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A PREDICTIVE METHOD ALLOWING THE USE OF A SINGLE IONIC
MODEL

IN NUMERICAL CARDIAC ELECTROPHYSIOLOGY
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Abstract. One of the current debate about simulating the electrical activity in the heart is the
following: Using a realistic anatomical setting, i.e. realistic geometries, fibres orientations, etc., is it
enough to use a simplified 2-variable phenomenological model to reproduce the main characteristics
of the cardiac action potential propagation, and in what sense is it sufficient? Using a combination
of dimensional and asymptotic analysis, together with the well-known Mitchell−Schaeffer model, it is
shown that it is possible to accurately control (at least locally) the solution while spatial propagation
is involved. In particular, we reduce the set of parameters by writing the bidomain model in a new
nondimensional form. The parameters of the bidomain model with Mitchell−Schaeffer ion kinetics are
then set and shown to be in one-to-one relation with the main characteristics of the four phases of a
propagated action potential. Explicit relations are derived using a combination of asymptotic methods
and ansatz. These relations are tested against numerical results. We illustrate how these relations can
be used to recover the time/space scales and speed of the action potential in various regions of the
heart.
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1. Introduction

Numerical modelling is a main tool for understanding the propagation of electrophysiological waves in healthy
and pathological hearts. There is great need in developing prediction tools that could be used for example to
identify the mechanisms behind alternans and arrhythmias, develop control strategies for reducing the impact
of conduction pathologies and improve therapy planning [6]. For the last decade or so, there is an increasingly
popular trend to patient-specific modelling, where the predictions in clinical applications rely on the personal-
isation of cardiac electrophysiology models. For instance, mapping models are used in [27, 28] to estimate the
model parameters, resulting in model predictions similar to the actual clinical data.

A first crucial step in setting simulations in cardiac electrophysiology consists in choosing appropriate ionic
models, typically systems of ordinary differential equations (ODE) able to reproduce the fast and slow dynamics
of the action potential (AP), i.e. the excitation of cardiac cells through time. The ionic models available are
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numerous (see www.cellML.org) and it is important to understand the benefits and the limitations of each
model so that an appropriate choice can be made [7]. Ionic models can be split in three classes respective to the
way these models are constructed: the physiological cell ionic models (e.g. Luo−Rudy [21], Beeler−Reuter [3],
Hodgkin−Huxley [15,25]), the reduced ionic models (e.g. the 3-variables Fenton−Karma model is a reduction of
the Luo−Rudy 1 model [12]), and the phenomenological models (e.g. FitzHugh−Nagumo (FHN) [13,24], Aliev-
Panfilov [1], Mitchell−Schaeffer [11, 22]). Accordingly, these three types of models are intended to reproduce
different phenomena. See [7] for a good review.

With any of these types of ionic models, a main problem arises when one wants to incorporate the ionic
model in a model for spatial propagation: the time and space scales have to match and some parameters have to
be tuned properly. The ionic models are particularly sensitive to the variation of the parameters. It is hard to
change these parameters so that the solution of the differential equations reacts with the right time and space
scales. As a result, doing realistic simulations requires that the influence of each parameter involved has to be
well understood.

This overall understanding is hard to achieve and to address this difficulty we propose to reduce the set
of parameters in the equations. Phenomenological models become a natural choice, a framework adapted for
most applications where it may not be necessary to construct a highly detailed and computationally expensive
physiological ionic model [7]. The Mitchell−Schaeffer model could be used to reproduce the action potential
dynamics.

To reduce further the set of parameters in the equations, a nondimensionalisation is performed and much
less parameters are necessary that is to say a single dimensionless number replaces all parameters related to
the propagation of the potential. Using an asymptotic analysis, a bijective relation between the set of the ionic
model parameters and the set of solution features is built. The combination of the dimensional analysis and
the asymptotic analysis makes possible to set precisely the parameters of the ionic model (electrical activity of
a single cardiomyocyte) and the bidomain models (electrical activity propagated throughout the surrounding
heart tissues).

Aside from its theoretical interest, this work proposes steps to control the wave’s shape and its propagation
in a region of local constant conductivity. If the use of the Mitchell−Schaeffer model turns out to be sufficient,
every model parameter can be chosen properly by virtue of the knowledge of the resulting solution (the approach
becomes predictive). Remark that a similar approach could probably be successfully applied to another ionic
model. This is a huge step toward the direct computation of the electrocardiogram, where the model parameters
are properly tuned in different regions of the heart and the cardiac AP is computed and propagated through
a heart-thorax geometry. This could lead to an alternative way for exploring the inverse problem: simulate the
electrode acquisition process, solve the inverse problem, and validate with a perfectly known source.

As a last comment, this work results from a combination of methods that have been used extensively. The
difference between the previous works in this domain ([5,16] for ODE models and [22,29,30] for mapping models)
is that here, the results of the analysis not only portrays a general behaviour of the solution features (i.e. give
some dependences on some parameters of the model, but not all possibly influent parameters), but can reliably
predict a desired solution with explicit dependences on all model parameters and all the physiological constants.
Our approach is able to deal with isolated as well as sequences APs, but it also can be used to precisely shape
propagated APs. This approach is then suitable for predictions.

The article is outlined as follows. Section 2 presents background material on AP and its modelling through
ionic and bidomain models. Section 3 proposes a new way to nondimensionalise the bidomain model and reduce
the set of parameters. Section 4 contains the main results of this article. The parameters of the bidomain model
with Mitchell−Schaeffer ion kinetics are set and shown to be in one-to-one relation with the main characteristics
of the four phases of a propagated AP. Explicit relations are derived using a combination of asymptotic methods
and ansatz. These relations are tested against numerical results. Section 5 illustrates how these relations can
be used to recover the main characteristics of the AP in various regions of the heart. Section 6 concludes with
general remarks.

www.cellML.org
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Figure 1. The transmembrane potential versus time with the four main phases of the car-
diac AP. This is the typical shape of a ventricular AP.

2. Background material

For electrically excitable cells, an action potential (AP) is a biological manifestation described by a fast rise
(depolarisation) and fall (repolarisation) of the transmembrane potential, where the transmembrane potential is
defined as the difference between the intracellular and the extracellular potentials. The AP of a cell is the result
of the movement of ions through the cell membrane (passive transport and active transport e.g. voltage-gated
channels), and this electrical activity is stimulated typically by the electrical activation from adjacent cells. The
resulting AP propagates in the myocardium and subsequently follows the contraction of the heart, allowing
blood to be pumped throughout the body. An efficient contraction is ensured by a well-regulated stimulation,
hence it is crucial to understand the inherent physiology.

If a heart beat results from the complex interaction of different APs in different portions of the heart, the
ventricular AP reveals far enough to have a good overall understanding of the cardiac AP. Here is a brief
description (see [5]) of the ventricular AP featuring the most important four phases. Figure 1 shows a typical
ventricular AP separated in its four phases.

Phase I. Transmembrane potential upstroke or depolarisation (short time scale): The transmembrane po-
tential is initially at its resting state (Vrest �-85 mV), where all the fast Na+ channels are closed.
A partial depolarisation opens these channels causing a large influx of Na+ ions, further increasing
the depolarisation. The cell gets positively charged (Vmax � 40 mV) or depolarised.

Phase II. Excited phase (long time scale): An outward current of potassium ions is balanced by an inward
movement of calcium ions, causing a plateau. Sodium ions are still flooding in and just about keep
pace. The transmembrane potential falls slowly. Note: The transient net outward current causing
the small downward deflection (such an overshoot is observed in some cardiomyocyte APs) is mainly
due to the movement of K+ ions.

Phase III. Downstroke or repolarisation (short time scale): The calcium channels close while potassium chan-
nels are still open. The net outward positive current causes the cell to repolarise until the trans-
membrane potential is restored to about -85 mV. The cell may pass its equilibrium polarisation,
and becomes hyperpolarised.

Phase IV. Recovery period (long time scale): At the beginning of this period, the transmembrane potential
gets close to its resting state, but some gates or ionic currents have not yet reached their equilibrium
value. The recovery phase ends when all the currents and gates reach the equilibrium state within
a prescribed tolerance or threshold. We abstain from using the expression “refractory period” and
stick to “recovery period” while connections may be made between these notions given that partial
recovery leads to absolute or relative refractoriness.

In order to obtain integrative anatomically accurate models for the AP, one needs to gather information from
many sources. Collecting information can become a huge task just to characterise a healthy human heart
not to mention when heart abnormalities are studied [16, 32]. Moreover, depending in which tissue the AP is
propagated, the cells are different and so are the features of the AP (see Tab. 1). Throughout the text, the term
solution feature is taken as any measure characterising the solution of a model describing the AP. For instance
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Table 1. Speeds and absolute refractory periods (ARP) are taken from [20] where the heart
cycle lasts 700 ms. Similar values for speeds can also be found at http:://cvphysiology.com/
Arrhythmias/A003.htm

Speed ARP
Tissue [cm/s] [ms]
Ventricle 35-55 255–275
Atria 60 250–270
SA node 5 430
AV node 5 300
Bundle of His 170 210
Bundle Branches 200 270–310
Purkinje fibres 180 320

the durations of phases and the speed of the propagated potential wavefront are solution features that are going
to be studied.

