which the dynamics reduce for ε = 0), see also [6].



760 A. ZAGARIS ET AL.

Due to the above assumption, it turns out to be natural to split the analysis of the accuracy and convergence
of the functional iteration into two parts. In the first part, which we present in this article, we work directly
on systems that are already in explicit fast-slow form (1.5). In the context of these systems, the accuracy and
convergence analysis may be carried out completely in terms of the small parameter ε. The system geometry –
the slow manifold and the fast fibers transverse to L – makes the convergence analysis especially transparent.
Then, in the second part, we work with the more general systems (1.1). For these, the accuracy analysis proceeds
along similar lines as that for this first part, with the same type of result as Theorem 2.1 below. However, the
convergence analysis is considerably more involved than that for explicit fast-slow systems. For these general
systems, one must analyze a series of different scenarios depending on the relative orientations of (i) the tangent
space to L, (ii) the tangent spaces to the fast fibers at their base points on L, and (iii) the hyperplane of the
observables u. Moreover, all of the analysis must be carried out through the lens of the coordinate change (1.4)
and its inverse, so that it is less transparent than it is in part one. Part two is presented in [22].

As applied specifically to explicit fast-slow systems (1.5), the mth iterative algorithm (1.3) is based on the
(m + 1)st derivative condition, (

dm+1y

dtm+1

)
(x0, y) = 0. (1.6)

In particular, for each m and for any arbitrary, but fixed, value of the observable x0, one makes an initial guess
for the corresponding point on L and uses the mth iterative algorithm to approximate the appropriate zero of
this (m + 1)st derivative, where the end (converged) result of the iteration is the improved approximation of
the point on L.

For each m = 0, 1, . . ., the mth iterative algorithm is defined by the map Fm : RNf → RNf ,

Fm(y) = y − (−H)m+1

(
dm+1y

dtm+1

)
(x0, y), (1.7)

where H is an arbitrary positive number whose magnitude is O(ε) for stability reasons. We seed with some
value y(1) and generate the sequence {

y(r+1) ≡ Fm(y(r))
∣∣∣ r = 1, 2, . . .

}
· (1.8)

Here also, one prescribes a tolerance TOLm and terminates the iteration procedure when ‖y(r+1)−y(r)‖ < TOLm

for some r ≥ 1. The output of this mth algorithm is the last member of the sequence {y(r+1)}, denoted by y#
m.

Finally, we note that the dependence of Fm and y on ε has been suppressed in the notation to keep it compact.

1.3. Fundamental hypotheses and essentials from Fenichel theory

Throughout this article, we make some assumptions about the systems (1.5) and use some basic theory about
slow, invariant manifolds in systems of the form (1.5). We emphasize that this theory is briefly discussed here
only to provide a framework in which to analyze the algorithms; the algorithms may be applied in the much
broader context of systems (1.1).

We assume that the set, K, in which the observables x lie is compact, and that the manifold L[0] may
be expressed as the graph of a function h[0] for all x ∈ K. More generally, we may work with submanifolds
of L[0] if it cannot be so expressed globally. In addition, we assume that L[0] is normally attracting under
the dynamics associated with (1.5) with ε set to zero, which for systems of the form (1.5) implies that the
eigenvalues of the fast subsystem linearized at points on L[0] have negative real parts. (This is a special case of
normal hyperbolicity, in which none of the eigenvalues have zero real part.) Finally, in order to apply Fenichel
theory [4], we assume that L[0] is overflowing invariant at its boundary, i.e., that the vector field points either
outward or tangent to the boundary at all points along it. This assumption may be satisfied by introducing a
C∞ bump function in the vector field at the boundary of K, which is a perturbation of the vector field exterior
to the region one is interested in, as is shown in [8].
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Under the above assumptions, Fenichel theory [4,8] gives the existence of a slow manifold L that is invariant
with respect to the dynamics of system (1.5) when ε is sufficiently small. Orbits on L evolve slowly, and orbits
off L converge at a minimal exponential rate toward it and are shadowed by an orbit on it. Generally, slow
manifolds are not unique; typical systems (1.5) have a family of slow manifolds, all of which are exponentially
close to each other, O(e−c/ε) for some c > 0. The choice of bump function at the boundary of K selects
one member of this family and makes the manifold locally unique. Moreover, due to the assumption that the
unperturbed manifold L[0] is the graph of a function h[0], we know that L is the graph of a function h : K → RNf ,

L = {(x, y) |x ∈ K, y = h(x)} · (1.9)

See for example [8], Theorem 4.
The function h satisfies the invariance equation

g(x, h(x), ε) − εDh(x)f(x, h(x), ε) = 0, (1.10)

and it is O(ε) close to the unperturbed (a.k.a. critical) manifold uniformly for x ∈ K. It is insightful to recast
this invariance equation in the form

(−Dh(x), INf )G(x, h(x), ε) = 0, where G ≡
(

εf
g

)
, (1.11)

which admits a clear geometric interpretation. Since L corresponds to the zero level set of the function −h(x)+y
by equation (1.9), the rows of the Nf ×N gradient matrix (−Dh(x), INf ) form a basis for NzL, the space normal
to the slow manifold at the point z = (x, h(x)) ∈ L. Thus, equation (1.11) states that the vector field G is
perpendicular to this space and hence contained in the space tangent to the slow manifold, TzL. This is the
precise meaning of invariance.

For compactness of notation, we have suppressed the dependence on ε in h(x). In fact, the function h admits
an asymptotic expansion in ε,

h(·) =
∑
i=0

εih[i](·), (1.12)

where the coefficients h[i], i = 0, 1, . . . , are determined by expanding asymptotically the left member of equa-
tion (1.10) and setting the coefficient of εi equal to zero to obtain

gi −
i−1∑
�=0

(Dh[�])fi−1−� = 0, i = 0, 1, . . . ,

where the sum is understood to be empty for i = 0. Here, gi and fi denote the coefficients of εi in the asymptotic
expansions of g and f , respectively. (For asymptotic expansions of general functions μ(x, y, ε), we denote the
coefficient on the term with εi by μi(x, y), and we use the convention that O(εi) = εi ν(x, y, ε) where ν is a
bounded smooth function for all sufficiently small values of ε.) The first few equations are

g0 = 0, (1.13)
(Dyg)0h[1] + (Dεg)0 − (Dh[0])f0 = 0. (1.14)

Here, equation (1.13) is satisfied identically, equation (1.14) yields the coefficient h[1], and so on.
The ILDM method of [15] employs a geometric condition that is similar to equation (1.11). In particular,

the ILDM method uses a Schur decomposition of the vector field into block triangular fast-slow form and then
approximates the true invariant slow manifold by the set of points at which the vector field G is orthogonal to
the orthogonal complement of the slow subspace of the Jacobian. As a result, the ILDM condition resembles
equation (1.11), but with only information about the linearized vector field, whereas equation (1.11) contains
all of the nonlinear terms from the invariance equation. See also [9].
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1.4. Statement of the main results

In this article, we first examine the mth iterative algorithm in which an analytical formula for the (m + 1)st
derivative is used, and we prove that it has a fixed point y = hm(x0), which is O(εm+1) close to the corresponding
point h(x0) on the invariant manifold L, for each m = 0, 1, . . . See Theorem 2.1 below.

Second, we determine the conditions on (Dyg)0, which is the leading order term in the fast part of the
Jacobian, under which the mth iterative algorithm converges to this fixed point, again with an analytical
formula for the (m+1)st derivative. The normal attractivity of the manifold L[0] plays a central role in making
this determination possible. In particular, for m = 0, the iteration converges for all systems (1.5) for which
(Dyg)0 is uniformly Hurwitz on L[0] and provided that the iterative step size H is small enough. For each
m ≥ 1, convergence of the algorithm imposes more stringent conditions on H and on the spectrum of (Dyg)0.
We denote this spectrum by σ((Dyg)0). In particular, if σ((Dyg)0) is contained in certain sets in the complex
plane, which we identify completely, then the iteration converges for small enough values of the iterative step
size H , see Theorem 3.1. These sets do not cover the entire half-plane, and thus complex eigenvalues can, in
general, make the algorithm divergent.

Third, we show explicitly how the Recursive Projection Method (RPM) of Shroff and Keller [17] stabilizes
the functional iteration for each m ≥ 1 in those regimes where the iteration is unstable. This stabilization result
is useful for practical implementation in the equation-free context; and, the RPM may also be used to accel-
erate convergence in those regimes in which the iterations converge slowly. Alternatively, the Newton-Krylov
Generalized Minimal Residual Method (NK-GMRES [10]) may be used to achieve this stabilization.

