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OPTIMAL CONTROL OF THE BIDOMAIN SYSTEM (III): EXISTENCE
OF MINIMIZERS AND FIRST-ORDER OPTIMALITY CONDITIONS

KARL KUNISCH' AND MARCUS WAGNER?

Abstract. We consider optimal control problems for the bidomain equations of cardiac electrophys-
iology together with two-variable ionic models, e.g. the Rogers—McCulloch model. After ensuring the
existence of global minimizers, we provide a rigorous proof for the system of first-order necessary opti-
mality conditions. The proof is based on a stability estimate for the primal equations and an existence
theorem for weak solutions of the adjoint system.
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1. INTRODUCTION

In this work, we continue our investigations of optimal control problems for the bidomain system. After the
study of the monodomain approximation of the equations and a thorough stability and regularity analysis of
weak solutions for the full bidomain equations, as contained in the previous papers [11,12], we are now in
position to analyze the related control problems with respect to the existence of minimizers as well as to provide
a rigorous proof of the first-order necessary optimality conditions.

Let £2 C R? be a bounded domain and T' > 0 a fixed time horizon. Then the bidomain system, representing
a well-accepted description of the electrical activity of the heart, is given by®

Dy, .

8—; + Lion (e, W) — div (M; V®;) = I; for almost all (z,t) € 2 x [0, T]; (1.1)
OBy, .

8—; + Lion (P, W) +div (M. VP, ) = —I, for almost all (z,t) € 2 x [0, T]; (1.2)
oW

B + G (P, W) = 0 for almost all (z,t) € 2x[0,T]; (1.3)
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W' M; Vo, = 0 forall (z,t) € 002 x [0, T]; (1.4)
WM. VP, = 0 forall (z,t) € 92 x[0,T]; (1.5)
Dy (2,0) = Di(2,0) — Pe(2,0) = Pg(x) and W(x,0) = Wy(z) for almost all z € £2. (1.6)

In this model, {2 represents the spatial domain occupied by the cardiac muscle, the variables @; and @, denote
the intracellular and extracellular electric potentials, and &, = ®; — @, is the transmembrane potential. The
anisotropic electric properties of the intracellular and the extracellular tissue parts are modeled by conductivity
tensors M; and M,. The specification of the model for the ionic current [, in (1.1) and (1.2) and the gating
function G in (1.3) will be made below. We shall consider three so-called two-variable models wherein [, and
G depend on @y, as well as on a single gating variable W, which describes in a cumulative way the effects of
the ion transport through the cell membranes (see Sect. 2.2.). Finally, the inhomogeneities I; and I. represent
the intracellular and extracellular stimulation currents, respectively.
We shall investigate optimal control problems of the form
(1.7)
T T
(P) F(Pu, P, W, I.) = / / r(x,t, Per(a,t), Pe(a,t), W(x,t) ) dedt + g / / I.(x,t)? dz dt — inf!
0 J 0 J2on

subject to the bidomain equations (1.1)—(1.6) in its weak formulation (see (2.1)—(2.4) below)

and the control restriction I, € C (1.8)

where (2.0, is a Lipschitz subdomain of 2 and
C=1{QI|I1eL®[(0,T), L*2)], supp(I) C 2con x [0, T, (1.9)
| I(z,t)| < R (¥)(z,t) € Qr} € LZ[(0,T), L*(Q)].
For the description of the control domain, the linear operator @ : Lz(QT) — L2((2T) defined by

1
| ‘QCOH |

QI(x,t) = I(x,t) — 1, (x) - /Q I(z,t)dz (1.10)

has been used. When applied to a function I with supp (I) C 2con X [0, T'], @ extends by zero the ortho-
gonal projection onto the complement of the subspace {Z | fﬂco, Z(z,t)dz = 0 fora.a.t € (0,T)} C

L? [ (0, 7), LQ(QCOH) ] Consequently, for I. € C, we have

/ I (z,t)dx = / I.(z,t)dz = 0 for almost all t € (0, T'), (1.11)
Q QCO!\

what guarantees the solvability of the state equations (¢f. Thm. 2.3 below). In problem (P), the extracellular
excitation I, acts as control, which is allowed to be applied on the subdomain 2., only.* The pointwise
constraint within the description (1.9) of C is included due to the obvious fact that one cannot apply arbitrary
large electrical stimulations to living tissue without damaging it. In mathematical terms, this restriction is
necessary in order to establish a stability estimate for the bidomain system (Thm. 2.4).

Due to the complex dynamical behaviour of the state equations, an appropriate choice of the integrand
r within the first term of the objective (1.7) for concrete applications is quite delicate. With arrhythmia or

tachycardia in mind, it could be chosen as r(z,t,¢,n,w) = (c,o — Dyes(t) )2 where @40 denotes some desired

4For physiological reasons, the intracellular excitation I; must be set zero.
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trajectory for the controlled state @y, which is part of a solution of (1.1)-(1.5) as well, ¢f. [16]. The second
term expresses the requirement that — regardless of whether the pointwise restriction within (1.9) is active — the
overall stimulus should be as small as possible. Consequently, solutions with little intervention to the cardiac
system are favored.

Besides an existence theorem for global minimizers (Thm. 3.4), the main result of the present paper is the
rigorous proof of the following set of first-order necessary optimality conditions for sufficiently regular local
minimizers (dgtr, b, W, fe) of (P), consisting of the variational inequality

T
/ / (,ufe — QPg) . (Ie — I;) dozdt > 0 for all admissible controls I, (1.12)
0 con

and the adjoint system®

//( on M“’“(gsmvv)pﬁZG@H,W)&) wdxdt+/ [ VM (VP + TP e (113)

_/O A)(g—;(qﬁtr,ée,ﬁ/)> pdedt Yo e LP[(0,T), W(2)], Pi(z,T)=0;

T T T
/ /VwTMiVPldxdt +/ /WT (M; + M) VPydzdt = —/ /@(étr,ée,Wdedt (1.14)
0o Jn 0o Jo o Joon

Ve L*[(0,T), Wh(0)] with /Qw(x,t)dxzofor a.a. te(0,T), /QPQ(w,t)dmzo (V)te (0,T);

T
// _%+Wlon@tr,mpl+8_G<q%n,vv>p3 wdxdt:—// I G, W) ) o dt (1.15)
ow ow 0 Jo \ Jw

Yy e LP[(0,T), L*(2)], Py(z,T)=0

for the multipliers Py, P, and Ps related to the weak state equations (2.1), (2.2) and (2.3) below, respectively
(Thm. 5.2). The proof, which will be given by fitting the problem (P) into the framework of weakly singular
problems in the sense of Ito/Kunisch (see [9], p. 17 f.), is based on two main ingredients. The first one is a
stability estimate for the primal equations (Thm. 2.4), whose proof has been already provided in the previous
publication [12]. Secondly, we need an existence proof for weak solutions of the adjoint system, which is contained
in the present paper (Thm. 4.2). In difference to the monodomain approximation considered in [11], the proof
of the optimality conditions requires additional regularity of the minimizer (@tr, @e, W, fe) in the case of the
full bidomain system.

In the literature, only a few studies related to the optimal control of the bidomain system are available as yet,
mostly restricted to the monodomain approximation. We mention [1,5,10,13-16] and refer to [11], page 1527,
for a closer discussion. Numerical work concerning open-loop control of the bidomain equations with the goal
of dampening of excitation and reentry waves has been realized in [10,14-16]. The problems were treated with
gradient and Newton-type techniques applied to FEM discretizations of the state equations.

The paper is structured in the following way. In Section 2, the solution concepts for the bidomain equations
are outlined. We present the ionic models to be used and summarize the existence and stability theorems for
weak solutions of (1.1)—(1.6). Then, in Section 3, we restate the optimal control problem (1.7)—(1.8) within
function spaces, subsequently analyzing the structure of the feasible domain and establishing the existence of
global minimizers. Section 4 is concerned with the derivation of the adjoint system and the existence proof for
a weak solution of it. Finally, in Section 5, we state and prove the first-order necessary optimality conditions
for the control problem.

SWithin the functions r(x,t,¢,n,w), lion(p,w) and G(p,w), the real variables ¢, 7 and w are the placeholders for @, $. and
W, respectively.
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Notations.

We denote by L”(£2) the space of functions, which are in the pth power integrable (1 < p < o00), or are
measurable and essentially bounded (p = o0), and by W'(£2) the Sobolev space of functions 1 : 2 — R
which, together with their first-order weak partial derivatives, belong to the space L”(£2,R) (1 < p < o0). For
spaces of Bochner integrable mappings, e.g. L? [ (0, 7), W1’2(Q) ], we refer to the summary in [11], page 1542.
Q7 is an abbreviation for {2 x [0, T']. The gradient V is always taken only with respect to the spatial variables
x. The characteristic function of the set A C R? is defined as 1o : R® — R with I5(z) =1 <= z € A and
Ia(z) =0 <= z ¢ A. Finally, the nonstandard abbreviation “(V)t € A “has to be read as “for almost all
t € A” or “for all t € A except for a Lebesgue null set”, and the symbol o denotes, depending on the context,
the zero element or the zero function of the underlying space.

2. WEAK SOLUTIONS OF THE BIDOMAIN SYSTEM

2.1. Parabolic-elliptic form of the bidomain system; strong and weak solutions

It is well-known that the bidomain system (1.1)—(1.6) can be equivalently stated in parabolic-elliptic form,
cf. [4], page 459, and [12], page 4, (2.1)—(2.9). In its weak formulation, the system reads as follows:

/(8@“ .1/)+V1/,TMZ»(V@“+V@Q)+Iion(@tr,W)¢>dw = / I; Y dx (2.1)
o\ Ot Q

Ve WH(82), foraa.te (0,T);
/(VwTMiVQPtr+V¢T(Mi+M5)V¢e)dx - / (Ii+le)¢dx (2.2)
2 (9]

Vip € WH2(82) with /1/1(x)daz=0, fora.a.te (0,7T);
Q

/ (‘B’a—VtV +G(q5tr,W))¢dx =0 VyelL*(2), foraa te(0,T); (2.3)
Q
@i (2,0) = Po(x) and W(x,0) = Wy(x) for almost all z € (2. (2.4)

Throughout the paper, the following assumptions about the data will be made:
Assumptions 2.1 (Basic assumptions on the data).

1) £2 C R? is a bounded Lipschitz domain.
2) M;, M, : cl(£2) — R**3 are symmetric, positive definite matrix functions with L (£2)-coefficients, obeying
uniform ellipticity conditions:

0<mll€|* <EMi(a) € < pa||€]° and O < [[€]° SE™Me(2) € < p || €7 YEER® Yaen  (25)
with gy, pe > 0.