2.1. The model for propagation

Propagation of the action potential is commonly modelled through the bidomain model or an approximation
of this model called the monodomain model (see [16,32] and references therein). The bidomain model represents
the myocardium as an homogenised continuum of the myocyte intracellular and extracellular spaces, with an
electrical potential for both spaces existing at every point of the myocardium. The heart covers the domain H
with boundary ∂H separating the myocardium from the cardiac cavities and the thorax. Under the assumption
that the heart is isolated from its surrounding (e.g. non-coupled with the thorax), solving the bidomain model
consists in finding (u, v, ue) such that

∂v

∂t
= g (u, v) in H, (2.1)

χ

(
Cm

∂u

∂t
+ Iion (u, v)

)
= ∇ · (σi∇u) + ∇ · (σi∇ue) in H, (2.2)

∇ · (σi∇u) + ∇ · ((σi + σe)∇ue) = 0 in H, (2.3)
nH · (σe∇ue) = 0 on ∂H, (2.4)
nH · (σi∇ui) = 0 on ∂H (2.5)

where v is the vector of variables for the ionic model; ui, ue and u = ui − ue are, respectively, the intracellular,
extracellular and transmembrane potentials; χ is the cell membrane surface-to-volume ratio; Cm is the specific
capacitance (per unit area) of the cell membrane; σi and σe are, respectively, the intracellular and extracellular
conductivity tensors.

The first equation represents the system of equations of the ionic model, which is coupled with the bidomain
model via the current Iion. For a simple 2-variable phenomenological model, the reaction term Iion is expressed
as an algebraic function f(u, v). The second equation models the entry of ions into the intracellular space, while
the third equation represents the conservation of ionic charges in the extracellular space. The fourth and fifth
equations express the fact that conduction cannot occur through the boundary ∂H both from the extracellular
and the intracellular spaces.

2.2. The choice of the ionic model

The Mitchell−Schaeffer (MS) model was first introduced in [11]. This 2-variable phenomenological model
has several qualities that makes it a candidate of choice for achieving our goal of matching several AP features
(conduction speed, time scales, restitution) with the simplest possible model. First of all, because it is derived

http:://cvphysiology.com/Arrhythmias/A003.htm
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from the Fenton−Karma ionic model, it has benefits of an ionic model though it is a phenomenological model.
Moreover, many authors have used the MS model for realistic clinical applications. In order to simulate a right
bundle-branch block Boulakia and et al. [4] used the MS model on the one hand to keep as low as possible the
complexity of the model and on the other hand to model as accurately as possible the physical phenomena. As an
other example, mapping models for predictions of the excited phase duration and the recovery duration (derived
in [11, 22]) were proved to be efficient for cardiac model personalisation using real patient data in [27, 28].

The original MS model reads as

du
dt

+ f(u, v) = 0, where f(u, v) =
1
τin
vu2(u− 1) +

1
τout

u, (2.6)

dv
dt

= g(u, v), where g(u, v) =

⎧⎪⎨⎪⎩
1

τopen
(1 − v) for u < ugate,

− 1
τclose

v for u ≥ ugate,
(2.7)

with τin = 0.3 ms, τout = 6 ms, τopen = 120 ms, τclose = 150 ms and ugate = 0.13, a set of parameter values
proposed in [22].

Several modified versions of the MS model are brought in the literature (see for example [10,17,29,30]). The
following outlines the subtleties of the different versions of the reaction terms.

A first variant of the MS model is presented in [10]. A noticeable difference between the original MS and this
modified version is the introduction of the parameter a in f(u, v)

fpace(u, v) =
1
τin
v(u+ a)2(u− 1) +

1
τout

u, (2.8)

where a = 0.02 is suggested. It can be used to control the excitability and mimic a natural pacemaker activity.
Schaeffer and et al. [29, 30] brought an extension to the original MS model. The new model has three vari-

ables, where the third variable is concentration-like and acts as a memory variable. It also helps the charge
balance through time. This model improves predictions where rate dependence and accommodation are in-
volved (see [29, 30] for details). Besides this, a relevant change is brought to the source term g(u, v) upon what
the solution features the overshoot after the depolarisation as illustrated in Figure 1. The closing rate τclose
becomes voltage-dependent and reads as

1
τclose(u)

=

⎧⎪⎨⎪⎩
1

τfclose
−
(

1
τfclose

− 1
τsclose

)
1 − u

1 − usldn
if u > usldn,

1
τsclose

otherwise,
(2.9)

where τfclose and τsclose are time scale parameters referring respectively to a fast and slow closing rate. Right
after the depolarisation, the closing rate slows down progressively until u = usldn. Past this value the rest
of the phase II happens as with the original MS model. In [30], the following set of parameters is proposed:
τin = 0.28 ms, τout = 3.2 ms, ugate = 0.13, usldn = 0.89, τopen = 500 ms, τsclose = 22 ms and τfclose = 320 ms.

In the text, what is called the modified MS model has the reaction terms f(u, v) of equation (2.8) and g(u, v)
of equation (2.7) with the associated time scale τclose(u) of equation (2.9). In instances where the overshoot
following depolarisation is not needed, one can set τclose(u) ≡ τsclose and recovers the original MS model if a = 0.

3. Nondimensionalisation

We first proceed with a nondimensionalisation of the problem (2.1)–(2.5), an essential ingredient behind any
asymptotic analysis. A main issue comes from the fact that the bidomain model takes a dimensional form but is
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coupled with nondimensional ionic models. Indeed a common way found in the literature for writing the source
terms describing the transmembrane current of a specific ion is given by

Iion =
hp(u, v)

τ
, (3.1)

where h is a gating variable, p(u, s) is a function of the transmembrane potential and τ is the time scale of this
charge flow. As p(u, s) can be any function (combination of exponentials, polynomials, etc.), the variables h, u
and v are often taken dimensionless and τ dimensional (in seconds) in order to preserve the unit balance in the
equations. A consequence of using nondimensional potentials is that the source terms of ionic models proposed
in the literature are often expressed in s−1 to match the units of the terms ∂v/∂t or ∂u/∂t in the conduction
model.

To perform the nondimensionalisation and unit-balancing of the dimensional bidomain model for an isolated
heart (2.1)–(2.5), we define dimensionless variables and parameters, denoted with a ∼. The dimensional trans-
membrane potential u is rescaled using u = Vmũ + Vrest with Vm = Vmax − Vrest, where Vm, Vmax and Vrest

are, respectively, the characteristic action potential amplitude, the maximal potential attained once the cell is
depolarised and the resting potential. The extracellular potential is also rescaled with ue = Vmũe + Vrest. For
the independent variables, the time is rescaled with t = t̃T and the space with x = x̃L. The eigenvalues of the
conductivity tensor are rescaled with σα = σσ̃α, with indices α = (i, l), (i, t), (e, l), (e, t), where i and e refer to
the intracellular and extracellular medium respectively, t and l refer to the transverse and longitudinal eigendi-
rections, both related to the fibre arrangement of the myocardium. Finally, v is already taken nondimensional,
in order to use directly the source terms given in the literature.

The following equations form the nondimensional version of the bidomain model coupled with any nondi-
mensional ionic model.

∂v

∂t̃
= g̃ (ũ, v) in H, (3.2)

∂ũ

∂t̃
+ Ĩion (ũ, v) = N∇̃ ·

(
σ̃i∇̃ (ũ+ ũe)

)
in H, (3.3)

∇̃ ·
(
σ̃i∇̃ũ

)
+ ∇̃ ·

(
(σ̃i + σ̃e) ∇̃ũe

)
= 0 in H, (3.4)

nH ·
(
σ̃i∇̃ũ+ (σ̃i + σ̃e)∇̃ũe

)
= nH ·

(
σ̃T ∇̃ũT

)
on ∂H, (3.5)

nH ·
(
σ̃i∇̃ũi

)
= 0 on ∂H, (3.6)

∇̃ ·
(
σ̃T ∇̃ũT

)
= 0 in T, (3.7)

nT ·
(
σ̃T ∇̃ũT

)
= 0 on ∂T. (3.8)

with N = Tσ/CmχL
2. Note that Ĩion(u, v) =

T

CmVm
Iion(u, v) and g̃(u, v) =

T

Vm
g(u, v). In general, the ex-

plicit versions of Iion and g of equations (2.1)–(2.5) are useless because most of the phenomenological models
are already written for nondimensional potentials. For the MS model or for any model with source terms of

the form (3.1), note that
1
T
Ĩion(ũ, v) = f(ũ, v) with f of equation (2.6), and

1
T
g̃(ũ, v) = g(ũ, v) with g of

equation (2.7).

Remark 3.1. The dimensionless number N can also be found with the Buckingham Π-theorem (see for exam-
ple [23]). We have 5 physical variables T , Cm, Vm, σ/χ and L expressible in terms of 4 independent fundamental
units seconds (s), Amperes (A), Volts (V ) and meters (m). The theorem says that any physically meaningful
equation ζ(t, Cm, Vm, σ/χ, L) = 0 is equivalent to an equation involving a single (#variables – #units = 1)
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Table 2. Parameters of the bidomain model for a human heart. Three different dimensional
scalings are proposed. Adim1: based on the transmembrane potential upstroke. Adim2: based
on the action potential duration and width. Adim3: based on convenient units. The values are
taken from [26,32].

