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P -ADAPTIVE HERMITE METHODS FOR INITIAL VALUE PROBLEMS ∗

Ronald Chen
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and Thomas Hagstrom
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Abstract. We study order-adaptive implementations of Hermite methods for hyperbolic and singularly
perturbed parabolic initial value problems. Exploiting the facts that Hermite methods allow the degree
of the local polynomial representation to vary arbitrarily from cell to cell and that, for hyperbolic
problems, each cell can be evolved independently over a time-step determined only by the cell size,
a relatively straightforward method is proposed. Its utility is demonstrated on a number of model
problems posed in 1 + 1 and 2 + 1 dimensions.
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1. Introduction

We consider the numerical solution of hyperbolic or singularly perturbed parabolic evolution equations

ut = F (u,Du, εD2u, x, t) (1.1)

in d+1 dimensions. Here u(x, t) ∈ R
m and D, D2 denote the arrays of first and second order space derivatives. As

the focus of this work is on adaptivity in space, we assume u is L-periodic in x, that is u(x+jLek, t) = u(x, t) for
any integer j and standard unit basis vector ek ∈ R

d, which we will write as x ∈ T
d(L). As recognized more than

thirty years ago in the pioneering works on spectral and pseudospectral methods [9,11,16], difficult problems in
wave propagation can be most efficiently treated with spectral or high-order spatial discretizations. In addition,
for problems exhibiting localized pulses or sharp fronts, adaptivity in space and time is also needed. The vast
majority of work on adaptive schemes, however, has focused on local mesh refinement and local time-stepping,
so-called h-adaptivity. A notable exception to this is Demkowicz’ and coworkers’ development of hp-adaptive
solvers for elliptic boundary value problems [7]. The goal of this work is to exploit the unique features of Hermite
discretizations of initial-value problems to develop straightforward and, we believe, efficient purely P -adaptive
methods.
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We begin with a brief review of the construction and analysis of arbitrary-order Hermite methods, emphasizing
the fact that large time steps can be taken in each computational cell, independent of the method order and
independent of data in neighboring cells, once the Hermite interpolant of the vertex data has been computed.
We also derive new results on the convergence of the Hermite interpolants in the limit of infinite degree for
bandlimited functions. We then develop and test a relatively simple strategy for locally adapting the degree of the
interpolants and the time-stepping algorithm. As we can treat the polynomial evolution problem independently
in each cell, there is very little overhead required by the proposed technique. Indeed, the basic formulation would
allow us to use degrees and time-stepping procedures in each cell limited only by the data available to construct
the cell interpolant. The procedure we use constrains the degree of the data used in each cell to guarantee
that the interpolation process decreases a certain seminorm. Simple numerical experiements with the transport
equation and Burgers equation are presented to demonstrate the potential of our approach.

2. Hermite methods

A Hermite method in d space dimensions uses staggered computational cells of hypercubes. The standard,
fixed-order method is constructed as follows. The degrees-of-freedom are the coefficients of a tensor-product
degree md polynomial at each node. That is, at a node (x1,k1 , . . . , xd,kd

) ≡ x[k] we approximate u by a tensor-
product polynomial

u ≈
m∑

j1=0

. . .

m∑
jd=0

ck1k2...kd

j1j2...jd
(t)
(

(x1 − x1,k1)
h1

)j1

. . .

(
(xd − xd,kd

)
hd

)jd

(2.1)

or, using the usual multiindex notation

hj

j!
Dju(x[k], t) ≈ c

[k]
[j] (t). (2.2)

Here hi is the grid spacing in the ith coordinate, which we assume to be uniform. At a time step, tn, we construct,
at the midpoint of a cell, (x1,k1 + h1/2, . . . , xd,kd

+ hd/2) ≡ x[k+1/2], the degree (2m + 1)d Hermite interpolant
of the 2d vertex polynomials, which we denote by Q[k+1/2](tn). We now consider the evolution problem (1.1)
projected onto the degree (2m + 1)d tensor-product polynomials with initial data Q[k+1/2](tn):

dQ[k+1/2]

dt
= T2m+1F (Q[k+1/2],DQ[k+1/2], εD2Q[k+1/2], x, t), (2.3)

where T is the projection onto Taylor polynomials

T2m+1w(x, t) =
2m+1∑
j1=0

. . .