Fourth, we analyze the influence of the tolerance, or stopping criterion, used to terminate the functional
iteration. We show that, when the tolerance TOLm for the mth algorithm is set to O(εm+1), the output y#

m

also satisfies the asymptotic estimate ‖y#
m − h(x0)‖ = O(εm+1).

Finally, we extend the accuracy and convergence analyses to the case where a forward difference approxima-
tion of the (m+1)st derivative is used in the iteration, instead of the analytical formula. As to the accuracy, we
find that the mth iterative algorithm also has a fixed point y = ĥm(x0) which is O(εm+1) close to h(x0), so that
the iteration in this case is as accurate asymptotically as the iteration with the analytical formula. Then, as to
the stability, we find that the mth iterative algorithm with a forward difference approximation of the (m + 1)st
derivative converges unconditionally for m = 0. Moreover, for m = 1, 2, . . ., the convergence is for a continuum
of values of the iterative step size H and without further restrictions on (Dyg)0, other than that it is uniformly
Hurwitz on L[0], see Theorem 6.1. These advantages stem from the use of a forward difference approximation,
and we will show in a future work that the use of implicitly defined maps Fm yields similar advantages.

We remark that the condition imposed at the edge of the domain K in the numerical implementation
determines which of the particular slow manifolds out of the family of manifolds is the one obtained. Of course,
since they are all O(e−c/ε) close for some c > 0, the asymptotic expansions are all the same to all orders in ε.
Hence, this particular detail of the numerical implementation does not alter the asymptotic accuracy of the
results.

2. Existence of a fixed point hm(x0) and its proximity to h(x0)

We rewrite the map Fm, given in equation (1.7), as

Fm(y) = y − Lm(x0, y), (2.1)

where the function Lm : RN → RNf is given by

Lm(z) ≡ (−H)m+1

(
dm+1y

dtm+1

)
(z), for any m = 0, 1, . . . , (2.2)
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where z = (x0, y). The fixed points, y = hm(x0), of Fm are determined by the equation

Lm(x0, hm(x0)) = 0,

that is, by the (m + 1)st derivative condition (1.6). The desired results on the existence of the fixed point
hm(x0) and on its proximity to h(x0) are then immediately at hand from the following theorem:

Theorem 2.1. For each m = 0, 1, . . . there is an εm > 0 such that, for 0 < ε ≤ εm, the (m + 1)st derivative
condition (1.6),

Lm(x, y) ≡ (−H)m+1

(
dm+1y

dtm+1

)
(x, y) = 0, (2.3)

can be solved uniquely for y to yield an Ns-dimensional manifold Lm which is the graph of a function hm : K →
RNf over x. Moreover, the asymptotic expansions of hm and h agree up to and including terms of O(εm),

hm(·) =
∑
i=0

εihm,i(·) =
m∑

i=1

εih[i](·) + O(εm+1).

This theorem guarantees that, for each x0 ∈ K, there exists an isolated fixed point y = hm(x0) of the
functional iteration algorithm. Moreover, this fixed point varies smoothly with x0, and the approximation
(x0, hm(x0)) of the point (x0, h(x0)) on the actual invariant slow manifold is valid up to O(εm+1).

The remainder of this section is devoted to the proof of this theorem. We prove it for m = 0 and m = 1 in
Sections 2.1 and 2.2, respectively. Then, in Section 2.3, we use induction to prove the theorem for general m.

2.1. Proof of Theorem 2.1 for m = 0

We show, for each x ∈ K, that L0(z) has a root y = h0(x), that h0 lies O(ε) close to h[0](x) (recall that
L[0] = graph(h[0])), the corresponding point on the critical manifold, and that the graph of the function h0

over K forms a manifold.
For m = 0, definition (2.2), the chain rule, and the ODEs (1.5) yield

L0 = −Hy′ = −ε−1Hg. (2.4)

Substituting the asymptotic expansion y = h0(x) =
∑

i=0 εih0,i(x) into this formula and combining it with the
condition L0 = 0, we find that, to leading order,

g(x, h0,0(x), 0) = 0,

where we have removed the O(1), nonzero, scalar quantity −H/ε. In comparison, the invariance equation (1.10)
yields

g
(
x, h[0](x), 0

)
= 0, (2.5)

to leading order, see equation (1.13). Thus h0,0 can be chosen to be equal to h[0], and L0(z) has a root that is
O(ε) close to y = h(x).

It remains to show that the graph of the function h0 is an Ns-dimensional manifold L0. Using equation (2.4),
we calculate

(DyL0) = −ε−1H (Dyg),
where all quantities are evaluated at (x, h0(x), ε). Moreover,

(DyL0) (x, h0(x)) = −ε−1H (Dyg)0 + O(ε),

with (Dyg)0 = (Dyg)(x, h0,0(x), 0) = (Dyg)(x, h[0](x), 0), since h0,0 = h[0]. Thus,

det (DyL0) (x, h0(x)) �= 0, for all x ∈ K,
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because H = O(ε) by assumption and because det(Dyg)0 �= 0, see the Introduction. Therefore, L0 is an
Ns-dimensional manifold by the Implicit Function Theorem and [16], Theorem 1.13. This completes the proof
of the theorem for the case m = 0.

2.2. The proof of Theorem 2.1 for m = 1

In this section, we treat the m = 1 case. Technically speaking, one may proceed directly from the m = 0
case to the induction step for general m. Nevertheless, we find it useful to present a concrete instance and a
preview of the general case, and hence we give a brief analysis of the m = 1 case here.

We calculate
L1 = (−H)2y′′ = −H(−Hy′)′ = −HL′

0 = −ε−1H(DzL0)G.

Using the ODEs (1.5) and equation (2.4), we rewrite this as

L1 =
(−ε−1H

)2
[ε(Dxg)f + (Dyg)g] . (2.6)

We recall that the solution is denoted by y = h1(x) and that we write its asymptotic expansion as h1(x) =∑
i=0 εih1,i(x). Substituting this expansion into equation (2.6) and recalling that H = O(ε), we obtain at O(1)

L1 = (−ε−1H)2
[
(Dyg)0 g0 + O(ε)

]
,

where (Dyg)0 = (Dyg)(x, h1,0(x), 0). Hence, y = h[0](x) is a root of L1 to leading order by equation (2.5).
Also, since by assumption we have that det(Dyg)0 �= 0, we know that the root is locally unique and hence that
h1,0 = h[0].

At O(ε), we obtain

(−ε−1H)2(Dyg)0
[
(Dyg)−1

0 (Dxg)0 f0 + (Dyg)0 h1,1 + (Dεg)0
]

= 0, (2.7)

where we used the expansion

g(·, h1(·), ε) = g0 + ε [(Dyg)0 h1,1 + (Dεg)0] + O(ε2)

and that g0(·) = g(·, h1,0(·), 0) = g(·, h[0](·), 0) = 0. Differentiating both members of the identity g(·, h[0](·), 0) =
0 with respect to the argument, we obtain

(Dxg)0 + (Dyg)0 Dh[0] = 0,

whence (Dyg)−1
0 (Dxg)0 = −Dh[0]. Removing also the invertible prefactor (−H/ε)2(Dyg)0, we find that equa-

tion (2.7) becomes
−(Dh[0])f0 + (Dyg)0 h1,1 + (Dεg)0 = 0.

This equation is identical to equation (1.14), and thus h1,1 = h[1]. Hence, we have shown that the asymptotic
expansion of h1(x) agrees with that of h(x) up to and including terms of O(ε), as claimed for m = 1.

Finally, the graph of the function h1 forms an Ns-dimensional manifold L1. This may be shown in a manner
similar to that used above for L0 in the case m = 0. This completes the proof for m = 1.

2.3. The induction step: the proof of Theorem 2.1 for general m

In this section, we carry out the induction step that establishes Theorem 2.1 for all m. We assume that the
conclusion of Theorem 2.1 is true for m and show that it also holds for m + 1, i.e., that the condition

[(DzLm)(x, y)] G(x, y, ε) = 0 (2.8)
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can be solved uniquely for y to yield y = hm+1(x), where

hm+1(·) =
m+1∑
i=0

εih[i](·) + O(εm+2).