Description Param. Values Values Values Units

Adim1 Adim2 Adim3

Threshold potential Vth –0.065 V

Maximum potential Vmax 0.040 V

Resting potential Vrest –0.085 V

Characteristic potential Vm 0.125 V

Cell surface-to-volume ratio χ 2 × 105 m−1

Transmembrane specific capacitance Cm 1 × 10−2 F/m2

Characteristic conductivity σ 1 × 10−1 S/m

Intracellular conductivity σ̃i,l 1.741 –

σ̃i,n 0.1934 –

Extracellular conductivity σ̃e,l 3.906 –

σ̃e,n 1.970 –

Characteristic time T 1 × 10−3 0.2 1 × 10−3 s

Characteristic length L 5 × 10−4 0.1 1 × 10−3 m

Dimensionless number N 0.2 1 × 10−3 5 × 10−2 –

dimensionless variable N constructed from the original variables. We equivalently have ζ(N) = 0 with
N = T n1Cn2

m V n3
m (σ/χ)n4Ln5 . Written in terms of fundamental units, the equation becomes

1 = (s)n1(As/(V m2))n2(V )n3(A/V )n4(m)n5 .

The remaining problem consists in solving a homogeneous linear system of dimension 5 and as all the units
are useful, the rank of the matrix involved is 4. The dimension of the kernel of this matrix is the number of
dimensionless numbers prescribed by the theorem (a single number here). Choosing one basis vector in the
kernel, one gets the dimensionless number N given in the text.

One is then left with a single dimensionless number N , and finding a value for it. The parameters Cm, Vm, χ
and σ are fixed, but the time scale T and the space scale L are still free. Fixing these is not necessarily obvious,
especially because each phase of the AP (described in Sect. 2) has its own time and space scales. Any choice
made for T and L in a dimensional scaling specific to a phase is justified by the fact that it is preferable to
have a maximal value for Dt̃ũ and Dx̃ũ of about 1 during this phase. This way, it is easier to compare the
contribution of every term in the differential equations during this phase.

In the following, we propose time and space scales based on what is observed for a healthy human heart. The
parameters defined for three different dimensional scalings and the parameters of the model are given in Table 2.
A typical AP upstroke (depolarisation) of a ventricle is used to scale the time and space for the first proposed
dimensional scaling Adim1. The excited phase duration and width are used to scale for the second dimensional
scaling Adim2. The last dimensional scaling Adim3 is not justified by any physiological manifestation but is
practical in terms of units (time measured in ms and space in mm).

3.1. A nondimensionalisation specific to the asymptotic analysis

The estimation of the magnitude of all terms in model (3.2)–(3.8) is crucial to perform the asymptotic analysis
of Section 4. To achieve this comparison for the MS model, the time scales Tf and Tg, associated respectively
with source terms f and g, are introduced. The resulting time parameters are not only dimensionless, but
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of order one as they are rescaled with τin,out = τ̃in,outTf and τopen,close = τ̃in,outTg. Note that this method is
general enough so that it is applicable for any ionic model constructed with source terms of the form (3.1). From
the equations (2.6)–(2.7), Tf (resp. Tg) depends only on τin and τout (resp. τopen and τclose). From the values
proposed for the parameters τ ’s, Tf is necessarily a short time scale and Tg is a long time scale. The following
nondimensionalisation, using these two new time scales, is brought in order to facilitate the asymptotic analysis.

∂v

∂t̃
=

T

Tg
g̃ (ũ, v) in H (3.9)

∂ũ

∂t̃
+

T

Tf
f̃ (ũ, v) = N∇̃ ·

(
σ̃i∇̃ (ũ+ ũe)

)
in H (3.10)

Remark that when numerical simulations are performed with nondimensional equations, it is neither useful
nor practical to find values for the time scales Tf and Tg. Absorbing T/Tf (resp. T/Tg) in f̃ (resp. in g̃) is a
better choice in this circumstance, where the only relevant nondimensional number is N and the only parameters
that remain to be fixed are T and L. This is why there is a factor T/Tf (resp. T/Tg) between the f̃ (resp. in g̃)
of equations (3.9)–(3.10) and equations (3.2)–(3.3).

4. Asymptotic analysis

This section is devoted to the analysis of solution features via an asymptotic analysis. The choice of phe-
nomenological models with the minimal number of variables to describe the ionic activity offers tremendous
advantage here, as their 0D (resp. 1D) solutions can be readily analysed in the (u, v) phase space (resp. (ux, u, v)
phase space). This is done for instance in [5] and [16] for the FHN equations using singular perturbation theory.
Britton [5] uses the smallness of a parameter ε, which is related to a ratio of time and space scales but is not
connected with physical parameters such as conductivity σ, cell surface-to-volume ratio χ, membrane specific
capacitance Cm. They even prove the convergence in terms of the parameter ε of the numerical solutions with
diffusion to the asymptotic solution.

Our approach is different because the equations are all set with their physiological parameters (see Sect. 3).
The smallness of some terms compared to others allows to simplify the equations and get the asymptotic 1D
model and solutions. There is no convergence result because varying the parameters is not an option. The
problem is addressed in this way in the hope of finding as many relations as possible between the parameters
of the equations and the features of the solution.

This is also why the MS model is chosen. There already exist many results in the literature allowing to
characterise the solution of the MS model in terms of the model parameters. In [11], Mitchell and Schaeffer first
characterised the 0D solution by giving mappings predicting for instance the next APD according to the last
APD, diastolic interval and pacing interval. Schaeffer and et al. [29,30] refined the MS model and the associated
prediction mappings. Starting from these valuable results, we push the analysis further which leads to the main
achievement of this paper: being able to control locally (in space) a propagated AP by using a systematic way
of setting the model parameters (see Sect. 5).

4.1. Definitions

We define the following time scales to quantify all phases of the AP. During the depolarisation (phase I),
the AP can be characterised with its upstroke duration Tup. TAP is defined to measure the duration of the
excitation phase (phase II) and it is commonly called the AP duration (APD) in the literature. Phase III is
measured with the downstroke duration Tdown, defined to characterise the repolarisation duration. Finally, the
recovery duration Trec characterises the phase IV which corresponds to a part of the refractory period, or could
be also viewed as the diastolic interval depending on the value of the recovery threshold. This will be clarified
in Section 4.4.2.
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Every temporal manifestation occurring in the AP is propagated in the tissue. The propagation of the AP
in a tissue due to the conductive properties of the media adds a spatial dimension to the phenomenon. Hence
the AP has to be quantified in terms of space scales considering the propagation at a given speed c. For the
overall description of the propagated AP, we define also the upstroke length Lup, the excited phase length LAP,
the downstroke length Ldown and the recovery length Lrec. These spatial scales are going to be used in the
dimensional analysis in order to compare the magnitude of phenomena, as well as in the asymptotic analysis in
order to allow a spatial description of the propagated AP.

Remark 4.1. The depolarisation can be characterised also with the maximum rate of depolarisation of the
cells dV/dtmax. This way of measuring the depolarisation is not going to be used.

The time of depolarisation (resp. repolarisation), which is the time taken for the depolarisation (resp. repo-
larisation) front to sweep the heart, is commonly used to describe the dynamic associated with the propagation.
These values can be recovered with the speed of propagation and the size of the heart.

4.2. Analysis of the phase space

We start analysing the 0D system in order to understand the behaviour of an isolated cardiac cell. For the MS
model, as for any 2 variable models, the work relies on a phase plane analysis. The nullclines and the equilibrium
points are defined below and connected with the four phases of the AP.

First of all, when there is no propagation involved, the nondimensional equations (3.2)–(3.8) reduce to the
simple system

∂ũ

∂t̃
+

T

Tf
f̃ (ũ, v) = 0, (4.1)

∂v

∂t̃
=

T

Tg
g̃ (ũ, v) . (4.2)

The modified MS model retained is endowed with the following nondimensional source terms:

f̃(ũ, v) =
1
τ̃in
v(ũ+ a)2(ũ− 1) +

1
τ̃out

ũ,

g̃(ũ, v) =

⎧⎪⎪⎨⎪⎪⎩
1

τ̃open
(1 − v) for ũ < ũgate,

− 1
τ̃close

v for ũ ≥ ũgate

where the time scale τ̃ are nondimensionalised with Tf and Tg, and τclose equals τclose(ũ) of equation (2.9). In
the following the ∼ are removed for the sake of convenience. Remark that the source terms given in [11,29,30],
referring to f(u, v) of equation (2.8) and g(u, v) of equation (2.7), are partially nondimensionalised. On the one
hand, the time scales are dimensional (e.g. τin = 0.3 ms, τout = 6 ms, τopen = 130 ms, etc.). On the other hand,
u and v are nondimensional (e.g. ugate = 0.13) because they both vary within the interval [0, 1] given standard
initial conditions (u(0), v(0)) ∈ (0, 1) × (0, 1).

In the MS model, the transmembrane potential u is considered as the fast variable and the recovery variable v
is considered as the slow variable. The solutions of the original MS model and modified MS models are illustrated
in Figure 2. Their respective phase spaces are illustrated with the four phases in Figure 3. The phase spaces are
going to be thoroughly described for a better understanding of the asymptotic analysis.

