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EACH H2_STABLE PROJECTION YIELDS CONVERGENCE
AND QUASI-OPTIMALITY OF ADAPTIVE FEM WITH INHOMOGENEOUS
DIRICHLET DATA IN R4

M. AurADA!, M. FriscHL!, J. KEMETMULLER!, M. PAGE! AND D. PRAETORIUS!

Abstract. We consider the solution of second order elliptic PDEs in RY with inhomogeneous Dirichlet
data by means of an h-adaptive FEM with fixed polynomial order p  N. As model example serves
the Poisson equation with mixed Dirichlet-Neumann boundary conditions, where the inhomogeneous
Dirichlet data are discretized by use of an H'/2—stable projection, for instance, the L2—projection for
p = 1 or the Scott-Zhang projection for general p 1. For error estimation, we use a residual error
estimator which includes the Dirichlet data oscillations. We prove that each H!/2-stable projection
yields convergence of the adaptive algorithm even with quasi—optimal convergence rate. Numerical
experiments with the Scott—-Zhang projection conclude the work.
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1. INTRODUCTION

Recently, there has been a major breakthrough in the thorough mathematical understanding of convergence
and quasi—optimality of h—adaptive FEM for second—order elliptic PDEs. However, the focus of the numerical
analysis usually lies on model problems with homogeneous Dirichlet conditions, i.e. Au = f in {2 with u = 0
on I' = 042, see e.g. [5,10-12,17,21,27]. Instead, our model problem

—Au=f in {2,
u=g¢g onlp,
Opu=¢ only (1.1)

considers inhomogeneous mixed Dirichlet-Neumann boundary conditions. Here, {2 is a bounded Lipschitz
domain in R? with polyhedral boundary I" = 92 which is split into two (possibly non-connected) relatively
open boundary parts, namely the Dirichlet boundary I'p and the Neumann boundary 'y, i.e. ['p NIy = () and
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I'pUI'y = I'. We stress that the surface measure of the Dirichlet boundary has to be positive |[I'p| > 0, whereas
I'y is allowed to be empty. The given data formally satisfy f € I?*l(()), g € HY?(I'p), and ¢ € H-'/*(I'y).
We refer to Section 2.6 below for the definition of these Sobolev spaces. As is usually required to derive
(localized) a posteriori error estimators, we assume additional regularity of the given data, namely f € L?(2),
g € HY(I'p), and ¢ € L?*(I'y). Moreover, we assume that the boundary partition into I'p and I'y is resolved
by the triangulations used.

We stress that — using results available in the literature — it is easily possible to generalize the analysis from
the Laplacian L = —A to general uniformly elliptic differential operators of second order. The reader is referred
to the seminal work [10] which treats the case of I'p = 92 and homogeneous Dirichlet data g = 0 and provides
the analytical tools to cover general symmetric L, while the recent work [11] extends this analysis to non—
symmetric L. Therefore, we only focus on the novel techniques which are necessary to deal with inhomogeneous
Dirichlet data.

Unlike the case g = 0 which is well-studied in the literature, see e.g. [3,30], only little work has been done
on a posteriori error estimation for (1.1) with g # 0, ¢f. [4,24]. Moreover, besides the 2D works [14,22], no
convergence result for AFEM with inhomogeneous Dirichlet data is found in the literature, yet.

While the inclusion of inhomogeneous Neumann conditions ¢ into the convergence analysis of
e.g. [5,10-12,17,21,27] is straightforward, incorporating inhomogeneous Dirichlet conditions ¢ is not obvious
and technically much more demanding for several reasons: First, since discrete FE functions cannot satisfy
general inhomogeneous Dirichlet conditions g, the FE scheme requires an additional discretization of g ~ gy.
Second, the error ||g — ge||1/2(r,,) of this data approximation has to be controlled with respect to the non-
local H'/2-norm and has to be included in the a posteriori error analysis and the adaptive algorithm. Third,
in contrast to the case g = 0, the discrete ansatz spaces V, are non-nested, i.e. Vo € V1. We therefore
loose the orthogonality in energy norm which leads to certain technicalities to construct a contraction quantity
which is equivalent to the Galerkin error resp. error estimator. Therefore, quasi—optimality as well as even plain
convergence of AFEM with inhomogeneous Dirichlet data is not obvious at all.

