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LOW-VARIANCE DIRECT MONTE CARLO SIMULATIONS
USING IMPORTANCE WEIGHTS

Husain A. Al-Mohssen1 and Nicolas G. Hadjiconstantinou1

Abstract. We present an efficient approach for reducing the statistical uncertainty associated with
direct Monte Carlo simulations of the Boltzmann equation. As with previous variance-reduction ap-
proaches, the resulting relative statistical uncertainty in hydrodynamic quantities (statistical uncer-
tainty normalized by the characteristic value of quantity of interest) is small and independent of the
magnitude of the deviation from equilibrium, making the simulation of arbitrarily small deviations
from equilibrium possible. In contrast to previous variance-reduction methods, the method presented
here is able to substantially reduce variance with very little modification to the standard DSMC algo-
rithm. This is achieved by introducing an auxiliary equilibrium simulation which, via an importance
weight formulation, uses the same particle data as the non-equilibrium (DSMC) calculation; subtract-
ing the equilibrium from the non-equilibrium hydrodynamic fields drastically reduces the statistical
uncertainty of the latter because the two fields are correlated. The resulting formulation is simple to
code and provides considerable computational savings for a wide range of problems of practical interest.
It is validated by comparing our results with DSMC solutions for steady and unsteady, isothermal and
non-isothermal problems; in all cases very good agreement between the two methods is found.
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1. Introduction

Recent [16] interest in small scale, low-speed, gaseous flows has renewed the need for efficient methods for
solving Boltzmann-type kinetic equations [10]. Unfortunately, in this regime, traditional Monte Carlo solution
methods, the most prevalent of which is direct simulation Monte Carlo (DSMC) [7], become very inefficient
due to the overwhelming cost associated with resolving low-signal flows. As a result of this limitation, variance
reduction approaches have recently received considerable attention: Baker and Hadjiconstantinou [4] recently
showed that solving for the deviation from equilibrium drastically reduces statistical uncertainty and thus
enables the simulation of arbitrarily small deviations from equilibrium. The same authors also showed that
variance-reduced formulations can be developed for both particle methods [5] and PDE-type approaches [4,6];
a particle method that is equivalent to the one detailed in [5] has also been proposed by Chun and Koch [11].
Unfortunately, in these particle methods, particle cancellation in the collision dominated regime is required for
stability [5,11]; this adversely affects both accuracy and efficiency.
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More recently, Homolle and Hadjiconstantinou [18,19] have shown that the above limitation can be removed
by using a special form of the linear part of the hard-sphere collision operator, originally derived by Hilbert [9],
in which the integration over the scattering angle has been performed analytically. Using this approach, they
developed an efficient particle method for simulating the hard-sphere gas known as LVDSMC (Low-Variance
Deviational Simulation Monte Carlo) [18,19], which does not require a particle cancellation scheme. LVDSMC
differs from DSMC only in ways necessary to simulate the deviation from equilibrium (see [4,19]), and so
retains the strengths of particle methods, such as DSMC, while exhibiting substantially reduced variance. The
LVDSMC method has been recently theoretically analyzed by Wagner [28], who also proposed algorithms for
simulating the Variable Hard-Sphere (VHS) model [7]. Moreover, LVDSMC has been extended to treat the
relaxation-time approximation by Radtke and Hadjiconstantinou [23].

In the present paper we present an alternative particle approach for achieving variance reduction. Instead
of using a particle scheme that differs from DSMC to some extent, the method described here achieves the
variance reduction by using a combination of a DSMC simulation and an auxiliary equilibrium simulation.
Our framework is based on the general idea of correlated sampling [24] that has been successfully used in a
number of diverse fields [14,21]. More specifically, it relies on the observation that the statistical uncertainty of
non-equilibrium hydrodynamic fields can be significantly reduced by formulating the desired result in terms of
a difference between the non-equilibrium (molecular) data and some correlated data whose moments are known
(e.g. an equilibrium simulation).

The advantage of such an approach is that the non-equilibrium simulation (DSMC) remains essentially
unaltered, which, in addition to historical reasons, it might be preferable in a number of situations. For ex-
ample, the present formulation can be readily extended to other molecular-interaction models [2]; in contrast,
extension of LVDSMC to other molecular models – other than the relaxation-time approximation [23] – is more
challenging [28]. Another situation where the present formulation holds an advantage is more complex collision
processes, such as chemically reacting flows.

