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IMPLICIT-EXPLICIT RUNGE-KUTTA SCHEMES AND FINITE ELEMENTS
WITH SYMMETRIC STABILIZATION FOR ADVECTION-DIFFUSION
EQUATIONS

ERIK BURMAN! AND ALEXANDRE ERN?

Abstract. We analyze a two-stage implicit-explicit Runge-Kutta scheme for time discretization of
advection-diffusion equations. Space discretization uses continuous, piecewise affine finite elements with
interelement gradient jump penalty; discontinuous Galerkin methods can be considered as well. The
advective and stabilization operators are treated explicitly, whereas the diffusion operator is treated
implicitly. Our analysis hinges on L?-energy estimates on discrete functions in physical space. Our
main results are stability and quasi-optimal error estimates for smooth solutions under a standard
hyperbolic CFL restriction on the time step, both in the advection-dominated and in the diffusion-
dominated regimes. The theory is illustrated by numerical examples.
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1. INTRODUCTION

We consider the transient advection-diffusion equation

O+ Bu+ Au= f in 2 x (0,tr), (1.1a)

u=0on 0 x (0,tr), (1.1b)

u(-,t=0) =wup in £2, (1.1c)

where (2 is a polyhedron in R? with boundary 012, Bu := 3-Vu, Au = —puAu, tp > 0 a finite time, 3 a

divergence-free velocity field, u > 0 the diffusion coefficient, f the source term, and wuy the initial datum.
Extensions of the present analysis to advection fields with nonzero divergence and inclusion of non-stiff zero-
order terms is straightforward; accounting for smoothly variable diffusion coefficient is also feasible.

In the stationary case, it is well-known that the standard Galerkin finite element method has poor stabil-
ity properties in the advection-dominated regime, resulting in suboptimal convergence for smooth solutions
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and spurious oscillations when approximating solutions with sharp layers. Different approaches have been
proposed to improve this behavior, such as the streamline upwind Petrov—Galerkin method (SUPG) [4, 23]
and standard Galerkin methods with symmetric stabilization in various flavors, e.g., discontinuous Galerkin
(DG) [16,18,24,25], subgrid viscosity [19,20], orthogonal subscale stabilization [14], local projection stabiliza-
tion [3,28], and continuous interior penalty on interelement normal gradient jumps (CIP) [5,10]. All these
methods lead to similar L2-norm error estimates for smooth solutions, resulting in the loss of half a power of h
in the advection-dominated regime (compared to a full power in the unstabilized case). For solutions with sharp
layers, it has been proven for SUPG [23], DG [21], and CIP [12] that quasi-optimal convergence is retained away
from layers, hence prohibiting the global spreading of spurious oscillations.

In the transient case, DG-based time discretization has been the favored alternative for SUPG [23], whereas
Runge-Kutta (RK) methods have been popular for time discretization combined with DG in space [13]. For
symmetric stabilizations in general, standard A-stable finite difference methods in time have been shown to be
stable and optimally convergent [9,14,17,20]. Similar results for SUPG and the transient advection-diffusion
equation are very recent [6,11]. The implicit time stepping by A-stable methods leads to a nonsymmetric
matrix to be inverted at each time step. Moreover, treating nonlinear transport operators with such methods
or incorporating nonlinear slope limiters can be quite demanding computationally. Ideally, one would like to
treat the advective and stabilization operators explicitly and the diffusive operator implicitly. A suitable class
of methods is that of implicit-explicit (IMEX) RK methods. The application of IMEX methods to partial
differential equations (PDEs) was first analyzed in [15], and IMEX RK methods were first proposed in [1,2].
From a computational viewpoint, IMEX RK methods only require symmetric systems to be solved at each time
step, and the stencil of the corresponding matrix is that of the diffusion operator. Moreover, nonlinear transport
operators and nonlinear slope limiters can be treated explicitly.

Although a substantial amount of literature exists on IMEX RK methods, deriving stability and error es-
timates for stabilized finite elements combined with IMEX RK time discretization remains, to the authors’
knowledge, an open issue. In particular, we aim at an analysis that is valid in all flow regimes, that is, either
advection-dominated or diffusion-dominated. Following the seminal work of Levy and Tadmor [26], the present
analysis relies on L2-energy estimates, that is, we work directly with discrete functions in the physical space. In
other words, we account for the full geometric structure of eigenvectors, instead of the more classical approach
using only scalar eigenvalue arguments which may be misleading in the context of nonnormal operators.

Concerning IMEX RK schemes, a first important issue uncovered herein is that the analysis of the truncation
error in time by means of Butcher tables is not sufficient in the context of PDEs. In particular, this error involves
the partial differential operators A and B acting on suitable functions associated with the intermediate stages
of the scheme. In the IMEX scheme, bounding (high-order) derivatives of these functions is not straightforward
and, in particular, requires a careful study of the role played by boundary conditions. A second important issue
is that the explicit part of the RK scheme is anti-dissipative, that is, it produces energy, so that this energy
production must be controlled by the stability induced by space discretization. In the context of finite element
methods with symmetric stabilization, explicit (second- and third-order) RK methods were analyzed in [8], in
particular for the pure advection equation, leading to stability and error estimates for smooth solutions. The
presence of the diffusion operator poses additional difficulties to be tackled herein.

The two-stage IMEX RK scheme we consider for time discretization is the so-called SSP2(2,2,2) L-stable
scheme proposed in [27] for hyperbolic systems with stiff relaxation terms and no sources. This scheme combines
an explicit two-stage RK scheme for the transport operator together with a diagonally implicit, two-stage RK
scheme for the stiff relaxation terms. Moreover, this scheme is formulated in terms of a parameter -, and the
value vy = v, :=1— % ~ 0.293 is considered in [27]. Herein, we apply and analyze, for the first time, this scheme
in the context of advection-diffusion equations. Space discretization is performed using continuous, piecewise
affine finite elements with CIP as a specific example of symmetric stabilization; DG methods can be used as well,
as discussed toward the end of the manuscript. We treat the advection and stabilization operators explicitly
and the diffusion operator implicitly.
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Our main results are stability and error estimates for smooth solutions in all flow regimes. These results are
formulated in terms of the Courant and Péclet numbers defined as

oT oh
Co:= —, Pe := —,
h jz
where o := ||| () is the reference velocity, h the mesh size, and 7 the time step. For simplicity, the time

step is taken to be constant, and we use a single Péclet number for the whole domain. In all flow regimes,
we assume a hyperbolic type CFL restriction on the time step of the form Co < p with p independent of the
mesh size h, the time step 7, and the problem data. Furthermore, the analysis of the truncation error in time
requires the technical assumptions that the normal component of 3 and the source term f vanish on 942 and
that elliptic regularity holds for the Laplace operator. In the advection-dominated regime (Pe > 1), stability
and convergence are achieved for v € (0, %), to fix the ideas, we take v € [%, %} (the actual value of v influences
only the numerical bound on the Courant number). Our main convergence result (Thm. 4.8 and Prop. 4.9)

takes the form

N 1/2
[u(te) = up | 2() + (T > o ulv(ur) - u2)||2L?(Q)d> SR AR A
n=1

The estimate for the space error is quasi-optimal (1/2-suboptimal), similarly to the steady case. The estimate
for the time error is also quasi-optimal (1/2-suboptimal considering that a two-stage IMEX RK scheme is used,
and this is a consequence of the need to bound space derivatives when estimating the truncation error in time).
Owing to the CFL restriction on the time step, this estimate is actually sufficient to equilibrate space and time
errors. In the diffusion-dominated regime (Pe < 1), stability and convergence are achieved for v in a sufficiently
small neighborhood of 7. In addition to the bound on the Courant number (which becomes trivial in the pure-
diffusion limit), the time step is restricted by the bound 7 < (t./u)'/?h where t, is a reference time defined
in Section 2.1. Our main convergence result (Thm. 4.16) takes the form

N 1/2
(TZ,L”V(u(tn) _UZ)”%z(_Q)d) < T-l-/Al/Zh.
n=1

The estimate on the space error is optimal, while the estimate on the time error is 1-suboptimal, but, again,
owing to the CFL restriction, it is actually sufficient to equilibrate space and time errors. Finally, still in the
diffusion-dominated regime, we prove that (Prop. 4.17)

lu(te) — up |20y S 72 + 0 2R32 4 u=1/202,

This estimate is 1/2-suboptimal in time and in space, but, as the other estimates, equilibrates both errors owing
to the CFL restriction. Moreover, as ¢ — 0, that is, in the pure diffusion limit, second-order convergence is
recovered in h. Finally, we observe that under an additional assumption on 3 at the boundary, the convergence
order in time of all the above estimates can be improved by a factor 7'/2; see Remark 3.7.

The material is organized as follows. Section 2 states the basic assumptions, presents the setting for the space
and time discretization, and introduces the truncation error in time together with the error equations. Section 3
is devoted to the analysis of the truncation error and the approximation error in space. Section 4 contains the
stability and error analysis, while Section 5 discusses extensions to other space discretization schemes. Section 6
presents numerical results. In what follows, we often abbreviate a < b the inequality a < Cb for positive C
independent of the mesh size h, the time step 7, and the problem data. We only keep track of constants if they
are to be used later in thresholds for the Courant number.
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2. THE SETTING

In this section, we specify the basic assumptions for the time evolution problem (1.1) and the discretization
parameters. We also present the stabilized finite element method for space discretization together with the two-
stage IMEX RK scheme for time discretization. Then, we express the truncation error in time using suitable
intermediate functions associated with the intermediate stages of the IMEX RK scheme, and we derive the error
equation. Finally, we collect important stability and boundedness properties of the discrete operators used for
space discretization.