Remark 4.2. The analysis of the modified version of the MS model featuring the overshoot is very similar to
that of the original MS model when ugate < usldn; the nullclines are the same though the vector field is different
in the half-plane u > usldn.
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(a) Original MS model (a = 0
and τclose = τsclose).
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(b) Modified MS model illustrating an
auto-excitable behaviour
(a = 0.02 and τclose = τsclose).
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(c) Modified MS model illustrating
the overshoot after the depolarisa-
tion (with nondimensional parameters
a = 0, usldn = 0.89, τsclose = 150,
τfclose = 10 and τclose(u) given by
equation (2.9)).

Figure 2. Numerical simulation of the electrical activity of a single cell using various versions
of the MS model. With the characteristic time T = 1 ms, all simulations use the nondimensional
parameters τin = 0.3, τout = 6, τopen = 130 and ugate = 0.13.

For the original MS model (see Fig. 3a), there is a local minimum on the nullcline f(u, v) = 0 at (u∗, v∗) =
(1/2, 4τin/τout). Note that the point at which this minimum occurs is not on the solution curve (u(v), v). This
local minimum separates the nullcline in 2 branches: the left-hand side branch is denoted u = h2(v) and the
right-hand side branch u = h3(v) with

u = h2,3(v) =
1
2
∓ 1

2

√
1 − 4

τin
τoutv

· (4.3)

There are 3 equilibrium points, (0, 1), (h2(1), 1) and one on the line u = ugate, precisely the point
(ugate, τin/[τoutugate(1−ugate)]). For the set of parameters given above, the equilibria (0, 1) and (h2(1), 1) are sad-
dle points. Their stability can be studied with a standard analysis of the linearised version of system (4.1)–(4.2).
The third equilibrium (ugate, h2(v)) is an unstable focus, which can be seen by inspection of the vector field
in the phase plane. During phase I the solution starts at the point A, corresponding to initial condition, then
quickly reach the point B. From point A to B, the recovery variable v barely varies. Phase II is characterised
by a solution following very closely the branch u = h3(v) of the nullcline f(u, v) = 0, i.e. from point B to C.
During phase III, the solution leaves the nullcline f(u, v) = 0 at the point C, u goes fast to zero while v varies
only slightly. In phase IV the solution goes along the nullcline u = 0 from the point D while v increases slowly.
The solution reaches asymptotically the equilibrium point (0, 1).

For the modified MS model (see Fig. 3b), the nullcline f(u, v) = 0 have a local minimum at (u∗, v∗) with
u∗ = 1/4

(
1 −√

1 − 8a
)

and a local maximum at (u∗, v∗) with u∗ = 1/4
(
1 +

√
1 − 8a

)
. These local extrema

separate the nullcline in 3 branches denoted by u = h1(v), u = h2(v) and u = h3(v) with h1(v) � h2(v) � h3(v).
The solution starts at the initial point A and follows a trajectory close to that of the original MS model until
phase IV, where the solution goes along u = h1(v) ≡ 0 from the point D while v increases slowly. The solution
eventually leaves the nullcline near the point (u∗, v∗). Finally, the solution goes again by itself in the phase I
(from point A′) after a complete cycle. This model is clearly suitable for auto-excitable cells because of the
repeating cycles. There is no assumption here about the periodicity of the solution.

An asymptotic analysis could be done by regarding the 0D solution separately in its phases I, II, III and IV.
In both models phases I and III are characterised by a time scale that is so short for the slow variable v that it
remains almost constant during these periods. The solution moves along the nullclines during phases II and IV.
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(a) The phase plane for 0D original MS model with a numerical solution.

(b) The phase plane for 0D modified MS model with a numerical solution for a = 0.02.

Figure 3. The phase space for both the MS and modified MS models. Numerical simulations
are performed with T = 0.001 s, τin = 0.3 (ms), τout = 6 (ms), τopen = 130 (ms), τclose = 150
(ms) and ugate = 0.13. See text for definitions of curves, points, etc identified.
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Each part of the solution can be approximated with a simplified trajectory (moving along a nullcline or at a
constant v). The 0D asymptotic solution is defined by connecting these simplified trajectories together.

We are rather interested in an asymptotic analysis of the 1D solution. For this purpose we explore the
phenomenological MS model coupled with a 1D model of propagation. Using the nondimensional 1D bidomain
model (∼ are removed for simplicity) with a constant conductivity, the problem consists in finding (u, ue, v)
over the spatial domain [0, xmax] such that

∂u

∂t
+
T

Tf
f (u, v) = Ni

∂2(u + ue)
∂x2

,

σi
∂2u

∂x2
+ (σi + σe)

∂2ue

∂x2
= 0,

∂v

∂t
=

T

Tg
g (u, v, t) ,

with Ni = Tσi/CmχL
2 the nondimensional number associated to the intracellular medium of conductivity σi.

On the boundaries x = 0 and x = xmax, homogeneous Neumann boundary conditions are applied for both u
and ue. A zero mean condition can be applied on the potential ue so that the degeneracy is removed.

The following monodomain model is equivalent to the bidomain model in 1D: Find (u, v) over [0, xmax] such
that

∂u

∂t
+
T

Tf
f (u, v) = Nharm

∂2u

∂x2
, (4.4)

∂v

∂t
=

T

Tg
g (u, v, t) , (4.5)

with Nharm = Tσharm/CmχL
2 and σharm =

(
σ−1

i + σ−1
e

)−1
is the harmonic average of the intra and extracellular

conductivities. The two models being equivalent, they give exactly the same solutions with the main advantage
that the monodomain model will be less computationally intensive in numerical tests performed to verify our
asymptotic solution.

The next step is to verify that under physiologically plausible conditions, the MS model with spatial propa-
gation is suitable for an asymptotic analysis. A 1D solution is computed beforehand with the parameters of the
third column of Table 2 together with the dimensioning parameters L = 0.001 m, T = 0.001 s and Nharm = 0.05.
The domain is the interval [0, 600] and the simulation is performed over the time interval [0, 1000]. The initial
condition is given by

u(0) =

{
0 for x ∈ [0, 570)
0.8 otherwise

and v(0) = 0.99.
At one coordinate point (x = 300), the solution is plotted in the (u, v)-phase plane, with its corresponding

nullclines (see Fig. 4). This figure shows obvious similarities between the solution of the system with diffusion
in 1D and the solution of the equations for an isolated cell in 0D.

Again, it follows that the solution can be separated into four phases. These four phases are matched together
to give the so-called asymptotic 1D solution.

The time and space scales of the asymptotic solution are defined as it was done in Section 4.1 for the scales Tup,
Lup, etc, of the exact solution. The related scales for the asymptotic solution are denoted with a hat (̂ ). For
instance, the asymptotic upstroke duration is denoted by T̂up, the asymptotic upstroke width by L̂up, etc. In
practice, scales of the exact solution can only be obtained through accurate numerical computations and for a
limited set of parameter values, while algebraic expressions will be obtained for all asymptotic scales.
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Figure 4. 0D and 1D solutions plotted in the phase space (u, v) of the 0D system.

4.3. Asymptotic characterisation of the depolarisation front

In order to find the asymptotic regime of the depolarisation, the magnitude of each term in equa-
tions (4.4)–(4.5) is estimated during phase I. The leading terms will form the equations to solve for defining
the asymptotic solution during this phase. Known values for the depolarisation duration and width can be used
(see Tab. 2) for this purpose. For instance, the ventricle characteristic depolarisation duration is about 1 ms
and the speed of the wave is about 0.5 m/s. Using T = 1 ms and L = 0.5 mm, the terms in the equations
are of order one and they are weighted by the dimensionless numbers multiplying them. Because T/Tf ∼ 1,
Nharm = Nup = 0.2 and T/Tg ∼ 7 × 10−3, the term T/Tgg(u, v) is negligible compared to the other terms. The
asymptotic solution in phase I is given by (u, v) over [0, xmax] × [0, tmax] such that

∂u

∂t
+

T

Tf
f (u, v−) = Nup

∂2u

∂x2
with u(t = 0) = u0, (4.6)

∂v

∂t
= 0 ⇔ v = v(t = 0) = v−, (4.7)

with the initial conditions given in Section 4.2. The value of v at which phase I occurs will be called v−,
where v− can be interpreted as the value of v facing the arrival of the wave. As the wave can be paced at almost
any value of v, v− is not specified unless an isolated wave is analysed. In this case, v− = 1, i.e. the value at
equilibrium.

We can adjust the parameters T and L in this asymptotic model for phase I so that the asymptotic upstroke
has a duration of 1 and a width of 1 in the nondimensional frame, which amounts to set T = T̂up and L = L̂up.
The system then reduces to a single equation

∂u

∂t
+
T̂up

Tf
f (u, v−) = Nup

∂2u

∂x2
, (4.8)

where the solution u goes from u(0) to h3(v−).
It is known that under appropriate assumptions, reaction-diffusion equations such as equation (4.8) have

travelling wave solutions, i.e. solutions of the form u(x, t) = ν(x + ct), propagating at the speed c in the
direction of decreasing x if c > 0. As a simple and well-known example, for f(u, v−) = −αu, the existence of a
planar travelling wave solution can be easily proved in a constructive way (see [5]). This wave is asymptotically
stable, with wave speeds approaching the constant value c as t → ∞ for any initial solution that leads to the
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asymptotic state. However, for more complicated ionic models, the proof of existence of travelling waves requires
care as it is highly dependent on the form of the ionic terms. For instance, the 1D travelling solution of the
FHN model is thoroughly analysed in [9,14] including the existence of different modes. For the MS model, it is
shown in [2] that unidimensional travelling pulse solutions exist.