To begin with, we recast the (m + 1)st derivative condition equation (2.3) in a form that is reminiscent of
the invariance equation, equation (1.11). Let m ≥ 0 be arbitrary but fixed. It follows from definition (2.2),
equation (1.11), and equation (1.5) that

Lm = −H
d
dt

(
(−H)m dmy

dtm

)
= −H

dLm−1

dt
= −ε−1H(DzLm−1)G. (2.9)

Therefore, the (m + 1)st derivative condition (2.3) can be rewritten in the desired form as

(DzLm−1)G = 0, (2.10)

where we have removed the O(1), nonzero, scalar quantity −H/ε.
The induction step will now be established using a bootstrapping approach. First, we consider a modified

version of equation (2.8), namely the condition

[(DzLm)(x, hm(x))] G(x, y, ε) = 0, (2.11)

in which the matrix DzLm is evaluated on Lm (already determined at the mth iteration) instead of on the
as-yet unknown Lm+1. This equation is easier to solve for the unknown y, since y appears only in G. We now
show that the solution y = h̃m+1(x) of this condition approximates h up to and including O(εm+1) terms.

Lemma 2.1. For ε > 0 sufficiently small, the condition (2.11) can be solved uniquely for y to yield

y = h̃m+1(x) =
m+1∑
i=0

εih[i](x) + O(εm+2), for all x ∈ K. (2.12)

Now, with this first lemma in hand, we bootstrap up from the solution y = h̃m+1 of this modified condition
to find the solution y = hm+1 of the full (m + 1)st derivative condition, equation (2.8). Specifically, we show
that their asymptotic expansions agree up to and including terms of O(εm+1),

Lemma 2.2. For ε > 0 sufficiently small, the condition (2.8) can be solved uniquely for y to yield

y = hm+1(x) =
m+1∑
i=0

εih̃m+1,i(x) + O(εm+2), for all x ∈ K.

These lemmata are proven in Appendix 7, and Theorem 2.1 follows directly from them.

3. Stability analysis of the fixed point hm(x0)

In this section, we analyze the stability type of the fixed point y = hm(x0) of the functional iteration scheme
given by Fm(y). To fix the notation, we let

σ(Dyg)0 =
{
λk = λk,R + i λk,I = |λk|eiθk = λk,R(1 + i tanθk) : k = 1, . . . , Nf

}
(3.1)
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Figure 1. Hmax
k as a function of θk ∈ (π/2, 3π/2), for m = 0, 1, 2, 3. The eigenvalue μk is

stable for all 0 < Hk < Hmax
k .

and remark that normal attractivity of the slow manifold implies that λk,R < 0 (equivalently, π/2 < θk < 3π/2)
for all k = 1, . . . , Nf . Then, we prove the following theorem:

Theorem 3.1. For each m = 0, 1, . . . there is an εm > 0 such that, for 0 < ε ≤ εm, the functional iteration
scheme defined by Fm is stable if and only if the following two conditions are satisfied for all k = 1, . . . , Nf :

θk ∈ Sm ≡
⋃

j=0,...,m

(
2m + 4j + 1

2(m + 1)
π,

2m + 4j + 3
2(m + 1)

π

)
∩
[(

π

2
,
3π

2

)
mod 2π

]
(3.2)

and

0 < Hk < Hmax
k ≡ [2 cos((m + 1)(θk − π))]1/(m+1) , where Hk ≡ |λk|

ε
H. (3.3)

In particular, if λ1, . . . , λNf are real, then the functional iteration is stable for all H satisfying

H < Hmax ≡ 21/(m+1) ε

‖Dyg‖2
· (3.4)

The graphs of the stability regions for m = 0, 1, 2, 3 are given in Figure 1.
We now prove this theorem. By definition, hm(x0) is exponentially attracting if and only if

σ ((DFm) (hm(x0))) ⊂ B(0; 1), (3.5)

where B(0; 1) denotes the open ball of radius one centered at the origin. To determine the spectrum of
(DFm)(hm(x0)), we use equation (2.1) and Lemma B.1 to obtain

(DFm) (y) = INf − (DyLm) (x0, y)

= INf −
(−ε−1H(Dyg)(x0, y, 0)

)m+1
+ O(ε) + O (‖g0(x0, y)‖).

Letting y = hm(x0) in this expression and observing that ‖g0(x0, hm(x0))‖ = O(ε) by virtue of the estimate
hm = h[0] + O(ε) (see Thm. 2.1) and equation (2.5), we obtain to leading order

(DFm) (hm(x0)) = INf −
(−ε−1HDyg

)m+1

0
, (3.6)
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where zm = (x0, hm(x0)) and the notation (·)0 signifies that the quantity in parentheses is evaluated at the
point (x0, h[0](x0)) ∈ L[0]. Recalling the definition Hk = |λk|H/ε, we find to leading order

σ ((DFm) (hm(x0))) =
{

μk = 1 − Hm+1
k ei(m+1)(θk−π)

∣∣∣ k = 1, . . . , Nf

}
· (3.7)

In view of equation (3.7), condition (3.5) becomes∣∣∣1 − Hm+1
k ei(m+1)(θk−π)

∣∣∣ < 1, for all k = 1, . . . , Nf . (3.8)

Here, we note that higher order terms omitted from formula (3.7) do not affect stability for small enough values
of ε, because the stability region B(0; 1) is an open set. Next, we study the circumstances in which this stability
condition is satisfied. This study naturally splits into the following two cases:

Case 1. The eigenvalues λ1, . . . , λNf are real. This is the case, for example, when the fast part of system (1.5)
corresponds to a spatial discretization of a self-adjoint operator. Here, θk = π for all k, and thus condition (3.8)
reduces to

0 < Hm+1
k < 2, for all k = 1, . . . , Nf and where Hk = |λk| ε−1H,

which is satisfied if equation (3.4) holds.

Case 2. Some of the eigenvalues λ1, . . . , λNf have nonzero imaginary parts. Using equation (3.7), we
calculate

|μk|2 = 1 + Hm+1
k

[
Hm+1

k − 2 cos((m + 1)(θk − π))
]
.

This equation shows that |μk|2 is a convex quadratic function of Hm+1
k with |μk|2 = 1 for Hk = 0. Convexity

implies that, if there exists a second, positive solution Hmax
k to the equation |μk|2 = 1, then |μk| < 1 for all

0 < Hk < Hmax
k . Plainly, |μk| = 1 implies, for H �= 0,

(Hmax
k )m+1 − 2 cos((m + 1)(θk − π)) = 0,

which yields condition (3.3). Further, the condition that Hmax
1 , . . . , Hmax

Nf
be real and positive translates into

condition (3.2). This completes the proof of Theorem 3.1.
It is useful to write formula (3.3) explicitly for the first several values of m. For m = 0, formula (3.3) becomes

Hmax
k = −2 cos θk,

see Figure 1. We note that Hmax
k > 0 for all θk ∈ S0 = (π/2, 3π/2), and thus the fixed point h0(x0) is stable

for all 0 < H < Hmax, where Hmax = ε mink(|λk|−1
Hmax

k ).
For m = 1, formula (3.3) becomes

Hmax
k =

√
2 cos(2θk),

see Figure 1. We see that, on (π/2, 3π/2), Hmax
k > 0 only if θk lies in the subinterval S1 = (3π/4, 5π/4).

Therefore, the fixed point h1(x0) is stable if and only if (i) θk ∈ S1, for all k = 1, . . . , Nf , and (ii) 0 < H <

Hmax = ε mink(|λk|−1
Hmax

k ).
For m = 2, formula (3.3) becomes

Hmax
k = −[2 cos(3θk)]1/3,

see Figure 1. Here also, Hmax
k > 0 on (π/2, 3π/2) only if θk lies in the subinterval S2 = (5π/6, 7π/6). Thus,

h2(x0) is stable if and only if (i) θk ∈ S2, for all k = 1, . . . , Nf , and (ii) 0 < H < Hmax = ε mink(|λk|−1 Hmax
k ).

For m = 3, formula (3.3) becomes
Hmax

k = [2 cos(4θk)]1/4,



768 A. ZAGARIS ET AL.

see Figure 1. We observe that, on (π/2, 3π/2), Hmax
k > 0 only if θk lies in the subdomain S3 = (π/2, 5π/8) ∪

(7π/8, 9π/8) ∪ (11π/8, 3π/2). Therefore, the fixed point h3(x0) is stable if and only if (i) θk ∈ S3, for all
k = 1, . . . , Nf , and (ii) 0 < H < Hmax = ε mink(|λk|−1

Hmax
k ).