One key challenge associated with the proposed approach, which we will refer to as VRDSMC, lies in develop-
ing a framework that allows the auxiliary simulation to be run in parallel and using the same molecular data as
the main DSMC simulation (so that the two data streams remain correlated), while at the same time the former
represents a chosen equilibrium state. Our formulation uses the concept of importance weights [12] to achieve
this. In this paper we discuss how importance weights defined by initial and boundary conditions evolve in
time and space under the action of Boltzmann dynamics. Unfortunately, since the present method is not using
the Hilbert collision operator used in LVDSMC, it exhibits stability problems in the collision dominated regime
that are analogous to those reported in [5,11]. An extensive discussion of how these problems are overcome in
this work is given in Section 3.2. Our formulation is validated by comparison to DSMC results for a number of
benchmark flows in Section 4.

2. Variance reduction using importance weights: Basic concepts

Let 〈R〉ϕ =
∫

fϕ(c)R(c)dc denote the expectation value of the hydrodynamic variable R(c) over a distribution
fϕ(c), while Rϕ = Neff

∑N
i=1 R(ci) denotes an estimate of 〈R〉ϕ obtained using N samples drawn from fϕ(c),

where Neff is the number of physical particles represented by each simulation particle. In the interest of
simplicity, and without loss of generality, here and in the remainder of the paper, the spatial and temporal
dependence of the distribution and resulting hydrodynamic quantities will be implied if not explicitly shown.

The basic idea behind the present approach is to produce a variance-reduced estimator, denoted by R
V R

, by
writing

R
V R

= R − Req + 〈R〉eq (2.1)

and ensuring that R and Req are estimated using correlated molecular data, while the distribution feq (assumed
here to be an equilibrium one) is chosen such that 〈R〉eq is known. This concept, which has been used in polymer
simulation for a number of years [21], is illustrated in Figure 1 for a gas relaxation problem; the figure shows
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Figure 1. Illustration of the variance reduction principle for a molecular relaxation prob-
lem [3]. The variance of R

V R
is significantly reduced by replacing the “noisy” estimate Req

with its exact expected value 〈R〉eq.

how actual simulation data [3] of R, Req, and 〈R〉eq, with R ≡ c4
x, can be combined to yield the low-uncertainty

estimator R
V R

.
The major challenge associated with implementing this approach lies with the development of a frame-

work which provides molecular data that sample feq(c), while at the same time are correlated with the (non-
equilibrium) DSMC data that sample f(c), the non-equilibrium single-particle distribution function [7]. To
achieve this we have chosen to use an importance weight formulation and proceed by defining the importance
weight W (c) as

W (c) =
feq(c)
f(c)

· (2.2)

Using this we can write

〈R〉eq =
∫

feq(c)
f(c)

f(c)R(c)dc

and thus

Req = Neff

N∑
i=1

WiR(ci)

where Wi = W (ci) and ci is drawn from f(c). In other words, Req may be evaluated using samples from f
with the weights Wi providing a correction for the relative frequency of each sample ci in the two distributions.

Using this formulation, (2.1) becomes

R
V R

= Neff

N∑
i=1

(1 − Wi)R(ci) + 〈R〉eq (2.3)

and can be evaluated by explicitly sampling the non-equilibrium distribution only, provided the weights Wi are
known. In the next section we present a prescription for initializing the simulation weights, as well as the rules
that govern for the dynamical evolution of these weights based on the governing Boltzmann equation.
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It is straightforward to verify that the variance of the estimator R
V R

is significantly smaller than the variance
of R when |Wi − 1| � 1, as will be the case when f and feq are close [24], e.g. f(c) ≈ feq(c) + Ma φ(c), for
Ma � 1 [26]. In this sense, a Maxwell-Boltzmann equilibrium distribution

fMB(c) =
nMB

(πc2
MB)3/2

exp
(
−|c− uMB|2

c2
MB

)

is a reasonable and convenient “reference equilibrium” choice, since in cases where variance reduction is needed,
i.e. when the deviation from equilibrium is small, the parameters nMB, cMB and uMB can usually be intuitively
chosen such that |Wi − 1| � 1. In this work, we take the reference equilibrium (feq) to be an appropriately
chosen global equilibrium distribution

feq(c) = fMB,0(c) =
n0

(πc2
0)3/2

exp
(
−|c|2

c2
0

)

where n0 is the global equilibrium number density, c0 =
√

2kT0/m is the most probable molecular speed based
on the global equilibrium temperature T0, k is Boltzmann’s constant and m is the molecular mass.