The earlier works [14, 22] considered lowest—order finite elements p = 1 in 2D and nodal interpolation to
discretize g. However, this situation is very special in the sense that the entire analysis in [14,22] is strictly
bound to the lowest—order case and cannot be generalized to R, since nodal interpolation of the Dirichlet data
is well-defined if and only if d = 2. [22] used an error estimator which is obtained by solving local problems
on stars, and proved convergence of the related adaptive algorithm. This convergence result, however, relies
on an artificial marking criterion which first consists of Dorfler marking [12] for the estimator, and afterwards
some possible enrichment of the set of marked elements to guarantee linear convergence of volume and Dirichlet
oscillations. In [14], the common residual-based error estimator is analyzed, and combined marking for estimator
plus Dirichlet oscillations is shown to lead to convergence and even quasi-optimality of AFEM.

In this work, we consider finite elements of piecewise polynomial order p > 1 and dimension d > 2. We
show that each uniformly H'/ 2(I'p)-stable projection Py onto the discrete trace space will do the job: In this
frame, we may use techniques from adaptive boundary element methods [9,13,18] to localize the non—local
H'/2-norm in terms of a locally weighted H'-seminorm. To overcome the lack of Galerkin orthogonality, the
remedy is to concentrate on a quasi—-Pythagoras theorem and a stronger marking criterion. The latter is used
to guarantee (quasi-local) equivalence of error estimators for different discretizations of the Dirichlet data. To
obtain contraction of our AFEM, we may then consider (theoretically) the H'/?(I'p)-orthogonal projection. To
obtain optimality of the marking strategy, we may consider the Scott—Zhang projection instead. Both auxiliary
problems are somehow sufficiently close to the original problem with projection Py, which is enforced by the
marking strategy.

Overall, we prove that each uniformly H'/2-stable projection P, will lead to a convergent AFEM algorithm.
Under the usual restrictions on the adaptivity parameters, we even show optimal algebraic convergence behaviour
with respect to the number of elements.
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2. ADAPTIVE ALGORITHM

It is well-known that the Poisson problem (1.1) admits a unique weak solution u € H'(§2) with u = g on I'p in
the sense of traces which solves the variational formulation

(Vu, Vo)o = (f, v)g + {6, v)ry forall v € Hp(R). (2.1)

Here, the test space reads H}($2) = {v € HY(2) : v = 0 on I'p in the sense of traces}, and (-, -) denotes
the respective L2-scalar products. The proof relies essentially on a reformulation of (1.1) as a problem with
homogeneous Dirichlet data via a so-called lifting operator £, i.e. £ : HY?(I') — H'(§2) is a linear and
continuous operator with (£g)|r = g for all g € H'/?(I") in the sense of traces. Again, we refer to Section 2.6 for
the definition of the trace space H'/ 2(I'). However, although £ is constructed analytically, it is hardly accessible
numerically in general and thus this approach is not feasible in practice.

This section provides an overview on this work and its main results. We analyze a common adaptive mesh—
refining algorithm of the type

solve — estimate — mark — refine

which is stated in detail below in Section 2.5. We start with a discussion of its four modules.

2.1. The module solve

Let 7; be a regular triangulation of {2 into simplices, i.e. tetrahedra for 3D resp. triangles for 2D, which
is generated from an initial triangulation 7y. Let & be the set of facets, i.e. faces for 3D and edges for 2D,
respectively. This set is split into interior facets EKQ = {E c&  ENN # @}, 1.e. each E € 529 satisfies
E =T,NT_ for Ty € Ty, as well as boundary facets &' = 5@\8{2. We assume that the partition of I into
Dirichlet boundary I'p and Neumann boundary I'y is already resolved by the initial mesh 7p, i.e. 5{ is split
into SZD = {E c& : EC TD} and Eév = {E €& : EC TN} for all £ > 0. Note that SZD (resp. Sév) therefore
provides a regular triangulation of the boundary I'p (resp. I'v).

We use conforming elements of fixed polynomial order p € N. By PP(T) we denote the space of polynomials
of degree < p on T € 7y, and by

PP(T) ={Vi: 2—>R: Vi|p € PP(T) for all T € Ty } (2.2)
the space of elementwise polynomials. The corresponding FEM ansatz space then reads
SP(Ty) = {V, € C(R2) : Vi|r € PP(T) for all T € Ty }. (2.3)

Since a discrete function Uy € SP(7;) cannot satisfy general continuous Dirichlet conditions, we have to discretize
the given data g € H'(I'p). To this purpose, let P, : HY?(I'p) — SP(EP) be a projection onto the discrete
trace space

SP(EP) = (Vilr, : Vi € SU(T)}. (2.4)

As in the continuous case, it is well-known that there is a unique Uy € SP(7;) with Uy = Pyg on I'p which solves
the Galerkin formulation

(VU VViyo = (f, Vi)o + (¢, Vi)ry for all V; € SN (Ty). (2.5)

Here, the test space is given by S, (7;) = SP(T;) N HL(2) = {Vy € SP(T;) : Vi =0 on I'p }. We assume that
solve computes the exact Galerkin solution of (2.5). Arguing as e.g. in [7,27], it is, however, possible to include
an approximate solver into our analysis.

