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ON POWER SERIES SOLUTIONS FOR THE EULER EQUATION,
AND THE BEHR–NEČAS–WU INITIAL DATUM
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Abstract. We consider the Euler equation for an incompressible fluid on a three dimensional torus,
and the construction of its solution as a power series in time. We point out some general facts on this
subject, from convergence issues for the power series to the role of symmetries of the initial datum.
We then turn the attention to a paper by Behr, Nečas and Wu, ESAIM: M2AN 35 (2001) 229–238;
here, the authors chose a very simple Fourier polynomial as an initial datum for the Euler equation and
analyzed the power series in time for the solution, determining the first 35 terms by computer algebra.
Their calculations suggested for the series a finite convergence radius τ3 in the H3 Sobolev space, with
0.32 < τ3 < 0.35; they regarded this as an indication that the solution of the Euler equation blows up.
We have repeated the calculations of E. Behr, J. Nečas and H. Wu, ESAIM: M2AN 35 (2001) 229–238,
using again computer algebra; the order has been increased from 35 to 52, using the symmetries of the
initial datum to speed up computations. As for τ3, our results agree with the original computations of
E. Behr, J. Nečas and H. Wu, ESAIM: M2AN 35 (2001) 229–238 (yielding in fact to conjecture that
0.32 < τ3 < 0.33). Moreover, our analysis supports the following conclusions: (a) The finiteness of τ3 is
not at all an indication of a possible blow-up. (b) There is a strong indication that the solution of the
Euler equation does not blow up at a time close to τ3. In fact, the solution is likely to exist, at least,
up to a time θ3 > 0.47. (c) There is a weak indication, based on Padé analysis, that the solution might
blow up at a later time.
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1. Introduction

Let us consider the three-dimensional Euler equation for a homogeneous incompressible fluid (of unit density)
with initial datum u0, i.e.,

∂u

∂t
= −u•∇u −∇p, u(x, 0) = u0(x).
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The unknown is the divergence-free velocity field (x, t) �→ u(x, t); we assume periodic boundary conditions, so
x = (x1, x2, x3) ranges in the three dimensional torus (R/2πZ)3. In the sequel, we often write u(t) for the
function x �→ u(x, t).

One can try a solution of the above Cauchy problem in the form of a power series u(t) =
∑+∞

j=0 ujt
j (with

uj = uj(x)); such power series have been the object of rather extensive investigations. Morf et al. [17], Frisch [13],
Brachet et al. [9, 22], and other authors (see the bibliography of the cited references) have constructed by
computer algebra techniques many terms of the power series for specific initial data, consisting of simple Fourier
polynomials; more precisely, the data analyzed in these works are the so-called “Taylor–Green vortex”, and other
vortices proposed by Kida [16]. The cited authors have also discussed the possibility of a blow-up (i.e., finite-
time divergence of u(t)) on the grounds of their computer algebra calculations. Another initial datum (again a
Fourier polynomial) has been considered by Behr, Nečas and Wu [6]; these authors have constructed 35 terms
of the power series, and claimed to have found evidence for a blow-up of the solution; however, in comparison
with the vortices of Taylor–Green and Kida, the Behr–Nečas–Wu initial datum has received less attention in
the literature.

The purpose of the present paper is twofold.

(i) First of all, we wish to point out a number of general facts on the solutions of the Euler equation and, in
particular, on the convergence of the power series

∑+∞
j=0 ujt

j ; this is the subject of Sections 2 and 3. Here
we report some results extracted from the existing literature on the Euler equation in spaces of analytic
functions and/or in Sobolev spaces; in addition to these results, we present some remarks of ours and
propose a general treatment to discuss the symmetries of the initial datum and their effects on the solution
of the Euler equation. We think it is not useless to collect all these theoretical statements in a unifying
framework, suitable for direct application to computer algebra calculations.

(ii) Our second aim is to reanalyze the power series for the Behr–Nečas–Wu initial datum, both from the
theoretical and from the computational viewpoint; this is the subject of Sections 4, 5 and 6. First of all we
apply to the Behr–Nečas–Wu case our general setting for the symmetries of the initial datum. We calculate
the symmetry subgroup of the Behr–Nečas–Wu datum (that we recognize to be the dihedral group of order
6; this group also determines what we call the pseudo-symmetry space of the datum).
With these premises, we present a novel computation of the power series for the Behr–Nečas–Wu datum,
based on a Python program written for this purpose; this computation attains the order 52. The Python
program uses an exact representation of rational numbers as ratios of integer, so as not to introduce rounding
errors; furthermore, it employs the symmetries of the initial datum to reduce the amount of calculations.

The results of such computations can be analyzed using the theoretical framework of Sections 2 and 3. Our
conclusions are the following:

(a) We agree with the estimates of [6], according to which the power series under consideration has a convergence
radius 0.32 < τ3 < 0.35 in the Sobolev space H3; in fact, our computations suggest 0.32 < τ3 < 0.33.
However, we disagree from the authors of [6] when they interpret the finiteness of τ3 as indicating a blow-up
of the solution.

(b) On the contrary, we give evidence that the solution u(t) of the Euler equation exists for t significantly larger
than τ3. In fact, analyzing the power series for the squared Sobolev norm ‖u(t)‖2

3, we find a strong indication
for a convergence radius θ3 such that 0.47 < θ3 < 0.50 (see our Eq. (5.31)). By a general criterion (based
on the classical works of Bardos–Benachour [3] and Beale–Kato–Majda [5]), this implies that the solution
of the Euler equation exists, at least, up to time θ3.
The final part of our analysis concerns an alternative approach to estimate θ3, and the possibility that u(t)
blows up at times larger than θ3. In connection with this problem we use the idea (employed in [9,13,17,22]
for different initial data) to construct the Padé approximants for the (squared) Sobolev norms and analyze
their singularities. In particular, we construct the diagonal Padé approximants [p/p](t) for ‖u(t)‖2

3, up to
p = 26, and some near-diagonal appproximants [p/q](t) (with p+q = 50 or 52). For most of them the complex
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singularities of minimum modulus have modulus � 0.5; this fact yields new evidence for the previous estimate
on θ3. Moreover, most of these Padé approximants have real or “almost real” singularities, distributed rather
erratically; analyzing these distributions in terms of mean values and mean quadratic errors, we obtain a
somehow weak indication that:

(c) u(t) might blow up for t → T− (and t → (−T )+), for some T such that 0.54 < T < 0.85 (see Eq. (6.7)).
The blow-up problem can be studied as well in terms of D-log Padé approximants; these do not give a
clear indication supporting conjecture (c), as briefly explained at the end of the paper. In general, much
caution is recommended about the Euler equation and blow-up predictions via Padé analysis: for example,
in the case of the Taylor–Green vortex the Padé approximants exhibit real singularities [13, 17], but the
numerical solution of the Euler equation by spectral methods raises doubts on the actual existence of a
blow-up [8, 10, 14].

Connections with other works. Concluding this Introduction, to put the subject of this paper into a wider
perspective we wish to mention that there are general methods of functional analysis to obtain quantitive lower
bounds on the time of existence T of the solution of the Euler (or Navier–Stokes) Cauchy problem, from the a
posteriori analysis of an approximate solution; such lower bounds are certain (i.e., non conjectural).

Derivations of such a posteriori lower bounds have been given in [12, 19, 21]. The last of these works gives
an algorithm to obtain these lower bounds analyzing any approximate solution of the Euler (or Navier–Stokes)
Cauchy problem via a suitable differential inequality, called therein the ”control inequality”.

Again in [21], a preliminary analysis of the Euler (and Navier–Stokes) equations with the Behr–Nečas–Wu
initial datum has been performed, using for the solution a Galerkin approximation with very few Fourier modes.
This approximant, combined with the control inequality, gives for the Euler equation with this datum a (poor,
but certain) lower bound T > 0.066 for the time of existence (in H3; the same approach, applied to the
Navier–Stokes equations, grants T = +∞ when the viscosity coefficient is above an explicit threshold). We plan
to continue in future works the analysis of the Behr–Nečas–Wu intial datum, combining the control equation
of [21] with approximation methods based on extensive automatic computations such as the ones presented in
this paper.

2. The Cauchy problem for the Euler equation on a torus

Preliminaries. If a = (as), b = (bs) are elements of R3 or C3, we define a•b :=
∑3

s=1 asbs. We indicate with

the complex conjugate (and we let it act componentwise on elements of C3); we put |a| :=
√

a•a =
√∑3

s=1 |as|2.
The Cauchy problem for the incompressible Euler equation is

∂u

∂t
= −u•∇u −∇p, u(x, 0) = u0(x), (2.1)

where: u = u(x, t) is the divergence-free velocity field; the space variables x = (xs)s=1,2,3 belong to the torus
T3 := (R/2πZ)3; (u•∇u)r :=

∑3
s=1 us∂sur (r = 1, 2, 3); p = p(x, t) is the pressure; u0 = u0(x) is the initial

datum. As well known, the pressure can be eliminated from (2.1) using the Leray projection L onto the space
of divergence-free vector fields; this allows to rewrite the evolution equation in (2.1) as ∂u/∂t = −L(u•∇u). In
this way, we obtain for the Cauchy problem the final form

∂u

∂t
= P(u, u), u( . , 0) = u0, (2.2)

where we have written P for the bilinear map sending two (sufficiently regular) vector fields v, w : T3 → R3

into the vector field
P(v, w) := −L(v•∇w). (2.3)
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In this framework, it is convenient to associate to a vector field v : T3 → R3 the Fourier components vk :=
(2π)−3

∫
T3 dx e−ik•xv(x) ∈ C3, so that

v(x) =
∑

k∈Z3

vkeik•x. (2.4)

Due to the reality of v, we have v−k = vk, and v is divergence-free iff k•vk = 0 for all k. With P as above and
v, w two vector fields, the Fourier components of P(v, w) are

P(v, w)k = −i
∑

h∈Z3

vh•(k − h)Lkwk−h (2.5)

where Lk : C3 → C3 is the projection on the orthogonal complement of k (Lkc := c − (k•c)k/|k|2 if k 
= 0;
L0c := c).