3. Variance reduction using importance weights: VRDSMC

In the interest of simplicity, we focus on a hard-sphere gas of molecular diameter d, in the absence of
external fields. We also define Kn = λ/L to be the Knudsen number based on the molecular mean free path
λ = (

√
2πn0d

2)−1 and the characteristic hydrodynamic lengthscale L. As will be clear from the analysis below,
both assumptions (hard-sphere gas and lack of external fields) can be easily relaxed. In fact, the relative
simplicity associated with extending this method to other interaction models (e.g. variable hard sphere [7]) is
one of the main advantages of the proposed approach. A discussion of external-field implementations can be
found in [20].

The DSMC method effectively integrates the Boltzmann equation in time by simulating molecular motion
in a series of timesteps, each of length Δt, during which a collisionless advection substep and collision substep
are performed [7]. The advection substep updates the distribution function due to the action of the advection
operator

∂f

∂t
+ c·∂f

∂x
= 0 (3.1)

while the collision substep updates the distribution function due to the action of the collision operator
[
∂f

∂t

]
Coll

=
1
2

∫∫∫
(δ′1 + δ′2 − δ1 − δ2) f1f2crσdΩdc1dc2. (3.2)

A convergence proof for this algorithm can be found in [27]; an analysis of the error associated with the
timestep discretization can be found in [13,15]. Here, we use a form of the collision integral that is convenient
for discussing particle methods [4,5,19]. In this form, σ is the differential collision cross-section, f1 = f(x, c1, t),
f2 = f(x, c2, t), δ1 = δ(c1 − c), δ2 = δ(c2 − c), δ′1 = δ(c′1 − c) and δ′2 = δ(c′2 − c). Also, c1, c2 are the
pre-collision velocities, cr = |c1 − c2| is the magnitude of the relative velocity vector, and c′1, c′2 are the post-
collision velocities, related to the pre-collision velocities through the scattering angle Ω. In this section and in
the remainder of the paper, unless otherwise stated, integration in velocity space extends over R

3, while the
solid angle integration is over the surface of the unit sphere.

3.1. Weight update rules

As explained above, our formulation utilizes an auxiliary simulation that uses the same samples (particles)
as the non-equilibrium DSMC simulation, but instead samples an equilibrium distribution. The difference
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between the two distributions is captured by the set of weights Wi which give the relative frequency of finding
particle i of velocity ci in the equilibrium simulation relative to the non-equilibrium simulation (see (2.2)). As
a result of this formulation, a separate (equilibrium) simulation is not actually performed; instead the evolution
of the equilibrium simulation is tracked by updating the weights Wi. Below, we develop rules describing the
initialization and evolution of these weights.

3.1.1. Initialization

The initial values of the weights can be readily determined since initially both f and feq are explicitly known
(i.e. the initial condition is known exactly for both the equilibrium and non-equilibrium simulation). Specifically,
when DSMC particles are initialized at the start of the simulation, the weight corresponding to each particle is
directly calculated using the definition (2.2).

3.1.2. Boundary conditions

Boundary conditions are is some ways similar to initial conditions in the sense that, in typical applications
of interest, particle velocities (and thus weights) are redrawn from a pre-specified distribution when interacting
with a system boundary. In many cases, the boundary conditions associated with the Boltzmann equation are
of the no-flux type [8], e.g. solid wall; other types of boundary conditions, such as open boundaries, are also
straightforward to treat.

Particles colliding with a wall are returned to the computational domain such that no net mass crosses
the boundary. The velocity distribution from which the velocities of particles returning from the wall are
drawn depends on the assumed gas-wall interaction. One of the most popular models is known as the Maxwell
accommodation model [8], in which a fraction α of the molecules colliding with the wall are diffusely reflected,
while the remaining (1 − α) fraction is specularly reflected. Here we will discuss the fully diffuse case (α = 1)
which highlights the essence of our approach.

In the diffuse case, the boundary condition for particles that come in contact with the wall is

fw(c) =
nw

(πc2
w)3/2

exp
(−|c − uw|2

c2
w

)
= nwFw(c) (3.3)

parameterized by the wall properties, namely the “wall number density” nw, the most probable speed cw based
on the wall temperature Tw and the wall velocity uw. The wall number density may be thought of as the number
density of a gas that would be in equilibrium with the boundary; it is determined from mass conservation at
the wall, given here for the case n · uw = 0

∫
c·n<0

c · nfdc = −nw

∫
c·n>0

c · nFwdc (3.4)

where n denotes the wall normal pointing into the gas.
The weights of re-emitted particles can be readily calculated from definition (2.2) provided nw/n0 is known

(this ratio arises in (2.2) because the boundary condition for the auxiliary simulation is fMB,0). In the special
case of isothermal constant-density flows (e.g. low-speed), nw/n0 can be taken to be equal to unity2. In the more
general case, nw/n0 needs to be calculated from the simulation data using (3.4) applied to both the equilibrium
and non-equilibrium simulations.