Possible choices for P, include the L?-orthogonal projection for the lowest—order case p = 1, which is consid-
ered in [4], or the Scott—Zhang projection from [26] which is proposed in [24].
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2.2. The module estimate

We start with the element data oscillations

osc2T,e = Z oscr ¢(T)?, where oscr ¢(T)? := |T|2/d (1 —IIp)(f + AU@)||2L2(T) (2.6)
TeT,

and where II7 : L?(T) — PP~1(T) denotes the L*-orthogonal projection. These arise in the efficiency estimate
for residual error estimators. Moreover, the efficiency involves the Neumann data oscillations

osc?\,,e = Z oscy o(E)?, where oscy ¢(E)? := |T|Y||(1 — Hg)ng%z(E) (2.7)
Eegl

with T € 7; being the unique element with £ C 0T and where II; : L2(I') — PP~1(EL) = {Wy|p : Wy €
Pp_l(Tg)} denotes the (£/ piecewise) L?*-orthogonal projection on the boundary. Finally, the approximation
of the Dirichlet data Pyg ~ g € H'(I'p) is controlled by the Dirichlet data oscillations

osch = Y osepe(E)?, where osep o(E)” = [T1Y* (1~ IT)Vrg|3a ), (2.8)
Eegp

where again T € 7; denotes the unique element with £ C 9T. Moreover, V- (-) denotes the surface gradient.
We recall that up to shape regularity we have equivalence |T|'/¢ ~ diam(T') as well as diam(T') ~ diam(E) for
al T €7, and F € & with E C 9T.

We use a residual error estimator 77% = g? + OSCQDVZ which is split into general contributions and Dirichlet
oscillations, i.e.

0= olT) (2.9)

with corresponding refinement indicators
0e(T)? = T4 f + AU||72(ry + \T\l/d(”[8nU€H|%2(aTnQ) + ¢ — OulUellZ2ornry))- (2.10)

The module estimate returns the elementwise contributions g¢(7)? and oscp ¢(E)? for all T € 7, and E € EP.

2.3. The module mark

For element marking, we use a modification of the Dérfler marking [12] proposed firstly in Stevenson [27]. In
each step of the adaptive loop, we mark either elements or Dirichlet facets for refinement, where the latter is only
done if oscp ¢ is large when compared to g,. A precise statement of the module mark is part of Algorithm 2.1
below.

2.4. The module refine

Locally refined meshes are obtained by use of the newest vertex bisection algorithm, see e.g. [28,29], where
To+1 = refine(7y, My) for a set My C 7Ty of marked elements returns the coarsest regular triangulation Zp4q
such that all marked elements T' € M, have been refined by at least one bisection. Arguing as in e.g. [17], one
may also use variants of newest vertex bisection, where each 1" € My is refined by at least n bisections with
arbitrary, but fixed n € N.
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2.5. Adaptive loop

With the aforegoing modules, the adaptive mesh—refining algorithm takes the following form.

Algorithm 2.1. Let adaptivity parameters 0 < 61,02,9 < 1 and initial triangulation Ty be given. For each
{=0,1,2,... do:

(i) Compute discrete solution Uy € SP(7Ty).
(ii) Compute refinement indicators o¢(T) and oscp o(E) for all T € T, and E € EP.
(iii) Provided that osc}, , <0 of, choose My C Ty such that

o] < > ouT) (2.11)
TeM,

(iv) Provided that osc}, , > ¥ of, choose MP C EP such that

0205(}2sz§ Z oscp ¢(E)? (2.12)
EeMp

and let My := {TG’T@ : EIEG./\/léj EQ@T}.
(v) Use newest vertex bisection to generate Ty11 = refine(7y, My).
(vi) Update counter £+— £+ 1 and go to (i).