4. Stabilization of the algorithm using RPM

In the previous section, we saw that, for any m ≥ 1, the mth algorithm in our class of algorithms may have
a number of eigenvalues that either are unstable or have modulus only slightly less than one. In this section,
we demonstrate how the recursive projection method (RPM) of Shroff and Keller [17] may be used to stabilize
the algorithm or to accelerate its convergence in all such cases.

For the sake of clarity, we assume that (DFm)(hm(x0)) has M eigenvalues, labeled {μ1, . . . , μM}, that lie
outside the disk B(0; 1 − δ), for some small, user-specified δ > 0, and that the remaining Nf − M eigenvalues
{μM+1, . . . , μNf} lie inside it. We let P denote the maximal invariant subspace of (DFm)(hm(x0)) corresponding
to {μ1, . . . , μM} and P denote the orthogonal projection operator from RNf onto that subspace. Additionally,
we use Q to denote the orthogonal complement of P in RNf and Q = INf −P to denote the associated orthogonal
projection operator. These definitions induce an orthogonal decomposition of RNf ,

RNf = P ⊕ Q = PRNf ⊕ QRNf ,

and, as a result, each y ∈ RNf has a unique decomposition y = p̃ + q̃, with p̃ = Py ∈ P and q̃ = Qy ∈ Q. The
fixed point problem y = Fm(y) may now be written as

p̃ = PFm(p̃ + q̃), (4.1)
q̃ = QFm(p̃ + q̃). (4.2)

The fundamental idea of RPM is to use Newton iteration on equation (4.1) and functional iteration on
equation (4.2). In particular, we decompose the point y(1) (which was used to generate the sequence {y(r+1)}
in equation (1.8)) via

y(1) = p̃(1) + q̃(1) = Py(1) + Qy(1).

Then, we apply Newton iteration on equation (4.1) (starting with p̃(1)) and functional iteration on equation (4.2)
(starting with q̃(1)),

p̃(r+1) = p̃(r) +
[
IM − P (DFm(p̃(r) + q̃(r)))P

]−1
PFm(p̃(r) + q̃(r)),

q̃(r+1) = QFm(p̃(r) + q̃(r)).
(4.3)

The iteration is terminated when ‖y(r+1) − y(r)‖ < TOLm, for some r ≥ 1, as was also the case with functional
iteration.

Application of Theorem 3.13 from [17] directly yields that the stabilized (or accelerated) iterative scheme (4.3)
converges for all initial guesses y(1) close enough to the fixed point hm(x0), as long as

1 /∈ σ(P (DFm(hm(x0)))P ) = {μ1, . . . , μM}·

In our case, this condition is satisfied for all H > 0, because the fact that L is normally attracting implies that
each eigenvalue λk of Dyg is bounded away from zero uniformly over the domain K on which the slow manifold
is defined. Thus, the iteration scheme (4.3) converges.
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5. Tuning of the tolerance

In this section, we establish that, for every m = 0, 1, . . ., ‖y#
m − h(x0)‖ = O(εm+1) whenever TOLm =

O(εm+1). The value returned by the functional iteration is within the tolerance of the point on the true slow
manifold for sufficiently small values of the tolerance.

The brunt of the analysis needed to prove this principal result involves showing that, for these small tolerances,
y#

m is within the tolerance of the fixed point, hm(x0). The desired principal result is then immediately obtained
by combining this result with the result of Theorem 2.1, where it was shown that ‖hm(x0)−h(x0)‖ = O(εm+1).

We begin by observing that

‖y#
m − hm(x0)‖ ≤ ‖y#

m − y(r)‖ + ‖y(r) − hm(x0)‖, for any r > 0,

by the triangle inequality. The first term is O(εm+1) by definition, as long as r is chosen large enough so that
the stopping criterion, ‖y(r+1) − y(r)‖ < TOLm, is satisfied. As to the second term, we may obtain the same
type of estimate, as follows: First,

y(r+1) − y(r) = Fm

(
y(r)

)
− y(r) = −Lm

(
x0, y

(r)
)
,

where we used equation (2.1), and hence

Lm

(
x0, y

(r)
)

= y(r) − y(r+1).

Second, Lm is invertible in a neighborhood of its fixed point, by the Implicit Function Theorem, because the
Jacobian of Lm(x0, ·) at hm(x0) is

(DyLm) (zm) =
(−ε−1HDyg

)m+1

0
,

by equation (3.6), and det(Dyg)0 �= 0 since L[0] is normally attracting. Third, by combining these first two
observations, we see that

y(r) = L−1
m

(
y(r) − y(r+1)

)
,

where L−1
m denotes the local inverse of Lm(x0, ·). Fourth, and finally, by expanding L−1

m around zero, noting
that L−1

m (0) = hm(x0), and using the triangle inequality, we obtain

‖y(r) − hm(x0)‖ ≤ ∥∥(DyL−1
m )(0)

∥∥ ∥∥∥y(r) − y(r+1)
∥∥∥+ O

(
‖y(r) − y(r+1)‖2

)
.

Recalling the stopping criterion, we have therefore obtained the desired bound on the second term, as well,

‖y(r) − hm(x0)‖ < ‖ (DyL
−1
m

)
(0)‖TOLm + O ((TOLm)2

)
.

Hence, the analysis of this section is complete.

6. The effects of differencing

In a numerical setting, the time derivatives of y are approximated, at each iteration, by a differencing scheme,

(
dm+1y

dtm+1

)
(z) ≈ 1

Ĥm+1

(
Δm+1y

)
(z), where z ≡ (x0, y) and Ĥ > 0.
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In this section, we examine how the approximation and convergence results of Sections 2–5 are affected by the
use of differencing. We choose forward differencing,

(
Δm+1y

)
(z) =

m+1∑
k=0

(−1)m+1−k

(
m + 1

k

)
φy(z; kĤ), (6.1)

where φ(z; t) = ((φx(z; t))T, (φy(z; t))T)T is the exact solution at time t corresponding to the initial condition z

for concreteness of exposition, and where Ĥ is a positive, O(ε) quantity. Also, forward differencing is directly
implementable in an equation-free or legacy code setting.

By the Mean Value Theorem,

(
Δm+1y

)
(z) = Ĥm+1

(
dm+1y

dtm+1

)
(z) +

m + 1
2

Ĥm+2

(
dm+2y

dtm+2

)
(φ(z; t̂))

=
(
−1

η

)m+1 [
Lm(z) − m + 1

2η
Lm+1(φ(z; t̂))

]
, (6.2)

where η = H/Ĥ > 0 is an O(1) parameter available for tuning and φ(z; t̂) is the point on the solution φ(z; t)
at some time t̂ ∈ [0, (m + 1)Ĥ ]. Thus, for the mth algorithm, the approximation of dm+1y/dtm+1 by the above
scheme corresponds to generating the sequence {y(r)|r = 1, 2, . . .} using the map

F̂m(y) = y − L̂m(z), z = (x0, y), (6.3)

where

L̂m(z) = (−η)m+1
(
Δm+1y

)
(z) = Lm(z) − m + 1

2η
Lm+1(φ(z; t̂)). (6.4)

Therefore, by equation (6.2),

F̂m(y) = Fm(y) +
m + 1

2η
Lm+1(φ(z; t̂)).

Remark. For convenience in the analysis in this section, we take the flow φ to be the exact flow corresponding
to equation (1.5). The analysis extends directly to many problems for which only a numerical approximation
of φ is known. For example, if the discretization procedure admits a smooth error expansion (such as exists often
for fixed step-size integrators in legacy codes or in the equation-free context), then the leading order results still
hold, and the map φ obtained numerically is sufficiently accurate so that the remainder estimates below hold.
In particular, given a pth order scheme and an integration step size h̃, it suffices to take h̃ = O(ε) to guarantee
that the error made in using the numerically-obtained map φ is O(εp). Of course, with other integrators, one
could alternatively require that the timestepper be O(εm+2) accurate, i.e., of one-higher order of accuracy.

6.1. Existence of a fixed point ĥm(x0) of the map F̂m

In this section, we establish that the map F̂m has an isolated fixed point y = ĥm(x0) which differs only by
terms of O(εm+1) from hm(x0) (and thus also from h(x0), by virtue of Thm. 2.1).