In our implementation, this is achieved [2] by the following process. At the beginning of every timestep we
assume a value for nw/n0, e.g. nw/n0 = 1, and particle weights for particles colliding with the wall are assigned
based on this value. At the end of the timestep the total weight of particles that collided with the wall during
that timestep is tallied and the weight of particles re-emitted from the wall rescaled, such that there is no net
change in the total equilibrium particle weights due to interaction with the wall.

2Here we assume that the (constant) gas density is chosen as reference condition n0.
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3.1.3. The advection substep

During the advection substep, the auxiliary (equilibrium) simulation needs to integrate

∂feq

∂t
+ c·∂feq

∂x
= f

(
∂W

∂t
+ c·∂W

∂x

)
+ W

(
∂f

∂t
+ c·∂f

∂x

)
= 0.

Using (3.1) we conclude that, during the advection step, the weights need to satisfy

∂W

∂t
+ c·∂W

∂x
= 0

or in other words, advect with their corresponding particle.

3.1.4. Collision substep

Next we present a derivation of weight update rules for the collision substep based on the hard-sphere form
of the collision integral; extension to other collision models (e.g. variable hard sphere [7]) directly follows. An
alternative derivation based on conditional probability arguments is presented in [2].

During the collision substep, the auxiliary simulation integrates the equilibrium version of (3.2), namely

[
∂feq

∂t

]
Coll

=
1
2

∫∫∫
(δ′1 + δ′2 − δ1 − δ2)W1W2f1f2crσdΩdc1dc2.

To facilitate the interpretation of this equation within the context of the DSMC collision algorithm, we
rearrange it in the following form:

[
∂feq

∂t

]
Coll

= MX
2

∫∫∫ (
δ′1 + δ′2 −

δ1

W2
− δ2

W1

)
W1W2f1f2σ

cr

MX
dΩdc1dc2

+ MX
2

∫∫∫ (
−δ1 − δ2 +

δ1

W2
+

δ2

W1

)( cr

MX

1 − cr

MX

)
W1W2f1f2σ

(
1 − cr

MX

)
dΩdc1dc2 (3.5)

where MX is an upper bound for Wcr. Using an importance sampling interpretation [4,5,18,19], the first term of
this equation samples events occurring with probability ĉr = cr/MX, while the second samples events occurring
with probability (1− ĉr). In other words, provided collisions are accepted with probability ĉr (and thus rejected
with probability 1 − ĉr) in the DSMC calculation, (3.5) provides a means of connecting the events of collision
acceptance and rejection routine in the “main” DSMC collision routine with weight evolution in the auxiliary
equilibrium calculation.

To make this more concrete, consider a collision-candidate particle pair with velocities c1 and c2 and weights
W1 and W2, respectively. If the collision is accepted in DSMC, according to the first term in (3.5), a particle
pair with velocities c′1 and c′2 and weights W1W2 should be created, in addition to a pair of negative particles
with velocities c1 and c2 and weights W1 and W2, respectively. Note that, by design, the negative particles
cancel the colliding particles and thus the collision proceeds by the update c1 → c′1, W1 → W1W2 and c2 →
c′2, W2 → W1W2. Since the update c1 → c′1, c2 → c′2 is part of the original DSMC algorithm, we conclude that
if the collision is accepted in DSMC the weight update is W1, W2 → W1W2. In the case of a rejected collision
(in DSMC), the second term in (3.5) implies that W1W2ĉr/ (1 − ĉr) negative particles with velocities c1 and
c2, as well as W1ĉr/ (1 − ĉr) particles with velocity c1 and W2ĉr/ (1 − ĉr) particles with velocity c2 need to
be created. Combining these with the colliding particles we obtain a net of W1 (1 − W2ĉr) / (1 − ĉr) at c1 and
W2 (1 − W1ĉr) / (1 − ĉr) at c2.