In the above, we have introduced the setting for the Euler equation in an informal way; to go on, it is necessary
to specify the functional spaces to which the velocity fields (at any time) are supposed to belong.

The expression “a vector field T3 → R3” can be understood, with very wide generality, as “an R3-valued
distribution on T3” (see, e.g., [20]); we write D′(T3,R3) ≡ D′ for the space of such distributions. Any v ∈
D′(T3,R3) can be differentiated in the distributional sense and has a (weakly convergent) Fourier expansion
with coefficients vk ∈ C3, such that vk = v−k.

To construct the full setting for the Euler equation, one must confine the attention to much smaller functional
spaces of vector fields. For our purposes, two cases are important:

(i) The Sobolev space Hn of zero mean, divergence-free vector fields of any order n ∈ [0, +∞). This is defined in
terms of the space L2(T3,R3) ≡ L2 of square integrable vector fields v : T3 → R3, equipped with the inner

product 〈v|w〉L2 := (2π)−3
∫
T3 v(x)•w(x)dx and with the induced norm ‖v‖L2 = (2π)−3/2

√∫
T3 |v(x)|2dx

(note the term (2π)−3 in the inner product, used systematically in the sequel). By definition,

Hn(T3,R3) ≡ Hn :=
{

v ∈ D′ | √−Δ
n
v ∈ L2,

∫
T3

v dx = 0, div v = 0
}

(2.6)

=

{
v ∈ D′ |

∑
k∈Z3

|k|2n|vk|2 < +∞, v0 = 0, k•vk = 0

}
.

(In the above
√−Δ

n
indicates the power of order n/2 of minus the Laplacian; by definition

(√−Δ
n
v
)

k
=

|k|nvk for each v ∈ D′. Note that Hn ⊂ L2 for all n � 0). Hn is a Hilbert space with the inner product

〈v|w〉n :=
〈√−Δ

n
v|√−Δ

n
w

〉
L2

=
∑

k∈Z3

|k|2nvk•wk, (2.7)

inducing the norm

‖v‖n =
∥∥∥√−Δ

n
v
∥∥∥

L2
=

√ ∑
k∈Z3

|k|2n|vk|2. (2.8)

It is known that P sends continuously Hn × Hn+1 into Hn, for all n ∈ (3/2, +∞).
(ii) The space of Cω (i.e., analytic) zero mean, divergence-free vector fields on T3; this is

A(T3,R3) ≡ A :=
{

v ∈ Cω(T3,R3) |
∫
T3

v dx = 0, divv = 0
}

(2.9)

=
{

v ∈ D′ | lim inf
k∈Z3, k→∞

|vk|−
1

|k1|+|k2|+|k3| > 1, v0 = 0, k•vk = 0
}
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(defining 0−
1

|k1|+|k2|+|k3| := +∞. The Fourier representation in (2.9) mimics the description of an-
alytic functions on the torus in [18], which is also a useful reference for what follows). One has

A = ∪ρ∈(1,+∞)Aρ, (2.10)

Aρ :=
{

v ∈ D′ | lim inf
k∈Z3, k→∞

|vk|−
1

|k1|+|k2|+|k3| > ρ, v0 = 0, k•vk = 0
}

;

each Aρ is a vector subspace of A. Let us introduce the annulus Kρ := {z ∈ C | 1/ρ � |z| � ρ} and its power
K3

ρ := {z = (z1, z2, z3) ∈ C3 | z1, z2, z3 ∈ Kρ}. For v ∈ Aρ, the series
∑

k∈Z3 vkzk converges in C3 for each
z ∈ K3

ρ (defining zk := zk1
1 zk2

2 zk3
3 ); the function z �→ ∑

k∈Z3 vkzk is holomorphic on the inner part of K3
ρ and

continuous on K3
ρ , so we can define

�v�ρ := sup
z∈K3

ρ

∣∣∣∣∣
∑

k∈Z3

vkzk

∣∣∣∣∣ . (2.11)

� �ρ is a norm on Aρ and makes it a Banach space. One equips A with the inductive limit topology of the
collection of Banach spaces {(Aρ, � �ρ) | ρ ∈ (1, +∞)}: this is the finest locally convex topology on A making
continuous each embedding Aρ ↪→ A. (Besides [18], see [25] for the general theory of inductive limits). A is
continuously embedded into each Sobolev space Hn; the map P is continuous from A × A to A.

Basic results on local existence and uniqueness. We start from the Sobolev framework, choosing

n ∈ (5/2, +∞). (2.12)

In the sequel, an Hn-solution of the Euler equation, or of the Euler Cauchy problem, means a map

u ∈ C((−T, T ), Hn) ∩ C1
(
(−T, T ), Hn−1

)
(2.13)

(T, T ∈ (0, +∞]) fulfilling the Euler equation, or its Cauchy problem with a suitable initial condition u(0) = u0.
The following statement is well known:

Proposition 2.1. For n as above and any initial datum u0 ∈ Hn, the following holds.

(i) The Cauchy problem (2.2) has a unique maximal (i.e., not extendable) Hn-solution u of domain (−T, T ),
for suitable T = T (u0), T = T(u0) ∈ (0, +∞]. Any Hn-solution of (2.2) is a restriction of the maximal one.

(ii) If T < +∞, one has ∫ T

0

dt ‖u(t)‖n = +∞, (2.14)

a fact implying
lim sup
t→T−

‖u(t)‖n = +∞. (2.15)

Similar results hold if T < +∞, considering the integral from −T to 0 (and the limit for t → (−T)+).

Proof.

(i) This follows, e.g., from Kato’s theory of quasilinear evolution equations [15].
(ii) The thesis can be inferred from a known result of Beale–Kato–Majda [5]. The cited paper shows that T <

+∞ implies
∫ T

0 dt‖rotu(t)‖L∞ = +∞; however, ‖rotu(t)‖L∞ � const.‖u(t)‖n by the Sobolev imbedding
inequalities, whence equation (2.14). The behavior of u at −T is analyzed similarly. �

If T < +∞, the solution u is said to blow up at time T . Similarly, if T < +∞ we say that u blows up
at −T. Many statements presented in the sequel on the possibility of blow-up at T have obvious reformulations
regarding −T.
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Remark 2.2. The blow-up criterion (2.14) yields the following statement, in case of blow-up with a power law:

if ‖u(t)‖n ∼ U

(T − t)α
for t → T− (with U, α > 0), then α � 1. (2.16)

In the case of the Euler equation on R3, it was recently shown in [11], Theorem 1.3 that the blow-up at T
implies the following (for any n > 5/2):

‖u(t)‖n � U

(T − t)2n/5
for t close to T , U = Un(‖u0‖L2). (2.17)

This estimate might hold as well for the framework of the present paper, i.e., for the Euler equation on the
torus T3 (however, the extendability of (2.17) to T3 is immaterial for the purposes of this paper). �

Let us pass to the Cω (= analytic) framework; what follows assumes some general notions from the theory of
analytic functions from R to locally convex spaces, for which we refer to [7], Section 3. Let A be the space (2.9);
in the sequel, an A-solution of the Euler equation, or of the Euler Cauchy problem, means a map

u ∈ Cω((−T, T ), A) (2.18)

(T, T ∈ (0, +∞]) fulfilling the Euler equation, or its Cauchy problem with a suitable initial condition u(0) = u0.
Here is a known statement (with some indications on the proof, given only for completeness):

Proposition 2.3. Consider an initial datum u0 ∈ A; then the following holds.

(i) For any n ∈ (5/2, +∞), a function u is an A-solution of the Cauchy problem (2.2) if and only if u is an
Hn-solution.

(ii) Problem (2.2) has a unique maximal (i.e., non extendable) A-solution u of domain (−T, T ), for suitable
T = T (u0), T = T(u0) ∈ (0, +∞] (and any other A-solution is a restriction of u). For any n ∈ (5/2, +∞),
u coincides with the maximal Hn-solution (and thus, if T < +∞, it fulfills equations (2.14) and (2.15); a
similar result holds if T < +∞).

Proof.

(i) Assume u is an A-solution of the Cauchy problem (2.2); then, by the continuous imbedding of A into any
Sobolev space, u is as well an Hn-solution.
Conversely, assume u to be an Hn-solution of (2.2), of domain (−T, T ). Then ∂u/∂t ∈ C((−T, T ), Hn−1) ⊂
C((−T, T ), C) and u ∈ C((−T, T ), Hn) ⊂ C((−T, T ), C1) where C := C(T3,R3), C1 := C1(T3,R3) and we
have used the imbeddings of Hn−1 and Hn into C and C1, respectively. The previous statements ensure
that the function (x, t) �→ u(x, t) is C1 from (−T, T ) × T3 to R3. Since this function fulfills the Euler
equation with an analytic initial datum, due to Theorem II.2, page 667 of Bardos–Benachour [3] we have
u(t) ∈ A for each t; moreover, the cited work ensures that u ∈ C1((−T, T ), A) and this fact, combined with
Theorem III.2, page 264 of Baouendi–Goulaouic [2], implies u ∈ Cω((−T, T ), A). In conclusion u is as well
an A-solution of the Euler Cauchy problem.