2m+1∑
jd=0

Djw(x[k+1/2], t)
j!

(x − x[k+1/2])j . (2.4)

Clearly, (2.3) represents a closed system of ordinary differential equations for (2m+2)d polynomial coefficients.
We approximately evolve it to time tn+1/2 using possibly multiple substeps of some single-step method of
Runge-Kutta type, or, for linear autonomous problems, temporal Taylor series. On its completion we finally
obtain vertex data on the dual grid by a further projection,

c
[k+1/2]
[j] (tn+1/2) =

hj

j!
DjQ[k+1/2](x[k+1/2], tn+1/2), jk = 0, . . . , m. (2.5)

The process can then be repeated on the dual grid to produce c
[k]
[j] (tn+1).
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Note that the evolution step is completely local to each cell. Thus no global storage of stage values is needed,
nor is any communication of information between cells. If large steps can be taken, which is possible for hy-
perbolic problems, Hermite methods are essentially optimal from the standpoint of storage and communica-
tions. We note that in this aspect Hermite methods can be viewed as arbitrary-order generalizations of central
schemes [15]. However, we have not yet attempted to correctly formulate them for problems requiring shock-
capturing as in [15].

2.1. Stability and convergence

A complete analysis of Hermite methods for linear hyperbolic systems is presented in [10]. Assume that (2.3)
is solved exactly. For linear autonomous systems this can be done as the temporal Taylor series terminates. In
other cases we assume it is solved with sufficient accuracy, which can be justified via the stability theorem, but
we will ignore this complication here.

If the system is hyperbolic, the domain of dependence of the solution at (x[k+1/2], tn+1/2) is contained in
the region |x − x[k+1/2]| ≤ c

2Δt where Δt = tn+1 − tn is a full time step and c is the maximum wave speed.
Assuming a CFL restriction

cΔt ≤ min
i

hi (2.6)

the solution of (2.3) evaluated at the dual grid node x[k+1/2] is in fact a high-order approximation to the Taylor
projection of the exact solution of the evolution equation (1.1) with piecewise polynomial initial data whose
restriction to cell [k + 1/2] is Q[k+1/2]. If we denote that function by w we have

c
[k+1/2]
[j] (tn+1/2) −

hj

j!
Djw(x[k+1/2], tn+1/2) = O(h2m+1Δt). (2.7)

Stability follows from the fact that the Hermite interpolation process decreases a seminorm of the solution.
The basic lemma, proven in [10] via a simple application of integration by parts, is as follows.

Lemma 2.1. Let f ,g be smooth periodic functions, If the degree (2m + 1)d piecewise Hermite interpolant of
the data Djf , 0 ≤ jk ≤ m on the nodes, x[k], Ig the analogous interpolant of g, and define

(f, g)[m+1] =

(
d∏

k=1

Dm+1
k f,

d∏
k=1

Dm+1
k g

)
L2

. (2.8)

Then
(If, g − Ig)[m+1] = 0, (2.9)

‖f‖2
[m+1] = ‖If‖2

[m+1] + ‖f − If‖2
[m+1]. (2.10)

Directly, we conclude that the Hermite interpolation process decreases the seminorm ‖·‖[m+1]. This fundamental
lemma, combined with standard estimates of interpolation error, can be directly turned into a convergence proof.
Precisely, for the method described here, the proofs of Theorems 4.1 and 6.1 in [10] can be adapted to prove
that the approximate solution coverges at order 2m + 1

2 , which can be improved to order 2m + 1 for linear,
constant coefficient systems.