In summary, if the DSMC collision is accepted, the colliding particle weights are updated as W1, W2 → W1W2;
if the DSMC collision is rejected, the candidate particle weights are updated as W1 → W1 (1 − W2ĉr) / (1 − ĉr)
and W2 → W2 (1 − W1ĉr) / (1 − ĉr).
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3.2. Stability considerations

Implementation of this algorithm reveals a numerical stability issue. Under the action of the above weight
evolution rules, for times longer than a few mean-free-times between collisions (

√
πλ/(2c0)), the variance of

particle weights is observed to diverge (i.e. individual particle weights tend to either 0 or ∞); this ultimately
results in loss of variance reduction. Despite significant differences in formulation, this behavior bears many
similarities to the stability problems observed in other variance-reduced particle methods [5,11] – for example,
the instability appears in collision dominated flows (Kn < 1), while collisionless and near collisionless (Kn 
 1)
calculations are stable in the presence of an accommodating boundary (for a more precise description of the
stability limits of the present method see below). In our experience, this issue is one of the biggest challenges
associated with this approach as well as previous variance reduction approaches [5,11].

We believe that, in the present formulation, this behavior is a result of the particular collision weight update
rules used. In particular, the present implementation only satisfies (3.5) in an average sense (over many samples)
and as a result, particle weights generated by this procedure are only meaningful when averaged over many
samples. In collisionless flows this issue simply does not arise, while in near-collisionless flows (Kn 
 1) in
which nw is known analytically, particles reach the walls (where their weights are reassigned) before their weights
diverge.

Based on this interpretation, we have developed an approach for stabilizing the calculation. This approach
uses Kernel Density Estimation (KDE) [25] to reconstruct the distribution function at the end of each timestep
and is explained in the next sub-section.

3.2.1. Kernel density estimation of density functions

The KDE procedure allows us to reconstruct an estimate f̂(c) of f(c) by only using N samples drawn
from f . To proceed, let f̂(c) denote the “reconstructed” distribution function, obtained through f̂(c) =

∫
K(c−

c′)f(c′)dc′ � f(c), where K(c − c′) is an appropriate smoothing kernel. Using this approximation, from
definition (2.2) it follows that we can define a reconstructed weight Ŵ

Ŵ (c) =
∫

K(c − c′)W (c′)f(c′)dc′∫
K(c − c′)f(c′)dc′

· (3.6)

In the work presented here we have used the normalized kernel

K (c − c′) =

⎧⎨
⎩

1
4/3πε3c3

0

if |c − c′| < εc0

0 otherwise.

Using importance sampling and (3.6), we obtain for each particle i

Ŵi =
1

‖Si‖
∑
k∈Si

Wk. (3.7)

Here, Si denotes the set of particles that are within a sphere of radius εc0 centered on particle i in velocity space;
we denote the average number of such particles ‖Si‖. Particles within Si could be found using a K-D Tree [22].
In our implementation we find the set Si using a non-uniform velocity space binning that is slightly faster and
simpler to code.

This procedure introduces a new discretization parameter, ε, that affects the results of our simulation.
A large ε means that we average over many particles which improves the stability of the calculation but also
introduces numerical error (bias in the reconstruction of f , since f = f̂ only when ε → 0). We have found
that the best tradeoff between stability and bias is to reconstruct the weights of only the particles that are
accepted for collision3. Applying (3.7) to all particles, or all collision candidates (accepted for collision and

3This is a variation of the stabilization approach used by the authors in [3].
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rejected for collision) improves the calculation stability albeit at the cost of additional numerical error (bias).
A quantitative discussion of stability is given in Section 4.

3.3. Variable reference equilibrium state

Although the bias introduced by the KDE decreases as ε → 0, the bias magnitude at a finite ε depends
on the reference equilibrium state (feq) chosen during the collision substep. Our numerical experiments have
shown that, while having a negligible effect on the stability of the method for a given ‖Si‖ [2], choosing
the reference equilibrium distribution to be the local equilibrium distribution (i.e. feq = fMB,loc) results in
a substantial reduction in the KDE bias. This is in qualitative agreement with previous work [19,23], which
reports performance improvements when a variable equilibrium distribution is used.

This feature is very important because, for the same accuracy (bias) level, it allows the use of a larger ε
resulting in a calculation that requires a smaller number of particles for stability (see Fig. 3). In fact, we find
that, for the same bias, a local equilibrium reference state reduces the number of particles required for stability
by about one order of magnitude at low Knudsen numbers and thus alleviates one of the most important
limitations of the proposed method.