(ii) All statements in this item can be proved using the equivalence between the notions of A- and Hn- solution
(known from item (i)), together with Proposition 2.1 on the Hn-solutions (n > 5/2) (5). �

5 Of course, a more elegant proof of existence (and uniqueness) in the framework of A-solutions is a direct one, not relying
on Proposition 2.1. Proofs of this type are given in Bardos–Benachour [3] (see Thm. II.1, p. 665) and Baouendi–Goulaouic [2]
(see Thm. III.2, p. 264). For completeness, let us mention that a statement very close to the contents of Proposition 2.3 (namely,
the equivalence between the loss of analiticity and the Beale–Kato–Majda blow-up criterion for the integral of ‖rot u(t)‖L∞ ) appears
without proof in Bardos–Titi [4], Remark 2.1, pages 414.
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Assume again that u0 ∈ A and u is the maximal A-solution of the Euler Cauchy problem; let us choose any
n ∈ [0, +∞). For future use, it is convenient to record the following facts:

(a) u ∈ Cω((−T, T ), Hn) for the already mentioned continuous embedding of A into any Sobolev space;
(b) the function

(−T, T ) → R, t �→ ‖u(t)‖2
n (2.19)

is in Cω((−T, T ),R), being the composition of the analytic function u : (−T, T ) → Hn with the continuous
quadratic function ‖ ‖2

n : Hn → R.

Symmetries of the Euler equation. Let us consider the octahedral group Oh, formed by the orthogonal
3 × 3 matrices with integer entries:

Oh :=
{
S ∈ Mat(3 × 3,Z) | STS = 1

}
. (2.20)

In fact, the entries of any such matrix have −1, 0 and 1 as the only possible values; furthermore, a 3× 3 matrix
S belongs to Oh if and only if

S = diag(ε1, ε2, ε3)Q(σ) (2.21)

εs ∈ {±1} (s = 1, 2, 3) ; Q(σ) the matrix of the permutation σ : {1, 2, 3} → {1, 2, 3};
more precisely, Q(σ) is the matrix such that (Q(σ)c)s = cσ(s) for all c ∈ C3, s ∈ {1, 2, 3}. There are 23 = 8

possible choices for the signs εi and 3! = 6 choices for σ, so Oh has 8 × 6 = 48 elements. Clearly, each S ∈ Oh

sends Z3 into itself.
To go on, let us denote with Oh �T3 the Cartesian product Oh×T3, viewed as a group with the composition

law defined by (6)
(S, a)(U, b) := (SU, a + Sb)

(
S, U ∈ Oh; a, b ∈ T3

)
. (2.22)

Of course, the unit of this group is (1, 0) (with 1 denoting again the identity 3× 3 matrix); the inverse of a pair
(S, a) is (S, a)−1 = (ST,−STa). To any element (S, a) of Oh � T3 is associated a “rototranslation”

E(S, a) : T3 → T3, x �→ E(S, a)(x) := Sx + a, (2.23)

and one checks that the mapping (S, a) �→ E(S, a) is a group homomorphism between Oh � T3 and the group
of diffeomorphisms of T3 into itself (with the usual composition).

Now, we take a vector field v in Hn (or in A) and an element (S, a) of the group Oh � T3. We can construct
the push-forward E∗(S, a)v of v along the mapping E(S, a); this is the vector field in Hn (or in A), given by

E∗(S, a)v : T3 → R3, x �→ (E∗(S, a) v)(x) = Sv(ST(x − a)). (2.24)

One easily checks that Eq. (2.24) actually defines a vector field in Hn (or in A), with Fourier components

(E∗(S, a) v)k = e−ia•kSvSTk

(
k ∈ Z3

)
. (2.25)

Let us write E∗(S, a) for the map v ∈ Hn �→ E∗(S, a)v; this is a linear map of Hn into itself, preserving the
inner product 〈 | 〉n, so it is in the group O(Hn) of orthogonal operators of the Hilbert space Hn into itself.
The mapping

E∗ : Oh � T3 → O(Hn), (S, a) �→ E∗(S, a) (2.26)

is a injective group homomorphism, i.e., a faithful orthogonal representation of the group Oh � T3 on the real
Hilbert space Hn. Alternatively, let us write E∗(S, a) for the map v ∈ A �→ E∗(S, a)v; this is in the space Iso(A)
of linear and topological isomorphisms of A into itself. The map

E∗ : Oh � T3 → Iso(A), (S, a) �→ E∗(S, a) (2.27)

6This is the semidirect product of the groups Oh and T3 with respect to the natural homomorphism Oh → Aut(T3) sending
S ∈ Oh into the map b �→ Sb, an automorphism of T3.
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is an injective group homomorphism, i.e., a faithful linear representation of the group Oh �T3 on the topological
vector space A.

Let us relate the previous constructions to the bilinear map P of the Euler equation. From the Fourier
representations (2.5)–(2.25), one easily infers

P(E∗(S, a) v, E∗(S, a)w) = E∗(S, a)P(v, w) (2.28)

for all v ∈ Hn, w ∈ Hn+1 with n > 3/2 (and, in particular, for all v, w ∈ A). Let us outline the implications
of (2.28) about the solutions of the Euler equation. In the rest of the paragraph, the term “solution” either
means an Hn-solution (n > 5/2) or an A-solution, and the initial datum u0 is chosen consistently in Hn or in
A. From (2.28) one infers the following, for each (S, a) ∈ Oh � T3:

(i) If u : t ∈ (−T, T ) �→ u(t) is a solution of the Euler equation, we have two more solutions

E∗(S, a)u : t ∈ (−T, T ) �→ E∗(S, a)u(t), (2.29)

−E∗(S, a)u(−·) : t ∈ (−T, T) �→ −E∗(S, a)u(−t). (2.30)

(ii) If u : t ∈ (−T, T ) �→ u(t) is the maximal solution of the Euler Cauchy problem with datum u0, then
E∗(S, a)u is the maximal solution with datum E∗(S, a)u0 and −E∗(S, a)u(−·) is the maximal solution with
datum −E∗(S, a)u0.

(iii) Let us denote again with u : t ∈ (−T, T ) �→ u(t) the maximal solution of the Cauchy problem with datum
u0. Then,

E∗(S, a)u0 = u0 ⇒ E∗(S, a)u(t) = u(t) for t ∈ (−T, T ). (2.31)

−E∗(S, a)u0 = u0 ⇒ T = T, −E∗(S, a)u(−t) = u(t) for t ∈ (−T, T ). (2.32)

The verification of statements (i)(ii) is straightforward. After this, the implication (2.31) in (iii) follows noting
that E∗(S, a)u and u are maximal solutions of the Cauchy problem with the same datum E∗(S, a)u0 = u0.
Similarly, the implication (2.32) follows noting that −E∗(S, a)u(−·) and u are maximal solutions of the Cauchy
problem with the same datum −E∗(S, a)u0 = u0.

Considering the maximal solution u for a datum u0 in Hn (n > 5/2), and recalling that any transformation
E∗(S, a) preserves the Hn norm, we also obtain from (2.32) the following:

−E∗(S, a)u0 = u0 ⇒ T = T, ‖u(−t)‖n = ‖u(t)‖n for t ∈ (−T, T ). (2.33)

The results in (iii) suggest to consider, for a given datum u0 in Hn or A, the symmetry subgroup

H(u0) :=
{
(S, a) ∈ Oh � T3 | E∗(S, a)u0 = u0

}
(2.34)

and the pseudo-symmetry space

H−(u0) :=
{
(S, a) ∈ Oh � T3 | − E∗(S, a)u0 = u0

}
(2.35)

(the first one, being a subgroup of Oh � T3, contains at least the identity element (1, 0); the second one might
be the empty set. The term ”isotropy group”, often employed in place of ”symmetry group”, will not be used
in this paper).
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Let us consider the maximal solution u of the Cauchy problem with a datum u0 (contained in Hn for some
n > 5/2); from equations (2.31)–(2.33), we readily obtain the following:

E∗(S, a)u(t) = u(t) for all (S, a) ∈ H(u0), t ∈ (−T, T ); (2.36)

H−(u0) 
= ∅ ⇒ T = T, −E∗(S, a)u(−t) = u(t), ‖u(−t)‖n = ‖u(t)‖n (2.37)

for (S, a) ∈ H−(u0), t ∈ (−T, T ).

For future use, let us introduce the reduced symmetry subgroup and the reduced pseudo-symmetry space of
the datum u0, which are

HR(u0) :=
{
S ∈ Oh | E∗(S, a)u0 = u0 for some a ∈ T3

}
, (2.38)

H−
R(u0) :=

{
S ∈ Oh | − E∗(S, a)u0 = u0 for some a ∈ T3

}
. (2.39)

Let us observe that the set theoretical unions H(u0)∪H−(u0) and HR(u0)∪H−
R(u0) are subgroups of Oh � T3

and Oh, respectively.
As a final remark, useful for the sequel, let us consider the pair (−1, 0) ∈ Oh � T3, noting that E(−1, 0) is

the space reflection: E(−1, 0)(x) = −x for all x ∈ T3. One easily checks that

(−1, 0) ∈ H−(u0) ⇔ H−(u0) = H(u0)(−1, 0) = {(−S, a) | (S, a) ∈ H(u0)} (2.40)

(where H(u0)(−1, 0) stands for the set {(S, a)(−1, 0) | (S, a) ∈ H(u0)}; the last equality rests on the identity
(S, a)(−1, 0) = (−S, a)).

3. Power series in time for the Euler Cauchy problem

Throughout this section, we consider the Euler Cauchy problem with initial datum u0 ∈ A.

Setting up a power series for the solution. Let us try to build the solution of the Euler Cauchy problem
as a power series

t �→
∞∑

j=0

ujt
j (3.1)

with coefficients uj ∈ A, whose convergence has to be discussed later. The zero order term in this expansion
is the initial datum u0; to determine the other coefficients uj ∈ A, it suffices to substitute the expansion (3.1)
into the Euler equation (2.2), and to require equality of the coefficients of the same powers of t in both sides:
in this way, one easily obtains the recurrence relation

uj =
1
j

j−1∑
�=0

P(u�, uj−�−1) (j = 1, 2, 3, . . .). (3.2)

When applying this recurrence relation for the uj’s it can be useful to represent the bilinear map P in terms of
Fourier coefficients, as in equation (2.5). This is especially useful if the initial datum u0 is a Fourier polynomial,
i.e., if u0k 
= 0 only for finitely many modes k. In this case, all the iterates uj (j = 1, 2, 3, . . .) are as well Fourier
polynomials, and the implementation of (3.2) via the Fourier representation (2.5) always involves sums over
finitely many modes.