The notions of strong and weak solutions are as follows:

Definition 2.2.

1) (Strong solution of the bidomain system)® A triple (®y,,®., W) is called a strong solution of the bidomain
system (2.1)-(2.4) on [0, T'] iff the functions @, P, and W satisfy (2.1)—(2.4) and belong to the spaces

P, L2[(0,T), W**(2)] n wh?[(0,T), L*(2)]; (2.6)

6Slightly modified from [4], p. 469, Definition 18.
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@, L*[(0,T), W (2)]; (2.7)
we wh?[(0,T), L*(2)] (2.8)
where [, Pc(x,t)dz = 0 holds for almost all t € (0, T').

2) (Weak solution of the bidomain system)” A triple (P, ®., W) is called a weak solution of the bidomain
system (2.1)—(2.4) on [0, T'] iff the functions @, P, and W satisfy (2.1)—(2.4) and belong to the spaces

@, € CO[[0,T], L2(2)] N L*[(0,T), W (2)] n L*(2r); (2.9)
@, L*[(0,T), W3(2)]; (2.10)
wec’[[0,T], *(Q)] (2.11)

where [, @.(x,t)dz = 0 holds for almost all t € (0, T).

2.2. Two-variable models for the ionic current

For the ionic current [;,, and the function G within the gating equation, the following three models will be
considered:

a) The Rogers-McCulloch model®.

Lion(p,w) = b-p(p—a)(p—1)+¢-w=>b¢’—(a+1)bp* +abp+pw; (2.12)
Glp,w) = ew—ckep (2.13)

with 0 <a < 1,b>0, k>0 and € > 0. Consequently, the gating variable obeys the linear ODE

OW/Ot +eW = ek Py, (2.14)

b) The FitzHugh-Nagumo model®.
Lion(p,w) = p(p—a)(p =1 +w = ¢* — (a+1) 9’ +ap+w; (2.15)
Go,w) = cw—ckyp (2.16)

with 0 < @ < 1, K > 0 and £ > 0. Consequently, the gating variable obeys the same linear ODE (2.14) as
before.
c¢) The linearized Aliev-Panfilov model'°.

Ton(p,w) = b-p(p—a)(p—1)4+¢-w=bp>—(a+1)bp*+abp+ pw; (2.17)
Glp,w) = ew—ck ((a+1)p—¢?) (2.18)

with 0 <a <1,b>0, k>0 and € > 0. The linear ODE for the gating variable is
OW/ot+eW = ek ((a+1) Dy — D). (2.19)

7[4], p. 472, Definition 26.

8Introduced in [18].

9See [8] together with [17].

L0The model, which appears to be a linearization of the original model derived in [2], is taken from [4], p. 480.



1082 K. KUNISCH AND M. WAGNER

2.3. Existence and uniqueness of weak solutions; the stability estimate

In [12], the following results about weak solutions of the bidomain system (2.1)—(2.4) have been obtained:

Theorem 2.3 (Existence and uniqueness of weak solutions).?? Assume that the data within (2.1)-(2.4) obey
Assumptions 2.1., and specify the Rogers—McCulloch or the FitzHugh—Nagumo model. Then the bidomain
system (2.1)~(2.4) admits for arbitrary initial values &y € L*(2), Wy € L*(£2) and inhomogeneities I,
I, e L™ [(O, T), ( Wl’z(Q) )*], which satisfy the compatibility condition

/ (1:(@,t) + L(@,0) ) do = 0 for almost all ¢ € (0, T), (2.20)
2

a uniquely determined weak solution (Piy,Pe, W) on [0, T'] according to Definition 2.2, 2). If the linearized
Aliev—Panfilov model is specified, this assertion remains true provided that Wy belongs to W1’3/2(()) instead of
L'(0).

In fact, a closer regularity analysis reveals that, under the assumptions of Theorem 2.3., the components
(Pir, W) of a given weak solution of the bidomain system belong to (L2[(0, T), LG(Q)] N L (0, T),
LT(Q)] ) X CO[[O, T], L4(Q)] in the case of the Rogers-McCulloch or the FitzHugh-Nagumo model and
to (L*[(0,T), L°(2)] n L[ (0, T), L'(2)]) x C°[[0, T], LS/S(Q)] in the case of the linearized Aliev—
Panfilov model where 1 < ¢ < oo and 4 < r < 6.

Theorem 2.4 (Stability estimate for weak solutions). ’* Assume that the data within (2.1)~(2.4) obey
Assumptions 2.1., and specify the Rogers—McCulloch or the FitzHugh—Nagumo model. Consider two weak solu-
tions (B, D W), (DPp,”, ", W) of (2.1)~(2.4), which correspond to initial values &)y = & = &y € L*(12),
W4 = WY =W, € LY(2) and inhomogeneities I,', 1./, 1" and 1.” € L*[(0,T), ( w2 (02) )*] with

/ (Ii/(ac,t) + Ie/(ac,t)) der = / (Ii”(x,t) + Ie”(x,t)> dz =0 for almost all t € (0,T), (2.21)
Q 0
whose norms are bounded by R > 0. Then the following estimate holds:

2 2
H Dy — Py HL2 [0, 1), w2(2)] - H Pu’ — Py HCO[[O,TLLQ(Q)] (2.22)

+ || Dy, — D" || W1,4/3[ + || D' — " ||2L2 [(o,T), W“(m]

W =

(0. 7), (wh2@)"]

2 ]-'—HW/—W//”ZOI:[

L*[(0,1),L2(2)

2 2
S C(HL’/ — " ||L°°[(O,T),(W1*2(Q))*] + | 2" = 1" ||L°°[(O,T),(W1*2(Q))*] )

2

/ 1
+ W =W wh2[(0,1),2%(2)]

0,T],L*(%2)

The constant C > 0 does not depend on I;', 1), I” and I.” but possibly on 2, R, g and Wy. If the linearized
Aliev-Panfilov model is specified then the assertion remains true provided that W5 = W[ = Wy belong to

WI’S/Q((Z) instead of L*(£2).

The assumptions in Theorems 2.3.-2.4. are in accordance to the analytical framework wherein the control
problem (P) will be studied in the next sections.

11[4]7 p. 473, Theorem 30, together with [12], p. 8, Theorem 2.8, slightly modified. An error within the proof of this and the
next theorem will be fixed in a subsequent publication.

12119], p. 7 f., Theorem 2.7, slightly modified.
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3. THE OPTIMAL CONTROL PROBLEM

3.1. Formulation of the problem within function spaces

In order to provide a precise statement of the optimal control problem (1.7)—(1.8) within an appropriate
function space framework, we introduce the following spaces:

X1

2l0,T7), W@2)]; Xe=Xin{Z| /QZ(x,t)dx:O (V)te(0,T)}; (3.1)
Xy = L*[(0,T), *(2)]; Xa=L[(0,T), L*(2)]. (3.2)
We will further specify the subspaces

X=X n w0, ), (Wh(2)) ] n ¢°[[0, T], I*(2)]; Xo = Xo; (3.3)

X3 = Xz n WY[(0,T), (L*(2))"] n c°[[0,T], L*(2)], (3.4)

which contain all polynomials and, consequently, lie dense in X;, X and X3, as well as the target spaces
Zo = L0, T), (W) ]5 2o = L[(0.T), (W)
Zs = L*[(0,T), (L*(2)"]: Zs = Zs = L*(). (3.6)

The quadruples (@, P, W, I..) of state and control variables will be chosen from the space )21 X )22 X }~(3 X X4.
Recall the definition of Q : L*(027) — L*(£2r) as

1
QI t) = I(z,t) — 1o (z)- / 1(3,1) di. (3.7)
‘ con ‘ Qcon
With the aid of the operators
F: Xy x Xg x Xg x Xy —R; (38)
E11i1Xi2Xi3—>Z1; E21i1Xi2XX4—>Z2; E31§Z1X§Z3—>Z3; .
E4 : }N(1 — Z4; E5 : }N(:; — Z5, (310)
the problem (P) will be restated now in the following way:
T
(P) F(®4, P, W, 1.) = / / r(z,t, Poe(x,t), Pe(z,t), W(z,t)) dudt (3.11)
0o Jo

T
+ﬁ-/ /Ie(x,t)zdxdt—dnf!;
2 Jo Ja

By (P, e, W) = 0 /(85: +Iion(d5tr,W))wdx+/ VYT M (VP + VP, )dz = 0 (3.12)
22 2

Vipe WH(2) (V)te (0,T);
Eo(®y, Be, 1) = 0 = /(V¢TMiV¢tr+V¢T(Mi+Me)V¢e)dx—/nlewdx —0 (3.13)
2

Vip € WH2(82) with /¢(m)dx:0 (V)te(0,T);
2

By(@, W) = 0 <= /Q(Wa/t(t) —i—G(@tr(t),W(t)))z/de —0 Vyel’() Mte(0,T); (3.14)
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By( @) = 0 < &u(2,0)—Do(x) =0 (V)z e 2; (3.15)
Es(W) =0 <= W(z,0)—-Wy(z) =0 Vze; (3.16)
LeC={QI|IeL®[(0,T),L*(2)], supp(I) C 2con x [0, T], (3.17)

[ I, 6)| < R (V) (x,t) € Qr} € L®[(0,T), L}(2)].

Assumptions 2.1 are imposed on the data of problem (P). The numbers 7" > 0, u > 0 and R > 0 as well as
the Lipschitz subdomain (2., C {2 are fixed. The functions I, and G will be specified according to any of the
models from Section 2.2. In the case of the Rogers—McCulloch or the FitzHugh-Nagumo model, we fix initial
values @y € L*(£2) and Wy € L*(£2) while in the case of the lincarized Aliev—Panfilov model, &, € L*(£2) and

Wy € w3/ 2(()) will be used. Concerning the objective functional F', we assume the integrand
T($7ta<P7an)3 2 x [OvT] XRSHR (318)

to be measurable with respect to x and ¢ and continuous with respect to ¢, n and w. With regard to (3.7)
and (3.17), in the second term of F the original integration domain 2., from (1.7) can be replaced by 2.

3.2. Structure of the feasible domain

Proposition 3.1. For the problem (3.11)~(3.17), the control-to-state-mapping C > I — (Piy, P, W) € Xy X
Xo X Xj is well-defined.

Proof.