A point of emphasis is the fact that, under the assumption that the local evolution problem (2.3) is solved
with sufficient accuracy, the outer time step is limited only by the wave speed and the cell size; it is independent
of the polynomial degree. In addition, the stability restrictions for the inner time step, that is the local time
steps taken within each cell, have a favorable dependence on m. For a standard spectral method, the norm of
the differentiation matrix must grow like m2, and thus the CFL constraint scales like m−2 [12]. Although we
have shown how to reduce these norms to O(m) by using dual grid filters for discontinuous Galerkin spectral
elements [18], with Hermite methods no special actions are required; the differentiation matrix is always O(m).
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The reason is that we only differentiate the cell polynomial in the cell center where Bernstein’s inequality implies
for polynomials of degree m [5] ∣∣∣∣∣dp

dx

∣∣∣∣∣ ≤ 2m

h
max
cell

|p|. (2.11)

(We have not used this fact to formally prove the stated bounds, but we have observed them in practice).
Naturally, these results cannot strictly hold for parabolic equations, as the domain of dependence is the entire

spatial domain. However, numerical experiments with the heat equation, the convection-diffusion equation, and
the Navier-Stokes equations suggest [8]

Δt ∝ min
(

hi

cmax
,

h2
i

εm

)
· (2.12)

Only in a shock or shear layer, where hi

m = O(ε), is the additional restriction important. Again, the m-dependence
is significantly better than for standard spectral element methods; see, e.g., [17] for a discussion of discontinuous
Galerkin discretizations.

2.2. P -convergence

The focus of the analysis in [10] is on the h-convergence of the Hermite schemes. Given that our intention
here is to improve accuracy by increasing the degree rather than decreasing the cell size, it is of interest to
study the convergence of the Hermite interpolation process in this limit. To that end we take d = 1 and assume
without loss of generality that h = 2. The Peano kernel formula for the interpolation error is

f(x) − (If)(x) =
∫ 1

−1

D2m+2f(t)Km(t, x)dt, (2.13)

where we assume f ∈ C∞([−1, 1]). An interesting characterization of Km follows from the recognition that
e = f − If satisfies the boundary value problem

D2m+2e = D2m+2f, Dje(−1) = Dje(1) = 0, j = 0, . . . , m. (2.14)

Thus Km is simply the Dirichlet Green’s function for D2m+2. As shown in [4] upper bounds for the error are
given by

‖e‖L∞([−1,1]) ≤
1

(2m + 2)!
‖D2m+2f‖L∞([−1,1]). (2.15)

Specializing to f = eiωx, we can use the Hermite error formula (e.g. [6]):

eiωx − (Ieiω·)(x) =
(x2 − 1)m+1

2πi

∫
C

eiωz

(z2 − 1)m+1(z − x)
dz, (2.16)

where C is a contour surrounding the real interval [−1, 1]. Following, for example, Weideman and Trefethen [19],
we consider contours defined by ⏐⏐z2 − 1

⏐⏐ = c > 1. (2.17)

By direct computation we find that if z = reiθ these contours are parametrized by

r =
√

cos 2θ +
√

c2 − sin2 2θ. (2.18)

In particular the maximum value of the imaginary part is
√

c − 1. We thus derive the bound for ω large

|eiωx − (Ieiω·)(x)| ≤ 1
2π

√
c − 1

e|ω|√c−1−(m+1) ln c. (2.19)
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Figure 1. Convergence of Hermite interpolation with increasing degree. Here PPW stands for
degrees-of-freedom per wavelength, as in all cases we are interpolating on a single cell.

As |ω|/π is the number of wavelengths and 2m + 2 is the number of degrees of freedom we write

|ω| =
2π

α
(m + 1), (2.20)

where α is the number of degrees-of-freedom per wavelength. Convergence as m → ∞ is guaranteed if

min
c>1

(
2π

α

√
c − 1 − ln c

)
< 0. (2.21)

The minimum occurs when
π

α
√

c − 1
=

1
c
→ π

α
=

√
c − 1
c

, (2.22)

and thus we require

2
c − 1

c
− ln c < 0 → c > c0 = 4.9216 . . . (2.23)

On this interval the formula relating α and c at the minimum, (2.22), implies that α increases with c. Thus our
sufficient condition for convergence is

α >
c0√

c0 − 1
π ≈ 2.4853π ≈ 7.8077 . . . (2.24)

This condition is apparently sharp. In Figure 1 we display the maximum interpolation errors for the functions
e4πi(m+1)x/α on [0, 1] for α = 6 − 11 and 0 ≤ m ≤ 18, that is for all odd degree interpolants from 1 through
37. We have divergence for α = 6 and α = 7 and convergence for α = 8 − 11. For larger values of m our
implementation suffers from poor conditioning. In practice we have limited m to a maximum value of 11 in all
of our implementations, that is a maximum degree of 23. (In the experiments here we take mmax = 8).