In the next section, a large part of our attention will be devoted (for a specific datum u0) to the partial sums

u(N)(t) :=
N∑

j=0

ujt
j , (3.3)
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(N = 0, 1, 2, . . .) and to the (squared) Sobolev norms

∥∥∥u(N)(t)
∥∥∥2

n
=

∑
k∈Z3

|k|2n|u(N)
k (t)|2. (3.4)

Symmetry considerations. Let us consider the symmetry subgroup H(u0) or the pseudo-symmetry space
H−(u0), see equations (2.34)–(2.35). Using the recursive definition (3.2) of uj with the invariance property (2.28)
of P, one easily checks the following, for any j ∈ {0, 1, 2, . . .}:

E∗(S, a)uj = uj for all (S, a) ∈ H(u0); (3.5)

−E∗(S, a)uj = (−1)juj for all (S, a) ∈ H−(u0). (3.6)

Of course, the last two equations imply the following, for all N ∈ {0, 1, 2, . . .}, t ∈ R and n ∈ [0, +∞):

E∗(S, a)uN (t) = uN (t) for (S, a) ∈ H(u0); (3.7)

−E∗(S, a)uN (t) = uN (−t) for (S, a) ∈ H−(u0); (3.8)

‖uN(t)‖n = ‖uN(−t)‖n if H−(u0) 
= ∅ (3.9)

(Eq. (3.9) is a consequence of Eq. (3.8) and of the invariance of ‖ ‖n under the transformation E∗(S, a)).
Due to the Fourier representation (2.25) for E∗(S, a), the equality (3.5) reads e−ia•k Suj,STk = uj,k or,

equivalently,
uj,Sk = e−ia•SkSuj,k for k ∈ Z3, (S, a) ∈ H(u0); (3.10)

similarly, equation (3.6) is equivalent to the statement

uj,Sk = (−1)j+1e−ia•SkSuj,k for k ∈ Z3, (S, a) ∈ H−(u0). (3.11)

In typical applications of the recursion scheme (3.2), where u0 is a Fourier polynomial as well as its iterates uj,
equations (3.10), (3.11) can be used to speed up the computation of the Fourier components of the uj ’s; in fact,
at any given order j, after computing a Fourier component uj,k we immediately obtain from the cited equations
the components uj,Sk for all S in the reduced subgroup or subspace HR(u0), H−

R(u0).

Convergence of the power series in A. From now on

τ := convergence radius of the series
∑∞

j=0 ujt
j in A. (3.12)

Furthermore,
u : t ∈ (−T, T ) �→ u(t) is the maximal A-solution of the Cauchy problem (3.13)

(recall that, for any n > 5/2, u is also the maximal Hn-solution). We note that

0 < τ � T ∧ T, u(t) =
∞∑

j=0

ujt
j in A, for t ∈ (−τ, τ) (3.14)

(with ∧ indicating the minimum). In fact: being analytic, u admits a power series representation in a neighbor-
hood of zero; this necessarily coincides with the series (3.1), whose convergence radius τ is thus nonzero and
fulfills (−τ, τ) ⊂ (−T, T ).
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Convergence of the power series in Hn. After fixing n ∈ [0, +∞), let us discuss the series (3.1) in the
Sobolev space Hn. To this purpose, we put

τn := convergence radius of the series
∑∞

j=0 ujt
j in Hn; (3.15)

the root test gives
τn = lim inf

j→+∞
‖uj‖−1/j

n (3.16)

(defining 0−1/j := +∞). With τ, T, T, u as before, we claim that

τ � τn and u(t) =
∞∑

j=0

ujt
j in Hn, for t ∈ (−T ∧ τn, T ∧ τn) (3.17)

(where −T ∧ τn is the opposite of the minimum T ∧ τn). In fact: the series
∑∞

j=0 ujt
j converges to u(t) in A,

for t ∈ (−τ, τ); by the continuous embedding A ↪→ Hn this series converges to u(t) in Hn as well, at least for
t ∈ (−τ, τ); thus τ � τn. Moreover the functions u : (−T, T ) → Hn and t ∈ (−τn, τn) �→ ∑∞

j=0 ujt
j ∈ Hn

are analytic and coincide on (−τ, τ); so, by the analytic continuation principle, these functions coincide on the
intersection of their domains which is (−T ∧ τn, T ∧ τn). Let as add a stronger claim:

if n >
5
2
, τ � τn � T ∧ T and u(t) =

∞∑
j=0

ujt
j in Hn, for t ∈ (−τn, τn). (3.18)

In fact, the function t ∈ (−τn, τn) �→ ∑∞
j=0 ujt

j is in C((−τn, τn), Hn) ∩ C1((−τn, τn), Hn−1) and solves the
Euler Cauchy problem, so it is a restriction of the maximal Hn-solution, which is u of domain (−T, T ); this
gives the relations τn � T ∧ T and u(t) =

∑∞
j=0 ujt

j in Hn, for t ∈ (−τn, τn).

Power series for the Sobolev norms of the solution. Let us choose n ∈ [0, +∞). The squared norm
‖∑+∞

j=0 ujt
j‖2

n = 〈∑+∞
j=0 ujt

j |∑+∞
j=0 ujt

j〉n has the formal expansion

‖
+∞∑
j=0

ujt
j‖2

n =
+∞∑
j=0

νnjt
j , νnj :=

j∑
�=0

〈u�|uj−�〉n ∈ R; (3.19)

for future use we remark that (7)

H−(u0) 
= ∅ ⇒ νnj = 0 for all j odd. (3.20)

Independently of any assumption on H−(u0), let us define

θn := convergence radius of the series
∑∞

j=0 νnjt
j = lim inf

j→+∞
|νnj |−1/j . (3.21)

Let us relate these objects to the convergence radius τn in (3.15), to the solution u ∈ Cω((−T, T ), A) and to its
squared Hn norm. We claim that

τn � θn and ‖u(t)‖2
n =

+∞∑
j=0

νnjt
j for t ∈ (−T ∧ θn, T ∧ θn) (3.22)

7Let us propose a proof of (3.20), based directly on the definition (3.19) of νnj . If H−(u0) has at least one element (S, a),
from (3.6) and from the invariance of 〈 | 〉n under any transformation E∗(S, a) we obtain that, for each � ∈ {0, . . . , j}, 〈u�|uj−�〉n =

〈(−1)�E∗(S, a)u�|(−1)j−�E∗(S, a)uj−�〉n = (−1)j〈u�|uj−�〉n, whence νnj = (−1)jνnj . If j is odd, this means νnj = 0.
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(with −T∧θn the opposite of T∧θn). In fact: the expansion u(t) =
∑+∞

j=0 ujt
j , converging in Hn for t ∈ (−τn, τn),

implies τn � θn and ‖u(t)‖2
n =

∑+∞
j=0 νnjt

j for t ∈ (−τn, τn). Moreover the functions t ∈ (−T, T ) �→ ‖u(t)‖2
n

and t ∈ (−θn, θn) �→ ∑+∞
j=0 νnjt

j are analytic and coincide on (−τn, τn), so they coincide everywhere on the
intersections of their domains, which is (−T ∧ θn, T ∧ θn). We now add to (3.22) a stronger claim:

if n >
5
2
, τn � θn � T ∧ T and ‖u(t)‖2

n =
+∞∑
j=0

νnjt
j for t ∈ (−θn, θn). (3.23)

Let us prove this claim, assuming for example that T∧T = T . If it were T < θn we would infer limt→T− ‖u(t)‖2
n =

limt→T−
∑+∞

j=0 νnjt
j =

∑+∞
j=0 νnjT

j < +∞ (the first equality would hold due to (3.22) and T ∧ θn = T ; the
subsequent two relations would hold because T would be inside the convergence interval of the series). On the
other hand, since n > 5/2, the existence and finiteness of limt→T− ‖u(t)‖2

n would contradict (2.15).

4. Power series for the Euler equation in a paper of Behr, Nečas and Wu

In the paper [6] mentioned above, the authors considered the power series (3.1) for the Euler equation on T3,
with an initial datum u0 ∈ A given by

u0(x) =
∑

k=±a,±b,±c

u0keik•x, (4.1)

a := (1, 1, 0), b := (1, 0, 1), c := (0, 1, 1);

u0,±a := (1,−1, 0), u0,±b := (1, 0,−1), u0,±c := (0, 1,−1).

Like u0, all the subsequent terms uj are Fourier polynomials with rational coefficients (8). Using rules equivalent
to (3.2), (2.5), the terms uj were determined in [6] by computer algebra, for j = 1, 2, . . . , 35. Computations
were done with Mathematica for j = 1, . . . , 10, and with a C++ program for j = 11, . . . , 35 (in the later case,
approximating the rational coefficients with finite precision decimal numbers). After determining the uj ’s, the
authors fixed their attention on the partial sums

u(N)(t) :=
N∑

j=0

ujt
j ,

whose N → +∞ limit gives the solution u(t) of the Euler Cauchy problem, for all t such that the series converges.
The previously mentioned computation of the uj’s made available these partial sums for N = 0, 1, . . . ., 35; the
authors of [6] computed the (squared) Sobolev norm

‖u(N)(t)‖2
3 =

∑
k∈Z3

|k|6|u(N)
k (t)|2

for the above values of N , and several values of t. Their main results were the following:

(i) Setting t = 0.32, and analyzing the behavior of
∥∥u(N)(0.32)

∥∥
3

for N from 0 to 35, the authors found
evidence that ‖u(N)(0.32)‖3 should approach a finite limit for N → +∞.

(ii) Setting t = 0.35, the authors observed a rapid growth of
∥∥u(N)(0.35)

∥∥
3

for N ranging from 0 to 35, a fact
suggesting that limN→+∞

∥∥u(N)(0.35)
∥∥

3
= +∞.

(iii) A behavior as in (ii) was found to occur for slightly higher values of t (even though the authors suspected
some rounding error to appear for t > 0.35).