The fixed point condition F̂m(x0, y) = y may be rewritten as

0 = L̂m(x0, y) = Lm(x0, y) − m + 1
2η

Lm+1(φ(x0, y; t̂)), (6.5)

where we combined equations (6.3) and (6.4). In order to show that F̂m has an isolated fixed point ĥm(x0)
which is O(εm+1) close to hm(x0), we need to establish the validity of the following two conditions.
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(i). The second term in the right member of equation (6.5) satisfies the asymptotic estimate

‖Lm+1(φ(zm; t̂))‖ = O(εm+1), where zm = (x0, hm(x0)). (6.6)

(ii). The Jacobian of L̂m satisfies

det
(
DyL̂m

)
(zm) �= 0 and

∥∥∥(DyL̂m

)
(zm)

∥∥∥
2

= O(1). (6.7)

Let us begin by examining the term Lm+1(φ(zm; t̂)). Let (x̂, ŷ) = φ(zm; t̂). Then, we may write

Lm+1(φ(zm; t̂)) = Lm+1(x̂, ŷ) − Lm+1(x̂, hm+1(x̂)),

because Lm+1(·, hm+1(·)) ≡ 0 by the definition of Lm+1 and hm+1. Hence,

‖Lm+1(φ(zm; t̂))‖ ≤ ‖ (DyLm+1)(x̂, hm+1(x̂))‖ ‖ŷ − hm+1(x̂)‖ + O (‖ŷ − hm+1(x̂)‖2
)
. (6.8)

Now, ‖(DyLm+1)(x̂, hm+1(x̂))‖ is O(1) by Lemma B.1. Next, the triangle inequality yields

‖ŷ − hm+1(x̂)‖ ≤ ‖ŷ − h(x̂)‖ + ‖h(x̂) − hm+1(x̂)‖.

The first term in the right member remains O(εm+1) for all times t̂ ∈ [0, (m + 1)Ĥ)]. Indeed, the initial condi-
tion zm is O(εm+1) close to the normally attracting manifold L. Thus, the Fenichel normal form [8] guarantees
that the orbit generated by this initial condition remains O(εm+1) close to L for O(1) time intervals. The second
term in the right member is also O(εm+1), by Theorem 2.1. Thus, ‖ŷ − hm+1(x̂)‖ is also O(εm+1). Substitut-
ing these estimations into inequality (6.8), we obtain that ‖Lm+1(φ(zm; t̂))‖ is O(εm+1) and condition (6.6) is
satisfied.

Next, we determine the spectrum of (DyL̂m)(zm) to leading order to check condition (6.7). We will work
with the definition of Δm+1y, equation (6.1), rather than with formula (6.2) which involves the unknown time t̂.
Combining equations (6.1) and (6.3), we obtain

L̂m(z) = ηm+1
m+1∑
k=0

(
m + 1

k

)
(−1)kφy(z; kĤ).

Differentiating both members of this equation with respect to y, we obtain

(
DyL̂m

)
(z) = ηm+1

m+1∑
k=0

(
m + 1

k

)
(−1)k(Dyφy)(z; kĤ). (6.9)

Next, (Dyφy)(zm; t) = e(t/ε)(Dyg)0 to leading order for all t of O(ε) because L is normally attracting. Since
kĤ = O(ε) for all k = 0, 1, . . . , (m + 1), we may rewrite equation (6.9) to leading order as

(
DyL̂m

)
(zm) = ηm+1

m+1∑
k=0

(
m + 1

k

)(
−e(Ĥ/ε)(Dyg)0

)k

= ηm+1
(
INf − e(Ĥ/ε)(Dyg)0

)m+1

.

Hence,

σ
((

DyL̂m

)
(zm)

)
=
{

ηm+1
(
1 − eλkĤ/ε

)m+1
∣∣∣∣ k = 1, . . . , Nf

}
, (6.10)

where zm = (x0, hm(x0)). This leading order formula for the elements of the spectrum shows that (DyL̂m)(zm)
is O(1) and non-degenerate for all positive O(ε) values of H and Ĥ . Thus, condition (6.7) is also satisfied.
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6.2. Stability of the fixed point ĥm(x0) for η = 1

In this section, we determine the stability of the fixed point ĥm(x0) under functional iteration using F̂m in
the case that Ĥ = H . Our results for Ĥ = H are summarized in the following theorem. The general case
Ĥ �= H is treated in the next section, and the main result there is given in Theorem 6.2.

Theorem 6.1. Fix η = 1. There is an ε0 > 0 such that, for 0 < ε ≤ ε0, the functional iteration scheme defined
by F̂0 is unconditionally stable. For each m = 1, 2, . . ., there is an εm > 0 such that, for 0 < ε ≤ εm, the
functional iteration scheme defined by F̂m is stable if and only if, for each k = 1, . . . , Nf , the pair (H, θk) lies
in the stability region the boundary of which is given by the implicit equation

1 = 2
m+1∑
j=1

j−1∑
�=1

(
m + 1

j

)(
m + 1

�

)
(−1)j+�e−(j+�)Hk cos ((j − �)Hk tan θk)

+
m+1∑
�=1

(
m + 1

�

)2

e−2�Hk , where Hk = −λk,RH/ε > 0. (6.11)

In particular, if λ1, . . . , λNf are real, then the functional iteration is unconditionally stable. If at least one of the
eigenvalues has a nonzero imaginary part, then a sufficient and uniform (in θ1, . . . , θNf ) condition for stability
is that

H >
εHs(1)

mink |λk,R| , where Hs(1) = −ln
(
21/(m+1) − 1

)
≥ 0. (6.12)

The stability regions for various values of m are plotted in Figure 2.
Following the procedure used in Section 3, we determine σ((DF̂m)(ĥm(x0))) and examine the circumstances

in which the stability condition

σ
((

DF̂m

)
(ĥm(x0))

)
⊂ B(0; 1) (6.13)

is satisfied. Equation (6.3) yields

(DF̂m)(ĥm(x0)) = INf − (DyL̂m)(x0, ĥm(x0))

and thus also
{μ̂k} ≡ σ

((
DyF̂m

)(
ĥm(x0)

))
= 1 − σ

((
DyL̂m

)(
x0, ĥm(x0)

))
.

Since ĥm(x0) differs from hm(x0) only at terms of O(εm+1), (DyL̂m)(x0, ĥm(x0)) also differs from
(DyL̂m)(x0, hm(x0)) only at terms of O(εm+1). Thus, equation (6.10) yields, to leading order and for k =
1, . . . , Nf ,

μ̂k = 1 −
(
1 − eλkH/ε

)m+1

=
m+1∑
�=1

(
m + 1

�

)
(−1)�+1e�λkH/ε. (6.14)

Recalling equation (3.1) and defining Hk = −λk,RH/ε, we rewrite equation (6.14) in the form

μ̂k =
m+1∑
�=1

(
m + 1

�

)
(−1)�+1e−�Hk(1+i tan θk). (6.15)

The stability condition (6.13) becomes, then,

|μ̂k| =

∣∣∣∣∣
m+1∑
�=1

(
m + 1

�

)
(−1)�+1e−�Hk(1+i tan θk)

∣∣∣∣∣ < 1, for all k = 1, . . . , Nf . (6.16)
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Figure 2. The eigenvalue μ̂k for values of H between zero and 100ε. The thick line denotes
the boundary of the stability region (i.e., the unit circle). The eigenvalue λk was taken to be
−1 + i for each one of the graphs. The arrow points to increasing values of H .

As in Section 3, we distinguish two cases.

Case 1. All of the eigenvalues of (Dyg)0 are real. Then, θk = π for all k = 1, . . . , Nf , and hence equa-
tion (6.15) becomes

μ̂k =
m+1∑
�=1

(
m + 1

�

)
(−1)�+1e−�Hk = 1 − (1 − e−Hk)m+1.

Thus, the spectrum of (DyF̂m)(ĥm(x0)) is contained in (0, 1) for all positive O(ε) values of H . Equivalently,
the fixed point ĥm(x0) is unconditionally stable for these values of H .

These results may be interpreted both in the context of the mth iterative algorithm for each fixed m, as well
as in the context of using the algorithms as an integrated class. In particular, for each fixed m, the rate of
convergence to the fixed point of the mth algorithm increases as H increases. Also, for any fixed iterative step
size H , the rate of convergence of the mth algorithm to its fixed point decreases as the order, m, of the iterative
algorithm increases. This information is important for determining how large an H one should use, especially
when using the algorithms as an integrated class.