Fortunately, the use of a local equilibrium reference state can be limited to the collision substep thus requiring
no modification to the remaining parts of the algorithm as described above. This is achieved by temporarily
effecting a change of reference state (feq → fMB,loc) before performing the collision/KDE step and switching
back to a global equilibrium state (feq → fMB,0) when the latter is finished.

The change of reference state, feq → fMB,loc can be easily effected by defining a transformed set of weights W ′
i

such that
W ′

i = γiWi (3.8)
where for each particle i

γi =
fMB,loc(ci)
fMB,0(ci)

·
Once the collision step is performed, the inverse change of reference state feq → fMB,0 can be achieved using

W ′
i = γ−1

i Wi. (3.9)

3.4. Summary of the VRDSMC method

A flowchart summarizing the VRDSMC algorithm is shown in Figure 2; the original DSMC algorithm is shown
in dark shading, while the additional steps leading to the VRDSMC algorithm are shown in light shading. The
key substeps can be summarized as follows:

(1) Advection substep: Identical to a DSMC simulation with weights following the particles. Initial
conditions and wall interactions are processed using (2.2) with feq = fMB,0.

(2) Change the equilibrium reference to local MB fMB,loc: Update all particle weights so that they
correspond to the local MB reference state using (3.8). The local equilibrium distribution parameters
are estimated using the variance reduced estimators (see step 5).

(3) Collision substep: Standard DSMC procedure with MX chosen as an upper bound for Wcr.
(a) Accepted particles: Accepted collision particles i, j are scattered using standard DSMC proce-

dures [7]. Post-collision weights of particles i and j are updated using W ′
i , W ′

j = ŴiŴj where Ŵ
denotes weights estimated using a KDE with a kernel of diameter εc0 at the particle’s pre-collision
velocity.

(b) Rejected particles: Weights are updated as in Section 3.1.4 (W ′
i = Wi (1 − Wj ĉr) / (1 − ĉr) , W ′

j =
Wj (1 − Wiĉr) / (1 − ĉr)); no KDE is used.

(4) Change equilibrium reference state back to global reference state feq = fMB,0: Reverse step 2
using (3.9); since the collision step conserves mass, momentum and energy, we use the local equilibrium
parameters from step 2.
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Accept with probability
cr
� � cr �MX

Select i & j Yes

fMB,loc � fMB,0

Wi � Wi
�
Wj
�

, Wj � Wi
�
Wj
�

estimate Ŵi & Ŵj

ci → c′i, cj → c′j

fMB,0 � fMB,loc

No

at ci   & Wi �
feq�ci�

f �ci�
 

Advection Step

Collision Step

         Sample equilibrium and
non-equilibrium properties

Initialize N particles

Wi → Wi
1 − Wj ĉr

1 − ĉr
&Wj → Wj

1 − Wiĉr

1 − ĉr

ci → ci, cj → cj

Figure 2. Flow chart of the VRDSMC method. Modifications to the original DSMC algorithm
are highlighted in light color.

(5) Sampling: DSMC sampling step using the modified variance reduced estimators of hydrodynamic
properties (2.3) [2].

4. Validation and computational performance

4.1. Numerical stability

In this section we provide a quantitative discussion of the method stability. Because the stability of a
calculation is primarily a function of ‖Si‖, while it is only a weak4 function of Ncell, it is more convenient to
discuss stability by specifying the total number of particles per cell, Ncell, and the average number of particles
in a sphere of radius εc0 in velocity space, ‖Si‖.

Figure 3 shows the effect of ‖Si‖ on the calculation stability by showing the normalized average weight vari-
ance, σ2 {Wi}, as a function of ‖Si‖ for various Knudsen numbers, in a simple shear (Couette) flow; the weight

4Our numerical experiments show that a 3 order of magnitude increase in Ncell only results in a ∼ 20% change in the average

weight variance, σ2 {Wi}, in a typical one-dimensional flow problem.
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Figure 3. Steady-state weight variance in a Couette flow as a function of ‖Si‖ and Kn. The
stability measure is normalized by the weight variance of a Kn = 10 simulation performed at
‖Si‖ = 20. High Kn flows require very small KDE intervention.

variance is averaged over the whole computational domain. Stability, defined as σ2 {Wi}/σ2 {Wi}Kn=10,‖Si‖=20 �
O(1), is a strong function of ‖Si‖ and Kn. As expected, increasing ‖Si‖ improves the calculation stability;
moreover, flows characterized by Kn > 1 are stable in a wide range of values of ‖Si‖, while flows with Kn < 1
typically require ‖Si‖ 
 1 for stability. Because low KDE error (bias) requires small ε, the latter feature results
in the most important weakness of the present method, namely the need for a large number of particles per
cell for accurate simulations. This effect is significantly alleviated using a variable reference equilibrium state,
as explained in Section 3.3. A discussion of the effect of ε (and ‖Si‖) on the accuracy of simulation results is
presented in Section 4.4. We also note that in cases where nw is known analytically (not shown in this figure),
simulations for Kn 
 1 are unconditionally stable requiring no weight reconstruction (KDE).