8For a more precise statement on these cofficients see our discussion of the datum u0 in the next section and, in particular,
equation (5.9).
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The above results suggest that the series
∑+∞

j=0 ujt
j has a finite convergence radius τ3 in H3, with τ3 ∈

(0.32, 0.35).
Let us discuss this outcome from the viewpoint of the present paper, denoting with u the maximal A-solution

of the Cauchy problem with this datum and recalling that this coincides with the maximal H3-solution. The
datum u0 possesses pseudo-symmetries (to be described in the next section); therefore, u has a time symmetric
domain (−T, T ) (in [6] this fact was not explicitly declared, but probably regarded as self-evident). According
to our equation (3.18), it is

τ3 � T ; (4.2)

in principle, it could be T = +∞. In spite of this, the authors of [6] spoke of a blow-up at τ3.
In the next two sections we present our computations on the power series for the Behr–Nečas–Wu initial

datum, with our interpretation of the results. Even though these calculations confirm the “experimental” out-
comes (i)–(iii) of [6], we give evidence that the solution u of the Euler equation does not blow up close to τ3; on
the contrary, computing the power series for ‖u(t)‖2

3 up the available order we obtain strong evidence that such
a power series has a convergence radius θ3 such that 0.47 < θ3 < 0.50, which implies for the time T of existence
of u the bound T � θ3 > 0.47. By a subsequent analysis relying on the technique of the Padé approximants, we
show that a blow-up of u(t) might happen at a time larger than 0.48: more precisely, these computations give
a somehow weak indication that T might be finite, with 0.56 < T < 0.73.

5. Our approach to the power series of Behr, Nečas and Wu

Let us denote again with u0 the datum (4.1) and consider its iterates uj (j = 1, 2, . . .), with the corresponding
power series; like u0, all the iterates uj are Fourier polynomials with rational coefficients. Throughout the section,
u is the maximal A-solution of the Euler equation with datum u0.

A closer analysis of the Behr–Nečas–Wu initial datum: symmetry properties. The symmetry group
H(u0) and the pseudo-symmetry space H−(u0) (Eqs. (2.34), (2.35)) can be explicitly computed. For the first
one, we find

H(u0) = {(1, 0), (1, ı2), (A, a1), (A, a2), (B, a1), (B, a2), (5.1)

(C, c1), (C, c2), (D, c1), (D, c2), (E, 0), (E, ı2)}
where 1 is the 3 × 3 identity matrix, and

A :=

⎛
⎝0 1 0

0 0 1
1 0 0

⎞
⎠ , B :=

⎛
⎝ 0 −1 0

−1 0 0
0 0 −1

⎞
⎠ (5.2)

C :=

⎛
⎝0 0 1

1 0 0
0 1 0

⎞
⎠ , D :=

⎛
⎝−1 0 0

0 0 −1
0 −1 0

⎞
⎠ E :=

⎛
⎝ 0 0 −1

0 −1 0
−1 0 0

⎞
⎠ ;

furthermore, ı2, a1, etc., are the following elements of T3:

ı2 := (π, π, π), a1 := (0, 0, π), a2 := (π, π, 0), (5.3)

c1 := (π, 0, 0), c2 := (0, π, π)

(of course, in the above π is short for π mod. 2πZ). Let us fix the attention on the reduced symmetry subgroup
HR(u0) = {1, A, B, C, D, E}; it is readily checked that

A3 = 1, B2 = 1, (BA)2 = 1 (5.4)

C = A2, D = AB, E = A2B.
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So, HR(u0) has two generators A, B; the first line in (5.4) gives a presentation of this group in terms of generators
and relations, while the second line expresses the other elements in terms of A, B. Using equation (5.4), one
recognizes a group isomorphism

HR(u0) � D3 (5.5)

where the right-hand side indicates the dihedral group of order 3, formed by the symmetries of an equilateral
triangle (9).
Now we consider the full group H(u0) (with the product (2.22)). It is easy to check that

(A, a1)6 = (1, 0), (B, a1)2 = (1, 0), ((B, a1)(A, a1))2 = (1, 0), (5.6)

(A, a1)2 = (C, c2), (A, a1)3 = (1, ı2), (A, a1)4 = (A, a2), (A, a1)5 = (C, c1),

(A, a1)(B, a1) = (D, c2), (A, a1)2(B, a1) = (E, ı2), (A, a1)3(B, a1) = (B, a2),

(A, a1)4(B, a1) = (D, c1), (A, a1)5(B, a1) = (E, 0).

So, H(u0) has two generators (A, a1) and (B, a1); the first line in (5.6) gives a presentation of this group in terms
of generators and relations, and the subsequent lines express the other elements in terms of the generators. One
recognizes a group isomorphism

H(u0) � D6 (5.7)

where the right-hand side indicates the dihedral group of order 6, formed by the symmetries of a hexagon
(see the previous footnote).

Let us pass to the pseudo-symmetry space H−(u0). One readily checks that this contains (−1, 0) (inducing
the space reflection E(−1, 0) : x ∈ T3 �→ −x). From here and from the general result (2.40), one obtains

H−(u0) = H(u0)(−1, 0) = {(−1, 0), (−1, ı2), (−A, a1), (−A, a2), (5.8)

(−B, a1), (−B, a2), (−C, c1), (−C, c2), (−D, c1), (−D, c2), (−E, 0), (−E, ı2)},
with A, B, . . . and ı2, a1, . . . as in equations (5.2)–(5.3).

Some consequences of the previous symmetry results.

(i) What we have stated in Section 3 for an arbitrary initial datum holds, in particular, for the present datum
u0: the symmetries or pseudo-symmetries of u0 can be used to speed up the computation of the Fourier
components of any iterate uj . More precisely, if we know the Fourier component uj,k for some k, using
equations (3.10), (3.11) we readily obtain the components uj,Sk for all S ∈ HR(u0) ∪H−

R(u0).
(ii) As already noted, the pseudo-symmetry space H−(u0) contains (−1, 0), corresponding to the space

reflection. In terms of Fourier coefficients, the relation (3.11) with (S, a) = (−1, 0) takes the form
uj,−k = (−1)juj,k for j = 0, 1, 2, . . . and k ∈ Z3. On the other hand, any iterate uj is a real vector
field, thus uj,−k = uj,k; in conclusion uj,k = (−1)juj,k, which indicates that uj,k is real for j even, and
imaginary for j odd. Taking into account that the coefficients uj,k are rational in any case, we conclude
the following for each k ∈ Z3:

uj,k ∈ Q3 for j = 0, 2, 4, . . .; uj,k ∈ iQ3 for j = 1, 3, 5, . . . (5.9)

(iii) In the sequel we are often interested in the partial sums u(N)(t) :=
∑N

j=0 ujt
j and in their norms ‖u(N)(t)‖n,

especially for n = 3. Since H−(u0) 
= ∅, as in (3.9) we have ‖uN(t)‖n = ‖uN(−t)‖n.

9For any integer n ∈ {3, 4, . . .}, one denotes with Dn the dihedral group of order n; this is formed by the orthogonal transfor-
mations of the Euclidean plane R2 into itself which preserve a regular polygon with n sides, centered at the origin. Denoting with
id the identity map, with a the rotation of an angle 2π/n and with b the reflection about anyone of the n symmetry axes of the
polygon, one finds that a, b are generators of Dn and fulfill the relations an = id, b2 = id, (ba)2 = id. The elements of Dn are 2n,
and coincide with id, a, a2, . . . , an−1, b, ab, a2b, . . . , an−1b.



ON POWER SERIES SOLUTIONS FOR THE EULER EQUATION, AND THE BEHR–NEČAS–WU INITIAL DATUM 677

(iv) Independently of any convergence consideration about the power series
∑+∞

j=0 ujt
j , the result H−(u0) 
= ∅

also ensures that the (maximal A-) solution u of the Euler equation with datum u0 has a symmetric domain
(−T, T ) (recall Eq. (2.32)).

Describing our computations. We have considered again the power series (3.1) for the datum u0; to deal
with this series we have written a program in Python, using the package gmpy [26] for fast arithmetics on
rational numbers. This program implements equation (2.5) for P and the recursion rule (3.2); moreover, it takes
into account the dihedral symmetries (and pseudosymmetries) of u0 to speed up computations. The program
has been run to compute the terms uj for j = 1, . . . , 52 (10). Calculations have been performed on a PC with
an Intel Core i7 CPU 860 at 2.8GHz and an 8GB RAM. The CPU time for uj has been, for example: 1 second
for j = 10, one minute for j = 20, half an hour for j = 30, 7 h for j = 40 and 85 h for j = 52. Differently
from [6], for all orders up to j = 52 the Fourier coefficients uj,k of uj have been represented as elements of Q3

or iQ3; so, no rounding errors related to finite precision arithmetics have been introduced in the calculation of
the power series.

From the uj’s one determines the squared norms ‖uj‖2
3 =

∑
k∈Z3 |k|6|uj,k|2, the partial sums u(N)(t) :=∑N

j=0 ujt
j and their squared norms ‖u(N)(t)‖2

3 =
∑

k∈Z3 |k|6|u(N)
k (t)|2 (N = 1, . . . , 52). Each ‖uj‖2

3 is a rational
number and ‖u(N)(t)‖2

3 is a polynomial of order 2N in t, with rational coefficients, containing only even powers
of t; furthermore, the coefficients of t0 and t2N in ‖u(N)(t)‖2

3 are ‖u0‖2
3 and ‖uN‖2

3, respectively.
Our computations of the above norms, up to j = 52 or N = 52, have been done using the previously mentioned

Python program. These calculations have been relatively quick: for example, the computation of ‖u(52)(t)‖2
3 has

required a CPU time of about 3 h. As first examples of our results, we report the following ones:

‖u0‖2
3 = 96, ‖u1‖2

3 = 6912, ‖u2‖2
3 = 45440, (5.10)

‖u3‖2
3 =

3695360
9

, ‖u4‖2
3 =

1366793248
675

, ‖u5‖2
3 =

2243123779689032
186046875

·

‖u52‖2
3 is a ratio of integers where the numerator and the denominator have 19515 and 19463 digits, respectively.