Case 2. Some of the eigenvalues of (Dyg)0 have nonzero imaginary parts. In this case, some of the
eigenvalues may be unstable for certain values of H . Figure 2 demonstrates this: in it, we have drawn the
complex eigenvalue μ̂k for various values of H and for m = 0, 1, 2, 3. Plainly, μ̂k is unstable for m > 0 and for
H small enough, as |μ̂k| > 1. We determine the stability regions in the (θk, Hk)-plane as functions of m.

First, we derive the uniform bound (6.12). Using formula (6.15), we calculate

|μ̂k| ≤
m+1∑
�=1

(
m + 1

�

)
e−�Hk = (1 + e−Hk)m+1 − 1, (6.17)

and thus |μ̂k| < 1, for all Hk > Hs(1). Recalling that Hk = −λk,RH/ε, we conclude that all of the eigen-
values μ̂k lie in the unit disk (equivalently, the mth algorithm is stable) for all O(ε) values of H greater than
εHs(1)/ mink |λk,R|, irrespective of the values of θ1, . . . , θNf . This is demonstrated in Figure 3.
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Figure 3. The regions of Hk for which |μk| < 1 as functions of θk ∈ (π/2, 3π/2). White
corresponds to stability (|μk| < 1) and black to instability (|μk| > 1). The angle θk takes values
on (π/2, 3π/2) and the black horizontal line corresponds to the uniform bound Hs(1) of equa-
tion (6.12).

Next, we derive formulae which describe exactly the stability regions. For m = 0, equation (6.12) yields
Hs(1) = 0. Thus, |μ̂k| < 1 for all positive O(ε) values of H and for all k = 1, . . . , Nf . As a result, the fixed
point ĥ0(x0) is unconditionally stable for positive, O(ε) values of H , see also Figure 3.

For m = 1, equation (6.15) becomes

μ̂k = 2e−Hk(1+i tan θk) − e−2Hk(1+i tan θk).

Writing μ̂k for the complex conjugate of μ̂k, then, we calculate

|μ̂k|2 = μ̂k μ̂k = 4e−2Hk − 4e−3Hk cos(Hk tan θk) + e−4Hk . (6.18)

Using this formula, we recast the stability condition (6.16) into the form

4e−2Hk − 4e−3Hk cos(Hk tan θk) + e−4Hk < 1.

In particular, the boundary of the stability region can be obtained by equating the expression in the left member
of this inequality to one and solving for θk, to obtain

θk = arctan
(

H−1
k

[
arccos

[
1
4
e−Hk + eHk − 1

4
e3Hk

]
+ 2�π

])
.

Here, � ∈ Z and the branch of arctan is chosen so that θk ∈ (π/2, 3π/2). We have plotted the stability region
in Figure 3. We also note here that the boundary of the stability region close to π/2 and to 3π/2 has fine
structure, see Figure 4.

For a general value of m, the stability condition (6.16) is

|μ̂k| =

∣∣∣∣∣
m+1∑
�=1

(
m + 1

�

)
(−1)�+1e−�Hk(1+i tan θk)

∣∣∣∣∣ < 1, for all k = 1, . . . , Nf .
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Figure 4. The fine structure of the stability region depicted in Figure 3 (with m = 1) close
to π/2. The exterior of the lobes is part of the stability region.

Now, using equation (6.15), we calculate

|μ̂k|2 = μ̂k μ̂k

=
m+1∑
j=1

m+1∑
�=1

(
m + 1

j

)(
m + 1

�

)
(−1)j+�e−(j+�)Hk ei(j−�)Hk tan θk

= 2
m+1∑
j=1

j−1∑
�=1

(
m + 1

j

)(
m + 1

�

)
(−1)j+�e−(j+�)Hk cos ((j − �)Hk tan θk)

+
m+1∑
�=1

(
m + 1

�

)2

e−2�Hk .

Equation (6.11) now follows directly.

6.3. Stability of the fixed point ĥm(x0) for η �= 1

In this section, we determine the stability of the fixed point ĥm(x0) for Ĥ �= H . We define the function

Ĥm(η) =
{ −ln

(
21/(m+1) − 1

)
, if 0 < η ≤ 1,

−ln
∣∣21/(m+1)/η − 1

∣∣ , if η > 1.
(6.19)

Our results are summarized in the following theorem.

Theorem 6.2. Fix η > 0. For each m = 0, 1, 2, . . ., there is an εm > 0 such that, for 0 < ε ≤ εm, the
functional iteration scheme defined by F̂m is stable if and only if, for each k = 1, . . . , Nf , the pair (Ĥ, θk) lies
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in the stability region the boundary of which is given by the implicit equation

1 = 2η2(m+1)
m+1∑
j=1

j−1∑
�=1

(
m + 1

j

)(
m + 1

�

)
(−1)j+�e−(j+�)Ĥk cos

(
(j − �)Ĥk tan θk

)

+ 2ηm+1
(
ηm+1 − 1

)m+1∑
�=1

(
m + 1

�

)
(−1)�e−�Ĥk cos

(
�Ĥk tan θk

)

+ η2(m+1)
m+1∑
�=1

(
m + 1

�

)2

e−2�Ĥk +
(
ηm+1 − 1

)2
, (6.20)

where Ĥk = −λk,RĤ/ε > 0. In particular:
(i) Assume that Im(λk) = 0, for all k = 1, . . . , Nf . If 0 < η < 21/(m+1), then the functional iteration is
unconditionally stable. If η > 21/(m+1), then the functional iteration is stable if and only if

0 < Ĥ <
εĤm(η)

maxk |λk,R| · (6.21)

(ii) Assume that at least one of Im(λ1), . . . , Im(λNf ) is nonzero. If 0 < η < 21/(m+1), then a sufficient and
uniform (in θ1, . . . , θNf ) condition for stability is

Ĥ >
εĤm(η)

mink |λk,R| · (6.22)

If η > 21/(m+1), the functional iteration is unstable for any θ1, . . . , θNf and for all

Ĥ >
εĤm(η)

maxk |λk,R| · (6.23)

These results are demonstrated in Figures 5, 6 and 7.
As in Section 6.2, we determine when the stability condition (6.13) holds. The analogue of equations (6.14)

and (6.15) in this case is, to leading order and for k = 1, . . . , Nf ,

μ̂k = 1 − ηm+1
(
1 − eλkĤ/ε

)m+1

= 1 − ηm+1
(
1 − e−Ĥk(1+i tan θk)

)m+1

. (6.24)

The stability condition (6.13) becomes, then,

|μ̂k| =
∣∣∣∣1 − ηm+1

(
1 − e−Ĥk(1+i tan θk)

)m+1
∣∣∣∣ < 1, for all k = 1, . . . , Nf . (6.25)

Here also, we distinguish two cases.

Case 1. All of the eigenvalues of (Dyg)0 are real. Then, θk = π for all k = 1, . . . , Nf , and hence equa-
tion (6.25) becomes

μ̂k = 1 − ηm+1(1 − e−Ĥk)m+1.

Plainly, the condition μ̂k < 1 is satisfied for all positive Ĥk and η. Next, solving this equation for η, we obtain
an equation for the level curve μ̂k = const.,

η =
(1 − μ̂k)1/(m+1)

1 − e−Ĥk

·
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Figure 5. The stability region in the (η, Ĥk)-plane together with level curves of the eigenvalue
μ̂k(η, Ĥk) for the case of a real λk. The eigenvalue μ̂k is stable for all pairs (η, Ĥk) to the left
of the level curve μ̂k = −1 (thick curve).

For 0 < η < 21/(m+1) and for all O(ε) and positive values of Ĥ , we obtain μ̂k > −1 (and thus the eigenvalue μ̂k

is stable), see Figure 5. Therefore, σ((DyF̂m)(ĥm(x0))) ⊂ (−1, 1), and the fixed point ĥm(x0) is unconditionally
stable.

For η > 21/(m+1), we obtain the condition 0 < Ĥk < Ĥm(η), and equation (6.21) follows directly. Finally,
we note that, for a fixed value of η and as Ĥ → ∞, the spectrum clusters around 1 − ηm+1. Thus, the choice
η = 1 is optimal in the sense that large values of Ĥ bring the spectrum closer to zero.