We conclude, then, that Hermite interpolation requires almost two and one half times as many degrees-
of-freedom per wavelength as corresponding methods based on Chebyshev interpolation, which require π points-
per-wavelength, and in fact more than the 6 points-per-wavelength required when using equispaced nodes [19].
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This is not surprising as we have removed sampling points from the center of the interval. However, we believe
that the possibility for reduced timesteps and communications enabled by the Hermite approach compensate for
this defect. It would also be of interest to compute the dispersion relation, which is more directly relevant than the
interpolation error. This has been done for continuous and discontinuous Galerkin methods by Ainsworth [1,2],
but it has not yet been done for Hermite schemes.

2.3. Cost

The computational costs of the Hermite methods are dominated by two operations, the construction of
the interpolant and the evaluation of the right-hand side of (2.3). Using the tensor product structure, the
interpolation may be carried out dimension-by-dimension. For example, if d = 2, the data consists of (m + 1)2

values at each vertex. We may interpolate along the two edges parallel to the x1-axis, solving 2m+2 independent
one-dimensional Hermite interpolation problems associated with each power of x2. As the cost of the one-
dimensional interpolation is that of a matrix-vector multiplication, O(m2), this step requires O(m3) flops. The
second step then involves an additional 2m + 2 one-dimensional interpolation problems in the x2-direction,
costing an additional O(m3) flops. Extending this argument to d-dimensions we conclude

Cinterpolation = O(md+1). (2.25)

The cost of evaluating the right-hand side of (2.3) depends on the structure of F . For a linear, constant-
coefficient system the cost is linear in the number of coefficients, O(md). For a system with product nonlinearities,
the cost scales with the cost of multiplying degree (2m + 1)d tensor product polynomials. The direct algorithm
for accomplishing this exploiting the tensor-product structure costs O(md+1) flops. However, for m large FFTs
can be used to reduce the cost to O(md ln m). For general nonlinearities we use a recursive algorithm inspired
by automatic differentiation techniques [13]. We illustrate it by the example of computing

P = T2m+1eQ, (2.26)

where Q is a degree (2m + 1)d tensor product polynomial. The starting point is the differential equation

DjP = T2m+1 ((DjQ)P ) . (2.27)

Taking, for example, j = d, (2.27) implies a recursion for the coefficients. Specializing to the node xk,jk
= 0 and

writing P and Q as

P =
2m+1∑
jd=0

pjd
(x1, . . . , xd−1)

(
xd

hd

)jd

, Q =
2m+1∑
jd=0

qjd
(x1, . . . , xd−1)

(
xd

hd

)jd

(2.28)

we have

jd · pjd
=

jd∑
j′=1

j′ · qj′ · pjd−j′ , jd = 1, . . . , 2m + 1. (2.29)

Directly, given p0 this allows the computation of all the polynomials pjd
in O(m2) multiplications of tensor-

product polynomials in dimension d − 1. To compute p0 we would apply the analogous recursions in one lower
dimension. To begin with we compute the coefficients pj10...0 by

j1 · pj10...0 =
j1∑

j′=1

j′ · qj′0...0 · pj1−j′0...0, p0...0 = eq0...0 . (2.30)

The cost of the direct implementation of this method is dominated by (2.29) and is O(md+2). If the multi-
plications are replaced by FFTs for m large this becomes O(md+1 ln m). Noting that the recursion in (2.29) has
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a convolutional form, the algorithm of Hairer et al. [14] can be adapted to reduce this to O(md ln3 m), though
again the advantage of the fast algorithm is only likely to be felt for m rather large. Griewank [13] has shown
that all of the standard transcendental functions can be evaluated in this way. Letting s be the total number
of evaluations of F required to advance (2.3) to the next time level we have a total cost per degree-of-freedom
depending on the structure of F and the algorithm employed given by

Ctotal =

⎧⎨
⎩

O(s) + O(m), linear constant coefficient
O(sm) ↔ O(s ln m) + O(m), product nonlinearity

O(sm2) ↔ O(sm ln m) ↔ O(s ln3 m) + O(m), general nonlinearity.
(2.31)

We note that an alternative pseudospectral approach to evaluating F is possible, but we have not yet tried
it.