Table 1 reports ‖uj‖2
3 for j = 0, . . . , 52, in the 16 digits decimal representation.

Let us pass to the squared norms ‖u(N)(t)‖2
3. As an example, the result for N = 5 is

‖u(5)(t)‖2
3 = 96 + 6656 t2 +

258304
9

t4 +
104566912

525
t6 (5.11)

−9513575648
70875

t8 +
2243123779689032

186046875
t10.

There is no room to report here the results obtained for all the other values of N , especially in the rational form
for the coefficients. However, we can write some of them in the 16 digits precision; in particular,

‖u(52)(t)‖2
3 = 96 + 6656 t2 + 2.870044444444444× 104 t4 + 1.993359937918871× 105 t6 (5.12)

+1.058054454761424× 105 t8 + 1.781444415306641× 106 t10 + 2.740017914111055× 106 t12

−7.321985472578865× 106 t14 + 4.183410651491110× 106 t16 + 1.457483700816015× 108 t18

−1.768517246168822× 108 t20 + 4.196205149715839× 108 t22 + 3.648789154816725× 109 t24

−2.178830191383206× 1010 t26 − 1.394064522752687× 1010 t28 + 2.954202883502504× 1011 t30

10To test the reliability of this program, the calculation of some of the u′
js has been checked in two independent ways. These

checks have been done by means of other two programs, which implement equations (2.5)–(3.2) accepting as an initial datum u0

any Fourier polynomial; these do not refer to any symmetry property of u0. The first of these programs, written in Mathematica,
has been used to compute the uj ’s up to order j = 13; the second program, written in Python, has been used for a calculation up
to j = 43.



678 C. MOROSI ET AL.

+1.283692616423054× 1011 t32 − 4.543575106022102× 1012 t34 + 4.789569007452901× 1012 t36

+2.830635227431622× 1013 t38 + 4.470168139346678× 1013 t40 − 6.910532995061547× 1014 t42

+1.457019276470951× 1014 t44 + 9.053007124662626× 1015 t46 − 8.939780851014422× 1015 t48

−1.019952729404346× 1017 t50 + 1.137772938577812× 1017 t52 + 1.644161010427522× 1018 t54

−4.571936581656874× 1018 t56 − 3.140936865806385× 1019 t58 + 2.408085513008218× 1021 t60

−1.107900217253947× 1023 t62 + 4.186064092726056× 1024 t64 − 1.674853723772203× 1026 t66

+6.911508987260593× 1027 t68 − 2.698282390313396× 1029 t70 + 9.951375797771149× 1030 t72

−3.558771163372845× 1032 t74 + 1.232107326257251× 1034 t76 − 4.045044388392564× 1035 t78

+1.242344004413423× 1037 t80 − 3.561397641466941× 1038 t82 + 9.520206481050174× 1039 t84

−2.357932432543021× 1041 t86 + 5.354229494719748× 1042 t88 − 1.103667607665446× 1044 t90

+2.052382635232918× 1045 t92 − 3.436006560519912× 1046 t94 + 5.184487278969682× 1047 t96

−7.072466985323957× 1048 t98 + 8.759614973466463× 1049 t100 − 9.896987665647683× 1050 t102

+1.025058601409640× 1052 t104.

The rest of the paper reports a number of facts stemming from our computations, with the interpretation that
we suggest for them.

Verification of the outcomes of [6] on ‖u(N)(t)‖2
3. Our computations based on the systematic use of

rational numbers have given essentially the same results as in [6] about ‖u(N)(t)‖2
3 as a function of N , in the two

cases t = 0.32 and t = 0.35. So, ‖u(N)(0.32)‖2
3 seems to approach a limit value for large N , while ‖u(N)(0.35)‖2

3

grows rapidly with N ; our use of rational coefficients ensures that such a rapid growth is not due to cumulative
rounding errors. In Figures 1–2, we report ‖u(N)(t)‖2

3 as a function of N ∈ {0, . . . , 52}, in the two cases t = 0.32
and t = 0.35; these figures are very similar to the ones at the bottom of pages 235 and 236 of [6], respectively
(but comparison requires a rescaling, since the H3 norm employed in [6] differs from ours by a constant factor).

We agree with [6] in interpreting these results as indications that the power series for this initial datum has
a finite H3-convergence radius τ3, with τ3 ∈ (0.32, 0.35).

Further evidence on the H3-convergence radius of the power series. This comes from the root
test (3.16) for n = 3:

τ3 = lim inf
j→+∞

‖uj‖−1/j
3 . (5.13)

Figure 3 represents ‖uj‖−1/j
3 as a function of j ∈ {1, . . . , 52}. For j = 36, 38, . . . , 52 we have a very good

interpolation

‖uj‖−1/j
3 � 0.32158−

(
1.20125

j

)1.38458

, (5.14)

(obtained assuming for the interpolant the form A − (B/j)c, and applying the least squares criterion).
The right-hand side of (5.14) approximates ‖uj‖−1/j

3 with a mean quadratic error < 10−5 (averaging, as
indicated, for j = 36, 38, . . . , 52; if we average over the larger range j = 16, 18, . . . , 52, the mean quadratic error
is < 10−4). Assuming that (5.14) approximates ‖uj‖−1/j

3 with a similar precision for arbitrarily large j, but
keeping cautiously only two digits in our final guess we conclude with an estimate

0.32 < τ3 < 0.33. (5.15)
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Table 1. The squared norms ‖uj‖2
3.

j ‖uj‖2
3

1 6912
2 45440
3 4.105955555555556 × 105

4 2.024878885925926 × 106

5 1.205676676745595 × 107

6 8.452219877103332 × 107

7 6.152775603322622 × 108

8 4.791192836997696 × 109

9 3.628869598772102 × 1010

10 2.825486371143428 × 1011

11 2.228507964437443 × 1012

12 1.821213808657725 × 1013

13 1.539790191793044 × 1014

14 1.341372343677860 × 1015

15 1.190159209731028 × 1016

16 1.066432595016119 × 1017

17 9.598519025230687 × 1017

18 8.662788463495777 × 1018

19 7.840631870939454 × 1019

20 7.122921654632158 × 1020

21 6.499436510134908 × 1021

22 5.957837347113741 × 1022

23 5.485035371335649 × 1023

24 5.068929708200902 × 1024

25 4.699401376031744 × 1025

26 4.368534165204974 × 1026

j ‖uj‖2
3

27 4.070323867244879 × 1027

28 3.800202819232687 × 1028

29 3.554589555246873 × 1029

30 3.330557264153261 × 1030

31 3.125627141295364 × 1031

32 2.937654907691943 × 1032

33 2.764771414352126 × 1033

34 2.605347861791808 × 1034

35 2.457968790658826 × 1035

36 2.321406184470901 × 1036

37 2.194593722846032 × 1037

38 2.076602420620089 × 1038

39 1.966618988613002 × 1039

40 1.863927582086700 × 1040

41 1.767894900465337 × 1041

42 1.677958174980847 × 1042

43 1.593615440091581 × 1043

44 1.514417532673484 × 1044

45 1.439961389630372 × 1045

46 1.369884345517744 × 1046

47 1.303859232337703 × 1047

48 1.241590147950303 × 1048

49 1.182808795435820 × 1049

50 1.127271314453561 × 1050

51 1.074755536205362 × 1051

52 1.025058601409640 × 1052

Remainder estimates for the series expansion of u(t) in H3. Let N ∈ {0, 1, 2, . . .}; of course

u(t) − u(N)(t) =
+∞∑

j=N+1

ujt
j for t ∈ (−τ3, τ3); (5.16)

this implies

‖u(t) − u(N)(t)‖3 �
+∞∑

j=N+1

‖uj‖3|t|j for t ∈ (−τ3, τ3). (5.17)

To go on, we need a guess on the behavior of the norms ‖uj‖3. To this purpose, let us consider the sequence

μ3j := 0.32j ‖uj‖3 (j = 0, 1, 2 . . .), (5.18)

recalling that 0.32 is the lower bound for τ3 in (5.15). From the norms available up to j = 52, we can check
that (μ3j) is decreasing while j ranges in {1, 2, . . . , 52}; by extrapolation, let us assume that (μ3j) is decreasing
on the infinite set {1, 2, . . . .}. So, μ3j � μ3N for integer j � N � 1, i.e.,

‖uj‖3 � μ3N

0.32j
for j � N � 1. (5.19)
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Figure 1.

∥∥u(N)(0.32)
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as a function of N ∈ {0, 1, . . . , 52}.
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Figure 2.
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as a function of N ∈ {0, 1, . . . , 52}.
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Figure 3. ‖uj‖−1/j
3 as a function of j ∈ {1, . . . , 52}.
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For t ∈ (−0.32, 0.32), inserting this inequality into (5.17) we get ‖u(t) − u(N)(t)‖3 � μ3N

∑+∞
j=N+1 |t/0.32|j =

μ3N |t/0.32|N+1
∑+∞

j=0 |t/0.32|j, i.e.,

‖u(t) − u(N)(t)‖3 � μ3N
|t/0.32|N+1

1 − |t/0.32| for t ∈ (−0.32, 0.32), N ∈ {1, 2, 3, . . .}. (5.20)

Of course, this is a conjecture based on the previous extrapolation. For the practical application of the remainder
estimate (5.20), we mention that (rounding up from above)

μ3 5 = 11.7, μ3 10 = 5.99, μ3 20 = 3.39, (5.21)

μ3 30 = 2.61, μ3 40 = 2.20, μ3 52 = 1.88 .

No blow-up at τ3. After accumulating indications that the Taylor series for u(t) has an H3-convergence radius
τ3 ∈ (0.32, 0.33), in the rest of the section we will present evidence that u(t) does not blow up at t = τ3.