2.1. Basic assumptions

Let L := L*(2), LY := L?(2)?, and set V := H2(2) N H}(£2). We assume that the exact solution u and the
source term f are such that

u € CO[0,tr]; H*(2) N Hy (2)) N CH([0, tr]; H3(£2)) N C3([0, tr]; L), (2.1a)
€ C[0,tr]; H*(2) N Hy (£2)) N C([0, tg]; L), (2.1b)

and we observe that (2.1b) means, in particular, that f|go = 0. We assume that the domain {2 is convex so that
elliptic regularity holds true for the Laplace operator with homogeneous Dirichlet boundary conditions. Finally,
we assume that 3 is in the Sobolev space [W1:°°(£2)]¢, so that 3 is bounded and has bounded derivatives, and
that the normal component of 3 vanishes at the boundary, that is, v-3|sq, = 0 where v denotes the unit outward
normal to 2. For later use, we set o1 := ||V 3||[1 ()¢« and observe that o7 ! can be interpreted as a time
scale. We also consider the reference time t, := min(oy ', tp).

An important consequence of the fact that the normal component of 5 and the source term f vanish at the
boundary is the following.

Proposition 2.1 (boundary value of Bu(t) and Au(t)). For allt € [0,tF],
Bu(t)‘ag = Au(t)|ag = 0. (2.2)

Proof. The fact that Bu(t)|spn = 0 results from § having zero normal component on 9f2 and w vanishing on
012. The fact that Au(t)|aq, = 0 then results from the evolution equation since f(t)|sn = dru(t)|on = 0. O

Concerning the discretization parameters, we always assume to fix the ideas that Co < 1; bounds on the
Courant number with different constants will be introduced later. We also assume the following mild reverse-
parabolic CFL inequality

h? < i, (2.3)

where ji := max(u,o?t,). Condition (2.3) is not needed in the stability analysis, but only to derive a bound on
the truncation error in time of order 73/2, instead of 7; see Lemma 3.6. Finally, we make the mild assumption
that the mesh size and the time step resolve the spatial variations of the advection velocity, that is,

o1h <o, oT <1, (2.4)
and observe that the second bound implies 7 < ¢, since 7 < tp as well.

2.2. Space discretization

Let {71} n>0 be a family of affine, simplicial meshes of 2. We assume that the meshes are kept fixed in time
and that the family {73 }n>0 is quasi-uniform. It is also possible to work with shape-regular mesh families. In
this case, as usual, the space scale in the CFL condition is no longer h, but the smallest element diameter in
the mesh. Mesh faces are collected in the set Fj, which is split into the set of interior faces, f,{bnt, and boundary
faces, F**. For a smooth enough function v that is possibly double-valued at F € Fi™ with F = 9T~ NoT+,
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we define its jump at F as [v] := v|p- — v|p+, and we fix the unit normal vector to F', denoted by vp, as
pointing from 7'~ to T'". The arbitrariness in the sign of [v] is irrelevant in what follows.

Let V}, be the finite element space spanned by continuous and piecewise affine functions. Set V' (h) := H?(£2)+
Vi,. The space semi-discretized formulation can be written as follows: for all ¢ € [0, tg], find uy(t) € V}, such that

Btuh(t) + Bhuh(t) + Ahuh(t) = fh(t), (25)

with initial condition wup(0) = mpug and source term fp, := m, f, where 7, denotes the L-orthogonal projection
onto V3. The discrete linear operators By, : V(h) — Vj, and Aj : V(kh) — V}, are such that for all (z,wy) €
V(h) X Vh,

(th,wh)L = (ﬁ'VZ,’wh)L + Z Sciph%v(|l/p~ﬁ‘llp~[[vz]],I/F~[[th]])L7F, (2.6&)
FeFint
(Apz,wp)r == (uWVz,Vwp)pa — (u(v-Vz),wn) .00 — (2, v-Vwp) oo + Sbchil(,uz,'UJh)L,(’)Q. (2.6b)

Here, (-, )1, denotes the L2(§2)-inner product (with associated norm ||-||z) and (-, -) L« the [L%(£2)]%-inner product
(with associated norm |[|-||.4), while, for a subset w C §2 (a mesh face or a collection thereof), (-, ) ., denotes the
corresponding L?(w)-inner product. We observe that the homogeneous Dirichlet boundary condition is weakly
enforced in A, (and that the additional boundary term ZFE?;“O&)Q— (lv-Blz,vn) L F, where 02~ denotes the
inflow boundary, has been discarded from Bj since we assume v-f3lao = 0). Moreover, the user-dependent
parameter Scip is positive, while the user-dependent parameter Sy is sufficiently large (see Sect. 2.6).

The discrete linear operators A and Bj, satisfy important stability and boundedness properties collected
in Section 2.6. For the time being, we record the following consistency property: for all v € V|

Bv = 7, (Bv), Apv = 73 (Av). (2.7)

2.3. Time discretization

For all 0 < n < N with N := |tp/7], a superscript n indicates the value of a function at the discrete time
nt, and for all 0 < n < N — 1, we set I, :== (n7, (n + 1)7]. For a real parameter v € (0, %), we consider the
following time discretization scheme:

T (2.8)
wp = up — 7By — (1 = 29)TApvp — yTApwy + (1 — )7 f7, (2.8b)

1 1 1
uptt =l — SrBi(of + wft) — ST AR(of + ) + 7T (2.8¢)

1
Here, f:+2 =mnf((n+ %)7’) can be replaced by any second-order approximation in time, e.g., %(f{j + f;;“).

We observe that the operator By, is treated using an explicit two-stage RK scheme and the operator A using
a diagonally implicit two-stage RK scheme. By using equation (2.8a) in (2.8b) and equations (2.8a)—(2.8b) in
(2.8¢), we obtain the following alternative form of the system (2.8):

o = uf — Al I, (2.9)
wy, = vy — TBruy — (1 = 3v)TApvy — yTApwy + (1 — 27)7 17, (2.9b)

1 1 1 1 1 1
uZH — E(U;Z +wp) — §TB}LU)Z — 577’14}/02 — 5(1 —Y)TApwy + T ( :"’2 _ §f}?) . (2.9¢)

2.4. Truncation error in time

The goal of this section is to identify the truncation error in time. Recalling the operators B : V 3 v — 3-Vuv €
Land A:V v+ —pAv € L, we introduce, for all 0 < n < N — 1, the auxiliary functions v",w" € H{(£2)
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such that (compare with (2.8a)—(2.8b))

"+ T AV = U + 4T f7 (2.10a)
w" +yTAw" = u" — 7Bv" — (1 = 2y)7Av"™ + (1 — y)7f", (2.10b)

or, equivalently, subtracting (2.10a) from (2.10b) (compare with (2.9b))
w" + 7AW" = 0" —7Bv" — (1 — 3vy)TAV" + (1 — 2v)7f™. (2.11)
Moreover, owing to elliptic regularity, v", w™ € V.

Definition 2.2 (truncation error). The truncation error ¥™ € L at the discrete time n7 is defined as

U= W ) S (A B0+ wt) - frT, (212)

TN N

It is straightforward to verify that (compare with (2.8¢) and (2.9¢))
1 1
untl = — 573(11" +w") — 5734(11" +w™) 4+ TfrY2 4 g
1 n n 1 n 1 n 1 n n+1/2 1 n n
25(11 +w )—iTBw —5’)/7'14’[) —5(1—7)71410 +7(f _Ef +TY". (2.13)

2.5. Error equation

To formulate the error equation, we define

&y = up — mpu”, 0y = vy — mpo", ¢p = wy —mw", (2.14a)
& =u" — mpu”, or =™ — o, C=w" — ™. (2.14b)
Hence, the approximation error can be written as u™ —up = =& + £} and similarly for v" — v} and w" —wy.

The functions &7, 07, and (! are used to measure the space approximation errors.

Lemma 2.3 (error equation). There holds

On =& —yTARGL + Ty, (2.15a)

G =0 —7Brl — (1 = 37)TApby — yT ARG + 7065, (2.15Db)
1 1 1 1

W =500+ G = 5TBAGE — ST ARG — S (1= )TARG! + 7O} — T, (2.15¢)

where ¥} := mp¥" and
ap = 'YAhgﬂ—, 5h = Bhaﬂ + (1 - 37)Ah0ﬂ' + ’yAhCW’ 5h = EBhCW + §7Ah07r + 5(1 - ’Y)AhCﬂ'

Proof. Apply the projector 7y, to (2.10a), (2.11), and (2.13), use consistency, and subtract the resulting equations
from (2.9). O

2.6. Stability and boundedness of the discrete operators A, and By,

We define the following seminorm and norm on V(h),

= D SephdllveB1Y v [V (2.16a)
FeFnt
I21% = plV2lZa + ph~ 2l 00 (2.16b)
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It is well-known that provided Sy is sufficiently large, there is ¢, > 0 such that for all v, € Vp,

(Apvp,vn)L > Ca”'UhHil- (2.17)

To allow for a more compact notation, we also consider the norm |lvy|l, = (Ahvh,vh)lL/2 for all v, € V.
Furthermore, integration by parts readily yields

(Brvn, o)z = |onl3- (2.18)

We now examine briefly some important boundedness properties of the discrete operators Ay and Bj,. In
addition to the |-|s-seminorm and the ||-|| 4-norm defined above, we consider the following norms on V' (h),

2]l B« == |2]s + o/2h7 2| 2], (2.19a)
2] as := [|2]|a + p/ 2R 2|0V 2| o0 (2.19Db)

These norms will be used to measure the space approximation errors. The following properties of B are
established in [5,7,8]. Note that property (2.22) is valid only for piecewise affine functions.