Recall that [, I.(z,t) dz = 0 for almost all ¢ € (0, T'). Consequently, the data within the problem (3.11)-(3.17)
satisfy the assumptions of Theorem 2.3. with I; = o0, and the existence of a uniquely determined weak solution
(P, Pe, W) of the bidomain system is guaranteed for any feasible control I. € C € L[ (0, T), L*(2) ]. O

Proposition 3.2. The control domain C C L™ (27) forms a closed, convex, weak®-sequentially compact subset
of the space X4.

Proof.

Obviously, C is a convex subset of X4. In order to confirm closedness, consider a norm-convergent sequence
{QIN} with members in C N X, and limit element 7. Since the sequence { IV } of the generating functions
is uniformly bounded in L*[(0,T), Lz(Qcon)], it admits a weak*-convergent subsequence IV with a limit
element T still satisfying the conditions supp (I) C Qcon x [0,T] and |I(.T t)] < R (Y)(x,t) € Q2p. The
weak*-continuity of the operator @ implies then Q IV~ X+ QT and I = QI € C. Now the weak*-sequential
compactness of C is obtained from [19], (p. 301), Theorem VI.6.6. (together with p. 152), Theorem IV.4.11.
Finally, || I || g, < R implies || QI || = g, < 2 R, and C belongs even to L (0r). O

Proposition 3.3. The feasible domain B of the problem (3.11)—=(3.17) is nonemptly and closed with respect to
the following topology in X1 x Xo x X3 X Xy: weak convergence with respect to the first three components, and
weak™ -convergence with respect to the fourth component.

Proof.
The existence of feasible solutions follows via Theorem 2.3 ﬁrom Proposition 3.1. Consider now a sequernce pf
feasible solutions { (&, .Y, WN, I.V) } with &% =X &, ¢, N ~X2 @, WN ~Xs |} and [N > Xa

From Proposition 3.2, we already know that I, belongs to C. Further, from [12] page 7, Theorem 2.6, we
obtain uniform bounds with respect to N for the norms of @, &,V WN oD, /Ot and GWN /o, 1mply1ng
weak convergence of 8d5trN/ /Ot, Vo, N N and owN’ /Ot as well as a.e. pointwise convergence of &N on Or
along a suitable subsequence. Consequently, passing to the limit N’ — oo in (2.1)—(2.4), we may confirm that
(@tr, @e, W) solves the bidomain system with right-hand sides I; = 0 and I O
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3.3. Existence of global minimizers

Theorem 3.4 (Existence of global minimizers in (P)). We impose the assumptions from Section 3.1. on the
data of the problem (3.11)—~(3.17). Assume further that the integrand r(z,t,o,n,w): 2 x [0, T] x R* - R
is bounded from below and convex with respect to ¢, n and w. Then the problem (3.11)~(3.17) admits a global
MINIMizer.

Proof. Since 7 is bounded from below, the problem (3.11)-(3.17) admits a minimizing sequence { (@,
o N W, IeN) } of feasible solutions. Due to the uniform boundedness of || .Y ||X4 with respect to IV, the norms
|| &y, N ||X17 || o N ||X2 and || wh ||X3 are uniformly bounded as well (¢f. again [12], p. 7, Thm. 2.6), and we may

pass to a subsequence { (@trN/, @eN/,WN/, IeN/) }, which converges to a feasible quadruple (Qgtr, Do, W, IA(,) in
the sense of Proposition 3.3. The lower semicontinuity of the objective follows as in [6] (p. 96), Theorem 3.23,
and page 97, Remark 3.25(ii). Consequently, denoting the minimal value of (P) by m, we get

m = lim g, F(@" &N WV 1N (3.19)

> liminf y, F(@,Y 0 Np, WY INY) > F(dyy, b, W, 1) = m,

and the quadruple (dgtr, b, W, fe) is a global minimizer of (P). O

4. THE ADJOINT EQUATIONS

4.1. Derivation of the adjoint system

Throughout the following sections, we will further assume that the integrand r(z,t,¢,n,w) within the
objective (3.11) is continuously differentiable with respect to the variables ¢, n and w. For the optimal control
problem (P), let us introduce now the formal Lagrange function

L(@tra(ﬁe’W7167P13P27P37P43P5) - F(djth@e’v‘/a[e) + <P1 5 E1(¢tradjeaW)> (41)
+<P27E2(45t1‘7¢€7[e)> + <P3a E3(45t1‘7W)> + <P4a E4(45t1‘)> + <P57E5(W)>

with multipliers

Pe LM(0,T), wh()]; (4.2)

Pye LP[(0,T), W) n{Zz |/ Z(az,t)yde =0 (V)t€ (0,T)}; (4.3)
2

Py € [P[(0,T), L*(2)]; P, Ps e (L*(Q)". (4.4)

Differentiating £ at the point (dgtr, b, W, fe) in a formal way with respect to the variables @, ®. and W, we
find the adjoint equations

D, F (D1r,De, W, 1) + ( Py, Dg,, Ey($er, e, W)) (4.5)

+(Py, Dy, BEs(Pur,be, 1e)) + (P, Do, E3(@r, W)) + (Pr, Do, Ea(P)) = 0;
qu'eF(éstraéeaWaje) + <P1 ) qu'e El(étraéeaW)> + <P27 qu'e E2(¢tra£83f6)> = 07 (46)

Dw F(®y,,®.,W,1.) + ( Py, Dy E1 (P, e, W)) + (P, Dy E3(Pu, W)) + (Ps, Dw Es(W)) = 0.
(@.7)
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After choosing Py = —P;(-,0) and P; = —P5(-,0) (this choice is possible by Theorem 4.2. below), the adjoint
system takes the following form:

[ (-5 Sy i Sy ) wavat 4 [ [ ST an (VR VR arar (09

_/O A)(g—;(qﬁtr,ée,ﬁ/)> pdedt Ve IP[(0,T), W'(Q)], Pi(z,T)=0;

T T T
/ /WTMNP1 dz dt +/ /WT (M; + M,)VPydzdt = —/ /@(étr,ée,Wdedt (4.9)
0o Jn 0o Jn o JoOn

Vo e LP[(0,T), WH(2)] with /Qw(x,t)dx:() (V)te(0,T), /QPg(w,t)dw:O (V)te(0,T);

T
[ (2 e+ a8 Y warae = [ [ (2ibboin)) vararany
0 (]
Ve L*[(0,T), L*(2)], Psy(z,T)=0.

4.2. The reduced form of the adjoint system

First, we apply to the system (4.8)—(4.10) the transformation s = T — ¢, thus defining P, (x,8) = Pi(z, T —s),
1<i<3, Pz, s) = Dy(x, T—s), 5;(1‘,3) = b(x,T—5), W(.T,S) = W(x,T—s) and I (z,s) = I.(x,T—s) etc.
By abuse of notation, we suppress all tildes, thus simply replacing ¢ by s and —0P;/dt, —0P3 /0t by 0P, /0s and
OP5/0s, respectively. Then the adjoint system, in analogy to the primal bidomain equations, can be rewritten
in terms of the bidomain bilinear form as a reduced system:

SR 0+ AP, o)+ [ (G W) P GG W) P ) wde = (3().0) (@)
Vi e WH(0);

SR 01+ [ (G ) A Go @) P ) e = (@b ) ) (012)
Vi e LP(9);

Pi(z,0) =0 (WzeR: Pya,0)=0 Ve (4.13)

on [0, T'] in distributional sense (cf. [12], p. 5f.), Theorem 2.4. Here the bidomain bilinear form A : W "?(£2) x
W1’2(()) — R is defined as ibid., page 5, (2.22), through

A1, o) = / Vi M; Vips da + / VT M; Vipy dze (4.14)
Q 0
where zze € Wl’Q(Q) is the uniquely determined solution of the variational equation
/ VoI (M; + M,) Vo do = —/ VYT M; Vpde Yo € WH(02) with / Ydz =0 (4.15)
Q 0 0
satisfying / {/;e de =0,
Q
and the linear functionals S(s) € ( wh?(0) )* are defined through

<§(s),¢> - —<§;(%,¢e,w > /v¢ M; Vi dz (4.16)
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where ¢, € Wl’z(()) is the uniquely determined solution of the variational equation

or

—T
/Qwe (M; + M,) Vipdo = <377

(Prr, Do, W), ¢> Vi € WH(92) with /¢dx:o (4.17)
(]
satisfying / ¥, dz = 0.
2

The component P of the solution of (4.8)-(4.10) is uniquely determined as the sum P, = ¢, + . Note that
this reformulation is even possible without imposing the additional compatibility condition

/Q g—;(étr(a:,s),ée(a:,s),W(a:,s))daz =0 (V)se(0,T). (4.18)

4.3. Existence and regularity of weak solutions

Theorem 4.1 (A priori estimates for weak solutions of the adjoint system). The optimal control problem
(3.11)~(3.17) is studied under the assumptions from Section 3.1. Within the problem, we specify the Rogers—
McCulloch model. Assume further that the integrand r(x,t,p,n,w) is continuously differentiable with respect
to ¢, n and w.

1) If Py, B, W, 1..) is a feasible solution of (P) with
or

@(thrv @e’ W)

or

Or ~ 4 .
o (B, e, W 8;@“,@6,W>6L2<9T) (4.19)

then every weak solution (Py, Pa, P3) € [/2[(07 T), W1’2(Q)] X LZ[(O7 T), W1’2(Q)] x L*(027) of the
adjoint system (4.8)—(4.10) obeys the estimate

2 2
' ”Lx[(O’T) @] A ”L2[(0 T). wh(@)] LA ||L2[(0 T), Wh2(2)] 5 ”L°°[(0,T),L2(m]
Or or or
< C (‘ 8 ((Ptra@eaw) L2(QT) + H 8 (étra@eaw) -QT) + H 8 (étra(ﬁe,W) L2 QT)) (420)

where the constant C' > 0 does not depend on Py, Ps, Ps but on (@tr,@e, W, fe) and the data of (P).
2) Let g = 10/9. If (B4, D, W, 1,) is a feasible solution of (P) with

or or ~ -~ - or

a@(%,@e,m an(%,@e,ww a—w(étr,ée,w) e ’[(0,7), L*(2)] (4.21)

then every weak solution (Py, Pa, P3) € LQ[(O, T), Wl’z(())] X Lz[(O T), le(())] x L*(02r) of the
adjoint system (4.8)—(4.10) obeys (4.20) as well as the further estimate

2 q (12
||P1 HCOI:[O,T],L2(.Q)] +Hapl/asHL(II:(O,T),(WLQ(Q))*] + HP&HCO[[O,T],L2(Q)] (422)
Ps/os |’ < |14 || 2= (Do, e, W) ||
+ 119 3/8SHL‘1[(O,T)7L2(Q)] ( +H tr: P, W) 2] (0,7),L%(2)
or ~ 2 or -~ o
iy, D, 4 — (D, @ 2
* H 817( s @e, W) 22 (0,1),L2(2)] H 8w( s @e, W) LQ(”T)>

where the constant C' > 0 does not depend on Py, Ps, Ps but on (@tr,@e, W, fe) and the data of (P).
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The a priori estimates yield the following existence and uniqueness theorem for the adjoint system:

Theorem 4.2 (Existence and uniqueness of weak solutions for the adjoint system).
Under the assumptions of Theorem 4.1, 2), the adjoint system (4.8)—(4.10) admits a uniquely determined
weak solution (Py, Py, P3) with

Poe C°[l0,T], ()] n L*[(0, T), wh3(@2)] n wh (0, T), (W"*(2))"]; (4.23)

Py € LP[(0,T), W (2)]; /Pg(x,t)dx:() (V)te(0,T); (4.24)
2

Py € C°[[0,T], L*(2)] n Wh[(0,T), L*(2)]. (4.25)

Note that, even under the assumptions of Theorems 4.1, 2) and 4.2, the regularity of P; € Lt [ (0,T), Wl’z(()) ]
as required in (4.1) and (4.2) cannot be guaranteed.