We summarise this argument and clarify notations here for the sequel of the text. The necessary conditions for
the existence of travelling wave can be studied by analysing the (ν, ν′)-phase plane. The speed cmust be properly
set, say to c∗, so that a travelling wave exists, which amounts to the existence of a heteroclinic connection of
the equilibrium points (ν, ν′) = (0, 0) and (ν, ν′) = (h3(v−), 0). It is easy to show that non-monotonous orbits
starting at ν = 0 and reaching ν = h3(v−) are impossible. By monotonicity, the heteroclinic orbit is attained
in a unique way referring to a specific speed c∗, where the uniqueness holds for any fixed value of v−. If a
bounded positive speed for the monotonous orbit can be found, the necessary conditions for the existence of
such heteroclinic orbit are going to be all satisfied. The next step concerns the computation of that unique and
bounded speed.

4.3.1. Matching condition for the asymptotic travelling wave solution

Using similar arguments as in [5], the propagation speed will be found by analysing the formation or the
“root” of the travelling wave in 1D. The travelling wave is formed during phase I, so the speed is that of the
depolarisation front. Remark that c = L̂up/T̂up and dimensionless speed is equal to 1.

The asymptotic travelling wave u(x, t) = ν(x+ ct) = ν(s) solves the equation (4.8), which gives

cν′ +
T

Tf
f (ν, v−) = Nν′′. (4.9)

A matching condition for the speed c = c∗ is obtained by multiplying (4.9) by ν′ and integrating along the
heteroclinic orbit that connects the points ν = 0 and ν = h3(v−) as s→ ∓∞:

c∗
∫ +∞

−∞
ν′(s)2ds = − T

Tf

∫ h3(v−)

0

f (ν, v−) dν.

The dimensional asymptotic speed ĉ is then

ĉ =
L

T
c∗ = −L FAB(v−)∫+∞

−∞ ν′(s)2ds
(4.10)

with

FAB(v−) ≡ 1
Tf

∫ h3(v−)

0

f(ν, v−)dν

=
[
v−
τin

(
h3(v−)4

4
− h3(v−)3

3

)
+

1
2
h3(v−)2

τout

]
·

For v− ∈ (4τin/τout, 1], FAB(v−) (in s−1; recall that the τ ’s are nondimensionalised with Tf) is well defined and
negative as f(ν, v−) < 0 during phase I.

As L = L̂up and T = T̂up are used to nondimensionalise the equations in this section, the dimensionless
speed c∗ is equal to 1. A consequence is that the dimensional asymptotic upstroke duration can be written as

T̂up = − 1
FAB(v−)

∫ +∞

−∞
ν′(s)2ds. (4.11)

The expression (4.10) for the asymptotic speed is a known result derived for instance in [16] while analysing
the FHN model. It cannot be used directly to predict the speed of the travelling wave because the value of the
integral

∫ +∞
−∞ ν′(s)2ds is not known so far. With the analysis of Sections 4.3.2 and 4.4.1, this integral will be

estimated in terms of the parameters of the equations.
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4.3.2. Estimation of the speed using an ansatz

In this section, an approximation of the travelling wave solution is constructed for the phase I. At the very
beginning of the formation of the wave, the rise of the potential is assumed to occur exponentially. The ansatz
then reads as

ν(s) = ugatee
s/δ, (4.12)

where δ is dimensionless and is chosen to be

δ =
1

ln
(

h3(v−)
ugate

)
for the upstroke to be between ugate and h3(v−) and have a width of 1 in the nondimensional frame (because
nondimensionalisation is based on L = L̂up and T = T̂up).

In the same spirit as collocation methods, we want the ansatz (4.12) to solve the equation (4.9) at a given
point, say at the location where ν = ugate. Other collocation points can be chosen to end up with similar results.
The choice of the point for which ν = ugate is the most appropriate since this is where the solution resembles
the most an exponential. Substituting es/δ in equation (4.9) gives

c∗∗

δ
+ ψ(ugate, v−) =

N

δ2

at s = 0, where

ψ(ugate, v−) =
1
τin
v−ugate(ugate − 1) +

1
τout

and c∗∗ is the dimensionless speed of a travelling wave of this shape. As L = L̂up and T = T̂up, the dimensionless
speed c∗∗ is again equal to 1, then

δ2

T̂up

ψ(ugate, v−) +
δ

T̂up

=
σ

CmχL̂2
up

· (4.13)

Equations (4.11) and (4.13) provide relations between T̂up, the ionic model parameters (either through the
functions FAB or ψ) and the diffusion constant σ/(Cmχ) parameterising the conduction effects. We assume
that the depolarisation time is the same for an isolated myocyte as for coupled cells within the cardiac tissue.
Basically, if a cell is excited by an external stimulus, the depolarisation is controlled by ionic channel opening and
closing while the conduction properties of the surrounding media has little if any impact on the channel activity.
This assumption is confirmed with the MS model: there is a very slight difference between the transmembrane
potential evolution of an isolated cell and a cell surrounded by other cells. We do not claim that this remains
true for other models, e.g. which take into account of the load imposed by connected cells. This implies that Tup

and its approximation T̂up must be independent from the diffusion constant σ/(Cmχ), fact which is confirmed
with numerical solutions as shown in Figure 5. From (4.11), one deduces that the nondimensional integral∫ +∞
−∞ ν′(s)2ds does not depend on the diffusion constant σ/(Cmχ). Similarly, the left-hand-side of (4.13) being

constant for given values of τ ’s, ugate and v−, the depolarisation length L̂up behaves as
√
σ/(Cmχ), and as

ĉ = L̂up/T̂up, ĉ behaves as
√
σ/(Cmχ) too. The asymptotic behaviours of the travelling wave speed and

upstroke width can be verified numerically as shown in Figure 6.
In summary, the characterisation of the depolarisation front raises the following important facts, for given

values of τ ’s, ugate and v−.

1. The asymptotic upstroke duration T̂up is independent from the diffusion constant σ/(Cmχ).
2. The asymptotic upstroke width L̂up behaves as

√
σ/(Cmχ). This holds also for the numerical solution.

3. The asymptotic speed ĉ behaves as
√
σ/(Cmχ). This holds also for the numerical solution.

4. The dimensionless number N̂up calculated using the length and time scales of the upstroke phase is constant
with respect to the diffusion constant σ/(Cmχ).
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Figure 5. Upstroke duration versus σ
Cmχ for the MS model. The asymptotic duration will be

discussed in Section 4.5.
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Figure 6. Upstroke length (a) and speed (b) versus σ
Cmχ for the MS model. The asymptotic

prediction is detailed in Section 4.5.

4.4. Overall characterisation of the asymptotic solution

In this section, the features of the asymptotic solution are studied. With a judicious combination of assump-
tions, algebraic expressions for short time scale features (durations) are derived, followed by long time scale
features and finally, spatial features (length and speed). These expressions depend on the parameters of the
model, and describe the asymptotic solution. In Section 4.5, these results are used to predict the numerical
solution of the action potential.

4.4.1. The asymptotic short time scales: Phases I and III

In order to find an expression for the nondimensional asymptotic upstroke duration T̂up, the remaining
integral in equation (4.11) has to be somehow estimated. To do so, a linear rise of u is assumed during the
upstroke and

ν′ �
{
h3(v−) for 0 � s � 1,
0 otherwise,

(4.14)
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The asymptotic upstroke duration is then deduced with simple calculation

T̂up = − 1
FAB(v−)

h3(v−)2· (4.15)

Note that the asymptotic upstroke duration depends nonlinearly on the parameters τin, τout, v− and eventu-
ally ugate (see Rems. 4.3 and 4.4 below). In case the action potential pulse is isolated the solution leaves and
returns to the equilibrium point (u, v) = (0, 1) in the phase space. In this case, using v− = 1 gives a very good
estimate.

Transposing this way of measuring the asymptotic upstroke duration into a way of measuring the upstroke
duration for numerical solutions is inappropriate: using the depolarisation threshold u = 0 to flag the initiation
of the action potential is not practical. The following two remarks bring alternative ways of measuring and
predicting the upstroke duration that are compatible with numerical computations and experiments.

Remark 4.3. Justified by the ansatz (4.12), an exponential rise of u is assumed during the asymptotic upstroke
and

ν′ �
{ugate

δ
es/δ for 0 � s � 1,

0 otherwise.

The upstroke needs to be measured between u = ugate (at s = 0) and h3(v−) (at s = 1). Consequently, the
integral in FAB can be estimated using

FAB(v−) ≡ 1
Tf

∫ h3(v−)

ugate

f(ν, v−)dν

=
[
v−
τin

(
h3(v−)4

4
− h3(v−)3

3

)
+

1
2
h3(v−)2

τout

]

−
[
v−
τin

(
u4

gate

4
− u3

gate

3

)
+

1
2
u2

gate

τout

]
and the asymptotic upstroke duration becomes

T̂up = − ugate

2δFAB(v−)
(
h2

3(v−) − u2
gate

)
.