Lemma 2.4 (boundedness of By,). For all z € V(h),

|Brz||L < 0||Vz||pa + Csa'/2h1/2|2]g, (2.20)
for all (z,v) € V(h) x V,
(Br(z — mnz),vn)zl S 12 — 2l Ba(vnls + o1/ [|vnll), (2.21)
and for all (v, wp) € Vi, X Vi,
|(Bhon, w, — mwn)z| < Cpo2h™ 2 (Jopls + o1/ [|vn ]| ) llwn — 7wn ]z, (2.22)

where ) denotes the L-orthogonal projection onto piecewise constant functions.
Using discrete trace and inverse inequalities, together with (2.20) yields for all v, € V},,
onls S o' 2R P llonlln,  IBronlle S oh ™ onllz, (2.23)
while using (2.21) and the previous bound on |vp|s yields for all z € V/(h),
7| Br(z — mh2) ||z < 72CoY? ||z — 72| B (2.24)

The following properties of A, are established using fairly standard arguments, in particular discrete trace and
inverse inequalities and the uniform equivalence of the ||| 4- and ||| as-norms on V.

Lemma 2.5 (boundedness of Ap). For all (z,wy) € V(h) x V,
|(Anz, wn)l S llzllacllwnlla s that [ AnzllL S p/?h~ |2 4. (2.25)
Additionally, for all (zp,wy) € Vi, X Vi,

(Anznewn)zl S lenllallwnlla so that [ Anzalle S 1/2h " [lza]la- (2.26)

3. TRUNCATION AND SPACE APPROXIMATION ERRORS

The goal of this section is to establish bounds on the truncation error ¥™ defined by (2.12) and on the space
approximation errors associated with the functions 62 and (? defined by (2.14b). To this end, we first derive
bounds on the auxiliary functions at intermediate stages, namely the functions v”™ and w™ defined by (2.10).
Recall that owing to elliptic regularity, these functions are in V. = H?(§2) N H(£2).
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3.1. Bounds on the auxiliary functions at intermediate stages

Bounding Sobolev norms of the functions v and w™ hinges on the stability properties of the operator
(I +~7A)~! (where I is the identity in V).

Lemma 3.1 (stability of (I +~7A)). Letv € L and let u € V be such that

(I +~1TAu=n0. (3.1)
Then,
e Slolle, (wr) [ Vulle S o]z (32)
If, additionally v € HJ(£2),
IVulle S [Vollpa, — (un)? ]| Dulp S (Vo] L. (3.3)
If, additionally v € V,
[Aulr SlAolz,  (un)?VAu| L < [|Av] L. (34)

Proof. Take the L-scalar product of (3.1) with u and integrate by parts to infer (3.2), apply the same procedure
to (3.1) with Au observing that Au|spp = 0 owing to (3.1) to infer (3.3), and take the Laplacian of (3.1) and
apply the same procedure with Au to infer (3.4). O

As a first application, we derive bounds on (v™ — u™) and on v™.

Lemma 3.2 (bounds on (v™ —u™) and v™). For s € {1,2}, set K := |f™|g= + plu”

Hs+2. Then,
IV —u)lle S 7T, A" —u") | STEY, (un)PIVAQT —u) | STEE,  (3.5)

and letting K = [u"|gs + 7K™, . -
van”L‘i S K{l’ |Un‘H2 g Kéﬂ (36)

Proof. Take u :=v"™ —u™ so that v = y7(f™ — Au™) owing to (2.10a). Since v € V (recall that f™ and Au™ vanish
on 912), the bound on ||V (v™ — u™)||p« results from (3.3) and the two other bounds on (v — u™) from (3.4).
Finally, the bounds (3.6) on v™ result from (3.5), the triangle inequality, and elliptic regularity. O

As a second application, we derive bounds on (w™ — «™) and on w™.

Lemma 3.3 (bounds on (w" — ") and w"). Let K _, = KI' + cK¥ + 01 K}'. Then,

w—u
IV(w" —u)pe STEG o ()2 A@" —u™)|L S 7K, (3.7)
and
() 2w gz S ()P gz + TR, (3.8)
Proof. We first deduce from (2.10) that
(I +~7A)(w" —u™) = y7(f" — Au™) + 711 — 27)(v"™ — u™) — 7Bv"™. (3.9)

As a result, we can apply Lemma 3.1 with u := w™ — 4™ and v equal to the right-hand side of (3.9). We observe
that v € H}($2) and that ||[Vo|/« < 7K"_, since, in particular, ||V(Bv")| e < olv™| gz + 01| Vo™ ||pe <
oK% + 01 K} where we have used (3.6) to bound v™. Hence, the bounds (3.7) on (w™ — u™) result from (3.3).
Finally, the bound (3.8) on w™ results from (3.7), the triangle inequality, and elliptic regularity. O



IMEX RK WITH SYMMETRIC STABILIZATION 689

3.2. Bound on the truncation error

In this section, we derive two bounds on the truncation error. To this end, it is useful to consider the following
equivalent expression for U™ (the proof, which amounts to a direct verification, is skipped for brevity).

Lemma 3.4 (equivalent expression for ¥"). Let ™ € V be defined such that

1 1
"= 5(1}” +w™) —u" — iratu”. (3.10)

Then, letting ¥" := 7= (u™t! — u™ — 79" — L720pu™) + (f" + 3700 f™ — frHY/2), there holds
" = U + Ba" + Az". (3.11)

We observe that it is necessary to bound spatial derivatives of ™ in order to control the terms Bx™ and Ax™.
Here, the bounds on (v — u™) derived in Lemma 3.2 are instrumental.

Lemma 3.5 (bounds on 2"). Let C? := p*/?K% + 7Y/2(c K§ + 0y K} + p|0yu™|gs). Then,

|Ba" | S aCpr/?, (3.12a)
|42, < w207, (3.12b)
a0 < 520072 (3120

Proof. A direct calculation shows that

1

1
y" = (I +y7A)2" = —iTB(v" —u") — 3

(I =29)TA(" —u"™) — %772148,511”. (3.13)

Applying Lemma 3.1 with u = 2™ and v = y" and observing that y™ € H}(£2) (for the first term, v-3 as well as
(v™ —u™) vanish on 042; for the second term, Av™ vanishes on 02 owing to (2.10a) and Au™ by Proposition 2.1;
for the third term, Au(t) vanishes on 942 at all times by Proposition 2.1 and, hence, so does its time-derivative),
we infer using (3.3) that |Va"||pe < [|Vy"||le and (ur)Y?||Az"| < ||Vy"| za. Using the bounds (3.5) on

~

(0™ — u™) yields || Vy"|| L« < CP13/2) whence (3.12a) and (3.12b). Finally, a continuous scaled trace inequality
together with elliptic regularity yield

2"l ax S n2(IV2"™ | pa + hla"|52) S p!/2(|Va"™ | pa + hllAz"||1).
Using the reverse-parabolic CFL inequality (2.3) and the above bounds on [|[Vz"| pa and || Az™| 1, we infer
2"l ax S A2V pa + (u7) 2| A2 L) S B2 (V" | a,
whence (3.12¢) results from the bound on ||[Vy"||1q. O

We can now state the main result of this section, providing two ways to bound the truncation error. The first
bound (3.15a) is simpler, but is only first-order in time; the second bound (3.15b) is of higher-order, namely
3/2, but estimates the diffusive contribution of 2™ differently. Both bounds will be used in what follows.

Lemma 3.6. Let
Cp = (Lr)V2Cn , + 1 eCn + pt2Cn, (3.14a)
Cy =71Cp; +7%0Cp + p!?Cy, (3.14b)
where Cy! is defined in Lemma 3.5 and C}} ;= ||ullcs(r,;0) + || fllo2(r,:0)- Then,

1™ < 197+ 1B2" |l + | Az | S Cir, (3.15a)

1™ + | Ba™ | + 622 e e S 822037002 (3.15b)

~
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Proof. Using the definition (3.11) and the triangle inequality leads to
1™ | < ||z + | Ba" | 1 + || A™| 1,

whence (3.15a) results from (3.12a), (3.12b), and the obvious bound ||#"||; < Cg,fTQ. Furthermore, the second
bound (3.15b) results from (3.12a), (3.12c), and the same bound on ||#"|r. O

Remark 3.7 (convergence order in time). Although the two-stage IMEX RK scheme is formally second-order,
as reflected by the bound on ||M:/"H 1 based on Taylor polynomial expansions on u and f, the bounds on the
truncation error derived in Lemma 3.6 are not second-order. In fact, although ||2™|| 1, is second-order in time (this
results from (3.13) so that ||2" | < ||y" | and the fact that ||y"|| 1 < 72(0 K1+ pKa2+ p|dsu™|gz2)), the first- and
second-order derivatives of ™ are not second-order in time, as reflected by the bounds derived in Lemma 3.5
on ||Bz™||; and ||Az™||r. The difficulty in deriving higher-order bounds on ||Bz™||; and ||Az"||L stems from
boundary conditions. To establish the present bounds, we have, in particular, made use of Au™|gn, = 0 and
Bu|p = 0 owing to Proposition 2.1. Under the more restrictive assumption ABu"|sq, = 0 (which holds true,
e.g., if the normal derivative of § and the Laplacian of the normal component of 5 vanish on 042), it is possible
to gain a factor 7'/2 in the bounds on ||B2"||; and ||A2™||y. This results from the fact that the function y”
defined by (3.13) is such that (I +y7A)y" = 72(20 + 28) with 20 = —2yB(f" — Au™) — $(1 — 29)vA(f" —
Au™) — 2y Adw™ € H}(12) (since ABu™|po = 0) and 28 = —1y(AB — BA)(v" — u") — 14%7A%9,u™ € L so
that ||[Vy"| e < 72 (details are skipped for brevity). An alternative assumption leading to the same conclusion
is to use periodic boundary conditions. Finally, we stress that the present bounds are, however, sufficient to
equilibrate the space and time errors in our error estimates in the context of the CFL restriction on the time
step.