4.4. Proofs

Proof of Theorem 4.1. Throughout the proof, C' denotes a generical positive constant, which may appropriately
change from line to line. Further, we will specify in (3.12)—(3.14) the Rogers—McCulloch model. The necessary
alterations in the case of the other models will be discussed at the end of the subsection.

e Step 1. An estimate for the right-hand side of (4.11). We start with

Lemma 4.3. Under the assumptions of Theorem 4.1., for arbitrary e, > 0 the following estimate holds:

[(36).0)| < (H O (G, W) |2

The constant C > 0 does not depend on ef, and 1.

or

(Q) + H 8 (étrv(ﬁeaw)

2
2 Q)> +C€6H1/)HW1,2(Q). (426)

Proof. Inserting 1, € Wl’Q(Q) as a feasible test function into (4.17), we get from the uniform ellipticity of M;
and M, and the Poincaré inequality:

Of|%e [z < / Vi, (Mi + M) Vi, dz < |<§—;<¢tr,ée,vv>,af>| (4.27)
< oo | S e ) [y RN ey D5 € (0.7,

for arbitrary §; > 0. Inserting §; = C, we arrive at
5 1% [z < 210 g’"(@m@e,W) 2(W12(9>) < %Hg—;(@tr,@e,m 22 (4.28)

From (4.16), we obtain

[(36). 0} < ’<gr@mq§ ,W),¢> +y<vEfMi,vw>y (4.29)
ié gr (B, Be, W) (W1v2(9))*+%2|w|2wlv?( Hw HL2 +_HM - \WHQLz(Q) (4.30)
< g | St ) [+ 5 [T g + (%+%) 16 e )
< 59 gr (B, Be, W) |[72(0 +50 H g:;(@tr,gb W) |72 +C (%2 + %) 16 e (4.32)

by (2.5) and (4.28). Taking d3 = d2/(u2)?, we get (4.26). O
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e Step 2. The estimates for || Py HL‘X’[[O Specifying the derivatives of

7], 2%(92) | and || P HL‘”[[O
Lion and G according to the Rogers—McCulloch model, we have

T].L2(2) ]

aIion = = S S IS oG

90 (P, W) = 3b(Pe)? —2(a+1)bP 4+ ab+ W ; B (P, W) = —ek; (4.33)
aIion = z - % = 7 _
8’11} ((Ptrv W) = djtr 3 8’11} ((Ptrv W) = €. (434)

Inserting P;(s) as a feasible test function into (4.11), we get for arbitrary £}, £1(s) > 0 with [12], page 6,
Theorem 2.4, 2), and Lemma 4.3 above!?

1 d 8Iion 2 z
|| Pi(s) H2LQ(Q) + (A(Plapl) + B Py ||2L2(n)) + /Q B (Do, W) Pi(s)* dz (4.35)
/‘_@tra ‘|P1P5’+| ), Pr) |+5HP1HL2(Q) ==

1 .

5 E || Pl(S) HLQ(Q) + 3 H P, ||%/Vl2(9) + /Q(ab—l— 3b(¢tr)2 ) P1(3)2 dx (436)

< c/ |i5tr|+|W|>|P1|2dx+sn/|P1P3|dx
or

ar 2 2
(H (Ptra@evw) (Q)"‘H on @tr»@eaw) L? Q)) +C€6HP1 HW“(Q)"‘ﬂHPl ||L2(Q) =
1d )
id_”PI( )\|L2(m+ﬁHP1 ||W1’2(.Q) (4.37)
A2 A2 2 2
< oa(s)/ (12 [+ W ") | A [ do+ —= ( 1P gz +C (1P gz + 1 Ps o)
87” or / 2 2
(Ptra(lsevw) Q)+ an ((Ptrv(PEvW) L2(92) +C€OHP1 HW”(Q)"‘ﬁHPl ||L2(Q)
2 1 2
< Cei(s (H% L4<9>+HW’L4(Q)> Py IRy + C (H%) A (4.38)
C T s s s 87" A
+ o (H %(Qtrvéevw) Q)+H dstrvd5 W) 2L2(Q)> +C€6HP1 H%/Vlv"’((z)"i'OHPS ||2L?(Q)
0
A 2 . 2
We choose €1(s) =€}/ (1+ H Dir(s) ’ @) + ‘ W (s) ’ @) ) with €} > 0 and continue (4.38) with
. ) 1 . 2 . 2 )
SO P ooy +C (14 ) |y TV [y ) ) NPy (439)
or 87“
(H @tr,@e,W) 12(2) + H an(@tr,@e,W) 12(2) ) —|—O€6 ”PlH2VVlQ(Q)+CHP3H2L2(Q)

Further, inserting P5(s) as a feasible test function into (4.12), we find with e5(s) > 0

1 d
HPS( )||2L?(n)
8Iion 2 2 8G 2 a 2 87" A ~ ~
< /Q Dw (djtraW)‘ |P1P3|dx+/9’%(@traw)’ |P5| dw"‘/ﬁ‘%(@tra@evw)‘ ’P3|d$ (4.40)

L3Note that ¢ > 0 is fixed from the Rogers—McCulloch model.
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or

a (dstrv 45(’7 W)

F 2
</|Q5trP1P3|dx+eHP3 ||L2(Q)+CH 22 T C P ||L2(Q (4.41)

1 or
C€2 /’(PtrP1| dl""C(l"‘ ())HP5HL2(Q +CH8 (dstradjeaW) LQ(Q) (442)
2 1 2 or
< Ceals H% sy 1Ty + € (14 5 ) B lo) + €| 5 L (BB W) |2y (4.43)
. 2
Choosing now £5(s) = ¢4/ (1 + H Dir () HL4(Q) ) with &}, > 0, (4.43) may be continued as
1 ~ 2 2 or
< O Py +C (14 5 (1] )| ) ) 1B 1200 + € | 55 @ @) ). (144)
Combining (4.39) and (4.44), we obtain
|2 Ps(s) |3 28| P73 4.45
= (1P1(3) G20y + I Py () 320y ) + 281 P2y (4.45)
’ / / 2 1 . 2 . 2 )
<O (e ) 1P Fnaey +© (14 5 (148 [, [T ) ) 17210
cli+2(14]é ’ Ps|?
w0 (g (1], ) ) 1B 0
c (o . o or .
+ % (H %(@tr,@e,W) 12(2) + H @tr,@e,W) LQ(Q)) —|—OH — @tr,@ W) iz(n).

Now we fix the parameters £¢, 1, £5 > 0 in such a way that the terms with || Py [| ;1.2 on both sides of (4.45)
will be annihilated, thus arriving at

d
= (1P (3) 3200y + 1 Po() 20 ) < AG) (I1PLS) G2y + 11 Pol) 2y ) + Bs) where  (4.46)
A 2 . 2
Als) = C (1 + || @us)] o+ |Ws)| ) ): (4.47)
8r or or
B(s) = @tr,gﬁe,W) 2oyt an(gﬁtr,@e,W) Yoo +|| 5o @ Be W) Loy ) (448)

Then Gronwall’s inequality yields for all s € [0, T']:

S

I PLs) 2y + 1 Pas) 2y < o6 A9 (| PL(0) 32y + | P3(0) 320 + | Blo)do ) (4.49)

S—

or ~ = or
CT
< H - QtraéeaW) LQ(QT) + H an (Qtl‘7¢e7W) i'z(QT) + H a (Qtraée,w) L2(QT)) (450)
since &y, € L4(QT) and W e C° [ [0, T], L4((2) ] Consequently, we get the estimate
P Py |? a’" gb b, W 451
H 1||L°°[(O,T),L2(.Q)] +H 3‘|L°°[(0,T),L2(.Q)] ~ trs Fe» ) (QT) ( . )
or ar
+ H 8 (@tr,(ﬁe,W) (-QT) + H 8 (‘Ptr,@e,W) (-QT)>
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e Step 3. The estimate for || P HQL We return to (4.45). Then g, €}, €5 > 0 may be

[0y, w2 |
alternatively chosen in such a way that C (gf, + €] + €4) = 3 and, consequently,
d 2 2 2
= (1P) gy + I Po(3) 2y ) + 1 PL3) [ 20 (452)
ds
2 2
< AG) (1P 20y + 1 Po(s) [0y ) + Bs)

where A(s) and B(s) are calculated as above. Together with (4.51), we obtain

il
= (I1P1() W2y + I P() 320y ) + B Po() [y (4.53)
or or or
g CA(S) (H 8 ((Ptra@eaW) L2(QT) + H 8 (étra(ﬁeaW) -QT) + H 8 (@tr,(lse,W) Lz(QT)) +B(8)
We integrate (4.53) over [0, T'] and get, inserting the initial values P;(0) = o, P5(0) =
I PLT) I3y + 1 P 20y + BI P2 [ .1y, wingon] (4.54)

or or, . . or ~ ~
g C( 8 (@tr,@e,W) iQ(QT)—’_ _étradseaW) 12(071)"‘ j((ﬁtra@eaw) iz(QT)> —

j=}
~
3

N
2

87" or, . . or ~ ~
g C < (p(djtraé aW) i2(QT) + —(@tr,@e,W) 2L2(QT) + _w(dstra@eaw) i2(QT)> .

e Step 4. The estimate for | 0P, /ds |

Lq[(O’T) ’ ( W1*2(Q))*] with ¢ = 10/9 < 2. Exploiting the definition of

the dual norm, we start with

T
P /ds || o= ‘ dPi(s)/0 “d 4.56
19P/05 Lt 0,7y (W) /0 |\w\|wil,1£m:1’< 1(6)/0s, ¥} [7ds (4.56)
r OLion , e
= [ swl=apin) = [ (G P+ GG W) By ) wde+ (5(6),0)[Tds (@457
T

<o/ (sup’A(Pl,z/)Hq—l—sup(/ (190 >+ [ | + | W[ +1) | Pr || 0] )" (4.58)

0 (]

+s?peqmq</r2]P3||¢|dx)q+s?p|<§(s),¢>|q>ds.