Remark 4.4. If a linear rise between u = ugate and h3(v−) is assumed during the asymptotic upstroke,

ν′ �
{
h3(v−) − ugate for 0 � s � 1,
0 otherwise,

and the asymptotic upstroke duration becomes

T̂up = − 1
FAB(v−)

(h3(v−) − ugate)
2 , (4.16)

using FAB(v−) of Remark 4.3.

Remark 4.5. It is possible to show that the estimate (4.16) provides a lower bound for T̂up under the sole
hypothesis that ν = ν(s) varies between ugate and 1 over the interval [0, 1] without any further assumption on
the profile for ν(s) (linear, exponential, etc). Using Jensen inequality and c� = L̂up/T̂up = 1,

[h3(v−) − ugate]
2 =

[∫ 1

0

ν′(s)ds
]2

≤
∫ 1

0

ν′(s)2ds ≤
∫ +∞

−∞
ν′(s)2ds = −T̂upFAB(v−),

hence the lower bound.
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(c) Using a linear rise between ugate and
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Figure 7. Asymptotic upstroke duration (in ms) plotted as a function of τin and τout for three
approximations of the upstroke profile.

The three ways of estimating the asymptotic upstroke duration presented above give a similar behaviour
whenever the parameters τin and τout are varied. This is illustrated on Figure 7. These three asymptotic estimates
of the upstroke duration being equivalent, the estimate of equation (4.15) is going to be used in the following.

For a stable travelling wave, the speed of the repolarisation front is the same as the speed of the depolarisation
front, and one has c∗ = L̂down/T̂down. In phase III, the asymptotic solution consists in a trajectory connecting
(u∗, v∗) = (1/2, 4τin/τout) and (0, v∗) = (0, 4τin/τout). Assuming that the decay of u is linear, the dimensional
asymptotic downstroke duration is estimated as

T̂down = − u2
∗

FCD
= − 1

4FCD

with

FCD ≡ 1
Tf

∫ 0

1/2

f(ν, 4τin/τout)dν = − 1
48τout

· (4.17)

4.4.2. The asymptotic long time scales: Phases II and IV

In phase II, the nondimensional equations (4.4)–(4.5) are used in order to find the asymptotic action potential
duration T̂AP. Phase II being the period of excitation, the time scale T = T̂AP would ideally be chosen. However,
T̂AP is not known yet in terms of the parameters of the equations, and T = Tg sets a long time scale that
depends only on τopen and τclose. This is enough to compare the magnitude of the terms in the equations and
estimate how good is the asymptotic approximation. Recall that Tf depends on the parameters τin and τout

of the function f , so it is a short time scale. With this choice of time scales, ∂u/∂t and ∂2u/dx2 are of order
one in magnitude, one gets Tg/Tf = TAP/Tup ∼ 100 and (σharmT )/(χCmL

2) = 1 × 10−3. It results that
Tg/Tf � 1 � (σharmTf)/(χCmL

2) and equation (4.4) becomes f(u, v) = 0 to leading order.

Remark 4.6. In the asymptotic analysis of the FHN model done in [16], Tf/Tg can be compared to the
parameter ε and (σharmTf )/(χCmL

2) < ε2.

We assume that the asymptotic solution goes along the nullcline f(u, v) = 0 during phase II. Matching the
solution with that of phase I, the evolution of the recovery variable during phase II is described using

∂v

∂t
=

T

Tg
g (h3(v), v) with v(0) = v−,
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where v− is the value of v facing the arrival of the wave (v− = 1 for an isolated wave). The trajectory goes along
the branch u = h3(v) and v decreases until it reaches v∗ beyond which h3(v) ceases to exist. The dimensional
time taken for this phase is

T̂AP = Tg

∫ v∗

v−

1
g (h3(v), v)

dv

where g (h3(v), v) is defined with dimensionless parameters and variables.
During this phase ugate < u∗ = 1/2 and then g (h3(v), v) /Tg = −v/τclose so

T̂AP = −
∫ 4

τin
τout

v−

τclose
v

dv = τclose ln
(
τoutv−
4τin

)
(4.18)

This is a well established result first published in [22]. With the dimensional values of τ given in Section 2.2
and v− = 1, one gets T̂AP ≈ 241 ms for the MS model (2.6)–(2.7).

Remark 4.7 (Characterisation of the overshoot). The overshoot duration and height can be characterised as
for the AP duration. The overshoot is a part of the phase II because the trajectory is along the branch u = h3(v)
even if the time scale is temporarily shortened with τclose(u). The overshoot features a peak of height given by
h3(v−) − usldn and duration given by the following integral

T̂peak = Tg

∫ usldn

h3(v−)

1
g(u, h−1

3 (u))
dv
du

du

with v = h−1
3 (u) = τin/ [τoutu(1 − u)]. As 1/τclose(u) = m(u+ b) with m = (1/τfclose − 1/τsclose)/(1− usldn) and

b = (1 − usldn)/(1 − τfclose/τsclose) − 1 the integral becomes

= − 1
m

∫ usldn

h3(v−)

2u− 1
(u + b)u(u− 1)

du.

The latter integral is easily computed and the result gives

T̂peak = − 1
m

[
− 2b+ 1
b(b+ 1)

ln(u+ b) +
1
b

ln(u) +
1

b + 1
ln(u− 1)

]usldn

h3(v−)

.

The asymptotic AP duration is now slightly modified as

T̂AP = T̂peak + τsclose ln
(
τouth

−1
3 (usldn)
4τin

)
= T̂peak − τsclose ln (4usldn(1 − usldn)).

The asymptotic recovery duration associated to phase IV can be derived with assumptions similar to those of
phase II. The dimensional scaling is based on the recovery period, then T = Tg and equation (4.4) reduces again
to f(u, v) = 0 to leading order. The system for the recovery variable reads as

∂v

∂t
=

T

Tg
g (h1(v), v) , v(0) = v∗,

with u = h1(v) for the asymptotic solution to be continuous (matching condition with phase III).
For the original MS model, v increases and the solution goes back to the stable point (0, 1) so the time to

reach this equilibrium is infinitely long. If a region of the domain is paced at a certain value of v, say vpace, the
recovery time for the MS model can be approximated by

T̂rec = τopen ln

(
4τin
τout

− 1

vpace − 1

)
· (4.19)

The last estimate is calculated as for T̂AP in phase II.
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Our definition of the asymptotic recovery time T̂rec is the interval between times where the transmembrane
potential reaches the resting state (u = 0) and the recovery variable v equals vpace. In this case, the asymptotic
recovery time T̂rec corresponds to the diastolic interval between two AP.

We could have chosen v = vth,rec, where vth,rec is the recovery (in fact refractory) threshold at which excitation
is again possible with strong enough stimulation. Phase IV then corresponds to the end of the refractory period
past return to equilibrium potential. Even for simple two-variable models, it may be hard to properly define
or assess this recovery threshold. For the MS model, the recovery threshold is dependent on v. Equation (4.19)
then allows to know which τopen to choose for having a particular recovery interval. For other more complex
models, it may not be possible to determine the recovery threshold as easily as for the MS model, e.g. where the
recovery threshold could depend on the state of many variables interacting together. Moreover the threshold is
dependent on the strength of the stimulation current.

When a �= 0, the upper bound for v in this phase cannot be found exactly unless an analysis of the periodic
solution is performed. This is not going to be done just because doing such a laborious analysis is pointless
considering the objective: evaluating the following

T̂rec,a =
∫ vup,periodic

v∗

1
g (h1(v), v)

dv,

where vup,periodic is the value of v during the upstroke of an asymptotic periodic solution. One can however
recover bounds for T̂rec,a using a rough estimate for vup,periodic going from v∗ to 0.8 (values suggested from
numerical simulations). The dimensional time for this phase is then∫ v∗

v∗

1 − v

τopen
dv � Trec,a �

∫ 0.8

v∗

1 − v

τopen
dv.

as for the modified MS model, u < ugate and then g (h1(v), v) = (1− v)/τopen. With the dimensional values of τ
given in Section 2.2, the recovery time can be estimated with 122 � Trec,a � 211 ms.

4.4.3. The asymptotic space scales and speed

Isolating L̂up in equation (4.13), an expression for the asymptotic upstroke width is obtained:

L̂up = kup

√
T̂up

√
σ

Cmχ
·

In the right hand side, the factor kup

√
T̂up does not depend on the diffusion constant σ/(Cmχ). It depends only

on the parameters of the ionic model. Substituting T̂up from (4.15), expressions for the asymptotic length and
speed of the wave are easily derived, such as

ĉ =
L̂up

T̂up

= −FABL̂up

h2
3(v−)

= kup

√−FAB(v−)
h3(v−)

√
σ

Cmχ
· (4.20)

Similarly, the other asymptotic widths are given by

L̂i = ki

√
T̂iσ

Cmχ
for i = down,AP, rec.