4.2. Validation

In this section we use a number of one-dimensional problems to validate the proposed VRDSMC method5.
Validation of a VRDSMC variant for a homogeneous relaxation problem can be found in a previous
publication [3].

We consider a dilute gas of density n0 between two fully accommodating, parallel plates (walls) a distance L
apart (Kn = λ/L); the gas is initially at equilibrium at a temperature T0. Let x denote one of the directions
parallel to the plates and y the direction normal to the plates. Our results are compared to DSMC solutions with
identical discretization parameters (Ncell, cell size Δy, and timestep Δt). Unless otherwise stated, VRDSMC
simulations were performed using a variable reference equilibrium state.

5A copy of the VRDSMC code is available upon request.
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Figure 4. Steady state DSMC results (dots) and VRDSMC results (solid lines) for Couette
flow. Left: Kn = 1.0 with ‖Si‖ = 10 and Ncell = 200; Right: Kn = 0.1 with ‖Si‖ = 10,
Ncell = 3000.

4.2.1. Example 1: 1D steady state Couette flow problem

We first consider a simple Couette flow in which two (fully accommodating) plates move in the x direction
with velocities Uwall = ±0.085c0. The wall velocity magnitude was chosen to minimize the DSMC cost; as
shown below and before [4,5,19], variance reduced techniques can resolve arbitrarily small flow disturbances at
fixed cost.

Figure 4 shows the resulting flowfield for Kn = 1 and Kn = 0.1. The discrepancy between the VRDSMC
and DSMC results is less than 1% for both cases. For Kn = 1, the VRDSMC calculation uses ε ≈ 0.57 and
Ncell = 200 which corresponds to ‖Si‖ = 10. For the same ‖Si‖, we find that for Kn = 0.1 we are able to
reproduce the DSMC solution to within ∼ 1% using ε ≈ 0.23, which corresponds to Ncell = 3000. An indication
of the benefit associated with the variable equilibrium reference state can be obtained by noting that with
feq = fMB,0, for Kn = 0.1 we are only able to reproduce the DSMC solution to within ∼ 1% using ε ≈ 0.09,
which corresponds to Ncell = 50 000.

We also note that low-speed (Uwall � c0) Couette flows are isothermal and thus, to a good approximation,
nw/n0 = 1. In our simulations, however, the more general approach outlined in Section 3.1.2 is used.

4.2.2. Example 2: 1D unsteady boundary heating problem

In this example we consider the transient response of the gas to an impulsive boundary temperature change.
Specifically, at time t = 0, the wall temperatures impulsively change from T0 to T0 ± 0.033T0. In this problem
the variable temperature induces density gradients and gas motion in the direction normal to the plates; as a
result, nw/n0 is not known analytically and needs to be evaluated using the more general process outlined in
Section 3.1.2, which necessitates weight reconstruction (albeit very mild), even for high Knudsen numbers.

Figure 5 shows the normalized results for the temperature (T ), the heat-flux in the wall-normal direction (qy),
the density (ρ) and the y component of flow velocity (uy) for Kn = 10; the heat flux is normalized by qy,0 = ρc3

0.
For this large Knudsen number a minimal amount of KDE is required to keep the calculation stable; in this
example we used ε ≈ 0.19 and ‖Si‖ = 1 which amounts to Ncell = 500.

Figure 6 shows similar transient results for the Kn = 1.0 case, where VRDSMC can reproduce the DSMC
solution within ∼ 1% using ε ≈ 0.19 and ‖Si‖ = 3 which amounts to Ncell = 1500.