The four terms on the right-hand side of (4.58) will be estimated separately. For the first term, we get with [12],
page 6, Theorem 2.4, 2), and (4.55)

T T
Aswmmew<Aswwwww1mwwW2 (4.59)
< A1 a < a )
<P 0ry wir@] S P[0y, wie)] (460
or or or q/2
H @tl‘)dsevW) -QT) + H 8 (@tr,@e,W) Lz(QT) + H 8 ((Ptr,@e,W) L2(QT)> . (4.61)

For the second term, we obtain

T
/ sup(/(|¢tr|2—|—|¢tr|—|—|W|+1)|P1||w|das>qu (4.62)
0 - Q
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T T
< o<sup/ / 2| Py ’q|1/)|quds+sup/ /|¢tr,q,p1 7] |7 dz ds (4.63)
0 (9} 0 22
+SUP/ /|W| |¢|dwd8+sup/ /|P| |1/1|d$d8>—J1+J2+J5+J4
We start with the estimation of J;, thus getting
r - 120/9 10/9 | | 110/9
J1 = sup |d5tr | |P1 | |1/1| dzds (4.64)
Jo Ja
T o 33/54 6011 11/54 ; 10/54
= sup/ (/ Dy, | dx) (/ | Py | dx) (/ |v| dac) ds (4.65)
0 (9] (9 2
s 2o 10/9 10/9
= sup / 0 AR Y ot ||¢\|L5/m (4.66)
10/9 10/9 _ 10/9
< 5up C/ Dty L4°/11(9) | P ||W12 ) H¢HW12 C/ Dix L40/11(9) [Py ||W1,2(Q) ds (4.67)
. 8/18 " 10/18
- 2
<C (/0 H@tr(s) ‘ . ds) (/O I P(s) 1212 ds> (4.68)

. 1120/9

10/9
By, Py,

¢ Yzl o,m), wize)]

(4.69)

LS[(O,T),L4D/11(Q)] ’

Since &y, € Lp/[(O, T), Lp”(ﬂ)] for all 1 < p’ < o0, 4 < p’ < 6, we get a bound analogous to (4.61).
Continuing with Jo, we find in completely analogous manner

T 5 110/9 10/9 10/9
Jo = sup | Dy, | ’ Py ’ | P | dzds (4.70)

10/9 10/9 10/9
< swp € / B Y T R el B P R P e
T Jo/a 8/18 T 10/18
7 2
<C (/0 Bicls) | o ds> (/0 | Pi(s) iz o ds> (4.72)
. 110/9
< C-|| by eyt . (4.73)
L/ (0,7, L2/ ()] 2[(0,7), w2() ]

Noticing that, in the case of the Rogers-McCulloch model, W belongs even to C° ([0, 7], L4(Q) |, we may
estimate Js3 in the same way:

T

Js = sup/ /]W|1O/9]P1]10/9|w|10/9dxd3 (4.74)

10/9 10/9 10/9
< sup € / pronggy I P W) [ 1yl gy ds = € / prorggy I Pz gy ds (4.75)

T 10/4 8/18 T , 10/18
<C /0 s | o 5 /0 | Pr(s) [2pne gy s (4.76)
S |[10/9 10/9
< c- ‘ w 10/4 20/11 ’ H Pl H 2 1,2 (477)
L4 (0,7, L2/ (2) ] 2 (o, 1), w2(2) ]
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& ||10/9 10/9
<C-|W NP RE (4.78)
L=[(0,7),14®)] [ (0. 1), wh(2) ]
Defining the function S(z, s) = 1, the estimation of .J, yields
r 10/9 10/9 |, 110/9
Ji = Sup/ /|s| P[P | 1 s (4.79)
. Jo Ja

10/9 10/9
< || P .
C- ||SHL10/4[ 0, T),LQO/H(Q)] H HL2[(O,T),W1'2(Q)]

Summing up, we get from (4.63), (4.69), (4.73), (4.78) and (4.79):

T q
/ sup</ (|@tr!2+|i§n|+]W!+1>!Plllwldx> ds (4.80)
0 .. 10)

qa/2
or or
(H Ao @r,@e,W) 2(0m T H an(fﬁtr,ée,W) 12(00) T H B (Dir, Do, W) LQ(QT)> :
The third term at the right-hand side of (4.58) will be estimated through
T ! r 10/9 | , 110/9
sup g9 g4 | Ps | | ) | dx | ds < sup C | Ps | | W | dx ds (4.81)
0 (9] 0 2
T , 10/18 10/4 8/18 1o/ 100
SsupC’/ </|P3| dx) (/|w| dx) ds—bupC/ HP;),HL2 @) HwHLw/4 (4.82)
0 2 Q
T
10/9 10/9 q q
<s = < .
<sup € [ IR 101y = CUPNL o S CIBIL oy (89
or or or a/2
< <H gzjtra(lsevvv) (QT) + H 8 (dstradjea W) L2(QT) + H 8 (@tradjea W) LQ(QT)> . (484)

Finally, Lemma 4.3 implies for the fourth term at the right-hand side of (4.58):

T ~ . T ar ~ -~ ., or !
sup| (S(s), v)|*ds < C [ 1+ %@tf,@e,W) R A (Do, e, W) (172 ) ds | (485)
0 0
or ar
g C <1+ <H étl‘a¢6?W) LQ(Q) H 8 (@tr,ée,W) L2(Q)> ds) (486)
<o (14 L by, o) |20 O (e, b, W) |20 (4.87)
X 8 try Fes Lzo/g[(O,T),LQ(Q)] 8 try Fes L20/9[(0,T),L2(_Q)] . .

Together with (4.61), (4.80), (4.84) and (4.87), (4.58) yields the claimed estimate

q
4.
H8P1/8s\|Lq[(O ). (W) ] (4.88)
Br or or Ly qa/2
@traée’W) L2(QT) + an<¢tr7¢€7w> LQ(QT) —+ a (@th@ 7I/I/v) L2(.QT)
8T T 20/9 87" A 20/9
v Pe, Py, Do, .
e (1+H a‘P(@t 2, W) 2/°[(0,7), L2(2) | (977( ‘ ) /9 (0,1, L2(2) ]
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e Step 5. The estimate for || OPs/0s ”(24[(0 ). (2@)"] We start again by using the dual norm

T
OP3/0s|? *:/ OPs(s)/ds, )| d 4.89
VRSO L oy, (2@) ] = Sy gl 2l (OFs/ 08, w1 s (459
r . or . . .
:/ sup|/ (—@trpl—ep3——(¢tr,¢e,W)> Ydz | ds (4.90)
0 0 ow
T ) q q or . . . q
<o sup(</ ||P1|]¢]da:> —|—<e/’P3Hw’da:> T (/ |a—(¢tr,¢e,W)||¢|dx) )ds
0o - 2 2 n ow
T ~ T q
< C(sup/ /’@tr|q|P1|q|¢|qd$ds+sup/ </|P3H1/1’dx> ds (4.91)
0 2

q
+sup/ (/| (Ber, B, W) ||z/)|dx> ds ) = Js+ Jo + Jr

The three terms on the right-hand side of (4.91) will be estimated separately. For the first term, we get

T
Js = sup c/ /|<.istrym/9|p1 1179 | ]9 4 s (4.92)
0o Jo
9
T
< sup C (/ /|Q3tr|5dxds> / /|P1| dacds (/ /|w| dxds) (4.93)
0 0
<1079 10/9
- s e e, - / 16(5) 3 da s (4.94)
195) 2 () = 1 L3(927) L (6x) @
10
<c.|é 10/9 Py 10/9 ) T894
¢, (172 o i) NP (1.95)

by application of the Aubin-Dubinskij lemma to P;. Since &y, € L°(£27), we may use (4.55) and (4.88) in order
to conclude that

or or a/2
_%,@P,W) ey || gy @ P W) By + | g @B W) [ (4.96)
or 20/9 or 21 2079
+C(1+H5 (Bur. e, W) £0/°[ (0,7), 12(2) ] an oy (Pre: Be: W) 200,17y, 2] )

For the second term, we find

10/9
Jﬁ—supC/ (/|P3 ]¢|daz> ds\supC’/ 15 2oy + 103) B2y ) s (4.97)
<cC <1+ 1Py ||2219[(0 N Lm)]) (4.98)
0 0 0 a
<C <1+ H 8r (o e, ) [ + H 8T(§btr,¢e,W) 2oy + H 87”(@”456,14/) (o )> (4.99)
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by (4.51). For the third term, we get

q T
J7 = sup / (/ | a- @tr’@e’W | |¢ | d.%‘) ds < sup / (H ﬁ(étr’ée’[f[/’) ]

22a) (4.100)

H I G b, W)

+ ||7/’(3)|L2(Q)> ds < C <1—|—

20/9
L2q[(o,T),L2(m]> . (4.101)

Combining now (4.91) with (4.96), (4.99) and (4.101), we arrive at the claimed estimate

OP;/0s || . 4.102
|0Fs/ ‘|Q[ 0,17y, (2(®))"] ( )
or or q/2
H - @traéea W) LQ(QT) + H an(ﬁptr,ée,W) L2(QT) —|- H a (Qtraéea W) L2(QT))
or 20/9 or , - 2 2 20/9
1 By, D, —(Pir, Do, .
+C( +H 8(,0( t e W) L20/9[(O,T),L2(Q)] 8’17( t e W) L20/9[(0,T),L2(Q)])

e Step 6. The estimate for || P» HQLQ[(O Ty wiae)] Inserting Py(s) € W"?(2) with Jo Pa(z,s)dz = 0 as

a feasible test function into (4.9), the uniform ellipticity of M;, M. and the Poincaré inequality imply

| Pa(s) ||2Wl,2(m < C/ VP (M; 4+ M) VP, dx (4.103)
2
< C‘/ VEL M; VP, da + gr(sﬁtr,@e,W)Pgda:‘ (4.104)
2
C (|P1 HW12 HP2 ||W12(Q)+/| @tr,(ﬁe,W ||P2|d$> (4105)

since, by Assumption 2.1, 2), the entries of M; are essentially bounded. Consequently, applying the generalized
Cauchy inequality twice, we get