Remark 2.2. The modified Dérfler marking in step (iii)—(iv) of the above algorithm which first appeared
in [27], is stronger than the usual Dérfler marking [12], see (4.1)—(4.2) below, which is used in other works on
AFEM for homogeneous Dirichlet data g = 0, ¢f. e.g. [10,11,17]. This is, however, a necessity since our analysis
exploits properties of different discretizations g¢ = Ppg of g for our proof of linear convergence (Thm. 2.6)
and quasi-optimality (Thm. 2.8). In the proofs, we use that the modified marking strategy for an estimator
corresponding to a discretization g, implies the usual Dérfler marking for an estimator corresponding to another
discretization, ¢f. Lemma 5.2. Note, however, that plain convergence of AFEM (Thm. 2.5) still holds for the
usual Dorfler marking (4.1)—(4.2). Moreover, in the 2D case, where the Dirichlet data are discretized by means
of nodal interpolation, linear convergence and even quasi—optimality can be shown for the usual Dérfler marking
due to some additional orthogonality relation of 1D nodal interpolation, cf. [14].

2.6. Function spaces

This section briefly collects the function spaces and norms used in the following. We refer e.g. to the mono-
graphs [16,20,25] for further details. In particular, details on the fractional order Sobolev spaces used throughout
can be found here.

L2(02) resp. H(£2) denote the usual Lebesgue space and Sobolev space on 2. The dual space of H*(£2) with
respect to the extended L2(£2)-scalar product is denoted by H~1(£2).

For measurable v C I', e.g. v € {I'p, 'y}, the Sobolev space H!'(7) is defined as the completion of the
Lipschitz continuous functions on v with respect to the norm HU”?‘P("/) = H”||2L2(~/) + HvaHzLQ(W), where Vp(+)
denotes the surface gradient for d = 3 resp. the arclength derivative for d = 2. With the Lebesgue space L?(¥),
Sobolev spaces of fractional order 0 < o < 1 are defined by interpolation H%(vy) = [L?(v); H*(7)]s. Moreover,
H L(v) is defined as the completion of all Lipschitz continuous functions on v which vanish on dv, with respect
to the H'(y) norm, and H*(v) = [L%(7); H*(7)]a is defined by interpolation.

Sobolev spaces of negative order are defined by duality H=*(v) = H*(y)* and H~%(y) = H*(y)*, where
duality is understood with respect to the extended L?(v)-scalar product.

We note that H'/2(I") can equivalently be defined as the trace space of H'(§2), i.e.

HY2(I) ={a@|r : © € H(2)}. (2.13)
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For our analysis, we shall use the graph norm of the restriction operator
||wHH1/2(F) = lnf{H@HHl(Q) RS Hl(.Q) with @|F = w} (2.14)

Moreover, the graph norm and the interpolation norm are, in fact, equivalent norms on H'/ 2(I'), and the norm
equivalence constants depend only on I". A similar observation holds for the space H'/?(v), namely

HY2(y) ={®|, : @ € HY*(I)}, (2.15)
and the corresponding graph norm
lwll 1724y = inf {||@||H1/z(p) RS Hl/Q(F) with @], = w} (2.16)

are equivalent norms on H'/ 2(y). Throughout our analysis and without loss of generalization, we shall equip
H'2(I) resp. H'/?(7y) with these graph norms (2.13)(2.16).

2.7. Main results

Throughout, we assume that the projections P, : HY/2(I'p) — SP(EP) are uniformly H'/?(I'p)-stable, i.e.
the operator norm is uniformly bounded

[Py : HY*(I'p) — HY*(I'p)|| < Ciar < 00 (2.17)

with some /—independent constant Cgiap > 0. This assumption is guaranteed for the H 1/ 2(F »)—orthogonal
projection with Cyiap, = 1. Moreover, the L?(I'p)-orthogonal projection for the lowest—order case p = 1 and
newest vertex bisection is uniformly bounded [19], and so is the Scott-Zhang projection [26] onto SP(EF) for
arbitrary p > 1.

First, our discretization is quasi-optimal in the sense of the Céa lemma. Note that estimate (2.18) does not
depend on the precise choice of Py, and the minimum is taken over all discrete functions. Unlike our observation,
the result in e.g. [4], Theorem 6.1 takes the minimum with respect to the affine space {W;y € S?(7y) : W[, =
ng} and for first—order p = 1 only.

Proposition 2.3 (Céa-type estimate in H'-norm). The Galerkin solution satisfies

- U, < Ccsa i - W, . 2.18
lu = Uellzr () < Cc Weéﬂslgl(m [|u ol (2) (2.18)

The constant Ccea > 0 depends only on {2, I'p, shape reqularity of 7Ty, the polynomial degree p > 1, and the
constant Cypar, > 0.