4.3. Magnitude of variance reduction

Figure 7 shows a comparison of the relative statistical uncertainty in the flow velocity, σ/Uwall, achieved by
DSMC and VRDSMC when simulating a steady Couette flow at Kn = 1. The figure shows that VRDSMC
exhibits a constant relative statistical uncertainty for Uwall/c0 � 1, as expected [4,5,19], and in sharp contrast
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Figure 5. Transient results for an impulsive boundary temperature change problem for
Kn = 10. Solid lines denote VRDSMC results while DSMC results are shown in dots. The
snapshots shown correspond to t = {5, 10, 40} ∗ Δt where Δt = 1
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√
πλ/(2c0).

to DSMC whose statistical uncertainty for Uwall/c0 � 1 is dominated by equilibrium fluctuations, resulting in
σ/Uwall ∼ 1/Uwall in this limit [17]. We can thus conclude that VRDSMC provides a very considerable amount
of variance reduction and thus computational benefit compared to DSMC for the same number of particles per
cell.

4.4. Approximation error and limitations

Although VRDSMC is stable under a number of conditions, e.g. when nw is known analytically and Kn � 3,
in general it requires a KDE stabilization step which introduces numerical error (bias). This error can be
decreased by reducing the discretization parameter ε, at the expense of requiring a larger Ncell for stability
(recall that ‖Si‖ 
 1 is required for small Kn). In other words, as already explained in the previous two
sections, although accurate low-Kn calculations are feasible, they do require relatively large numbers of particles
per cell (∼ O(1000) for errors of the order of 1%). This requirement is practically non-existent in DSMC, which
can provide very accurate solutions with as few as 100 particles per cell, independently of the Knudsen number
for most problems of practical interest.

The requirement of large Ncell for accuracy is not very limiting in one-dimensional flows, but can be limiting
in higher dimensions if the Knudsen number is small for all dimensions. On the other hand, these large numbers
of particles do contribute towards reducing the already small statistical uncertainty of the calculation. In other
words, if low statistical uncertainty calculations are required and a large number of particles (or ensembles)
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Figure 6. Transient results for an impulsive boundary temperature change problem for
Kn = 1.0. Solid lines denote VRDSMC results with ‖Si‖ = 3 and Ncell = 1500; DSMC
results are shown in dots. The snapshots shown correspond to t = {5, 10, 40} ∗ Δt where
Δt = 1

24

√
πλ/(2c0).

were to be used in DSMC, then VRDSMC provides the full benefit shown in Figure 7. It should also be
noted that our numerical experiments have shown that the numerical error associated with VRDSMC is not
strongly affected by other discretization parameters (e.g. Δy) and thus provided ε remains small, much like
DSMC [1,13,15], accurate solutions can be obtained with fairly coarse grids and thus total numbers of particles
that are not excessively large. Furthermore, this moderate increase in Ncell is only practically limiting in
applications characterized by Kn � 1, while most transition regime flows can be described to engineering
accuracy with Ncell = O(100), which is not substantially higher than the number of particles per cell required
by DSMC.

5. Summary and conclusions

We have presented a variance reduction method for direct Monte Carlo simulations of low-signal flows whose
main ingredients are importance weights and Kernel Density Estimation. The method was validated using
DSMC results for a number of different flows for 0.1 ≤ Kn ≤ 10. Our numerical results show that, pro-
vided a sufficient number of particles is used, significant variance reduction is achieved with little additional
discretization error.

More specifically, for Kn � 3 a basic tradeoff between accuracy (requiring a small ε) and stability (requiring a
large ‖Si‖) exists. Consequently, a larger number of particles (compared to DSMC) may be needed to accurately
simulate small Knudsen number flows. As we have shown above, provided a sufficient number of particles is used,
all problems of interest (0.1 ≤ Kn ≤ 10) can be practically simulated with small numerical error. Overall, the
extra computational cost of VRDSMC (due to the larger number of particles and the additional computation
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Figure 7. Comparison of the relative statistical uncertainty (σ/Uwall) of the DSMC (squares)
and VRDSMC (circles) methods. Results are for steady Couette flow at Kn = 1.0 for 500 par-
ticles per cell. The (theoretical) speedup scales with the square of the ratio of statistical
uncertainties.

required per particle) is quite moderate [2], making the method very competitive with DSMC not only for
low-signal flows, but also moderate signal flows (e.g. Ma ∼ 0.1).

The major advantage of the proposed VRDSMC method compared to previous approaches is that it re-
quires essentially no modification of the DSMC algorithm and introduces relatively little additional complexity.
Moreover, it can be easily extended to other collision models and processes (e.g. chemical reactions). In fact,
the variance reduction formulation presented is sufficiently general that extensions to other particle simulation
methods may be possible.
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