1
| P2(s) HZ’Wm(Q) <C (? | P HZ’Wm(Q) +ez P2 IIZWM(Q) (4.106)
3
L g(é b, W) i +ei | P12
521 877 try Fes L2(Q) 4 2 W1,2(Q)

for arbitrary %, €} > 0. Choosing (g5 +¢}) = 1/(2C), we arrive at

1 or
LB gy < € (| Pulfyrage + | ot 10)

i ) = (4.107)

12(2)
) i > (4.108)

L*(92r)

or
122 o o] < <||P1|L2[(0 oy i) * | g B ¥

where the right-hand side is bounded by (4.55).

e Step 7. Conclusion of the proof. The fact that P; belongs even to c’ [ [0,T], L2(())] can be confirmed
analogously to [4], page 478, Section 5.3. As a consequence of the imbedding theorem [7], page 286, Theorem 2,
Py e C° ([0, T], LQ((Z)] holds true as well. Consequently, the norms on the left-hand side of (4.51) can be

replaced by C° ([0, 7], L’ () |-norms, and the proof is complete. O
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Proof of Theorem 4.2.

e Step 1. Approzimate solutions for the reduced adjoint system. By [4], page 464, Theorem 6, the bidomain
bilinear form A(-, -) gives rise to an orthonormal basis of eigenfunctions {;} within the space W"?(£2),
which are related to eigenvalues 0 = A\g < A1 < Ay < .... For N € Ny, let us define the subspaces

N
XVR) ={y =3 cvi|co,nen €R} C WH(R2), (4.109)
i=0
and the functions PN, P&V : 2 x [0, T] — X according to
N Xy N Xy
P (z,s) = ;}pz‘,N(S) vi(x);  Pg(x,s) = ;) qi,n (8) () (4.110)

where p; v, ¢i,v © [0, T] — R are solutions of the initial value problem

" N
dp;.n(s) + Ajpin(s)+ 2 pin(s) /
ds =0 °

43 a(s) [ S @ W) i) vy w)de = (590, 05), 0< <N
=0 0

i 8(,0
dg; N aIion 2 =
%5\;(5) + :Z(in,N(s)-/Q B (Pir, W) s () () dz (4.112)
> oG & i or ..
+ 2 ain(s): /Qa_w(@“’w) Yi(@) j(x)de = — < a_,;(@tra@eaw)v ¢j> , 0<j<N;
pin(0) =0; ¢jn0) =0 0<j<N. (4.113)

Specifying the data for (4.111)—(4.113) according to the Rogers—McCulloch model, the problem reads as
dv. N “ o A
pj(,g(s) + Ajpjn(s) + 20 pi,N(8) - /0(319 (Per)? +2(a+1) by + W + ab) Vi, da (4.114)
1=
—ergin(s) = (S(s), ¢). 0<j<N;

d X N R 8 ~ ~ ~ R
U S | By o+ eqn(s) = - < o (o B W), ¢j> L 0<j < N:(4115)
s i=0 2 dw

piN(0) =05 ¢jn(0) =0 0<j<N. (4.116)

Obviously, all integrals with respect to x are well-defined and the coefficients as well as the right-hand sides are
integrable with respect to s at least. Then, by [23], page 92, Theorem I1.4.6, the initial-value problem (4.114)—
(4.116) admits a unique solution (p07N, e sy DNON s QON 5+ - s QN,N) € ( Wl’l(O, T))2(N+1). As a consequence
of the orthogonality relations, PV and P}’ obey the equations

i<PfV<s>,w>+A(PlN<s>,w)+/

ds Q

(G2 P+ )P ) v @)

= (5(),v) vy ex¥@);

(%@mvm Py + 286, ) Py ) b da (4.118)

) o)+ [ (S i~

0
or - . .
- —<8—;<¢tr,¢e,m,w> Vi e XN(0),
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In this sense, the functions P{¥, P{¥ can be interpreted as approximate solutions of the reduced adjoint system.

e Step 2. A priori estimates for the approzimate solutions P{Y, PJ . The functions P{¥, PV obey the a priori
estimates from Theorem 4.1, 2). More precisely, the following holds:

Lemma 4.4. Let the assumptions of Theorem 4.1, 2), hold for the data of (P) and a feasible solution (Qgtr,dge,
W, 1.) where ¢ = 10/9. Then for all N € Ny, the functions P}, PY satisfy the estimate
N (|2 N N
[R& ||00[[0,T],L2(Q)] +| P ||L2[(0 Ty, wi)] T | 0P, /aSH L[ (o,7), (wi2(2)"] (4.119)

S Ll + [ 0P5 /95 [ j<cC

(0,T), L*(£2)
for a constant C' > 0 independent of N.

Proof. We rely on the Proof of Theorem 4.1. First, we observe that Lemma 4.3, (4.51) and (4.55) remain true if
Py and Pj are replaced by P and P since, in Steps 2 and 3 of the proof above, the reduced equations must
be studied only for the special test functions P} (s), PV (s) € XN (£2). Further, we observe that

T
N q _ 3 N q
| 0P /85||Lq[(0,T),(W1,2(m)*] —/O uwnwa,li)m:l'wpl (s)/0s, )| ds (4.120)
T q
_ / sup <Z dp@N( dpin(s) o 35 > o wj> ds (4.121)
0 | & =0 j

Z ¢ Pj

Jj=0

wl2(Q) =1

. q
— / sup <Z dp”\;( )1/11, Z ¢j 7/’J> ds (4.122)
0 & =0 J
; ci i |lwi2o) =1
T
_ / sup (9P (s)/9s, ) |" ds. (4.123)
0 peXN, 1Y llyr2pn =1

By (4.117), the calculations from the Proof of Theorem 4.1, Step 4, can be repeated now, resulting in a uniform

bound for || OPY /0s ||(iq [(07T)7 ( W”(Q))* ] In the same manner, we may repeat the derivation from Step 5

since
N q g N q
10205310 1) (s200) :/O le‘su(p)_l|<apg (5)/0s, ) |"ds (4.124)
L2(02) =
T
:/ sup |<8P3fv(s)/83,1/)>|qu, (4.125)
0 YeXN [Y]l2n =1

and we obtain a uniform bound for H oPN /0s H ] as well. The arguments from Step 7 hold without

Lo (0,7),L2(2)
alterations. O

e Step 3. The solution for the reduced adjoint system. Lemma 4.4 implies that we may select a subsequence
{(PN,PN)} of { (PN, P{)} with convergence to limit elements in the following sense:

py e[, w2@] p (4.126)
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dPlNl/dsALQ[(O’T)’(WM(Q))*] P (4.127)
py [, @] p (4.128)
PN jas ~L [0 (2@)'] 5. (4.129)

Consequently, taking an arbitrary element 1; € Wl’Q(Q) from the orthonormal base, we find

(P(9),05) + AR, ) + [ (Z2 W) P+ S ) Py ) e = (09, 5)
= lim (%wfv’(s),w +A(PY(s), v;) + /Q (‘9;0 (e, W) P (4.130)
+g_g(étraW)Ple>'l/}de - <§(S)awj>> =0

since ; € XN for all sufficiently large N’ € N. For the same reason, it holds that

~ Iion 2 2 S 2 2 2 2
<Q(8),¢j>+/ﬂ <8aw (dstraW)Pl"_%(@traW)PS)wjd1'+<g—;(¢tr7¢eﬂw)’wj>

d , OLion , z = ;o 0G . :
= lim <—<P3 (s),wj>+/< (Do, W) PN+ —— (P, W) P3Y )wjdx (4.131)
ds 0 ow

N'—o0 ow
or , ~  ~
+ <%(@tra¢evw)a¢j> > = 0.

Weak continuity of the distributional differential operator implies that P = dPy/ds and @ = dPs/ds in the
sense of distributions. Further, it obviously holds that Pi(z,0) = lim y,_, . P{(z,0) = 0 and Ps(x,0) =
lim ., PN (x,0) =0. Since {¢; } lies dense in W"?(£2) as well as in L*(£2), the functions P, and Ps form a
weak solution of the reduced adjoint system.

e Step 4. Completion of the adjoint solution. As indicated in Section 4.2.; the solution (Pi,P;) of the
reduced adjoint system may be completed to a weak solution (Pi, Py, P3) of the adjoint system where Py €
LQ[(O, T), WI’Z(Q)] with [, P>(z,s)dz =0 (¥)s € (0, T) is uniquely determined by Pi, Ps. The claimed
regularity of the solution is guaranteed by Theorem 4.1, 2).

e Step 5. Uniqueness. Since the reduced adjoint system is linear with respect to P; and Pj, estimate
(4.20) yields the uniqueness of its weak solution (P;, Ps) within the space (L>[(0,T), L2(())] n L [(0,T),
W1’2(Q)] ) x LZ[(0,T), L2(Q)]. The completion of (Py, P3) to a weak solution (Py, Ps, P3) of the adjoint
system is uniquely determined as well. This finishes the Proof of Theorem 4.2. O

Remark 4.5. 1) If the Rogers-McCulloch model in (3.12)—(3.14) is replaced by the FitzHugh-Nagumo model
then the Proofs of Theorems 4.1. and 4.2. can be repeated with only minor alterations.