Case 2. Some of the eigenvalues of (Dyg)0 have nonzero imaginary parts. In this case, some of the
eigenvalues may become unstable for certain combinations of η and Ĥ , as our analysis in Section 6.2 also showed.

First, we consider the case 0 < η < 21/(m+1) and derive the uniform bound (6.22). Using formula (6.24) and
working as in equation (6.17), we estimate

|μ̂k| ≤
∣∣1 − ηm+1

∣∣+ ηm+1
[
(1 + e−Ĥk)m+1 − 1

]
.

Hence,

|μ̂k| ≤
{

1 + ηm+1
[
(1 + e−Ĥk)m+1 − 2

]
, for 0 < η ≤ 1,

ηm+1(1 + e−Ĥk)m+1 − 1, for η > 1.

Combining these inequalities with the stability condition |μ̂k| < 1, we obtain the sufficient condition Ĥk >

Ĥm(η), where Ĥm(η) is the uniform bound (6.19) (see also Fig. 6). Recalling that Ĥk = −λk,RĤ/ε, we
conclude that, if condition (6.22) is satisfied, then σ((DyF̂m)(ĥm(x0))) ⊂ B(0; 1), and hence the mth algorithm
is stable.

Next, we consider the case η > 21/(m+1) and derive the uniform bound (6.23). Equation (6.24) yields

|1 − μ̂k| ≥ ηm+1
(
1 −

∣∣∣e−ĤkeiĤk tan θk

∣∣∣)m+1

≥ ηm+1
(
1 − e−Ĥk

)m+1

.

Thus, |1 − μ̂k| > 2, for η > 21/(m+1) and Ĥk > Ĥm(η), and therefore

|μ̂k| ≥ ||1 − μ̂k| − 1| > 1,

Hence, μ̂k is unstable.
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Figure 6. The stability regions in the (η, Ĥk)-plane for m = 0 (left panel) and m = 1, 2, . . .
(right panel). The eigenvalue μ̂k is stable in region I, unstable in region II, and its stability
type is θk−dependent in region III.

Remark. Conditions (6.22) and (6.23) may be interpreted by means of the fact that σ((DyF̂m)(ĥm(x0)))
clusters around 1 − ηm+1 as Ĥ → ∞. For 0 < η < 21/(m+1), there holds that −1 < 1 − ηm+1 < 1. Thus, for Ĥ
large enough, the eigenvalues are contained in the unit disk. On the contrary, 1− ηm+1 < −1 for η > 21/(m+1),
and thus the eigenvalues lie outside the unit disk for Ĥ large enough.

Finally, formula (6.20) describing the stability region may be derived in a manner entirely analogous to that
used to derive equation (6.11).

7. Conclusions and discussion

In this article, we characterized the accuracy and convergence properties of the class of iterative algorithms
introduced in [6] for explicit fast-slow systems (1.5). The mth member of the class corresponds to a functional
iteration scheme to solve the (m+1)st derivative condition (1.6). We showed that this condition has an isolated
solution, which corresponds to a fixed point of this mth member and which is accurate up to and including terms
of O(εm), see Theorem 2.1. Also, we derived explicit formulae for the domain of convergence of the functional
iteration, both in the case where analytical formulae for the (m+1)st derivative are used (see Thm. 3.1) and in
the case where the (m + 1)st derivatives are estimated through a forward difference scheme (see Thms. 6.1 and
6.2). These convergence results are illustrated in Figures 1, 3, 4, 5 and 6. Further, we demonstrated how the
Recursive Projection Method may be used to stabilize the functional iteration in all cases when it is unstable
or to accelerate its convergence in those cases where the convergence is slow.

An extension of the analysis presented here to more general multiscale systems (1.1) is presented in [22].
The analysis of the accuracy of the (m + 1)st derivative condition presented in Section 2 carries through,
essentially (modulo a number of technicalities), in the more general case as well. The analysis of the stability
of the functional iteration, on the other hand, is far more involved. The reason for that is that, although the
hyperplane u = u0 and the space tangent to the fast fibration over the slow manifold coincide to leading order
for explicit fast-slow systems (1.5), this is not the case for the more general systems (1.1). The absence of this
feature makes the stability question for the functional iteration far more difficult to answer in the general case.

In addition, we are in the process of generalizing the results of this article to other maps that may be used in
the context of the functional iteration scheme developed in [6]. In particular, it is of interest to use maps which
are implicitly defined (as opposed to the explicitly defined ones presented in [6] and in this article). Preliminary
analytical results for m = 0 and m = 1 indicate that one may construct functional iteration schemes based on
implicit maps which not only retain the accuracy of the functional iteration scheme presented in this article but
which are also unconditionally stable. Moreover, we think that this analysis may be extended to higher values
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of m, and we note that it is also possible to carry out the functional iteration with implicitly defined maps even
when one only has a legacy code as a timestepper.

Appendix A. The one-higher-order proposition

In this appendix, we state and prove a technical proposition – called the one-higher-order proposition – about
the asymptotic accuracy of approximations of L given an approximation of the normal space to L. This result
is instrumental in the proof of the technical lemmata contained in the next appendix.

We begin by recalling the useful formulation, equation (1.11), of the invariance equation that defines the func-
tion h, whose graph is the invariant, slow manifold L. This formulation revealed that the matrix (−Dh(x), INf

)
forms a basis for NzL, the space normal to the slow manifold at the point z = (x, h(x)) ∈ L. The one-higher-
order proposition, which we now state and prove, establishes a connection between the order in ε to which
a set N of row vectors approximates NzL and the order to which the solution η to the condition N G = 0
approximates h.

Proposition A.1. Let ε > 0 be sufficiently small. Let N(x, ε) be an Nf × N matrix with the property that its
rows span NzL up to and including terms of O(εm), for some m = 0, 1, . . . That is, N(·, ε) is of the form

N(·, ε) = C

⎛
⎝−

m∑
i=0

εiDh[i](·) −
∑

i≥m+1

εiRi(·) , INf

⎞
⎠, (A.1)

where C is a non-singular Nf × Nf matrix and Ri �= Dh[i], for i = m + 1, m + 2, . . . , in general. Then, the
condition

N(x, ε)G(x, y, ε) = 0 (A.2)

can be solved for y to yield a function y = η(x), the asymptotic expansion of which agrees with that of h(x) up
to and including terms of O(εm+1),

η(x) =
∑
i=0

εiηi(x) =
m+1∑
i=0

εih[i](x) + O(εm+2). (A.3)
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This proposition is called the one-higher-order proposition, because it states that the order to which η(x)
approximates the full slow manifold is of one higher than that to which N approximates the normal space.

Proof of Proposition A.1. We recall that h(·) = Σi=0ε
ih[i](·), by equation (1.12), and that h[i] is determined

from the O(εi) terms of the invariance equation (1.11). Similarly, ηi is determined from the O(εi) terms of
equation (A.2). Thus, to establish equation (A.3), it suffices to compare the terms of these two equations from
O(1) up through and including O(εm+1) and to show that they are equal. �

First, for each i = 0, 1, . . . , m, the invariance equation (1.11) at O(εi) is

(−Dh[0], INf

)
Gi +

i∑
�=1

(−Dh[�], 0
)
Gi−� = 0. (A.4)

Second, to derive the O(εi) terms for the condition NG = 0, we substitute the hypothesis (A.1) in equation (A.2)
and left-multiply by C−1 to obtain

C−1 N G =

(
−

m∑
i=0

εiDh[i] + O(εm+1), INf

)
G = 0. (A.5)

Thus, for each i = 0, 1, . . . , m, this condition at O(εi) is

(−Dh[0], INf

)
Gi +

i∑
�=1

(−Dh[�], 0
)
Gi−� = 0.

Plainly, this equation is identical to equation (A.4). Thus, proceeding inductively in i, one has ηi = h[i], for
i = 0, 1, . . . , m.