3.3. Bounds on the space approximation errors

The goal of this section is to bound the ||-|| 4+~ and ||-|| g.-norms of 62 and (%. We first observe that standard
approximation properties in finite element spaces yield for all z € H?(2),

I =zl S OV 2 e, 2 — mnellae S 2RIz, (3.16)

Lemma 3.8 (bound on 67 and (). There holds
1071 5« + 1071 4 S (012032 + u'2R) K, (3.17a)
IGH B + 1G4 S (020372 + p!2R)KG + 7' 2RI, (3.17b)

Proof. The bound (3.17a) readily results from (3.16) and the bound (3.6) on |v"|g2. To bound ||(7] 4%, we
use again (3.16) together with (3.8) yielding ||¢7[|ax < p'/2h|u™| g2 + 7/2RK?" . To bound ||¢*|| s, we first
observe that for a function z € V,

|z — 7zl Bs S 022 ||V 2| La. (3.18)

This assertion is clear for the ||-|| .-norm contribution, while using a discrete trace inequality and the H '-stability
of 7y, yields
|2 — mhzls = |mnzls S o 2R Vmpz| pa S o2RY2 | V2| La.

As a result, starting from the triangle inequality
G llB+ < [lu” = mnu”|| pe + [[(w" — u™) — 7 (W™ — u")|| B+,

and using the approximation property (3.16) for the first term, together with (3.18) and (3.7) to bound ||V (w" —
u™)||pa, we infer

HC;L”B* g 0_1/2h3/2‘un‘H2 +01/2h1/27K$_u < 0_1/2h3/2‘un‘H2 +Tl/2hKn

w—ur

where we have used Co < 1. The conclusion is straightforward since |u"|g2 < f{; 0
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4. STABILITY AND CONVERGENCE ANALYSIS

This section is devoted to the stability and convergence analysis of the IMEX RK scheme (2.9). Firstly, we
derive a basic energy estimate valid in all flow regimes (Thm. 4.4). On the right-hand side of this estimate
appears an anti-dissipative term together with the time and space discretization errors. Then, we bound the
anti-dissipative term depending on the flow regime, yielding our main convergence results (Thms. 4.8 and 4.16
together with Props. 4.9 and 4.17).

4.1. Basic energy identity

We begin the analysis with a basic energy identity valid in all flow regimes.

Lemma 4.1 (basic energy identity). Assume v € (0, %) There holds
n+1 1 n||2 1 1 n (|2 1 n |2
—||f Iz - §H§h||L + —||9h &7+ 7‘9 %+ 7'|Ch|s Tl =7 ORIz + 57 ull[e T
# 3Tl ORI = S G 47 (o + A0 ) + TOOR G — TG) (11)
L
Remark 4.2 (pure advection, role of diffusion). Setting the diffusion coefficient to zero, the energy identity (4.1)

reduces to the one derived in [8] for explicit RK2 schemes in the purely advective case. Moreover, in the presence
of diffusion, all the additional terms involving the [|-||,-norm are dissipative for v € (0, %).

Proof. We multiply equation (2.15a) by 67 to obtain using the discrete stability (2.17) of Ay,

1 1 1 1
SIORIZ + 108 — &RIIZ = SIERIZ + Ok — &R 00)r = IR — 761G + (e, 67)c. (4.2)

Then, we multiply equation (2.15b) by %02 and equation (2.15¢) by ¢;' to obtain

1 n on 1 n 1 n on n 1 n
S (GO = SRR — Sm(Bub 00 — (1= 307I6FI2 — Sor (NG00 + 57 (500 (43)
and
n+1 1 n n n _l By (" (T _l A Q7 _11_ n||2 §no_gn (n
& e (h+Cthh)L 27'( nChsChL 277'( nOhs Ch)L 2( V7lcrlla + 70k by Ch)L-
(4.4)

Summing (4.2) and (4.3) we deduce
1 n on 1 n ni2 1 n|2 1 n ogn
E(Chaeh)L = = §H9h —&lln + —Hfh”/; (Bhehveh) 2(1 N7 NIZ — §WT(AhCh79h)L

1
s (ah+ 5@?,02) | (45)

L
Using now the identity (£, ¢ = SIE 12 — $160T = ¢ull2 + 1I¢h1I3 together with (4.4) and (4.5), we

infer

. N 1 1 1
SIETIE — S = G+ SIGHIE = SRR — 5168 — 01 + S IERIR — 5(Badl. 00 — 5
1

1
= 50 = IR = vrAnG ) — 51— )rlGRIE + 7 (af + 552,92) R G — O G
L

T(BhC;'f, ChL

Rearranging the relation, completing the square in the three terms involving the ||-|,-norm, and using the
discrete stability (2.18) of By, yields the assertion. O
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4.2. Bound on source terms and basic energy estimate

The goal of our second step is to bound the contributions of the source terms «j, 55, 5, and ¥;' on the
right-hand side of the basic energy identity (4.1). To this purpose, we exploit the presence of the |-|%-terms
and the ||-||2-terms on the left-hand side (Lem. 4.3) so as to arrive at a basic energy estimate valid in all flow
regimes and where the only term left to be bounded is the anti-dissipative term %Hf}’frl —¢"|3 (Thm. 4.4). To
fix the ideas, we assume v € [%, %} A larger interval included in (0, %) can be considered; this will only modify
the numerical factors in front of the ||-||2-terms. We introduce the quantity

n —1/2¢n n n n n n
By o=t PG + 1651 5 + 167 s + 1GH | + 1G24 + CE2, (4.6)

which collects, in addition to 1 2\|§;;|| 1, the space and time approximation errors. The contribution of the
truncation error is already bounded in terms of the time step and the constant CJ, defined by (3.14a); instead,

we do not yet bound the space approximation errors 67 and (7.

Lemma 4.3 (bound on source terms). Assume v € [£, 2] and Co < 1. Then,

T + (0, ) — (P, G| < §T|9h|?9+§T\Ch|?9+ETH9h”2+@T||Ch||g+CT(Eh)2~ (4.7)

1
(ot + a0t )

L
Proof. We first bound [|6}|| and ||(}|| . Taking the L-scalar product of (2.15a) with 6} yields
1017 + 70517 = (& 0L +7(Anbr, 07 L.

Using (2.25) and the Cauchy-Schwarz inequality yields ||07 (|2 +7(|07]12 < [|€2]| L |07 | + 71|02 a«]| 03] 4. Hence,
using Young’s inequality together with (2.17), we obtain

103117 + TlloR1E < IERIIT + Tllox .- (4.8)
Taking now the L-scalar product of (2.15b) with (' yields
ICRIZ + 7GR = OF. G e — T(Brbiy, (i) — (1 =397 (Anff, G + 785, G -

Using (2.23), the Cauchy-Schwarz inequality, and Co < 1, we infer 7|(Bxr0y, (7| S 1071 2]|¢7 ] - In addition,
T|(Anb;, el S 103 all¢f ||a owing to (2.26) and (2.17), while using the boundedness (2.21) and (2.25) of By,
and Ay, we infer

1/2
7181 GO Ll S 7103 13-k |s + o1 211G 1) + (163 L4« + 1CH1a=) 1G4
S0 B CHL + 7167 Lax + 1CH I ICH La,

where we have used 701 < 1, Co < 1, and (2.23). Hence,
IR +7ICHIZ S N6RIT + Tl6R 11 + (67 1. + 10715 + 16 1%
and accounting for (4.8) finally yields
ICRIE + TG NE S NENE +Tl0R 1B + 107 1%, + ICR1)- (4.9)

We are now ready to bound the source terms. Since aj = YA and [(An67,00)r] S 1102 axllfnlla S
1021 441107 ||« owing to (2.25) and (2.17), we first obtain using Young’s inequality

1 1
7l(aq, i)l < g5 Tl6R G + CTlOx % < g57lgllc + Or(ER)®. (4.10)



IMEX RK WITH SYMMETRIC STABILIZATION 693
Similarly, recalling 8} = Bp02 + (1 — 3v)Anb7 + vA,(P and using (2.21),
578k 0Ll < %T(Wﬁl% +ou|0R17) + %T\l%\li +Or(107 115 + 10715 + G I.)-
Hence, using (4.8) to bound ||6}||z and since 7 < ¢, < 01_1 we infer
5 7I(BE, )] < T|9h|s +3 T||9h||2 +O7(By)%. (4.11)
Turning to J; and recalling that §; = %BhC" + §7Ah9" + —( — v)ApC? and proceeding as above, we infer

(6%, G2l < 5TIGHE + TearI G + Cr(E)?. (4.12)

Finally, concerning ¥}, we infer using (3.11), the Cauchy—Schwarz inequality, and Young’s inequality (note in
particular that (Az", (i) = (An2™, )z < [[27 || axlIC3 ] ),

(5, G < I NLlIGH | + B |G e + TH@""HA*HC;?IIA

< (1713 + 1B 13) + 2 G + Tl GHI2 + Ol .