3. Adaptive implementation in 1 + 1 dimensions

We now set d = 1 and consider the implementation of an order adaptive strategy. Functionally, we simply
admit the possibility that at the current time level tn the coefficient data at the node xk extends to some
previously-determined degree mk. At xk+1/2 we then could compute the Hermite interpolant of the degree mk

polynomial at xk and the degree mk+1 polynomial at xk+1 which would have degree mk + mk+1 + 1. However,
we instead set

m̄k+1/2 = min{mk, mk+1} (3.1)

and construct the degree 2m̄k+1/2 + 1 Hermite interpolant of the function values and derivatives through order
m̄k+1/2 at each node. Directly this means that we use all of the available data from the node where the
polynomial is of lower degree and ignore the highest degree coefficients at the other. The motivation for this
choice is Lemma 2.1, which we realize can be applied cell-by-cell. It implies that the local cell interpolant satisfies∫ xk+1

xk

(
Dm̄k+1/2+1Q[k+1/2](x)

)2

dx ≤
∫ xk+1

xk

(
Dm̄k+1/2+1f(x)

)2
dx (3.2)

for any function f whose derivatives through order m̄k+1/2 agree with the nodal data. We now evolve this
polynomial as in the nonadaptive case using (2.3).

To adaptively choose the degree we consider the truncation step (2.5). The full polynomial has degree
2m̄k+1/2 + 1, roughly double what is being carried on the nodes. We simply truncate at whatever order is
suggested by the tolerance, τ . That is, find the smallest mk+1/2 such that

max
j>mk+1/2

hj

j!

⏐⏐⏐DjQ[k+1/2](x[k+1/2], tn+1/2)
⏐⏐⏐ < τ. (3.3)

(We also place a limit on the global maximum order). We impose the same strategy when marching from tn+1/2

to tn+1.

3.1. Application to the transport equation

As a first test of the method we solve the transport equation,

ut = ux, u(x, 0) = e−x2
, (3.4)

imposing periodic boundary conditions on the interval [−10, 10] and solving over two periods, T = 40. We take
h = .25 and Δt = 0.9h. The time-stepping is via Taylor series and is carried out to match the local spatial order.
That is, as in [10], we use an order 2m̄k+1/2 + 1 temporal Taylor series. Note that this time-stepping procedure
is completely local to each cell, so there is no issue in choosing different temporal orders in different cells. The
Taylor method could easily be replaced by multiple substeps of some other Runge–Kutta formula as in [3].
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Table 1. Errors and orders for various tolerances: transport equation in 1 + 1 dimensions.

τ Maximum error mmax mave

10−3 1.221 × 10−5 4 1.556

10−4 5.767 × 10−7 5 1.914

10−5 1.132 × 10−7 6 2.333

10−6 2.588 × 10−8 7 2.778

10−7 7.394 × 10−9 8 3.420
10−8 4.373 × 10−10 8 3.803

10−9 3.022 × 10−11 8 4.049

−10 −5 0 5 10
0

2

4

6

8

10
T=20 τ=10−4

m

x

−10 −5 0 5 10
0

0.2

0.4

0.6

0.8

1

Figure 2. Solution and degree for the transport equation in 1 + 1 dimensions.

Again as the local evolution problems are independent, the size of the substeps can be chosen independently in
each cell. We set the maximum value of m to be 8 and the minimum to be 1 so that the local method order
varies between 3 (m = 1) and 17. At t = 0, mk is chosen based on the interpolation of the initial condition.
Varying the tolerance, τ , between 10−3 and 10−9 we obtain the results summarized in Table 1. See also Figure 2
for a plot of the solution and mk when τ = 10−4.