4.5. Using the asymptotic solution to predict the numerical solution

The aim of this section is to see how the asymptotic times T̂ and lengths L̂ can be used to predict the
dimensional times and lengths for the various phases of the numerical solution of the bidomain model with MS
ion kinetics.
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We first link the upstroke time Tup required for the rise of the numerical solution u from ugate to h3(v−) to
the asymptotic upstroke time T̂up as given by equation (4.15). This asymptotic time assumes that the upstroke
occurs linearly at a constant v = v−, which makes the values of T̂up a bit off the value of Tup though the
behaviour with respect to the parameters remains satisfactory. For T̂up to be convenient to estimate Tup, it can
be scaled with a constant kAB > 0 as

Tup � kABT̂up = kAB
h2

3(v−)
|FAB(v−)| , (4.21)

where the constant kAB can be found using a numerical simulation for a given set of {τin, τout}.
In Section 4.4.1 we obtained two other expressions for T̂up, one which was based on an exponential upstroke

profile for the travelling wave. At the end, changing the approximate upstroke profile, hence the expression
for T̂up, can be compensated by adjusting the scaling constant kAB. For the sake of simplicity, it turns out
that the linear rise is a good choice: simple calculations and satisfactory predictions. See Section 5 for examples
showing that this approximation is good enough to be used for the prediction of Tup in the heart.

For simulations with spatial propagation, the constant kAB can be calculated from a single simulation in 1D,
using a set of parameters denoted by {τin, τout}0. If {τin, τout} changes for any reason (for example, from one
tissue of the heart to an other, where the AP is different) but in a way that the new upstroke profile is simply a
rescaling of the profile set by the value {τin, τout}0, then the constant kAB remains unchanged. Basically, if the
new profile is a scaling of the profile for {τin, τout}0, then the linear profile used to estimate the new upstroke
profile is scaled in the same way, and the quality of fit between the exact and approximate linear upstroke
profiles is unchanged. This scaling argument is nearly valid for instance when {τin, τout} remains in a certain
neighbourhood of {τin, τout}0.

We will see later that this way of estimating Tup works in a reliable way, as long as ugate remains the same.
Changing the value of ugate is equivalent to changing the threshold of the upstroke. Consequently, it could
modify the upstroke profile, then the integral of its derivative and so the scaling factor kAB. Section 5 presents
cases where kAB has to be recalculated.

The dimensional downstroke duration can also be predicted with

Tdown � kCDT̂down = 12kCDτout, (4.22)

where the constant kCD > 0 arises from the same arguments as for kAB. Assuming that the phase III occurs
for a constant v = v∗ is not as nearly true as for the upstroke. However, the scaling constant kCD is enough to
compensate for the approximations used to find T̂down.

Equations (4.21) and (4.22) build a relation ξ between two model parameters and two asymptotic solution
features for phases I and III:

ξ : (τin, τout) → (kABT̂up, kCDT̂down).

For solution features Tup and Tdown of physiological relevance, it turns out that ξ is bijective. Figures 8 and 9
illustrate the mapping ξ and how well it represents the dimensional times Tup and Tdown for numerical solutions.

For phase II, the action potential duration TAP is well approximated by

TAP ≈ T̂AP (4.23)

without the need for any scaling constant. Both the asymptotic and numerical solutions follow very closely
the nullcline f(u, v) = 0 and no assumption is made on the shape of the wave, hence the quality of fit of the
asymptotic solution to the exact solution. Similarly, Tpeak ≈ T̂peak. Figures 10 and 11 illustrate the bijection
between (τsclose, τfclose) and (T̂AP, T̂peak).

For phase IV, the recovery time can be predicted as long as the next wave is paced at a given value vpace

and Trec ≈ T̂rec with T̂rec given by equation (4.19). For waves paced at various values of vpace, the asymptotic
analysis provides very good estimates (see Sect. 4.6).
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Figure 8. Asymptotic approximations of the durations (kABT̂up, kCDT̂down) versus (τin, τout)
for v− = 1, kAB = 2.15 and kCD = 0.45. Level sets for T̂up are nearly vertical (plain labels)
and level sets for T̂down are horizontal (boxed labels).
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Figure 9. 1D numerical solution. (Tup, Tdown) versus (τin, τout) for v− = 1, τopen = 130 ms,
τclose = 150 ms. Level sets for T̂up are nearly vertical (plain labels) and level sets for T̂down are
nearly horizontal (boxed labels). Note that the ranges for the τin and τout axis are not the same
as in Figure 8.

The numerical upstroke length is predicted using

Lup �
√
kABL̂up = kup

√
Tupσ

Cmχ
. (4.24)

Whenever the parameters of the MS model and v− are kept fixed, kup remains constant. As stated in
Section 4.3.2, the dimensionless number associated with phase I, namely Nup = σTup/(CmχL

2
up) � 1/k2

up,
also remains constant. The numerical results predicted by equation (4.24) are illustrated in Figure 6a. To fit
the asymptotic behaviour to the data, the dimensionless number was Nup = 0.1149.

The speed of the numerical solution can be predicted from the asymptotic speed using

c =
Lup

Tup
�

√
kABL̂up

kABT̂up

=
1√
kAB

ĉ (4.25)

The numerical results predicted are illustrated in Figure 6b, still with Nup = 0.1149.

Remark 4.8 (Precisions about the numerical simulations). The numerical values Tup and Lup are averaged
over the total time of the simulation. The time and space discretization was fine enough so that the solution
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Figure 10. Asymptotic approximations of the durations (T̂AP, T̂peak) versus (τfclose, τsclose) for
v− = 1, τin = 0.3 ms, τout = 6 ms. Level sets for T̂peak are nearly vertical (plain labels) and
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Figure 11. 1D numerical solution. (TAP, Tpeak) versus (τfclose, τsclose) for v− = 1, τin = 0.3 ms,
τout = 6 ms, τopen = 130 ms, τclose = 150 ms. Level sets for T̂peak are nearly vertical (plain
labels) and level sets for T̂AP are nearly horizontal (boxed labels).

was converged in time and space with less than 1% of variation on Tup, Lup, TAP, LAP and speed compared to
an overly precise solution.

Similarly, the value of the dimensionless number Ndown = (Tdownσ)/(CmχL
2
down) associated to phase III is

nearly constant and can be found using the same 1D simulation. The downstroke width can estimated as well
using equation (4.22) and

Ldown �
√
kCDL̂down =

1√
Ndown

√
kCDT̂downσ

Cmχ
· (4.26)

The validity of the approximation is striking. Using the same 1D simulation, one gets kCD = 0.45 and Ndown =
0.02601. Tdown and Ldown could be plotted versus σ/(Cmχ). The figure is very similar to Figure 6 and will not
be showed to avoid redundancy.

The behaviour of the AP length is asymptotically of the form

LAP � 1√
NAP

√
T̂APσ

Cmχ
·
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(a) Wave train paced at v− = 0.6.
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(b) Wave train paced at v− = 0.8.
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(c) Wave train paced at v− = 0.95.

Figure 12. The simulations are calculated over 5000 ms. The dimensionless number N is that
of Adim3.

The dimensionless number associated to the phase II is NAP = 3.3029 × 10−3 and is found using the same 1D
numerical simulation as the one used to fit the upstroke length. Again, the behaviour of the action potential
duration and width can be predicted accurately.

Finally, the recovery length can be found by fixing the dimensionless number for this phase (using again the
same simulation as the one used to fit the upstroke width). Again, the asymptotic results fit almost perfectly
the numerical solutions.

4.6. Periodic excitations

In the following, relations obtained from the asymptotic analysis are going to be used to predict what happens
to the solution of the MS model under periodic pacing. When action potentials are paced at a high frequency,
the recovery variable v cannot reach the equilibrium value v = 1 between each pacing, hence v− < 1 in the
asymptotic solution. Several features of the asymptotic solution, such as the wave speed (Eq. (4.20)) and the
upstroke duration (Eq. (4.15)), depend on the state v−. Consequently, the action potential differs for an isolated
wave compared to closely paced waves. This kind of phenomenon occurs for instance in heart beats for exercising
subjects and in pathological situations like arrhythmias and fibrillation. The last example is often modelled with
spiral waves (e.g. see [19]), where wave fronts propagate close to each other.

In the numerical simulations used to illustrate periodic wave train, a new wave is initiated in a pacing region
every time the recovery variable v reaches a prescribed value vpace = v− in that region. A sequence of waves is
generated, and following a transient period, the wave train is stable. All the waves then have the same speed,
action potential duration, recovery time, etc. The dependencies on v− are analysed once a stable wave train is
obtained.

Figure 12 illustrates stable periodic wave train for three values of v−. One can see that the distance between
waves and the wave length decrease with an increasing pacing frequency. Figure 13 shows that the asymptotic
analysis reliably predicts TAP and Trec for wave trains at different v− . Predicting Tup for wave trains is more
difficult because of the difficulty in adjusting the scaling factor kAB for varying v−. The approximation T̂up may
be up to 35% off Tup near v− = 0.6. The approximate speed ĉ is relatively reliable since in the worst case near
v− = 0.6, ĉ is less than 6% off c. The approximation for Tdown looks poor because T̂down does not catch the
trend for v−, though it should be noted that Tdown varies for less than 4% from v− = 0.6 to v− = 1. Globally,
the asymptotic approximation describing the behaviour of wave trains is very good as long as the prediction of
the upstroke duration is.
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Figure 13. Asymptotic estimates (continuous line) and numerical values (dots) of wave train
AP features as a function of the pacing threshold v−.

4.7. Predicting the restitution curves

Using equation (4.19), the restitution curves can be plotted for the upstroke duration, the action potential,
the downstroke duration and the speed. Figure 14 shows the upstroke duration Tup,n+1 of a wave following a
recovery duration of Trec,n (here refers to the diastolic interval), same idea for the other features.