Second, the considered error estimator provides an upper bound and, up to data oscillations, also a lower
bound for the Galerkin error.

Proposition 2.4 (reliability and efficiency of n¢). The error estimator n; = o7 + 0sc2D7Z is reliable
Hu - UZ”%P(Q) < Cral 77(% (2'19)
and efficient
Ce}fl nz <||V(u— Ue)H%z(Q) + OSC%Z + osc?\u + OSCQD’Z. (2.20)

The constants Crel, Cogg > 0 depend on (2 and I'p, on the polynomial degree p > 1, stability Cstap, > 0, the initial
triangulation Ty, and on the use of newest vertex bisection.
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Note that convergence of Algorithm 2.1 in the sense of lim, Uy = u in H'(£2) is a priori unclear since adaptive
mesh-refinement does not guarantee that the local mesh—size tends to zero. However, we have the following
convergence result which is proved in the frame of the estimator reduction concept from [2].

Theorem 2.5 (convergence of AFEM).

(i) Suppose that the discretization of the Dirichlet data guarantees some a priori convergence
ehjgo 1900 = Pegllerr2(ry) =0 (2.21)

with a certain (yet unknown) limit goo € H'/?(I'p). Then, for any choice of the adaptivity parameters
0<61,05,9 < 1, Algorithm 2.1 guarantees convergence

Hm flu—Uellmi(a) =0 (2.22)

and, in particular, goo = g.
(i) Assumption (2.21) is satisfied for the HY/?(I'p)-orthogonal projection and for the Scott-Zhang projection
for arbitrary p > 1, as well as for the L?>(I'p)-projection for p = 1.

Current quasi-optimality results on AFEM rely on the fact that the estimator 77 = g7 + osc? D¢ 1s equivalent
to some linear convergent quasi-error quantity Ay,. Whereas, the convergence theorem (Thm. 2. 5) also holds for
the usual Dorfler marking from [12], our contraction theorem relies on Stevenson’s modification (2.11)—(2.12).
Moreover, we stress that the convergence theorem is constrained by the a priori convergence assumption (2.21),
whereas the following contraction result is not.

Theorem 2.6 (contraction of AFEM). We use Algorithm 2.1 with (up to the general assumptions stated above)
arbitrary projection Py and corresponding discrete solution U, € S*(Ty) and estimator ng. In addition, let
Py HY*(I'p) — SP(EP) be the HY/?(I'p)-orthogonal projection. Let Uy € SP(Ty) be the Galerkin solution
of (2.5) with Uy|r, = Prg and nf = 07 +osch, be the associated error estimator from (2.9) with Uy replaced

by Us. Then, for arbitrary 0 < 01,05 < 1 and sufficiently small 0 < ¥ < 1, Algorithm 2.1 guarantees the existence
of constants A\, pp > 0 and 0 < k < 1 such that the combined error quantity

A= [|V(u— ﬁe)”%z(n) + Mg = Peglltsecpyy +1ié 20 (2.23)
satisfies a contraction property
Api1 < kAp for all £ € Ny. (2.24)
Moreover, there are constants Clow, Chigh > 0 such that
Crow Ar <1} < Chign Ar. (2.25)

In particular, this implies convergence limy ||u — Uy|| g1 (o) = 0 = limgny of Algorithm 2.1 independently of the
precise choice of the uniformly H'/?(I'p)-stable projection Py.

Remark 2.7. The H'/ 2(I'p)-orthogonal projection is not needed for the implementation and can, in fact,
hardly be computed explicitly. Instead, it is only used theoretically for the numerical analysis. More precisely,
we will see below that the modified Dorfler marking (2.11)—(2.12) for the Py chosen (with corresponding discrete
solution U; and error estimator 7) implies the usual Dorfler marking for the theoretical auziliary problem with
the H'/2(I'p)-orthogonal projection P, and corresponding solution U, resp. error estimator 7.
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To state our quasi—optimality result for Algorithm 2.1, we need to introduce further notation. Recall that,
for a given triangulation 7, and M, C 7y,

To41 = refine(7y, My) (2.26)

denotes the coarsest regular triangulation such that all marked elements 7' € M, have been refined by (at least
one) bisection. Moreover, we write

7, € refine(7y) (2.27)

if 7, is a finite refinement of 7y, i.e., there are finitely many triangulations Zyy1,...,7, and sets of marked
elements M, C 7p,...,M,_1 C 7,1 such that 7, = 7,, and 7,41 = refine(7;, M;) forall j =¢,...,n — 1.
Finally, for a fixed initial mesh 7j, let T = {’T* 2 T, € refine(’]f))} be the set of all meshes which can be
obtained by newest vertex bisection as well as the set Ty = {’Z; eT: #7T, —#Ty < N } of all triangulations
which have at least N more elements than the initial mesh 7.