We see that the actual error in each case is more than an order of magnitude less than the tolerance, indicating
that a less stringent cutoff criterion could be used. For the coarsest tolerance the average density of degrees-
of-freedom is almost 2.7 times less than the maximum. Exponential convergence is observed as a decrease in
the error of a factor of 10 requires roughly a fixed increase in the number of degrees-of-freedom over the range
of tolerances considered.
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Table 2. Comparison of Fourier pseudospectral and adaptive order Hermite solutions for
various tolerances and viscosities: Burgers equation in 1 + 1 dimensions.

ε t τ ‖uadapt − uPS‖∞ mmax mave

10−2 1 10−3 8.32 × 10−5 7 1.32
10−2 2 10−3 1.80 × 10−3 8 1.23

10−2 1 10−6 2.99 × 10−10 8 3.19

10−2 2 10−6 6.09 × 10−6 8 2.45

10−4 1 10−3 9.0 × 10−3 8 1.43

10−4 2 10−3 3.0 × 10−2 8 1.38
10−4 1 10−6 9.2 × 10−3 8 3.22

10−4 2 10−6 3.2 × 10−2 8 2.62

3.2. Application to Burgers equation

As a second example we solve Burgers equation

ut + uux = εuxx, u(x, 0) = sin x (3.5)

on [0, 2π], 0 ≤ t ≤ 2. Note that the shock formation time for the inviscid equations is t = 1. We choose a uniform
grid with h = π/80, set the maximum value of m to be 8 (maximum order 17) and solve for ε = 10−2, 10−4

with τ = 10−3, 10−6. As the time step restriction is now proportional to h2/(mε) we chose Δt = h/50, though
for ε = 10−4 we could take larger steps. If we define an effective cell Reynolds number based on the finest
degree-of-freedom density allowed

Rc = umax
h

ε · (mmax + 1)
(3.6)

we compute a value of .44 when ε = 10−2 and 44 when ε = 10−4. Thus the latter case is certainly underresolved
and we do not expect to achieve the error tolerances. However we will achieve reasonable accuracy and our
solutions will not display spurious oscillations. This demonstrates the robustness of the P -adaptive Hermite
methods. Although, based on the results from Section 1.2 we may expect that adaptive implementations of
standard spectral element methods could require a little less resolution in the shock layer, the advantage of the
proposed scheme is that there is essentially no overhead.

Approximate error data is generated by comparing the solutions to those computed with a Fourier pseudospec-
tral method in space [11] evolved in time with Matlab’s ode45 routine. Absolute and relative error tolerances
for ode45 were set at 10−9. With ε = 10−2 we used 1280 points for the pseudospectral method and 40 960 with
ε = 10−4. To verify the accuracy of the pseudospectral computations we repeated them with twice as many grid
points and the tolerances for the ode solver reduced to 10−11. These indicate that the pseudospectral solutions
have errors below 10−9 at the times indicated except for t = 2 and ε = 10−4, when a maximum norm difference
of 10−4 was recorded. As this is orders-of-magnitude smaller than the Hermite error in that case we deem the
error data to be reliable.

Details of the results are presented in Table 2 for both the approximate shock formation time, t = 1.0016, and
the final time, t = 2. Decreasing the tolerance by a factor of 10−3 increases the number of degrees of freedom by
less than a factor of 3. The error tolerances were approximately achieved in the case of ε = 10−2. For ε = 10−4

larger errors persist due to the limits placed on Rc. However, with the adaptive strategy we do avoid oscillations
at the shock, as is readily apparent in the graphs. (See Figs. 3–6).

We also plot the solution and method order at t = 1 and t = 2 for ε = 10−2 and ε = 10−4 computed with
τ = 10−3.
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Figure 3. Solution and degree at t = 1 for Burgers equation in 1 + 1 dimensions.
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Figure 4. Solution and degree at t = 2 for Burgers equation in 1 + 1 dimensions.
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Figure 5. Solution and degree at t = 1 for Burgers equation in 1 + 1 dimensions.
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Figure 6. Solution and degree at t = 2 for Burgers equation in 1 + 1 dimensions.
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4. Extensions to 2 space dimensions

The interpolation technique used above has a natural extension to any number of space dimensions. For
simplicity we restrict our attention here to the case d = 2. We simply define

m̄x,[i+1/2,j+1/2] = min
(
mx,[i,j], mx,[i,j+1], mx,[i+1,j], mx,[i+1,j+1]