5. Modelling physiological AP propagating in various tissues of the heart

This section is devoted to the application of the asymptotic analysis to model various AP with the aid of the
one-to-one relation

{τin, τout, τopen, τclose, N} → {T̂up, T̂AP, T̂down, T̂rec, c}.
In the human heart, there are different tissues with different AP propagating at different speeds. It is important
to notice that the exact shapes of the AP in various tissues cannot be perfectly replicated, but the durations
of every phase are in agreement. A Purkinje fibre AP as well as a ventricle AP of a healthy human heart are
going to be modelled in order to prove the efficiency of our asymptotic analysis.

The very first step is to simulate one AP in 1D using a given set of parameters {ugate, τin, τout, τopen, τclose}.
Note that the same ugate has to be used for every simulation unless a new 1D simulation is computed every
time ugate is changed. Using the results of the 1D simulation, the constants kAB and kCD can be fixed to adjust
the asymptotic predictions with the numerical solution at such ugate.

The second step is to set the parameters of the MS model to recover the desired time scales of the (Purkinje
or ventricle) AP. From equations (4.15)–(4.19), we have the following relations:

Tup � kABT̂up(τin, τout);
TAP � T̂AP(τclose, τin, τout);
Tdown � kCDT̂down(τout);
Trec � T̂rec(τopen, τin, τout).
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Figure 14. Restitution curves obtained through asymptotic estimates (continuous line) and
numerical computations (dots).

The order in which the parameters of the MS model have to be fixed is obvious: τout from T̂down, followed
by τin from T̂up, followed by τopen and τclose from T̂rec and T̂AP, respectively. If for any reason the overshoot is
important in the simulation, one more relation is considered

Tpeak � T̂peak(usldn, τin, τout, τfclose, τsclose).

The parameters are fixed in the following order: usldn from the overshoot height, followed by the same steps as
without the overshoot and finally, τfclose from the overshoot duration.

The third step is to impose the speed of propagation by fixing the diffusion constant σ/(Cmχ) in the bidomain
model from equations (4.20) and (4.25). Using the results of the 1D simulation, the dimensionless numbers Nup,
Ndown, NAP and Nrec are recovered from the time and length scales of the various phases of the numerical
solution. The space scales Lup, Ldown, LAP and Lrec are then deduced.

Finally, the characteristic potential Vm is fixed so that the AP sweeps an appropriate range in Volts. Any
characteristic time T and length L can be chosen as long as the domain is properly scaled. For instance, if a
numerical simulation is done on a mesh of a human heart, L has to be fixed so that the heart has the right size
and T can be chosen arbitrarily. The nondimensional values of τ ’s in the MS model will have to be adjusted
consequently because the original MS model is designed for T = 1 ms.

5.1. Ventricle

In the intent of reproducing the ventricle AP, the first numerical simulation uses parameters such that the
AP is physiological, i.e. has time scales and speed of real patient data.

In order to see the entire cycle with the four phases in the numerical simulation, the interval [0, tmax] over
which the simulation is done is chosen such that tmax > T̂up + T̂AP + T̂down + T̂rec. The size of the domain has
to be larger than ĉtmax.
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Table 3. Model parameters to get the asymptotic ̂ -quantities for a physiological ventricle.

Phase Duration T̂ MS parameters T |T̂ − T |/T̂

(ms) (ms) (ms) (%)

I Upstroke 8 τin 0.3150 7.9750 0.313

II AP 250 τclose 168.50 260.93 4.38

III Downstroke 30 τout 5.5556 31.196 4.00

IV Recovery 260 τopen 94.942 257.41 0.996

Phase Speed ĉ Bidomain parameter c |ĉ − c|/ĉ

(m/s) (dimensionless) (m/s) (%)

I 0.5 N 1.8508e-04 0.4368 12.6

Table 4. Model parameters to get the asymptotic ̂ -quantities for a physiological Purkinje system.

Phase Duration T̂ MS parameters T |T̂ − T |/T̂

(ms) (ms) (ms) (%)

I Upstroke 8 τin 0.3590 8.77 9.7

II AP 380 τclose 178.73 401.12 5.6

III Downstroke 65 τout 12.037 61.54 5.4

IV Recovery 320 τopen 111.55 305.29 4.6

Phase Speed ĉ Bidomain parameter c |ĉ − c|/ĉ

(m/s) (dimensionless) (m/s) (%)

I 1.8 N 0.0024 1.65 8.4

The numerical solution is performed on a domain of 1000 mm over 1000 ms. A forward Euler time-stepping
scheme is used with 80 000 time steps and a finite difference method is used in space with 4000 dofs. A char-
acteristic time T = 1 ms and length L = 1 mm are used for the nondimensionalisation. ugate = 0.13 and the
scaling constants kAB, kCD as well as the nondimensional numbers of every phase are the same as those used
in Section 4.5. The results of the asymptotic predictions are presented in Table 3 and the numerical simulation
gives a solution with no more than 5% off the predicted time scales. Note that c is 12.6% off its asymptotic
prediction. As c varies like

√
N , the number N is readily adjustable so that the desired speed can be obtained.

5.2. Purkinje fibres

This is an example where the AP has time scales of the order of magnitude of those of the ventricle AP.
However, the speed of propagation is much larger. The scaling constants kAB, kCD as well as the dimensionless
numbers of every phase are the same as those used for the simulation of the ventricle AP. The numerical
solution is computed on a domain of 2000 mm-long over 1000 ms, using a forward Euler time-stepping scheme
with 100,000 time steps and 8000 dofs. The results of the asymptotic predictions are presented in Table 4 and
the numerical simulation gives a solution with no more than 10% off the predicted time scales and speed.

5.3. Precautions for a narrower upstroke

For a very steep upstroke lasting only 1 ms, τin has to be reduced to 0.0827. This affects considerably the
phase space. For a complete cycle to occur during the simulation, ugate has to be reduced otherwise the domain
gets re-depolarised prematurely. We used ugate = 0.005. The numerical solution is performed on a domain of
1000 mm-long over 1000 ms, with 100 000 time steps and 4000 dofs. The scaling constants kAB, kCD had to
be re-calculated. The τ ’s are obtained using the results of a numerical simulation with the T̂ calculated with
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Table 5. Model parameters to get the asymptotic ̂ -quantities for a very steep upstroke in a
physiological Purkinje system.

Phase Duration T̂ MS parameters T |T̂ − T |/T̂

(ms) (ms) (ms) (%)

I Upstroke 1 τin 0.02 0.9554 4.46

II AP 380 τclose 71.026 407.68 7.28

III Downstroke 65 τout 16.852 58.940 9.32

IV Recovery 320 τopen 106.989 360.05 12.52

Phase Speed ĉ Bidomain parameter c |ĉ − c|/ĉ

(m/s) (dimensionless) (m/s) (%)

I 1.8 N 1.6175e-04 1.7975 0.03

the constants kAB and kCD of ugate = 0.13. Obviously this preliminary 1D simulation gives wrong results in
time scales and speed, but it is essential to find kAB, kCD as well as the dimensionless numbers of every phase
associated with ugate = 0.005. Once these constants are found, a new numerical simulation is performed. The
results of the asymptotic predictions for a Purkinje fibre are presented in Table 5. The numerical simulation
gives a solution with no more than 13% off the predicted long time scales and no more than 10% off the predicted
short time scales. The speed is very well predicted.

Remark 5.1. Even if this study is based on one-dimensional results, it can be also applied in 3D where the
anisotropic conductivity properties of the heart tissue are known. For a planar or nearly planar wavefront
propagating in the direction n at speed c, we have u(x, t) = u(x · n, t) and we are brought to a local one-
dimensional problem. The conductivities in the direction n are si,e(n) = nTσi,en and the elliptic operators
simplify to ∇ · σi,e∇u(x, t) = si,e∂ηηu(x · n, t), where ∂ηη denotes the second order partial derivative along
η = x · n. The results of our asymptotic analysis can thus be applied. For curved wavefronts or conductivity
tensors with substantial spatial inhomogeneities, extension of our work is required for instance borrowing ideas
from eikonal-curvature or eikonal-diffusion equations [8, 18, 31].

6. Conclusion

The dimensional and asymptotic analysis presented here provides the steps to control the solution in a local
region of constant conductivity. It makes it possible to match the time/space scales and speed of any AP
that is to say the shape of the AP and its propagation. This can be done because explicit relations between
the physiological quantities and the model parameters are derived. The application of the method was done
successfully on two very different tissues of the heart, the ventricle and the Purkinje fibres. Even when time scales
differ by many orders of magnitude in the same AP, the reliability of the method with the MS phenomenological
model has been demonstrated.

This method facilitates the integrative modelling of a complete human heart with tissue-specific ionic models.
It indicates that using a single phenomenological model for the membrane potential is enough to compute prop-
agation at the tissue scale, i.e. without consideration of microscopic details, such as the opening of a particular
ion channel in the microsecond scale. For example, this approach could simplify and speed up the investigation
of propagation problems such as infarct’s scars at the heart scale and its components (ventricles, atria, etc). This
remains true only when the phenomena under study needs not take into account more complicated dynamics
than the four AP phases. Our method should also be sufficient for direct simulations of electrocardiograms, and
hopefully much more. Finally, it could open the door to many other applications like the inverse problem. It is
just then a matter of setting the parameters of a well-known simple model instead of developing and coupling
complex ionic models for several regions of the heart.
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