160

Using the bound (3.15b) on ||¥"| 1, + ||Bx"||L 112

/28
( h> Ch) — 160
so that owing to the bound (4.9) on ¢}', 7 < t., and the definition of E}',

|2™|| 4, we obtain

THChH2+7't Y¢rIz + Cr(Cy)?re,

(G < T TIGHIE + Ol (413)
Collecting the bounds (4.10), (4.11), (4.12), and (4.13) yields the assertion. O
Combining Lemmas 4.1 and 4.3 yields our basic energy estimate.

Theorem 4.4 (basic energy estimate). Assume v € [%, 2] and Co < 1. Then,

1, .. 1 1 3 1 1 1
IEIE - SI6RIE + 168 — SHI3 + SR+ SrIGhiE + (5 v ) 7RI + grIGRIE + g5l + 6R13

||£”+1 Gl + Cr(BR)*. (4.14)

|=

Proof. Using the energy identity (4.1) together with the fact that % -y > 11—0 and v >
the bound (4.7) on the source terms yields

and accounting for

57

SIEIE - SI6RIE + 3168 - 613 + SRt + Srighis + (5 v ) BRI+ JorlGRIE + g5l + 631
||€"Jrl = GlIZ + 57Ok + g lIGR1E + Cr(ER)*.
Since the term involving [|67]|2 on the left-hand side will be used later in a different context, we leave it as it

stands and use instead the terms [|¢']|2 and ||} + 67||2 on the left-hand side to absorb the two terms with the
||]la-norm on the right-hand side. We observe that

3
163112 = 1167 + ¢t — Grll2 < SNChllz + 3lICh + o2
to infer the assertion. O

The way to tackle the anti-dissipative term 3 ||§thrl ¢||? on the right-hand side of the basic energy esti-
mate (4.14) depends on the flow regime and will be examined in the next two sections.
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4.3. Stability and convergence: advection-dominated regime

In this regime, we assume that Pe > 1 and, as before to fix the ideas, that v € [%, %] Taking a larger interval

for v in (0, %) is again possible, and this will only modify the numerical factors in the bound on the Courant
number. In the advection-dominated regime, an important ingredient to bound the diffusion operator is that
there is C4 such that for all v, € V},,

7| ApvnllL < Ca(Co/Pe) /2712 ||uy |4, (4.15)

since owing to (2.26), 7||Apvnllz < 7' /2h " |oplla and 7V/2u /2Rt = (Co/Pe)'/2.

Our first step is to control the anti-dissipative term %||§,ij+1 — (|| on the right-hand side of the basic energy

estimate (4.14). We use the following inverse inequality: there is C; such that for all v, € V},
vahHLd < Cihilnvh_W}OthHLa (416)

where 7r2 is defined in Lemma 2.4.

Lemma 4.5 (stability). Assume Pe > 1, v € [%, %}, and Co < 1. Assume further that

1 1 5
Co < min {E(CiCB)—2/3, §C§2, an(wi + 3)_2CA2Pe} , (4.17)
recalling that C'g and C's are defined in Lemma 2.4. Then,
1n+12 1n2 1n n||2 1 n|2 1 n|2 1 n |12 1 n n|2 < n\2
§||£h Iz — §H§hHL + §||9h - &l + §T|9h\s + §T|Ch s+ %CGTHQ}LHA + ECaTHCh +0rlla < T(ER)”

(4.18)

Proof. We start from the basic energy estimate (4.14) and observe that % —v 2> 11—0 to write

1 1 1 1 3 3 1 1 1
SIEFIE = SIEHIE + 5108 — &3 + Sr0R 1% + Srch s + <seatlOR 13 + spear IGRIE + goearlGh + 01 1%

1 n
< S = G + Cr(ER)2,

where we have used (2.17) to replace the |[|-||q-norm by the ||-|| s-norm. Set 5} := 6} — (}*, so that by (2.15b)
and (2.15¢),

1 1 1 1
R -G = §TBh77£ + <§ - 2’7) TARY, — (5 - 7) TARC — 57’@? + 705, — T (4.19)

Using the triangle inequality and the bound (2.20) on By, yields

€ = Rl < 5071V llze + 5CsCol 2 2 g + ]5 - 2|7t + (5 =) TlAnci e

1 mn n n
(GBI + 1t + 12 )

The terms involving the discrete operator Ay are bounded using (4.15), %— 27| < %, and (% — ’y) < %
yielding
3 - 2|1l + (5 =) TlAnGHlL < 2 Ca(CorPe (16314 + G L)

The contributions of Ay to 37 and §} are bounded using (2.25) and 7'/2u/2h=1 = (Co/Pe)/? < 1 so that

Tl An87 1l + T AnGE Il S Tt PR (107 ] ax + 167 ax) < TV2ER.
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The contributions of By, to 8} and dj are bounded using (2.24) and Co < 1 so that
I Bubrlle + 7l BuG L S 72167 1« + G 1 52) < 7V/2E].

Hence,
6L + Tl S /2By (4.

Finally,
Pl < P|eny S TG < 7V2CE? < 72 By, (1

owing to the bound (3.15a) on |||, and the fact that Cj < C. As a result,
1 1 3
16 =GRl < 5oTlIVnllLa+5CsCol 2 2 gt s+ 25 Ca(Co/Pe) 2t 2 (07 | a+ |G lLa) + Cr 2 BR. (4.

The next step is to control [|[Vn?||La. Let ¢ = ni' — w9n7 and observe that

I 1% = (ks i) = T(Bwbi <t )r + (1= 39)7(Anby, )z + 7 (ARG, i)z — 7(85, i)z

695

20)

21)

22)

since 1) = TBRrO) + (1 —3v)TAR0y +~y7AR() —76) owing to (2.15b). To bound the first term on the right-hand

side, we use the bound (2.22) on By, to infer

T/(Buy, )| < CuCo*7Y2(16% s + ot 1607 1 2) s .-

and the bound (4.15) for the terms involving the discrete operator Ay, and simplifying by ||</'||z yields
2

skl < CpCoM e 2(163|s + 01 16} ]11) + 5 Ca(Co/Pe) 27 2167 L4 + 1 1La) + 711871,

so that using the bound (4.8) on ||6}'||1, 701 < 1, and (4.20) to bound 7||5}||z, leads to
2
sz < CpCo™2r 07 |s + gCA(CO/P€)1/271/2(II9ZHA +Glla) + Cr2E.

Thus, using the inverse inequality (4.16), we obtain

or||[ Vil La < Cioth™ i | = CiCollsj |

2
< C;CpCo 271 2|07 |s + gCiC’ACO(Co/Pe)l/QTl/Q(||GZ||A +1I¢Ma) + CT2ER.

Substituting back into (4.22), re-arranging terms, and since Co < 1, we infer

1€ = Gl < 5CiCBCo™2rt 2|6 |s + S CsCol 2rt/ 216 — (s

1 3
+ (504 o) CatCorpo 165 1+ [GtlLa) + O 2

Let x1 := 327"/2 and x5 := 80~ /2. Then, owing to the assumption (4.17) on the Courant number, the above

inequality becomes
€ = Gille < xam' 207 1s + 105 = Giils) + xeca 272160514 + G 1|a) + CTV2 B
Since [0 s+(07 — (i |s < 2(]07|s+|¢P|s), squaring the above bound, and using that $(a+b+c)? < a?+2b?+
where a, b, and ¢ denote the three addends on the right-hand side of the above equation yields
1 n n n n n mn
5“52“ = GHIE <8ORS + IGHE) + axear(1051% + IGH %) + CTES.

Finally, observing that 8y? = % and 43 = 21—0 yields the assertion.

2¢2
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Remark 4.6 (purely advective case). In the purely advective case (@ = 0), the third argument in the
bound (4.17) on the Courant number can be dropped, leading to the bound derived in [8].

Remark 4.7 (parabolic CFL restriction). In the advection-dominated regime, there holds 7uh~2 = CoPe ! <
1, which is a parabolic CFL restriction on the time step. In particular, this property has been used in the proof
of Lemma 4.5 to control the terms with the discrete operator Ay using (4.15). We stress that this property is
not used in the diffusion-dominated regime, where it will be too restrictive. We also notice that this property
is compatible with (2.3) since, in all cases, i < fi; actually, in the advection-dominated regime, there holds in
general ji = o%t, > p.

We can now derive our main convergence result in the advection-dominated regime.

Theorem 4.8 (convergence in L-norm). With the basic assumptions stated in Section 2.1, assume Pe > 1, take
v E [%, %], and assume the bound (4.17) on the Courant number. Then,

[ = w1z S Cim™? + Cipea™?1%?, (4.23)
where CZ, = ZnNz_Ol 7(Cg)? with Cy defined by (3.14a) and CZ,. = 271:/:—01 T(K5)? + (67 K" _)?) with K%
and K,_,, defined in Lemmas 3.2 and 3.3 respectively.

Proof. Using the stability result of Lemma 4.5, we sum over n, discard the dissipative terms on the left-hand
side, and use a discrete Gronwall lemma to eliminate the contribution of ||£||2 in E7'. This yields

N-1
N 17 S Y TR B + IG IS + 162115 + 1% + (C3)*7®).
n=0

To bound the terms with 67 and ¢, we use the result of Lemma 3.8, and the fact that u'/? < ¢'/2h1/2 since
Pe > 1 and 7V/2hK"_, < o'/2h3/2(¢7 K7 _,) since Co < 1. This yields [|¢)]|z < CiimT/? + Cspeo'/2h3/2, and
we conclude using the triangle inequality. O

The convergence result of Theorem 4.8 can be completed by showing additionally the convergence in the
||I]l a-norm. The proof is postponed to Section 7.1.