)
, (4.1)

m̄y,[i+1/2,j+1/2] = min
(
my,[i,j], my,[i,j+1], my,[i+1,j], my,[i+1,j+1]

)
, (4.2)

and compute the tensor-product Hermite interpolant, Q[i+1/2,j+1/2] of the vertex data using mixed derivatives
up through order m̄x,[i+1/2,j+1/2] in x and up through order m̄y,[i+1/2,j+1/2] in y. This will result in a cell
polynomial of degree 2m̄x,[i+1/2,j+1/2] + 1 in x and 2m̄y,[i+1/2,j+1/2] + 1 in y. The interpolation is a stabilizing
step in that Lemma 2.1 applied in both variables implies the analogue of (3.2):∫ xi+1

xi

∫ yj+1

yj

(
D

m̄x,[i+1/2,j+1/2]+1
x D

m̄y,[i+1/2,j+1/2]+1
y Q[i+1/2,j+1/2](x, y)

)2

dxdy

≤
∫ xi+1

xi

∫ yj+1

yj

(
D

x,m̄
[i+1/2,j+1/2]
x +1

D
m̄y,[i+1/2,j+1/2]+1
y f(x, y)

)2

dxdy (4.3)

for any function f whose mixed derivatives through order m̄x,[i+1/2,j+1/2] in x and order m̄y,[i+1/2,j+1/2] in y
agree with the nodal data.

Having computed the cell interpolant, we evolve the data using (2.3). To truncate we seek to satisfy the
analogue of (3.3) with the smallest values of mx,[i+1/2,j+1/2], my,[i+1/2,j+1/2]

max
j1>mx,[i+1/2,j+1/2]

hj1
1

j1!
hj2

2

j2!

⏐⏐⏐Dj1
x Dj2

y Q[i+1/2,j+1/2](xi+1/2, yj+1/2, tn+1/2)
⏐⏐⏐ < τ, (4.4)

max
j2>my,[i+1/2,j+1/2]

hj1
1

j1!
hj2

2

j2!

⏐⏐⏐Dj1
x Dj2

y Q[i+1/2,j+1/2](xi+1/2, yj+1/2, tn+1/2)
⏐⏐⏐ < τ. (4.5)

4.1. Application to the transport equation

As a first demonstration of the method in 2 + 1 dimensions we have solved the transport equation

ut + cos θ · ux + sin θ · uy = 0, (x, y) ∈ [−25, 25]× [−25, 25], (4.6)

with θ = π
3 , periodic boundary conditions, and initial data consisting of a Gaussian

u(x, y, 0) = e−(x2+y2). (4.7)

We solved up to t = 100 using the adaptive method described above with a maximum value of mmax = 8 (17th
order) and tolerances of 10−3,10−5, 10−7, and 10−9. The mesh width was h = 5

8 , Δt ≈ .8h.
The results are summarized in Table 3. Generally, the L2 error is at or below the desired tolerance, though

the maximum error is quite a bit larger. That said, the method is seen to be very efficient. Even with a tolerance
of 10−9, which produced a maximum error of approximately 10−6, the total number of degrees-of-freedom, as
indicated by mave, exceeds those of the first order method on the same grid by a mere 28%.

5. Conclusions

We believe this work demonstrates the potential of P -adaptive implementations of Hermite methods. However,
a number of additional developments are needed to improve its reliability and efficiency. These include:

(i) analysis of stability;
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Table 3. Errors and orders at t = 100 for various tolerances: transport equation in 2 + 1
dimensions.

τ L2 Error Maximum error mmax mave

10−3 3.10 × 10−4 1.51 × 10−1 8 0.06

10−5 3.24 × 10−6 1.80 × 10−3 8 0.14

10−7 6.07 × 10−8 1.52 × 10−5 8 0.20

10−9 1.42 × 10−9 1.04 × 10−6 8 0.28

(ii) justification of the choice of the cutoff criterion (3.3) in terms of truncation error analysis;
(iv) combination with h-refinement and local time stepping when P -refinement fails to achieve the desired

accuracy.

We hope to treat these issues in subsequent work.
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