2) Theorems 4.1. and 4.2. remain even true if (3.12)—(3.14) is considered with the linearized Aliev—Panfilov
model. In the proofs, we must work with
0G

%(étr,W) = —€K/(G/+1)+2€K/étr (4132)
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instead of dG(P;,, W)/ = —e k. Thus the estimations (4.36)—(4.55) have to be modified in the following way:
On the right-hand side of (4.36), the term e x [, | Py P3| dz must be replaced by

em(a+1)/|P1P3|dac+em/|i5trP1P3|das. (4.133)

2 Q

The estimation of the first member of (4.133) runs as above, for the second one we get with arbitrary e3(s) > 0:
/ | i P Py | da < Ces(s / | &y, Py | doe + — ( ) | P3 ||L2(Q (4.134)

< 663(5) H Qtr

2

.2
We choose e3(s) =e4/(1+ H Py

: ) with €4 > 0, thus getting
Q

o C o
/]@trPl Py|de < O Py [fyraey+ 7 (1+ H%
2 3

2
2
o) 1P 520y (4.136)

and with appropriate choices of 5 > 0, we may proceed as above. Further alterations concern the estimations
(4.58)—(4.88). In (4.58), the term sup_ e?x% ([, | Ps ||| dw)q must be replaced by

q

q
supsq/{q(a—l-l)q(/ |P3|1/de> +Sup5q/<cq</ |i5trP3¢|dx> . (4.137)

Despite of the lesser regularity of W for the linearized Aliev-Panfilov model, the estimations (4.70)—(4.80) can
be maintained since the solution satisfies W e C° [[o, 7], L8/3((Z)] o L1/ [(0,T), L20/11((Z) |. In (4.81)-
(4.84), we must add an estimate for the second term from (4.137). Consider therefore

T
sup/ / "istr |10/9 ’ P, ’10/9|1/1 |10/9 du ds
. Jo Je

T o 4/18 ) 4/18 ) 10/18
< Csup/ ( ’de> (/ |1/J’ddw> (/ | Ps | dw) ds (4.138)
... Jo 0 (9 22
10/9 10

/ 10/9 10/9 r 10/9
m.uw\lwm N Ps 2y | ds = C/O o APl 2y | ds (4.139)
10/9

<[(0.1),22(2)]’

APl (4.140)

L[ (0,7),L7(2)]

and we may proceed as above. The other parts of the Proof of Theorem 4.1. as well as the Proof of Theorem 4.2.
remain unchanged.

5. NECESSARY OPTIMALITY CONDITIONS

5.1. Statement of the theorems

Definition 5.1 (Weak local minimizer). A quadruple (&, ., W, I.), which is feasible in (P), is called a weak
local minimizer of (P) iff there exists a number € > 0 such that for all admissible (®y,, @., W, I.) the conditions
<ce (5.1)

< e

H (Ptr - étr

<€,’

X1 Xo ’ X3 X4

imply the relation F(Q%tr, b, W, fe) < F( Py, P, W, 1).
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The necessary optimality conditions for weak local minimizers of (P) can be formulated as follows:

Theorem 5.2 (First-order necessary optimality conditions for the control problem (P)). We consider problem
(P), (3.11)—(3.17), under the assumptions of Section 3.1. with the Rogers—McCulloch or the FitzHugh—Nagumo
model. Assume further that 1) 2 C R® admits a C"'-boundary, 2) M;, M, : cl(£2) — R®*3 are symmetric,

positive definite matriz functions obeying (2.5) with wh *(02)- coeﬁicients and 3) the integrand r(x,t, v, n,w)

is continuously differentiable with respect to ¢, n and w. Let (@tr,¢e, W, 1. ) be a weak local minimizer of (P)
such that (D, Do, W) is a strong solution of the bidomain system on [0, T], I, € W1’2[(07 T), L2(Q)] and

O G b W), L (b, b W), gr (Bre, b, W) € L[ (0,T), I}(2)] (5.2)
where ¢ > 10/9 Then there exist multipliers P, € L* [(O, T), W1’2(Q)], P € L2[(0, T), W1’2(Q)] N
{Z ’ Jo Z(z,t)de = 0 (V)te (0, T)} and Py € L* (£27), satisfying together with (@tr,dge,W,fe) the adjoint
equations (4.8)7(4.10), which are solved in weak sense, as well as the optimality condition

/ / (wl=QP)- (1.~ 1L.)dedt > 0 VI ecC. (5.3)

Ncon

If the linearized Aliev—Panfilov model is specified then all assertions remain true provided that 87"(913“,43@, W)/
dw belongs to L*(2r) instead of L* (7).

The assumptions of Theorem 5.2. reflect the fact that there is a regularity gap between the weak solutions
of the primal and adjoint equations. The duality pairing between 0@y, /0t € L3 [(0, T), ( Wl’Q(Q) )*] and
P el? [ (0,T7), W1’2(Q)] is not well-defined, and hence further regularity is required. In order to gain this

regularity, we have to impose that (@tr, b, W) is a strong solution of the bidomain system rather than a weak
one. Sufficient conditions for strong local solvability of (3.12)—(3.14) may be found in [22].

Corollary 5.3 (Pointwise formulation of the optimality condition). Under the assumptions of Theorem 5.2.,
let the optimal control I. be represented as I, = QI with I € LOO[(O, T), LQ(Q)], supp (f) C Qeon X [0, T]
and | I(z,t)| < R for almost all (z,t) € Qp. The optimality condition (5.3) from Theorem 5.2. then implies the
following Pontryagin minimum condition, which holds a.e. pointwise:

I(wo,t0) - (M'Q—f(xo,to) —QP2($0»t0)> = RlldifiR U(M‘Qf(foat()) —QP2(350J0)) (54)
—hrxnx

(V) (l‘o,to) € Deon X [0, T]
Consequently, for a.e. (x,t) € con X [0, T'] the following implications hold:
~ 1 ~
QI(x,t)—;QPg(x,t) >0 = I(x,t) = —R;
o 1 ~
QI(x,t) — ;QPQ(.T,t) <0 = I(x,t) = R and (5.5)

i) € (=R, R) —> Qf(a:,t)—%QPg(as,t) — 0.

Corollary 5.4 (AReglAllariAty pf weak local minimizers). Under the assumptions of Theorem 5.2., consider a weak
local minimizer (Per, Pe, W, I.) of (P), whose control part I.=QI zs generated by a function I with | I(x,t)| < R
a.e. Then I, | Qeon belongs to the space L™ (Qcon x [0, T]) N L [(0 T), wh 2(Qc0,1)]
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Fur numerical purposes, it is useful to specify the Gateaux derivative of the reduced cost functional F:C—
R. It is defined through B

F(I,) = F(®u(1.), ®.(I.), W(L.), I.) (5.6)

with the aid of the control-to-state mapping I, —— (@tr(fe), b (1), W(l,) ), which is well-defined by Propo-

sition 3.1.

Corollary 5.5 (First variation of the reduced cost functional). Under the assumptions of Theorem 5.2., the
Gateauz derivative of the reduced cost functional F at I, € C is given through

DIEF(IAE) = Mje - QP2(je) (57)

where (Pl(I) Pg(f) Ps(1, )) denotes the solution of the adjoint system (4.8)—(4.10) corresponding to
(thr(le)v Qe( ) ( I )

5.2. Proof of the necessary optimality conditions

Proof of Theorem 5.2. As mentioned in the introduction, the proof of the necessary optimality conditions for
(P) is based on the stability estimate for the bidomain system (Thm. 2.4) and the existence theorem for the
adjoint system (Thm. 4.2), which will be invoked in Steps 2 and 3 of the proof, respectively.

e Step 1. Variation of the weak local minimizer in a feasible direction. Assume that (@tr,¢e, W

local minimizer of (P). If I, € C is an arbitrary feasible control with H I.— 1.

L“[(O,T),LQ(Q)]
Proposition 3.2., all controls R R
I(s) =I.+s(l.—1), 0<s<1, (5.8)

belong to C as well. By Proposition 3.1., for every I.(s) € L™ [(0, T), LQ((Z)], there exists a corresponding
weak solution (P, (s), Pe(s), W(s)) € X1 x Xy x X3 for the bidomain system on [0, T']. Thus the quadruples
(Pir(8), Pe(s), W(s), I.(s)) are feasible in (P) for all 0 < s < 1. On the other hand, from [12], page 7, Theorem 2.7,
it follows that every feasible solution of (P) within a closed ball

U (Dyy, B, W, 1) = K(Dyy, Ce) x K(B,,Ce) x K(W,Ce) x K(I,e) € X; xXa x X3 x Xy (5.9)

can be generated in this way.

e Step 2.
I, — fe ‘ < € implies that
L=[(0.7),2(®)]
1 T .2
lim - | @u(s) —du| =0, lim H Doo(s) — b |- = 0; (5.10)
s—04+0 S X1 s—04+0 S X1
1 2
lim — || ®.(s)— P, =0; 5.11
Jim 2 (s) “ (5.11)
1 A 12 L2
lim - ||W(s)-W|| =0 and lim H Wi(s)—-Ww|_. =o. (5.12)
s—04+0 S X3 s—04+0 S X3
Il

Proof. The stability estimate [12], page 7, Theorem 2.7, (2.38), implies

2 2

. 2 7
H‘ptr(s)—@tr - Te(s) — I Lx[(o,T),(WL?(Q))*]

= || &y, —ér‘ <
H r(s) — Py [ (o, 1), wh(2)]
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2 " 2
<C~‘I i :02‘1—1 —  (5.13
o(s) — L =[(0,7),L%(2)] St T e =[(0,7),L%(2)] (5.13)
o2
lim H% ~é | < lim 05‘ ~ 0 (5.14)
55040 8 X1 55040 =[(0,1),12(®)]
as well as
P é, |’ P ’ C-||1I il
— = — g . — .
H e (5) ¢ H e(s) = e 2o, 1), w2(2)] ‘ e(s) —le =0, 7), (wr22)"]
2 “ 2
gc.‘fe i :02‘16—16 5.15
(5) =[(0,7),L2(2)] s L=[(0,7),0%(2)] (5-15)
" 2
lim Hqs — ¢, < lm Cs’ . ~0 (5.16)
s—0+0 S Xa 5—04+0 Le [(0,T),L2(Q)]
and
W Wl w Wl Cc-|1 il
s) — = s)— < ’ els) = Le *
H () Xs H (s) L2(Q7) () =0, 7y, (w2(2)"]
-2 2
<C~‘I ) :02‘1—1 5.17
e(s) — Lo =[(0,7),L2(2)] St =[(0,7),L%(2)] (5.17)
lim HW < lim Cs‘ ~ 0. (5.18)
s—040 S s—040 =[(0,7),12(®)]

In an analogous manner, the relation with H W(s) — can be confirmed. In order to establish the relation

2
<0 e rely on [12], page 7, Theorem 2.7, (2.39), which leads to
1

with H @tr(S) — étr

s—04+0

2
(Pr _er ~ :Hdsr (Pr * 5.19
H w(s) = @ % u(s) = W14/3[(0,T),(W1’2(Q)) ] (5-19)
L2 4
<C2~Max(’1'es—[e‘ oo es) — 4 4) 20
() =[(o, 1), (w2(2)"] () =0, 1), (w22)"] (5-20)
2 4
<CO-M (2‘1—1 ,4’1—1 — 5.21
S (e =[(0,7),L%(2)] S e T e Lw[(o,T),H(n)]) (5.21)
1 2
I —H@r —d || 5.22
s—gﬁ-os ¢ (S) ¢ X1 ( )
~ 12 o4
< lim C’~Max(s‘[e—fe 33’16—16 ):
=[(0,7),L2(2)]