Recall that Algorithm 2.1 only sees the error estimator 77 = o7 + osc%x, but not the error ||u — Upl|g1(0)-
From this point of view, it is natural to ask for the best possible convergence rate for the error estimator. This
can be characterized by means of an artificial approximation class Ag: For s > 0, we write

(u, f,g,0) € Ag Lot sup inf N°%n, < oo, (2.28)

NeNZ+€Tn
where n? = 02 + osc%,* denotes the error estimator for the optimal mesh 7, € Ty . By definition, this implies
that a convergence rate n, = O(N~?) is possible if the optimal meshes are chosen. The following theorem states

that Algorithm 2.1, in fact, guarantees 7, = O(N %) for the adaptively generated meshes 7.

Theorem 2.8 (quasi-optimality of AFEM). Suppose that the sets M, resp. MP in step (iii)-(iv) of Al-
gorithm 2.1 are chosen with minimal cardinality. Then, for sufficiently small 0 < 01,9 < 1, but arbitrary
0 < 6y <1, Algorithm 2.1 guarantees the existence of a constant Copy > 0 such that

(u, f,9,0) €A = VLEN < Copt(#70 — #To) ", (2.29)
i.e. each possible convergence rate s > 0 is, in fact, asymptotically obtained by AFEM.

We stress that, up to now and as far as the error estimator is concerned, only reliability (2.19) is needed
for the analysis. In particular, the upper bounds on the sufficiently small adaptivity parameters #; and 9 do
not depend on the efficiency constant Ceg from (2.20). This is in contrast to the preceding works on AFEM,
e.g. [7,10,11,14,17,27], which directly ask for optimal convergence of the error (Thm. 2.9). Finally, the lower
bound (2.20) for the error estimator allows to relate the approximation class A, to the well-known definition
from literature in terms of the regularity of the sought solution and the given data. In particular, we obtain a
quasi—optimality result which is analogous to those available in the literature for homogeneous Dirichlet data,
see e.g. [5,10,27], but with less dependencies for the upper bound of the adaptivity parameters. We refer to [6,15]
for a characterization of approximation classes in terms of Besov regularity.

Theorem 2.9 (relation to usual approximation classes). It holds (u, f,g,¢) € As if and only if the following
four conditions hold:

sup _inf in N*|u—V, < oo, 2.30
sup nf - min_ | Ju = Vil 1) < o0 (2.30)
sup inf N%osc < 0 2.31
NQ%T*ETN T ’ ( )
sup inf Nfoscy . < 00, (2.32)
NeN7T+€TN

sup inf Nfoscp« < 00, (2.33)

NeNT€TN

i.e. the estimator —and according to reliability hence the Galerkin error— converges with the best possible rate
allowed by the regularity of the sought solution and the given data.
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2.8. Outline

Since our analysis is strongly built on properties of the Scott—Zhang projection, Section 3 collects the essential
properties of the latter. This knowledge is used to prove Proposition 2.3. Moreover, we prove that the Scott—
Zhang error in a weighted H'(I'p)-seminorm is (even locally) equivalent to the Dirichlet oscillations (Prop. 3.1)
which might be of general interest. This allows to prove Proposition 2.4 with an estimator 1, which does not
explicitly contain the chosen projection Py. Section 4 is concerned with the proof of Theorem 2.5. Section 5
gives the proof for the contraction result of Theorem 2.6. Finally, the proofs of the quasi—optimality results of
Theorems 2.8 and 2.9 are found in Section 6. Some numerical experiments in Section 7 conclude the work.

In all statements, the constants involved and their dependencies are explicitly stated. In proofs, however,
we use the symbol < to abbreviate < up to a multiplicative constant which is independent of ¢. Moreover,
~ abbreviates that both estimates < and = hold.

3. SCOTT-ZHANG PROJECTION

The main tool of our analysis is the Scott—Zhang projection
Jo: HY(2) — SP(Ty) (3.1)

from [26]. A first application will be the proof of the Céa—type estimate for the Galerkin error (Prop. 2.3).
Moreover, we prove that the Scott-Zhang interpolation error in a locally weighted H'-seminorm is locally
equivalent to the Dirichlet data oscillations (Prop. 3.1). This will be the main tool to derive the bound ||(1 —
P)gll mr/2(rpy S 08ep,e, where the right-hand side is independent of the projection chosen.