Proposition 4.9 (convergence in ||-||4-norm). Under the assumptions of Theorem 4.8, there holds

N 1/2
<T Z ||un - UZHZ) S CtimTS/z + Ospca'l/2h3/2.
n=1

4.4. Stability and convergence: diffusion-dominated regime

In this regime, we assume Pe < 1. We derive three intermediate stability results. First (Lem. 4.10), we
tighten the basic energy estimate (4.14) by achieving additional control on the increment [|67 — ¢}||%. Then
(Lem. 4.12), we bound the anti-dissipative term (/¢ — ¢7'[|2. Finally (Lem. 4.13), we achieve additional
control on 7€ ||4. For our first step, it is sufficient that v € (3, 2]; the minimal threshold on v serves to
obtain only positive factors on the left-hand side of the new energy estimate (4.25). For our second and third
steps, we need the parameter v to be sufficiently close to v, =1 — % ~ (0.293. For simplicity, we assume 7 = v,
and postpone to Remark 4.15 the discussion when ~ slightly deviates from ~,, as motivated for instance by
finite arithmetic precision.

In the diffusion-dominated regime, an important ingredient to bound the operator Bj, is that there is Cpy

such that for all v, € V},,

7| BuonllL < Cpatop™?|Jun|la = Cpa(CoPe)' 271 /2|jup| 4, (4.24)
since owing to the definition of the ||-|| a-norm, ||Von||pa < g~ /2|lvn] 4, while a discrete trace inequality yields
lonls < (%)1/2”%“,4, so that (4.24) results from (2.20) and 7'/20u~1/? = (CoPe)!/2.
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Lemma 4.10. Assume 7y € (3, 2]. Assume Co < min(1 Lc,Cp3Pe"). Then,

» 30
SIEIE — SI6RIE + 168 — I + 3108 - GRIE + §rI6Rl3 + grIGhlE + 5 (5 v ) eorllRls (429

1 3 1 .,
+—caf|<2|?4+—(w——)car|9” A+ carllh + 6715 < Ll — o3 + or(Ep).

8 4 4 40
Proof. We first observe that (2.15b) implies
0 — () = 7BROy + (1 — 3y)TAply + T ARG — 705,

and re-arranging terms leads to

68— G =ty — (7= 3 ) Ao + ) = (20— 3 ) 761 - ) — 7.
Taking the L-scalar product with 8} — ¢}' and using the symmetry of aj yields
165 - GHIE = r(Buti 68— i = (1= 5 ) 7RI~ 1GI2) = (0= 5 ) 7168 = G = 7(68 68 — G
Since (B0, 0% — () < 272 Bpoit||2 + (107 — ¢'[|2, this yields, re-arranging terms,

1 1 1
108 = it + (v = 3) 7CIORIE = IGEI2) + (2 - 3) 7068 = GRIE < 3Bk — (6567 - G (420

The idea is now to combine (4.26) with (4.14) so as to absorb the positive term 272||B,0}[| by dissipative terms
on the left-hand side. To this purpose, we multiply (4.26) by a real number « € (0,1) and sum the resulting
estimate to (4.14). To fix the ideas, we take o = 2 yielding

1 1 1 3
§H§Z+1||2L——||fﬁ||2L+—H9Z—fZLH%+g”eﬁ Gillz + 7\9 5+ T|Ch\s
3

4

1
4 5 (27 - 5) a0 — ChlI% + 10 CaT||Ch + 65 l1%

1/1
1 (— =) a1 + gl + 5
. 3 3
H§ = GL A+ g IBAbRIL — 37 (8RO — G+ Cr(ER)?,
where we have used the discrete stability (2.17) of A}, to substitute the |[|-||,-norms by ||-|| 4-norms on the left-

hand side and the fact that 3 —~ > & to simplify the term with [|¢}*||%. Using (4.24) and the assumption on
the Courant number yields

3 . 1 . 1 1 B
=PRI < eaTlOR I = 5 { min, (3-7) } carlBR I,

so that this term can be absorbed using half of the ||6}'||3-term on the left-hand side of the above energy
estimate. Finally, we bound 37(3]',0;" — (').. We obtain using the boundedness (2.21) and (2.25) of B, and
Ah,

3 n gn n n n n n n n n n
271 O = C)Ll S Tl07 |5 (16] — Cils + o216 = Gtlln) + (102 ax + G2 Las)I6F: = Gl a-
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The first term is bounded as

(I0r1% + ICh12) + Cr(102 1B + aullOR1IT + onlICiN7)
T\VUnhls hls TUI0rllBs T O1||Up|lL T O1{GpllL

(10715 + ISR 13) + CT(E})?,

Tl62 11565 = G ls + o1 105 = GhllL) <

~— »-bl»—l»-lklbi

where we have used 701 < 1 and the bounds (4.8) and (4.9) on ||0} || and ||(!||. For the second term,

08 + I a5 (v ) 71 = GRI + CrlIes T, + 12 1)

Collecting the above estimates yields the assertion. O

Our second step aims at controlling the anti-dissipative term 2[|¢"*" — ¢7||2 on the right-hand side of the
energy estimate (4.25). To this purpose, it is useful to reformulate the last step (2.15c) of the error equa-
tion without using the discrete operator Aj. We simply state the result, since the proof amounts to a direct
verification.

Lemma 4.11 (reformulation of last step without Ap). Let wy := y~1(3 — ) and wy == 2%2(—1 + 4y — 242).
Then,
L= wi (G — O+ wa(O) — &) — TBh(Ch 0p) +wiTBROy — TEY — TV, (4.27)
where 1
=y = —§Bh(§? —07) + w1 Broy. (4.28)

In what follows, we assume y = 7,. An important fact used hereafter is that wa(y.) = 0, thereby zeroing out

the contribution of £}’ on the right-hand side of (4.27). We are now ready to bound the anti-dissipative term.
Note that we tighten the assumption on the Courant number with respect to Lemma 4.10.

Lemma 4.12. Assume v = v, and
Co <min (1 LcaC'_2 Pe ' ). (4.29)
- 180 B4
Then,

1
TocalCh + O 1% S m(BR)?. (4.30)

1 1
soCeTIOR % + geatl G + 55

—H?S”“IIL——IIE;LHLJF 7\9"\s+ TGS + 30

Proof. We start from the result of Lemma 4.11. Observing that w; = % and wo = 0 for v = v, and setting
n 1 n n '—'n
Xj = _§Bh(<h —0n) + \/—Bhi9 —Ey =W,
where =} is defined by (4.28), we infer
1
n+1 — no_ gn + X
Ch \/E(Ch h) h

This yields for positive real number €, (&7 — (212 < 21+ e D72 X712 + 21+ €)[|¢r — 6712 Choosing

€ = 5, we infer

[ay

N 3 3
SIEH = G < SPIXEIE + SIGE - 6713,
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We now bound the term || X}![|3. Since &(a + b+ ¢)? < a® 4+ b? + ¢? for real numbers a, b, and ¢, we obtain
using (4.24),

1 1 1 B
L2XRE < TG — I + 37 BRI + 5+
1 n n 1 n —-n n
< Cha(CoPor (7161~ B1IE + 516813 ) + 7150 + B2,
Owing to (2.24) and Co < 1, 7|| =7z < 7V/2E} and recalling 7|¥7 || < 7Y/2E7 from (4.21), we obtain
1 1 1
371X < Cha(Copor ( J16: - 1% + 316513 ) + Cr(Ep>

Owing to the assumption on the Courant number,

31 _ 1 3 1 3 1 _ 1 1 /1
ZC%ACal(COPe) S ﬁ S Z (’}/* - Z) 5 CBAC l(COPe) S % S 1_6 <§ —’}/*> .
As a result,
n+1 n|2 3 1 n ni2 1 1 n| 2 3 n n |2 n\2
||§ —Gllz < 1\ 7 caT||Ch _ehHA"_E 5 Ca7||9h||A+§HCh —Orllz +CT(ER)".
Using this estimate in (4.25) yields the assertion since (3 — 7.) > &. O

We can now proceed to our third and final step in the stability analysis. Our goal is to infer a control on
7)|E||% from the control on 7|07 [|% and 7/|¢*||% achieved in (4.30). This will require replacing the quantity
E} by

Ep o=t )60 + 1072 e + 102 ax + (€21 5+ 11C2 1 ax + Pe 21025 + [C2]s) + 2/°Cor. (431)

The definition of E} entails two modifications with respect to EJ. Firstly, the term Pe 1/2(167|s + |¢7|s) has
been added; this change will not modify the convergence rate in space with respect to that of the ||-|| 4+~ and
I|| Bx-norms of 67 and (. Secondly, and more importantly, the time error is now of lower-order since the term

CgT?’/z has been replaced by ti/2C~’$T.