The power series for ‖u(t)‖2
3; an indication that u(t) exists up to t = 0.47 at least. The re-

sults (3.19)–(3.20) with n = 3 give a formal series expansion∥∥∥∥∥∥
+∞∑
j=0

ujt
j

∥∥∥∥∥∥
2

3

=
+∞∑
j=0

ν3jt
j , ν3j :=

j∑
�=0

〈u�|uj−�〉3 ∈ R, ν3j = 0 for j odd; (5.22)

the series
∑+∞

j=0 ν3jt
j has a convergence radius

θ3 = lim inf
j→+∞

|ν3j |−1/j . (5.23)

Recalling that (−T, T ) is the domain of the solution u, we know (from (3.23)) that

τ3 � θ3 � T, ‖u(t)‖2
3 =

+∞∑
j=0

ν3jt
j for t ∈ (−θ3, θ3). (5.24)

In the sequel, for N = 0, 1, 2, . . . . we also consider the partial sums

ν
(N)
3 (t) :=

N∑
j=0

ν3jt
j . (5.25)

Of course, u(N)(t) =
∑N

j=0 ujt
j is such that u(t) = u(N)(t) + O(tN+1) for t → 0; this implies ‖u(t)‖2

3 =
‖u(N)(t)‖2

3 + O
(
tN+1

)
, whence

ν
(N)
3 (t) = ‖u(N)(t)‖2

3

∣∣∣
tk → 0 for k > N

. (5.26)

With this remark, the previuos computations of ‖u(N)(t)‖2
3 up to N = 52 also give the partial sums ν

(N)
3 (t) for

N � 52 or, equivalently, the coefficients ν3j for j � 52. For example,

ν30 = 96, ν32 = 6656, ν34 =
258304

9
, ν36 =

2825587712
14175

, (5.27)

ν38 =
52545219363488

496621125
, ν3 10 =

10025320340466597351685768
5627635784943046875

;

ν3 52 is a ratio of integers where the numerator and the denominator have 2610 and 2593 digits, respectively.
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Figure 4. ν
(N)
3 (0.45) as a function of N ∈ {0, 2, . . . , 50, 52}.
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Figure 5. ν
(N)
3 (0.50) as a function of N ∈ {0, 2, . . . , 50, 52}.

The 16-digits representation of the coefficients ν3j for all j ∈ {0, . . . , 52} can be obtained from equa-
tions (5.12)–(5.26); more precisely,

ν3j = coefficient of tj in (5.12), for j = 0, . . . , 52. (5.28)

From the above data, one can try to make predictions on the convergence radius θ3 of the series
∑+∞

j=0 ν3jt
j .

In Figures 4–7 we report the partial sums ν
(N)
3 (t) as functions of N ∈ {0, 2, . . .50, 52}, in the four cases

t = 0.45, 0.50, 0.55, 0.60. For t = 0.45, the function N �→ ν
(N)
3 (t) seems to approach a limit value for large N .

The situation is not clear for t = 0.50, due to the appearance of small oscillations; for t = 0.55 and t = 0.60,
the oscillations of N �→ ν

(N)
3 (t) are large and their amplitude increases with N . We regard these results as

indicating that
∑+∞

j=0 ν3jt
j is convergent for t � 0.45 and not convergent for t � 0.55; in other words, for the

convergence radius we have a conjectural estimate

0.45 < θ3 < 0.55. (5.29)
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Figure 6. ν
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3 (0.55) as a function of N ∈ {0, 2, . . . , 50, 52}.
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Figure 7. ν
(N)
3 (0.60) as a function of N ∈ {0, 2, . . . , 50, 52}.

Another way to estimate θ3 comes from the root test (5.23). Figure 8 is a graph of |ν3j |−1/j as a function of
j ∈ {2, 4, . . . , 50, 52}. For j = 36, 38, . . . , 52, there is a fairly good interpolation

|ν3j |−1/j � 0.484−
(

8.48
j

)2.19

(5.30)

(obtained assuming for the interpolant the form A − (B/j)c, and applying the least squares criterion); here,
the right-hand side approximates |ν3j |−1/j with a mean quadratic error < 0.01 (let us repeat it, for j between
36 and 52). Assuming that the above interpolant behaves similarly for all larger (even) j, and considering
θ3 = lim infj→+∞ |ν3j |−1/j we are led to use 0.484± 0.01 as upper and lower bounds for it; rounding up to two
digits we obtain the inequality

0.47 < θ3 < 0.50, (5.31)

which is compatible with (5.29). Now, recalling that θ3 is a lower bound on the time of existence T of the
solution u (see (5.24)), we are led to the final estimate

0.47 < T � +∞. (5.32)

In particular, as anticipated, we have indications that u does not blow up near the H3-convergence radius τ3.
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Figure 8. |νj |−1/j
3 as a function of j ∈ {2, 4, . . . , 50, 52}. The dashed line is the graph of the

interpolant in (5.30), for j ∈ [36, 52].

6. Possible blow-up at larger times for the Behr–Nečas–Wu datum, VIA

Padé approximants

A few words on Padé approximants. Let us be given an analytic function f : I → C, t �→ f(t), with I a
neighborhood of zero in R or C. Let p, q ∈ {0, 1, 2, . . .}; we recall that the Padé approximant of order (p, q) of
f , if it exists, is the unique complex function [p/q]f ≡ [p/q] of the form

[p/q](t) =
a0 + a1t + . . . + apt

p

1 + b1t + . . . bqtq
, (6.1)

such that

f(t) = [p/q](t) + O(tp+q+1) for t → 0. (6.2)

The above condition determines the p + q + 1 unknown coefficients a0, . . . , bq as functions of the derivatives
f (j)(0), j = 0, . . . , p + q; the domain of [p/q] is the largest subset of C where the above ratio is defined. The
family of all approximants [p/q] (p, q = 0, 1, 2, . . .) forms the so-called Padé table of f ; the approximants with
p = q are called diagonal (and the term “near-diagonal” is used if p � q).

There are several results and conjectures about the convergence to f of the Padé approximants [p/q] with
p or p, q large. In particular, the so-called “Padé conjecture” (or “Baker–Gammel–Wills conjecture”) states
that, for a meromorphic function f on a disk of C, there is a subsequence [p�/p�] ( = 1, 2, 3, . . .) of diagonal
Padé approximants that, for  → +∞, converges to f uniformly on each compact subset of the disk minus
the poles of f . This conjecture has been proved for special classes of meromorphic functions (see [1, 23, 24] and
references therein).

It is found experimentally that the Padé approximants of large order work as well for many non meromorphic
functions, describing accurately their behavior even close to non polar singularities. This is found to happen in
many cases for the diagonal approximants [p/p] (as well as for the near-diagonal ones).

Padé approximants for ‖u(t)‖2
3, and possible evidence for a blow-up. The previous considerations can

be applied (for suitable n) to the function f(t) := ‖u(t)‖2
n, where u is the solution of the Euler equation with a

given datum u0.
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One can ascribe to a number of works the idea of using the Padé approximants for such a function; as in the
Introduction, we mention [9, 13, 17, 22] (and some references therein). As already remarked, these papers have
considered initial data u0 different from the one of Behr–Nečas–Wu (e.g., the Taylor–Green vortex); furthermore,
they have generally considered the Sobolev norm of order n = 1.

Here we are focusing on the (maximal A-) solution u for the Behr–Nečas–Wu datum; from now on, [p/q]
stands for the Padé approximant of order (p, q) of the analytic function

t �→ f(t) := ‖u(t)‖2
3. (6.3)

We conjecture that the diagonal or near-diagonal Padé of sufficiently large order approximate well the function
f (and its analytic continuation to the complex plane). From the previous paragraphs, we have the derivatives
f (j)(0) = j! ν3j for j = 0, . . . , 52; this information allows to determine all the Padé approximants [p/q] for
p + q � 52 (and, in particular, all the diagonal approximants [p/p] for p � 26). Since f is an even function of t,
one can restrict the attention to cases with p and q even (11).

Let us consider, for example, the approximant [12/12]. This is found to exist; its numerator and denominator
are polynomials with rational coefficients, too large to be written explicitly, but we can use the 16-digits
approximation for the coefficients and write

[12/12](t) =
N12(t)
D12(t)

, (6.4)

N12(t) := 96 + 6.680481407149543× 103 t2 + 3.08095009988031× 104 t4

+2.3462351635051233× 105 t6 + 2.407391215430808× 105 t8

+2.5575522886490226× 106 t10 + 3.094974424148063× 106 t12,

D12(t) := 1 + 0.255014657807743 t2 + 4.288322833232482 t4 − 5.985294148961588 t6

+8.973150435320479 t8 + 66.29326162173366 t10 − 612.1107629833056 t12.

The poles of [12/12], which are the zeros of D12, are simple and occur at the points

t = ±0.294020± 0.464361 i (|t| = 0.549617); (6.5)

t = ±0.511609± 0.301416 i (|t| = 0.593797);

t = ±0.606004 i, t = ±0.626199

(here and in the sequel, ± means that we can choose independently the signs for the real and imaginary part,
e.g., + for the real and − for the imaginary part). So, the singularities of minimum modulus of the approximant
[12/12] are at anyone of the points T◦ = ±0.294020 ± 0.464361 i, such that |T◦| = 0.549617; furthermore, the
real singularities closest to the origin are at anyone of the points T∗ = ±0.626199.

We have performed a similar analysis for all the approximants [p/p], with p = 14, 16, . . . , 26 and for some
near-diagonal approximants [p/q], with p + q = 50 or 52; the results are summarized in Table 2.

Let us point out some features of the Padé approximants in Table 2, with their possible implications.