3.1. Scott—Zhang projection

Analyzing the definition of J, in [26], one sees that J, can be defined locally in the following sense:

e For an element 1" € 7y, the value (Jow)|r on T' depends only on the value of w,, . on some element patch
T Cuwpr C{T' e T: T'(\T #0}. (3.2)

e For a boundary facet E € 5[ , the trace of the Scott—Zhang projection (Jyw)|g on E depends only on the
trace w|werE on some facet patch

nggEg{E’egng’ﬂEyém}. (3.3)

e In case of a Dirichlet facet E € £P, one may choose w[E CI'p.
Moreover, J; is defined in a way that the following projection properties hold:

o J,W, =W, for all W, € Sp(']}),

o (Jow)|r = wl|r for all w € HY(2) and W, € SP(7;) with w|r = W|r,

o (Jow)|rp = wlr, for all w € H*(2) and W, € SP(T;) with w|r, = Wiy,
i.e. the projection Jy preserves discrete (Dirichlet) boundary data. Finally, J, satisfies the following (local)
stability property

||V(1 - Jf)w”LQ(T) < CSZ vaHL2(U)1{,T) for all w € Hl(ﬂ) (34)
and (local) first-order approximation property
H(l — J@)U}”LQ(T) < CSZ ||hng||L2(wLT) for all w € Hl(.Q) (35)

where Cs, > 0 depends only on shape regularity of 7y, cf. [26]. Here, hy € L>°({2) denotes the local mesh-width
function defined by hy|r = |T|'/¢ for all T € 7;. Moreover, since the overlap of the patches is controlled in
terms of shape regularity, the integration domains in (3.4)-(3.5) can be replaced by (2, i.e. (3.4)—(3.5) hold also
globally.
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3.2. Scott—Zhang projection onto discrete trace spaces

We stress that J, induces operators
JE LX) — SP(EL) and JP : L*(I'p) — SP(EP) (3.6)

in the sense of J} (w|r) = (Jow)|r and JP (w|r, ) = (J (w|r))|ry, for all w € H'(£2). We will thus not distinguish
these operators notationally. Arguing as in [26], for v € {I', I'p, ['v }, one sees that J, satisfies even (local) L?~
stability

1A =Jo)wlz2(e) < Cu [wlp2r,) forallw e L*(y), (3.7)
(local) H!'-stability
11 = Iyl sy < Cua [Vrwllpar,) for allw e H(3), (3.8)
as well as a (local) first—order approximation property
(1 =Jo)wl L2k < Cs thva||L2(w£E) for all w € H'(v). (3.9)

Here, Vp(-) denotes again the surface gradient, and hy € L*°(I'p) denotes the local mesh-width function
restricted to I'p. According to shape regularity of 7y, the integration domains in (3.7)—(3.9) can be replaced
by v, i.e. (3.7)—(3.9) hold also globally on .

By standard interpolation arguments applied to (3.7)—(3.8), one obtains stability

H(l — J[)U)HHl/z(w S CSZ Hw||H1/2(7) for all w S H1/2(’y) (310)
in the trace norm. Moreover, it is proved in [18], Theorem 3 that the Scott—Zhang projection satisfies

1— <, i pl/? -W for all w € H(~). 3.11
(1 = Je)wll gis2 ) < Cs er?i?%)ll IV (w =Wl 2y forallw e H'(y) (3.11)

Throughout, the constant Cy, > 0 then depends only on shape regularity of 7, and on v € {I',I'p,'n}.
3.3. Proof of Céa lemma (Prop. 2.3)

According to weak formulation (2.1) and Galerkin formulation (2.5), we have the Galerkin orthogonality
relation

(V(u—Us), VVi)g =0 forall V; € SV (Ty).

Let £ : HY?(I') — H'(2) be a lifting operator. Let §,g, € H'/?(I") denote arbitrary extensions of g = u|r,
resp. Prg = Uy|ry, . Note that (JeLIeg)|r, = (Jeu)|ry, as well as (JeLJege) | r, = Uelry, - For arbitrary Ve € SV (7y),
we thus have Uy — (Vo + JeLJege) € SP(Tr), whence

IV (u— Uo7z = (V(u—Ue), V(u— (Ve +IeLIeGe))) 2
according to the Galerkin orthogonality. Therefore, the Cauchy inequality proves

V(u—-"U, < i V(u— (Vi +JeLIeg, .
[V (u e)HLz(n) _werfslg%n)u (u— (Vi 1 zge))Hm(n)