Lemma 4.13. Assume v = v, and the bound (4.29) on the Courant number. Assume the additional hyperbolic-
type restriction on the time step,

<22, (4.32)
Then,
n 1 n n
—||£ 2 - SIERIZ + 3 (g3 + T\Ch 5+3 Ca TllEn A S (B (4.33)
Proof. We take the L-scalar product of (4.27) with TAhﬂ;H to infer
T Ay = m(Ty + To, A&y ) + 72(Ts — S — 030, A&y )i, (4.34)

where

1
T, = (1 + wﬁ(ﬁ + (wz — wl)ﬂﬁ, Ty = —wng, Ty = _§Bh(C}? — 02) + w1BhQZ.
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Since ¥ = 74, wa = 0 so that T = 0. We now bound the other terms on the right-hand side of (4.34). To bound
the term with T3, we use the boundedness (2.26) of Ay, to infer

7(Tu, An&y e S 7654 + G164
To bound the term with T3, we use the Cauchy—Schwarz inequality, (4.24), (2.26), and Co < 1, yielding
T2 (Brbyy, An&p ) p < P IBOp |l Ang e S Prou™ 205 ap PRI LA < TlOR Al A
Proceeding similarly for the contribution of ¢}, we infer
(T3, A& ) S 16 4 + I A)IER T ] a-

To bound the term with =}, recalling (4.28), we first observe using (2.26) that

e L e PE (P - R T

since owing to (2.26), (2.20), and Co < 1,
TIBabz 4 S 7 2h 7 Bty S Tt 20t (0l VORI + o207 s)

1/2
< W 2VORIe + (£) 162,

oh
Proceeding similarly for the contribution of (I, we infer
2(=n A n+1 < on n i /2 on n n+1
T (E Ang ) S T e llac + () (1071 +ICxIsDIE™ lla-
Finally, to bound the term with ¥, we use the Cauchy-Schwarz inequality and (2.26) to infer

T A < PRt PRI a < TP LllG < TER g L,

owing to the assumption (4.32) on the time step and the fact that i/ @], < E} owing to (3.15a). Combining

the above bounds and using the discrete stability (2.17), we obtain

reallgi A S 7 (107 L + G 1a + B3 ) g0 s
whence the conclusion is straightforward using the stability estimate (4.30). O

Remark 4.14 (restrictions on the time step). When the Péclet number is small, condition (4.29) simply reduces
to Co < 1. In the pure-diffusion limit, this condition, in turn, becomes trivial, and the only restriction on the
time step is (4.32), which is needed to handle the truncation error in Lemma 4.13. Note also that the conditions

Co < 1 and (4.32) can be regrouped into the condition 7 < ti/Qﬂfl/zh with i defined in Section 2.1.

Remark 4.15 (choice of ). The parameter v can slightly deviate from the value 7., but this leads to a more
stringent bound on the Courant number than (4.29). Using (4.27), for positive real numbers € and é, we obtain

§H£h+1 -Gz < F1+e DX + 51+ Qllwr(Cy = Ok) + w2(6) — Nl

1 — n 1 ~ n n 1 ~— n n
< SO+ DTPIXRIL + 51+ + OwilIGh = GRIIE + 51+ (L + & Hwil|0F - GIIZ-
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For v € [+ T 2] w1 is a decreasing function of ~ taking values in [0, 1], while ws is an increasing function of ~
taking values in [—1, 1] with wa(y.) = 0. The proof of Lemma 4.12 can be extended as long as there is € > 0 such
that 3(14+é)w? < 2 and 1(1+¢ w3 < 1 exploiting the presence of the term 3|67 — ('[|2 on the left-hand side
of (4.25). A direct verification shows that this is possible as long as v € (Vux, 3) With v, = (2+ V/8/3)71 ~0.275
(corresponding to w; = /2/3 and wy = —1/3). We observe that the above numerical values depend on the
choice o = % made in the proof of Lemma 4.10. Taking a larger value for o < 1 yields a more stringent bound on
the Courant number in Lemma 4.10 but more flexibility in the choice of v. Finally, the result of Lemma 4.13 is
slightly modified since bounding the terrn waT (&7, Ah§"+1) 1 by Young’s inequality leads to an additional term
on the right-hand of (4.33) of the form g5Ac,7[|&[|%4 where A can be chosen < 1 provided 7 is sufficiently close
to 7.« so that ws is sufficiently small. Details are skipped for brevity.

We can now derive our main convergence result in the diffusion-dominated regime.

Theorem 4.16 (convergence in ||-|| a4-norm). With the basic assumptions stated in Section 2.1, assume Pe <1,
take v = v, and assume the bound (4.29) on the Courant number together with the bound (4.32) on the time
step. Then,

N 1/2
(T > [l — uZIIi,) < Comts*1 + Copept/?h, (4.35)
n=1

where Gy = Y05 7(Cp)? and Cl,e = 32020 T((K3)? + (7/w) (K3i_)?).-

Proof. Using the stability result of Lemma 4.13, we sum over n, discard the |-|s-terms on the left-hand side,
and use a discrete Gronwall lemma to eliminate the contribution of [|£[|? in EJ'. This yields

TZ I€R 1% < Z (107 1+ 11CH 1T + 10515 + GR I +Pe™ (10713 + [CR13) + t2(CF)? 7).

To bound the terms with 67 and (!, we use the result of Lemma 3.8 for the ||-|| 4+~ and [|-|| px-norm, while for
the |-|g-seminorm, we use the bounds (3.6) and (3.8) on |[v™ |2 and |w"|g2 and |u"|g2 < K to infer

Pe V2|07 + [Crls) S PR g2 + 0" | g2) S p'/PhKy + 72 hK

w—u’
The conclusion is straightforward using o'/2h'/2 < ;'/? since Pe < 1. O

It is possible to derive an L-norm error estimate with higher convergence rates than (4.35). The proof is
postponed to Section 7.2.

Proposition 4.17 (convergence in L-norm). Assume that 5 has bounded second-order derivatives with associ-
ated bound denoted by oo. Then, under the assumptions of Theorem 4.16, there holds

WV —ul L S Cim™? + Copea2h3% + Cly o™ 202, 4.36
h

where Ciim is defined in Theorem 4.8, (Cype)? = Z LK )2, (C’S/pc) = ZNA O3 (K5 + 10wl o1, 52)) %,

with K™, = Cp(Ju"| gs + (T/u)l/ngL+0_1(01K§+02Kf)) + K5+ (1/p)Y2K"_. and Cp is the global length
scale associated with the Poincaré inequality stating that for all vy, € Vi, |lvnllz < pu='/2Cp|lvp| a.
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5. EXTENSIONS

For simplicity, the above analysis was presented in the case where space discretization was performed using
continuous, piecewise affine finite elements with CIP. Other finite element methods with symmetric stabilization
can be used. This requires establishing discrete stability and boundedness for the discrete operators By and Ay,.
For consistent methods, the stability and convergence analysis of Section 4 can then be readily applied, while
minor adaptations are needed in the case of weakly consistent methods to formulate the truncation errors.

To illustrate, we briefly consider a DG method for space discretization using upwinding for the advective
part and symmetric interior penalty for the diffusive part. Let V¢ denote the space spanned by (discontinuous)
piecewise affine functions on the mesh 7. For a smooth enough function v that is possibly double-valued at
F € Fi™ with F = 0T~ N 0T, we define, in addition to its jump, its mean value as {v} := L (v|p- + v|p+).
On boundary faces, the jump and mean value refer to the actual value of v on F. The discrete operators By
and Aj, are now such that

(Brzywn)r = (B-Vaz,wn)e — Y (weB)EL fwn e+ D Sww(ve-BIL2], [wal) e,

FeFint FeFint
(Anz,wn) = p(Vnz, Viwp)pa — Y pwe-{Vizd [wnl)ee — Y w2l ve-{Viwn})e e
FeFy FeFy,
+ Z Sipphp' ([2], [wr]) L. F,

FeFy,

where V), denotes the broken (elementwise) gradient operator, while Sypyw = % for classical upwinding, and Sj,
is taken large enough. Then, letting

1 _
2= ) 5||\Vp-ﬁll/2[[Z]]ll2L,F, 2% = ul V212 + Y whit 1T p,
FeFint FEF,

it is readily verified that the discrete stability properties stated in Section 2.6 hold true. Moreover, letting

1/2
2]l B+ := ZS+01/2h1/2|Z||L+<Z > UIIZI%,F> ;

TeT, FCOT

1/2
I2]| ax = ||Z|A+<Z > :U’hF”VF‘VZﬁ,F) ;

TeT, FCOT

it is readily verified that the boundedness properties stated in Section 2.6 hold true.

It is also possible to consider higher-order continuous or discontinuous finite elements with symmetric sta-
bilization. To achieve stability, the sole modification in the above analysis concerns the advection-dominated
regime, since the boundedness property (2.22) can no longer be used. It is then necessary to modify the proof of

Lemma 4.5 when bounding 3" — (7|13 . In particular, following [8] (details are skipped for brevity), the term

17Byn} on the right-hand side of (4.19) is controlled by the so-called 4/3-CFL condition 7 < t;1/3(h/0)4/3.
Deriving convergence rates is a more delicate question not covered herein; it entails, in particular, obtaining
bounds for higher-order Sobolev norms of the auxiliary functions v™ and w™.