(i) For all the approximants, the poles of minimum modulus occur at points T◦ with |T◦| � 0.5. It is difficult to
extrapolate a limit value of |T◦|, so we limit ourselves to consider the mean 〈|T◦|〉 and the mean quadratic
error Δ|T◦| over some sample values of (p, q) extracted from Table 2; these are reported in Table 3, where

11In a neighborhood of zero f has a series expansion in even powers of t, so it has the form f(t) = F (t2) for a suitable function
s �→ F (s). In any situation of this type, writing [ / ] and [ / ]F for the Padé approximants of f and F as functions of t and s,
respectively, we have the following: for k, m ∈ N, [2k/2m](t) = [2k + 1/2m](t) = [2k/2m + 1](t) = [k/m]F (t2), provided that
[k/m]F exists. Existence of the (odd, odd) approximants of f cannot be granted analyzing the approximants of F . (To avoid
misunderstandings, we repeat that existence of the Padé approximant of any order (p, q) means that both Eqs. (6.1), (6.2) are
fulfilled).
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Table 2. Poles of some diagonal or near-diagonal Padé approximants [p/q](t) to ‖u(t)‖2
3. T◦ :=

pole closest to the origin (with modulus |T◦|); T∗ := real (or almost real) pole closest to the
origin.

[p/q] T◦ |T◦| T∗
[12/12] ±0.294020 ± 0.464361 i 0.549617 ±0.626199
[14/14] ±0.281333 ± 0.445002 i 0.526474 ±0.656185
[16/16] ±0.283300 ± 0.446498 i 0.528790 ±0.661087
[18/18] ±0.283081 ± 0.445859 i, 0.528134 ±0.660118
[20/20] ±0.345307 ± 0.348713 i 0.490752 ±0.621387 ± 0.047708 i
[22/22] ±0.350239 ± 0.350695 i 0.495635 ±0.541967
[24/24] ±0.349063 ± 0.350777 i 0.494863 ±0.609804 ± 0.0383530 i
[26/26] ±0.0714399 ± 0.508700 i 0.513692 ±0.816133
[22/28] ±0.0278472 ± 0.462259 i 0.463097 ±0.658688 ± 0.0671444 i
[28/22] ±0.0726664 ± 0.513427 i 0.518544 ±0.854937 ± 0.0798538 i
[24/26] ±0.0275015 ± 0.462148 i 0.462965 ±0.658586 ± 0.0671042 i
[26/24] ±0.0714492 ± 0.506794 i 0.511806 ±0.769049 ± 0.0923157 i
[22/30] ±0.110906 ± 0.503728 i 0.515792 ±0.577969
[30/22] ±0.0723087 ± 0.511164 i 0.516253 ±0.887455 ± 0.0401287 i
[24/28] ±0.0131675 ± 0.457291 i 0.457481 ±0.660114 ± 0.0673984 i
[28/24] ±0.0716786 ± 0.509393 i 0.514411 ±0.807680 ± 0.0925495 i

Table 3. Means and mean quadratic errors of |T◦| and |T∗|, averaging over three sets
S1, S2, S3 of pairs (p, q) from Table 2. S1 := {(p, p) | p even, 12 � p � 26}; S2 :=
{(p, p) | p even, 20 � p � 26}; S3 := {(p, q) in Table 2 | 50 � p + q � 52}.

Set 〈|T◦|〉 Δ|T◦| 〈|T∗|〉 Δ|T∗|
S1 0.515995 0.0195414 0.649489 0.072747
S2 0.498735 0.00883212 0.648081 0.101851
S3 0.497116 0.0255134 0.746256 0.101273

we average over three distinct sets S1, S2 and S3 of pairs (p, q) (the first two made of diagonal pairs, the
third one containing also near-diagonal pairs).
For a holomorphic function, the convergence radius of the power series centered at zero is the modulus of
the singularity closest to the origin. So, assuming that the above [p/q] Padè describe approximately the
singularities of f(t) = ‖u(t)‖2

3, one can derive from them an estimate of the convergence radius θ3 for the
power series of f(t). For example, one could assume |T◦| − Δ|T◦| < θ3 < |T◦| + ΔT◦, where the mean and
the mean quadratic error are taken over a suitable set of approximants. Using the sets S1, S2, S3 of Table 3
(and rounding |T◦| ± Δ|T◦| to 2 digits) one obtains, respectively,

0.49 < θ3 < 0.54, 0.48 < θ3 < 0.51, 0.47 < θ3 < 0.53; (6.6)

anyone of these estimates has a significant overlap with equation (5.31), that we still regard as our basic
estimate on θ3.

(ii) The [p/q] approximants of Table 2 have real poles or “almost real” poles, close to the real axis; real poles
occur more frequently in the diagonal cases (12). For all the [p/q] approximants in Table 2, we have denoted
with T∗ the real (or almost real) singularities closest to the origin. One notes rather large oscillations of
|T∗| as a function of the order, even for the largest available values of p, q. In Table 3 we report the mean

12The occurrence of almost real singularities has also been pointed out in [13, 22] while analyzing the Padé approximants for
‖u(t)‖2

1 , with initial conditions u0 different from the Behr–Nečas–Wu datum.
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〈|T∗|〉 and the (rather large) mean quadratic error Δ|T∗|, obtained averaging over the sets of approximants
S1, S2 and S3.
The above results on the singularities T∗ somehow suggest that f(t) = ‖u(t)‖2

3 could diverge for t → T−

(and t → (−T )+), for a suitable T . One could assume the upper and lower bounds 〈|T∗|〉 − Δ|T∗| < T <
〈|T∗|〉+ Δ|T∗|, where the means are taken over anyone of the sets in Table 3; averaging over S1, S2, S3 one
obtains, respectively,

0.57 < T < 0.73, 0.54 < T < 0.75, 0.64 < T < 0.85. (6.7)

If the conjectured divergence of f(t) actually occurred, the solution u of the Euler equation with the Behr–
Nečas–Wu datum would blow up at T (and −T ); admittedly, the indications for such a blow-up are weak.

D-log Padè approximants for ‖u(t)‖2
3. As well known, the D-log Padé approximants of a function t �→ f(t)

(with f(0) 
= 0) are the Padé approximants for the logarithmic derivative ḟ/f (˙ := d/dt). These approximants
are generally regarded as more suitable for describing the behavior of f close to singularities, even of non
polar type. In particular, the presence of a singularity at a point T∗, say real, and a behavior of the type
[p/q]ḟ/f ∼ λ∗/(T∗ − t) for t → T−

∗ is regarded as an indication that f(t) ∼ const/(T − t)λ for real t → T−,
where T � T∗ and λ � λ∗ [1].

The function f(t) := ‖u(t)‖2
3 is even in t, so it is natural to consider its (odd,odd) D-log approximants (13).

More precisely, we have considered the diagonal approximants [p/p]ḟ/f , with odd p � 25; the results are very
unstable with respect to the order, and ultimately not sufficient to get any indication of blow-up (14).

7. Conclusions

The previous results about the Behr–Nečas–Wu datum u0 support our statements in the introduction, i.e.:

(a) The power series for u0 has an H3 convergence radius τ3 such that 0.32 < τ3 < 0.33 (see Eq. (5.15)).
(b) There is no blow-up at τ3 and the (maximal A-) solution u of the Euler Cauchy problem exists, at least,

up to a time θ3 (the convergence radius for the series expansion of ‖u(t)‖2
3), for which we have from (5.31)

the estimate θ3 > 0.47.
(c) The Padé approximants for ‖u(t)‖2

3 in Table 2 give weak indications that u might blow up at a time T , with
0.54 < T < 0.85 (see Eq. (6.7)).
We think that the evidence given in this paper is rather strong for (a)(b). As for (c), doubts on the blow-up
conjecture arise not only from the rather erratic behavior of the real (and almost real) singularities in the
computed Padé approximants; in fact there are more general reasons, recalled at the end of the Introduction,
suggesting caution in deriving blow-up results from Padé analysis.
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13We have f(t) = F (t2), for a suitable function s �→ F (s); in any case like this, for k,m ∈ N one finds [2k + 1/2m + 1]ḟ/f (t) =

[2k + 2/2m]ḟ /f (t) = [2k + 1/2m]ḟ /f (t) = 2t[k/m]F ′/F (t2), provided that [k/m]F ′/F exists (of course ′ := d/ds, and we are

considerind the D-log approximants of F as a function of s). Existence of the (even, odd) D-log approximants of f cannot be
granted analyzing the D-log approximants of F .

14Here is a more precise description of the computational outcomes. The D-log approximants of order (p, p) for p = 17, 19, 21 have

real singularities at points T∗ 	 0.72 and are such that [p/p]ḟ/f ∼ λ∗/(T∗ − t) for t �→ T−∗ , with λ∗ 	 2.6; so, for ‖u(t)‖3 =
√

f(t)

we have a conjecture ‖u(t)‖3 ∼ const./(T − t)α with T 	 0.72 and α 	 λ∗/2 	 1.3. This value of α agrees with the theoretical
bound α � 1 in the event of blow-up (see Eq. (2.16)); it agrees as well with the (conjectural) bound α � 6/5, obtained extrapolating
from R3 to T3 the estimate (2.17). On the contrary, the D-log approximant of order (23, 23) for f has no real (nor almost real)

singularity. Finally, at the order (25, 25) there is a real singularity for T∗ 	 0.52, and [25/25]ḟ /f ∼ λ∗/(T∗ − t) for t �→ T−∗ , with

−0.002 < λ∗ < 0.002 (there are numerical difficulties in a more precise determination of λ∗). Returning to ‖u(t)‖3 =
√

f(t), the
[25, 25] Padé would suggest ‖u(t)‖3 ∼ const./(T − t)α with T 	 0.52 and −0.001 � α � 0.001. This statement is an absurdity even
in the case 0 < α � 0.001, since it contradicts the bound (2.16) α � 1.



688 C. MOROSI ET AL.

the referees for a very useful remark on how to derive Proposition 2.3 from the existing literature on analytic solutions of
the Euler equation. This work was supported by INdAM, INFN and by MIUR, PRIN 2008 Research Project “Geometrical
methods in the theory of nonlinear waves and applications”.

References
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