=[(o,17),2(2)]’
O

e Step 3. By Theorems 4.1 and 4.2, in correspondence to (Qgtr, WL I ), there exist functions P; €
(L0, T), (WH@2)"])" = L'[(0,T), W*(@)], P, € (L [(o T) w2 (2)])" = L*[(0,T),
Wh(2)] with [,, P(x,t)dz = 0 for almost all t € (0, T') and Py € (L*[(0,T), (L*(2))"])" = L*(Q2r)
satisfying the system (4.8)-(4.10) as weak solutions. Consequently, P, P2 and P; solve the adjoint
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equations (4.5)-(4.7) together with Py = —P;(-,0) and Ps = —Ps(-,0). With these functions, we may de-
rive the following estimates:

Lemma 5.7. The following estimates hold true:

honl 3 ( Py, Dg,, BEi(Por, Pe, W) (P1(5) — Dix) + Doy, By (Do, B, W) (P (5) — Do) (5.23)
s—0+

+ Dy By (4, e, W) (W(s) = W) ) = 0;
1

lim = (P2, Doy, Ba(br, Be, Le) (Bu(s) = bu) + Do, Byl e, 1) (@e(5) — &) (5.24)
s—0+4
+{ Py, Dy, Bo(®4r,Pe, L) (I. — 1) ) = 0;
hgio g (P3, Do, E3(D4e, W) (®4:(s) — Pr) + Dy Es(Pee, W) (W(s) — W) ) = 0. (5.25)
S§—

Proof. We restrict ourselves to the proof of (5.23), noting that (5.24) and (5.25) can be confirmed in a
completely analogous manner. Due to our assumptions on the differentiability of r, the principal theorem
of calculus in its Bochner integral version is applicable, cf. [3], page 68, (2.1.11). For the feasible solutions
(B (5), Pe(s), W (s), I.(s)) and (B, Do, W, 1), we get from the first state equation in (P), (3.12):

1
0 = E1(Dt:(5), Pe(5), W(s)) — E1(Pir, P, W) = / Dg,, 0., w) E1(Per + 7 (Pe(s) — Pia)
0

Do+ 7 (Pe(s) = Do), W+ T (W(s) = W)) (Bir(s) — Do, Be(s) — Do, W(s) = W)dr = (5.26)

0= <P1,/O (D@tr,@ew) By (@ + 7 (Per(8) — Do), De + 7(De(s) — Do), W+ 7 (W(s) — W))

(thr(s) - étrv 456(3) - D, W(S) - W)
~ Da . w) Br( B, B, W) (@ir(s) = Bur, o) = b, W(s) = W) ) dr )
+ (P1, Digy, &, w) E1(Prr, De, W) (D (8) — Py, De(5) — De, W(s) — W)) (5.27)

1
— (P, / (Dae Br(@ue 7 et W7 ) (@) = Bis) — D, Ea(B B, W) (Bs(s) — B
0

+ Do, By (Poy +7 ..., P +7...,W+7..)(Pe(s) — D) — D, E1(Prr, B, W) (Pe(5) — Do) (5.28)

v DWEl(éstr+T...,4%e+T...,W+T...)(W(s)_W)—DWEl(q%tr,ée,W)(W(s)—W))dr>

+ <P1 ) qu'tr El(étraéea W)((Ptr(s) - gijtr) + qu'e El(étraéea W)((Pe(s) - gije)
+ Dw By (®er, be, W) (W (s) = W) ).

By [24], page 133, Corollary 1, we have

1
" / I Iy, dr. (5.29)
0

ZT.H/OI(...)dT

|<P1,/01(...)d7>| <P

L, < IR
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Consequently, for the first summand within (5.28), it holds that

1 1
lim —|<P1,/ (.)dr)y| < lim [P, (/ | Dg,, E1(Ptr +7 ..., e +7... WHT..)) (5.30)
s—0+0 S 0 s—0+0 0
~ ~ ~ 1 ~
— Do, Ey(@ b W)l oz, 2, | @n(s) - b L dr
1
+/ | Do, B 7. b tr W7 )~ D, Ea(B e, W) | Y #es) | ar
0 E(XQ,Zl)S X
1
~ ~ ~ ~ ~ ~ 1 ~
+/ HDWEl@tr+T...,¢e—|—7...,W—|—T...,)—DWEl(sﬁtr,@e,W)H . —HW(S)—W‘N dT)
0 £(X5,Z1) 8 X5

i 1 e (- o -, ) oo o
R R R e R H
+/01L3T(H¢tr(s)—qﬁtr e —a |+ we -w 5(3)%”W(s)—W L7 (5.31)

with Lipschitz constants Ly, Lo, L3, whose existence is ensured by the twice continuous Fréchet differentiability
of E; with respect to @y, @, and W. With reference to Lemma 5.6, the estimate (5.31) may be continued as
follows:

lim —|<P1,/01(...)d7>|

s—0+0 S
~ ~ 2
< dm |P ||Z*—(L1—|—L2+L3 (H@tr ~dy | +H¢e(s)—¢e . —|—HW(3)— . ) (5.32)
s—0 2 3
1 . 12 1 .2
< lim | Pl C(— H%( ~ b Hqs —é | 4= H Wwi(s) - Wl ) —0, (5.33)
s—040 1 S S 3
and this implies the first of the claimed relations, namely
hgi s <P1 , Do, B1(Der, Do, W) (Pr(5) — Pi) + Do, B1 (P, Do, W) (Pe(s) — Do) (5.34)
S—
+ Dy By (®r, e, W) (W W)) = 0.

From the second and third state equations (3.13) and (3.14), the limit relations (5.24) and (5.25) can be derived
in a completely analogous way. O

Since @, (s) and W (s) take the same initial values as @, and W, respectively, it holds further that

lim —<P4, Da,, Eo(biy) (Bir(s) — by) ) = lim —<P5,DWEr(W) (W(s)=W)) =0. (5.35)
s—04+0 S s—0+0 S

e Step 4. The first variation of the objgctivAe. Qhogse now € > 0 small enough in order to ensure that the
difference F'(@4:(s), Pe(s), W (), Le(s))—F(Ptr, e, W, Ie) of the objective values is nonnegative for all quadruples
(Pir(8), Pe(s), W (s),I.(s)) belonging to the closed ball U, (Pty, Pe, W, 1) defined in (5.9). As a consequence of



OPTIMAL CONTROL OF THE BIDOMAIN SYSTEM (III): OPTIMALITY CONDITIONS 1105

our assumptions about the integrand r, the first variation may be written as

0 < 5+F($traéea Wa fe) (dstr(l) - Qgtr’@e(l) - dgev W(l) - VAVvle - je)

1 ~ ~ ~ A
— lim - (F(@tr(s),ée(s),W(s),]e(s))—F(@tr,dSe,W,Ie)) (5.36)
s—0+0 S
1 ~ ~ A ~ ~ ~ A ~
= lim - (D% F($or, e, W, L) (D0 (5) — Brr) + Do, F(Por, e, W, L) (B0 (5) — ) (5.37)
s—040

+ Dy F(us, b, W, 1) (W (s) = W) + Dy, F(d, be, W, 1) (L(s) = L) )
Together with Lemma 5.7 and (5.35), we obtain

1 L )
0 < lim —(D%F(@tr,@e,w,fe)(gbtr(s)—@tr) (5.38)
5040 S

+ (Pr, Doy, Br(Pus, &e, W) (@ (s) = Bu) ) + (Po, Doy Ba(Bur, D, Le) (Pur(s5) = Dur) )
+ ( Py, Doy, E3($ir, W) (D1 (5) — Dx) ) + { Py, Dy, Ea(Pir) (Pi(s) — Pir) )

+ Do, F(Py, b, W, 1) (P (5) — D)

+ (P, Dy, Ey(®r, b0, W) (@o(s) — o) ) + ( Pa, Do, Es(biy, b, 1) (B(s5) — be) )

+ Dy F(Pr, o, W, 1) (W(s) — W)

+ ( Pi, Dy E\(®1r, e, W) (W(s) = W) ) + ( Py, Dy Ea(®i, be, L) (W(s) — W))
+ ( Py, Dw Es($ee, W) (W(s) — W) ) + { Ps, Dw Es(W) (W(s) — W) )
+ Dy, F($yy, o, W, 1) (I(5) — 1) + ( Py, Dy, Ey(y, b, 1) (I — I.) >)

where the first three parts vanish since Py, P», P3 together with Py = —P;i(-,0) and Ps = —Ps(-,0) solve
the adjoint equations (4.5)-(4.7). Note that, by Section 4.1. above, these equations take the claimed form.
Consequently, we arrive at

0 < lim %(DIEF(d%tr,@e,W,fe)(Ie(s)—fe)+<P2,DleEg(dgtr,dge,fe)(Ie—fe)>) (5.39)
s—0+0
T . R T R .

:/ /(,uIE—P2>-(Ie—Ie)dwdt:/ /(MIQ—QP2)~(IE—Ie)dxdt (5.40)
0 02 0 02

for arbitrary I. € C. Since I. and I. vanish outside 2eon X [0, T'], this confirms the claimed optimality condi-
tion (5.3), and the proof is complete.

Proof of Corollary 5.3. Using the representations I, = Q I and I, = Q I, inequality (5.40) may be rewritten as
T R A . ) )
0< / /(“'QI—QP2)‘(QI—QI)dSEdt = / /(M'QI—QP2>~(I—I)dxdt (5.41)
0o Jo o Jo

:/OT/Q (M-Qf—QP2>-(I—f)dxdt (5.42)

con

VIeL>™[(0,T), L2(Q)] with supp (I) C Qcon X [0, T'] and | I(x,t)| < R (V) (x,t) € Or.

To (5.42), we may apply a Lebesgue point argument analogous to [11], page 1541, Proof of Corollary 3.6., in
order to get

(M~Qf(aco,t0)—QP2(xo,to)) (o — (z0,t0)) =0 Yo € [—R, R] (V) (o0, to) € Reon x [0, T], (5.43)

and this implies the conditions (5.4) and (5.5). O
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Proof of Corollary 5.4. This is implied by (5.5) since Q P, ’ Dcon € Lz[(O, T), Wl’z(()con)] together with
Py e L*[(0,T), W(£2)]. O

Proof of Corollary 5.5. We can follow the Proof of Theorem 5.2 where only in (5.36), (5.38) and (5.39) the
minorization by 0 must be deleted. U
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