6. NUMERICAL EXAMPLES

We consider two numerical experiments using FreeFem-++ [22] to illustrate the above analysis, namely con-
vergence rates to a known smooth solution and control of spurious oscillations for a solution with sharp layers.
For all flow regimes, we used v =1 — % and set the penalty parameters to Scip, = 0.005 and Sy, = 10 for CIP

and to Si, = 10 for DG.
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TABLE 1. Convergence for smooth solution.

m w=0.1 pw=10""1
CIP DG CIP DG
Final L* L*(H') | Final L* L?*(H') | Final L? | Final L?
2.8e-3 5.7e-2 2.0e-3 7.2e-2 — —
9.5e-4 2.7e-2 7.8e-3 4.0e-2 4.6e-2 1.6e-2
2.2¢-4 1.0e-2 1.7e-4 1.8e-2 1.0e-2 3.2¢-3
5.3e-5 5.5e-3 4.2e-5 9.1e-3 1.4e-3 5.2e-4
— 2.1e-4 9.2e-5

= w N = o

6.1. Convergence to smooth solutions

Let 2 = {r? := 22 + y? < 2} and consider the rotating velocity field 3 = (y, —x)T so that o = 2. Letting
x = (z,y)T, the exact solution is chosen to be the advected heat kernel in the form

2

u(x,t) = t,ulil(jé(z) exp (—%) , r(t) = (0.3sin(t),0.3 cos(t))7,

where the length scale £y = 0.1 determines the spread of the initial Gaussian. We consider two settings, first
pu=0.1and tr = 7/4 and then p = 10~* and tr = 27. In both cases, the decay of the exact solution away from
r(t) is sufficiently fast to enforce homogeneous Dirichlet conditions on 9f2. We discretize the boundary 92 with
M elements from which a quasi-uniform triangulation of 2 is constructed, yielding a mesh size h = 47 /M. We
take M = 26+™ with m € {0,1,2,3,4}. For u = 0.1, the Péclet number decays from 4 to 0.25 corresponding
to a diffusion-dominated regime, while for ;1 = 107, the Péclet number is 10 times larger, corresponding to
an advection-dominated regime. In both regimes, the time step is selected by setting the Courant number to
Co = % for CIP, and using the tighter restriction Co = % for DG in the advection-dominated regime. Results
are reported in Table 1 for the L?-error at final time and the L2(0;tp; H}(£2))-error. For u = 0.1, the result
on the finest mesh is omitted since the mesh is sufficiently fine, and the diffusion coefficient sufficiently large,
to detect the influence of using homogeneous Dirichlet boundary conditions; for ;1 = 10~%, the result on the
coarsest mesh is omitted since the mesh is too coarse to resolve the initial datum. In all cases, the convergence
rates match, or are slightly better than, those predicted by the theory.

6.2. Solutions with sharp layers

The purpose of this test case is to illustrate numerically that in the advection-dominated regime, spurious
oscillations resulting from insufficient mesh resolution of sharp layers do not spread over the whole domain, but
remain contained at all times close to the layer. Let g = 10~¢ and consider the initial datum

Uo(x) = 0.5 (tanh (<exp <—20 ‘r (%) - xf) - 0.5> /0.0001> + 1> .

The graph of ug corresponds to a cylinder centered at x = (0.3,0.3)7. The width of the inner layer is 10~*. The
mesh is built using M = 512 so that it does not resolve this inner layer. The final time is tp = 27 corresponding
to one full rotation of the initial datum. Figure 1 displays the initial datum, the CIP approximate solution
without stabilization (Scip = 0), and the solution with stabilization (Scip, = 0.005). The unstabilized solution
exhibits global spurious oscillations, while the improved quality of the stabilized solution is clearly visible.
Finally, Table 2 reports L?-errors at final time obtained using CIP and DG (with p = 0 so that the analytical
solution is known explicitly). Both space approximation methods exhibit the same convergence behavior. The
convergence rate is of order h'/4 as often observed for rough solutions on general meshes.
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TABLE 2. Convergence for rough solution; L?-error at final time.

m CIP DG

0 1.9e-1 | 1.2e-1
1 1.4e-1 | 1.0e-1
2 1.1e-1 | 8.2e-2
3 8.8e-2 | 6.9e-2
4 7.0e-2 | 5.6e-2

FIGURE 1. Initial datum (left) and solution at final time without (middle) and with (right)
CIP stabilization.

7. PROOFS OF PROPOSITIONS 4.9 AND 4.17
This sections collects the proofs of Propositions 4.9 and 4.17.
7.1. Proof of Proposition 4.9

The proof, which proceeds along that of Lemma 4.13, is only sketched. There are essentially two differences.
Firstly, the term 7% in this proof needs to be bounded since we do not assume here that v = ~,. To this purpose,
we use (2.15a) and the definition of o} to obtain

(&, ApEr T L = 707, AR L + T2 (ARfp, ApE) L — 42 (AR, Ap&i ) L.

The first term on the right-hand side is treated as the term T} in the proof of Lemma 4.13. For the second term,
the Cauchy—Schwarz inequality and (4.15) yield

T2 (Anfy, An&y )L < T ARG L Angy I S (Co/Pe)r |07 1 all&h ™ a < TlI6R all&r ™ ]1a,
since Co < 1 and Pe > 1. Finally, for the third term, the Cauchy-Schwarz inequality, (4.15), and (2.25) lead to
T2 (An0y, A&y )L < P AROR LI AR I S TIORalI€R A,
since 71/2u1/2h=1 = (Co/Pe)'/? < 1. Collecting these estimates, we infer
T(To, A&y ™) S 707 L4 + 107 a0 l1€; ™ .

Secondly, when dealing with the truncation error in time, we exploit the fact that Pe > 1 to derive a sharper
bound than in the proof of Lemma 4.13, namely

PO A& L < PRt PRI 4 < (Co/Pe) 22w ] 4 S TERIIE ] as
where we have used (4.21). As a result, an estimate similar to (4.33) is inferred, but with a quantity EJ* on the

right-hand side which is defined as (4.31) except that tl/ 2CN'ET is replaced by the sharper estimate Cjp73/2. The
conclusion is straightforward using, in particular, that

Pe™2(107]s + [¢71s) < 120" (a2 + |0 |m2) < Wt PREY + TEREG < 0 PR (RY + 0T K ),
since Pe > 1 and Co < 1.
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7.2. Proof of Proposition 4.17

For brevity, we only sketch the proof. We introduce the discrete Riesz projection of u™ and of the auxiliary
functions v™ and w™. Specifically, rpu™ € V}, is defined such that Aprpu™ := Apu™ and similarly for r,v™ and
rpw™. Then, redefining the quantities &' := u}} — rpu”, £ := v — rpu™ and similarly for 67, 02, (i, and (2,
the error equation takes again the form (2.15) with the new source terms

o = m (I —m) (" —u"), =i = ) (W — ") = Ba(l = )",

1 1
o =1ty (I —rp) (u”“ — "+ w”)) = 5 Bl —r)u™.

Then, the basic energy identity of Lemma 4.1 is not modified. Instead, the basic energy estimate of Theorem 4.4
requires bounding the new source terms. Using the Cauchy—Schwarz inequality, the Poincaré inequality, the
approximation properties of the Riesz projector 7, the bound (3.5) on [|A(v™ — u™)||, and elliptic regularity,
we obtain

(ah, 00)r < u= PO (I =) (0" —u)|[Ll0f 4 S p=PCPRA " — w2074 S nTHPCPRPTRY |67 4.
Hence, by Young’s inequality,
T(ag, 0 < Or(p~V2Cph2Ky)? + 7|63,

where A can be chosen as small as needed. To bound 7(5}, 0} )1, we write w”™ —v™ = (w" —u™) — (v — u™),
and estimate the contribution of (v — u™) as for a}'. To bound the contribution of (w™ — u™), we observe that

I = ra)(w" = u™)L S P lw" —u"[g2 S h?|Aw" —u")] L.

We use a different bound on ||A(w™ — u™)|| than (3.7), whereby we exploit that the advection field § has
bounded second-order derivatives. Letting v denote the right-hand side of (3.9) and observing that v € V, (3.4)
yields [[A(w™ —u")| < [|Av]|L. Using the bounds (3.6) on v™ and the bound (3.5) on [|[VA(v" — u")|| e, we
infer [|A(Bv" )||L S oK, with K7 = |u®|gs 4 (1/pu) Y2 K5 + 0~ Y01 K5 + 05 K7'). Hence, HA(w —uM|r <
T(Ky + oK _,), so that

(7 =) (w" = u")l|z S Th* (K3 + oK),

Finally, for the last term in 3}, we obtain by integrating by parts the advective derivative that
(Bu(I = ri)o", 611 S W20 [zon™ 2|07 |4 S o™ 2h2 K36} |4,
since [v"| g2 < K& Collecting these bounds and introducing the Péclet number yields
T(Bh, 611 < CT(u™ ' 2hPCp Ky + P20 PR (Cp Ky, + K3))° + M7|0711%,

where A can be chosen as small as needed. The bound on 7(d},(}')r. is obtained using similar arguments, in
particular that w1 — %(v"—l—w )= (u "+1—u")—(%(v"+w")—u”), (I =7p)(uHt —u™)|| L S Th2||8tu\|c(1n;Hz),
and that |w"|g> < K§ 4 (1/p)Y/2K"_, owing to (3.8). Therefore, we recover the stability estimates (4.14)
and (4.25) with

Ep = p~ ' PR2Cp(KY + |0l c1,m2) + Pe' P o' PRI K,

s (7.1)
with K = CpK"  +Kj+ (T/M)1/2Kn »- The next step is the result of Lemma 4.11 where the identity (4.27)
holds true with =)' = waa}! 4 (w1 + 2) B8 — 6;. Then, proceeding as in Lemma 4.12, we need to control || =71

We observe that

7| Br(I — rp)v™ || + 7| Ba(I — rp)w"||r S Toh(™ | + [ g2) S 720 2RI (KE + (1/p) 2K ).
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Defining E’,’; as B} in (7.1) by dropping the Pe'/2 factor in the last term, that is,
Ef = p7 PRPCp (K3 + |0vulloq,me)) + o PRPPKT

we eventually infer 7(|Z7||, < 7Y/2E7. Finally, accounting for the truncation error in time, we recover the
stability estimate (4.30) with the right-hand side

Ej = p PR Op(KS + |0l o, m) + o' PRYPKG 4 Cprol,
whence the conclusion is straightforward.

Remark 7.1 (optimality in h). We observe that the error term defined by (7.1) exhibits second-order con-
vergence as h — 0 owing to the presence of the Pe!/? factor in the last term. This is no longer the case for
the error term E’,’;, where the loss of the Pe'/? factor is caused by the contribution of B; when bounding the
anti-dissipative term. Optimality is recovered for vanishing advection.
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