Finally, we look at the O(εm+1) terms of the two equations. Equation (A.4) with i = m + 1 is

(−Dh[0], INf

)
Gm+1 +

m∑
�=1

(−Dh[�], 0
)
Gm+1−� +

(−Dh[m+1], 0
)
G0 = 0. (A.6)

Also, equation (A.5) at O(εm+1) is

(−Dh[0], INf

)
Gm+1 +

m∑
�=1

(−Dh[�], 0
)
Gm+1−� + (Rm+1, 0)G0 = 0. (A.7)

We note that Rm+1 �= −Dh[m+1], in general. However, G0 = 0 in equations (A.6)–(A.7), since this term is
evaluated at (x, η0, 0) = (x, h[0], 0). Thus, equations (A.6) and (A.7) also agree, and hence ηm+1 = h[m+1]. This
completes the proof of the proposition. �

Appendix B. Proofs of Lemmata 2.1 and 2.2

In this appendix, we prove Lemmata 2.1 and 2.2 characterizing the asymptotic accuracy of the approximation
to L obtained from the (m + 1)st derivative condition (2.10).

Proof of Lemma 2.1. We write zm for (x, hm(x)) and z for (x, h(x)). The strategy is as follows: We will
show that the rows of (DzLm)(zm, ε) span NzL up to and including terms of O(εm). Then, we will apply
Proposition A.1 to establish equation (2.12).

The manifold Lm is the graph of the function hm, and thus it coincides exactly with the zero level set of
the function −hm(·) + y. As a result, the rows of the Nf × N gradient matrix (−Dhm(x), INf ) form a basis
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for NzmLm. Second, the function hm(·) is defined through the (m+1)st derivative condition Lm(·, hm(·), ε) = 0.
Therefore, Lm also coincides with (a connected component of) the zero level set of the function Lm(·, ε). Thus,
the rows of the Nf ×N gradient matrix (DzLm)(x, hm(x), ε) also form a basis for NzmLm. It follows that there
exists a non-singular Nf × Nf matrix C such that

(DzLm) (·, hm(·), ε) = C (−Dhm(·), INf ). (B.1)

Next, the induction hypothesis implies that the asymptotic expansions of hm and h agree up to and including
terms of O(εm),

hm(·) =
m∑

i=0

εih[i](·) + O(εm+1). (B.2)

Since the vector field is assumed to be sufficiently smooth, we may differentiate both sides of this equation with
respect to the argument to obtain

Dhm(·) =
m∑

i=0

εiDh[i](·) + O(εm+1), (B.3)

where the remainder stays of the same order due to smoothness. Combining equations (B.1) and (B.3), then,
we find

(DzLm) (·, hm(·), ε) = C

(
−

m∑
i=0

εiDh[i](·) + O(εm+1), INf

)
.

This equation shows that the rows of (DzLm)(x, hm(x), ε) span NzL up to and including terms of O(εm). Hence,
application of the one-higher-order proposition, Proposition A.1, completes the proof of this lemma. �

Before we proceed with the proof of Lemma 2.2, we prove the following result which will be needed therein:

Lemma B.1. For m = 0, 1, . . ., there is an εm > 0 such that, for 0 < ε ≤ εm, for H = O(ε), and for a general
point z = (x, y), the function Lm is written as

Lm(z) = (−ε−1H)m+1
[
(Dyg)0 (z)

]m
g0(z) + O(ε) + O (‖g0(z)‖2

)
,

where the notation “(·)0(z)” stands for (·)(z, 0). The Jacobian DyLm is written as

(DyLm) (z) =
(−ε−1H (Dyg)0

)m+1
+ O(ε) + O (‖g0(z)‖2

)
. (B.4)

Proof. For this proof, we write (·)0 instead of (·)0(z) for the sake of brevity. The proof is by induction on m.
For m = 0, we recall equation (2.4),

L0 = −ε−1Hg,

and hence, expanding the smooth function g in powers of ε, we find

L0 = −ε−1Hg0 + O(ε).

This is the desired formula for L0. Differentiating both members of this formula with respect to y, we obtain

DyL0 = −ε−1H (Dyg)0 + O(ε).

This is the desired formula for DyL0.
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Next, we carry out the induction step for general m, namely we assume that

Lm =
(−ε−1H

)m+1
(Dyg)m

0 g0 + O(ε) + O (‖g0(z)‖2
)
, (B.5)

DyLm =
(−ε−1H (Dyg)0

)m+1
+ O(ε) + O (‖g0(z)‖2

)
(B.6)

and show that

Lm+1 =
(−ε−1H

)m+2
(Dyg)m+1

0 g0 + O(ε) + O (‖g0(z)‖2
)
, (B.7)

DyLm+1 =
(−ε−1H (Dyg)0

)m+2
+ O(ε) + O (‖g0(z)‖2

)
. (B.8)

By equation (2.9),
Lm+1 = −ε−1H(DzLm)G = −ε−1H [ε(DxLm)f + (DyLm)g].

Then, we substitute the induction hypothesis (B.5) into this expression. Application of the differential operator
(−H/ε)[ε(Dx·)f +(Dy·)g] on the smooth O(ε)+O(‖g0(z)‖2) remainder does not alter its asymptotic magnitude.
Moreover, the term ε(DxLm)f is O(ε) and, hence, can be absorbed also in the remainder. Therefore, we are left
with the term (−H/ε)(DyLm)g. Substituting DyLm into this expression from the induction hypothesis (B.6),
we arrive at the desired formula (B.7).

Finally, we prove the leading order formula (B.8). We differentiate both members of the leading order
formula (B.7) with respect to y and use the product rule derivative to evaluate the right member. The second
term from the product rule is precisely the leading order term in equation (B.8). The other terms from the
product rule, (−ε−1H

)m+2

[
m+1∑
r=1

(Dyg)m+1−r
0

(
(D2

yg)0, g0

)
(Dyg)r−1

0

]
,

may be absorbed in the remainder since they all involve a factor that is linear in g0. Thus, we have obtained
the desired formula (B.8) and completed the proof of the lemma. �

Proof of Lemma 2.2. We begin by estimating

(
(DzLm)(x, h̃m+1(x), ε)

)
G(x, h̃m+1(x), ε).

We may write

(
(DzLm)(·, h̃m+1(·), ε)

)
G(·, h̃m+1(·), ε) =

[
(DzLm)(·, h̃m+1(·), ε) − (DzLm)(·, hm(·), ε)

]
G(·, h̃m+1(·), ε),

(B.9)
since, by the definition of h̃m+1,

((DzLm)(·, hm(·), ε))G(·, h̃m+1(·), ε) = 0.

Next, we have the following estimates of the asymptotic magnitudes of the two terms in the right member
of equation (B.9):

h̃m+1 =
m+1∑
i=0

εih[i] + O(εm+2)

by Lemma 2.1, and also

hm =
m∑

i=0

εih[i] + O(εm+1)
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by the induction hypothesis. Thus,

h̃m+1 − hm = O(εm+1),

and hence Taylor’s Theorem with remainder yields

(DzLm)(·, h̃m+1(·), ε) − (DzLm)(·, hm(·), ε) = O(εm+1), (B.10)

since Lm and its derivatives are O(1). This is the desired estimate of the first term in the right member of
equation (B.9).

It remains to estimate the second term, G(·, h̃m+1(·), ε) in the right member of equation (B.9). We recall that
G =

(
εf
g

)
, where f and g are O(1) in general. Hence, the first component of G(·, h̃m+1(·), ε) is plainly O(ε). The

second component is as well, since Lemma 2.1 implies that h̃m+1,0 = h[0] and hence that g(·, h̃m+1(·), ε) = O(ε),
also. Therefore,

G(·, h̃m+1(·), ε) = O(ε). (B.11)
Combining the estimates (B.10) and (B.11), we see that the right member of equation (B.9) is O(εm+2),

which leads to the desired result by an argument analogous to that in [2], Theorem 3.
Finally, the solution of the condition Lm+1 = 0 yields an Ns-dimensional manifold Lm+1, as may be shown

using the Implicit Function Theorem and [16], Theorem 1.13. It suffices to show that

det (DyLm+1) (·, hm+1(·)) �= 0.

Lemma B.1 yields a leading order formula for DyLm+1,

(DyLm+1) (z) =
(−ε−1H (Dyg)0

)m+2
+ O(ε) + O (‖g0(z)‖) .

Here, z is a general point and (·)0(z) = (·)(z, 0). Next, we showed above that h(m+1,0) = h[0]. Recalling, then,
equation (2.5), we obtain

(DyLm+1) (x, hm+1(x)) =
[−ε−1H (Dyg)0

]m+2
+ O(ε), for all x ∈ K,

where (Dyg)0 ≡ (Dyg)(x, h[0](x), 0) here. Thus,

det (DyLm+1) (x, hm+1(x)) �= 0, for all x ∈ K,

by normal hyperbolicity and the proof is complete. �
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