We now plug—in Vp = Jeu — JoLJeg € SY,(7¢) and use stability of J, and £ to see

[V(u—Ud)llr2(2) < IV(u—Jeu+ JeLIe(G — Ge))ll2(2)
SV (u = Jew)llL2o) + 119 = Gell a2 ry-
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Since the extensions g, gy of g and Pyg were arbitrary, we obtain
IV(u=Ud)llL20) S IV(u = Jew)l[2(2) + |(1 = Po)gll mr1r2(rp)-
According to the projection property J,W, = W, for W, € SP(7;) and H'-stability (3.4), it holds that

[V(u—Jeu)lL20) =  min_ V(1 =J¢)(u—Wy)llr20) S min_ [[V(u—~We)llr2(2)-

WeEeSP(Ty) WeEeSP(Ty)
The same argument for P, with stability on H'/?(I") gives
10~ Bgllnsscry =, min (1= Be)g = Wlrg)lisvacep) S, min g = Welrp lvacro):

Combining the last three estimates, we infer

IV(u—Ud)llr22) + 11 =Po)gll g2y S Weglsiz?(m (IV(uw = Wo)ll22) + lg = Welrp g2 (1)) -

Finally, the Rellich compactness theorem implies norm equivalence || - || z1(2) = [[V()ll2(2) + |()rp |z (rp)
on H'(£2). This concludes the proof.
3.4. Scott—Zhang projection and Dirichlet data oscillations

We stress that the newest vertex bisection algorithm guarantees that only finitely many shapes of elements
T e {T €T, : T, € T} can occur. In particular, only finitely many shapes of patches occur. Further details are
found in [30], Chapter 4, as well as in [28,29]. This observation will be used in the proof of the following lemma.

Proposition 3.1. Let I1, : L?(I'p) — PP~L(EP) denote the L*(I'p)-projection. Then,

1A=110)V rgllLae) < IVr(1=J0)gllL2(e) < Canll A=) Vrgll2or ) for all E € £ (3.12)

and, in particular,

osep,e < [[hy/*Vr(1 - Jo)gll2(rp) < Cair0sep e (3.13)

The constant Cqiy > 1 depends only on I'p, the polynomial degree p, the initial triangulation Ty, and the use of
newest vertex bisection to obtain Ty € T, but not on g.

Proof. Since I1; is the piecewise L?—projection, the lower bound in (3.12)-(3.13) is obvious. To verify the upper
bound, we argue by contradiction and assume that the upper bound in (3.12) is wrong for each constant C' > 0.
For n € N, we thus find some g, € H'(I') such that

IVr(t=Je)gnll2my > n (L= H)VrgnllLar ,)- (3.14)

Let Q. : Hl(wé?E) — SP(EK|W£E) denote the H!'-orthogonal projection on the patch ng and define g,, =
(1 —Q¢,£)gn- Since the value of Jyv on E depends only on the values of v on w{E, the projection property of J,
reveals (1 — J;)Q¢, £gn = 0 on E. Moreover, V5rQq ggn € Pp_1(55|w£E) so that (1 —IT;)VrQs gg, = 0 on wéjE.
From the orthogonal decomposition g, = Q¢ ggn + 7, we thus see ||V (1 —J0)g,[22(5) = IVr(1 =J0)gnll12(5)
and ||(1 — HK)VFEnHL?(wEE) = ||(1 - Hg)Vp§n||L2(w£E). In particular, we observe g,, # 0 from (3.14) so that
we may define g, := yn/||§n||H1(w5E). This definition guarantees

lgnll e wr,y =1 and  gn € SP(Eelur )™ (3.15)
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where orthogonality is understood with respect to the H*(w E) —scalar product. Moreover, it holds that

(X =)V rgnllrer,) < E IVr(1 = Je)gnll2e) < ﬁ IVrgnllzer ) =20 (3.16)

due to the construction of g, and local H'-stability of J, : H*(I'p) — H*(I'p).

First, (3.16) implies that ||HZVan||L2(w{E) < C < oo is uniformly bounded as n — oo. Since II)V g, €
77”71(5@|WFE) belongs to a finite dimensional space, we may apply the Bolzano—Weierstrass theorem to extract
a convergeht subsequence. Without loss of generality, we may thus assume

IV g, —= &, Pp_l(é’g\wa) in strong L2 sense. (3.17)

Second, this and (3.16) prove L?-convergence of Vg, to @y,
IVrgn = Pell p2r ) < N = )V rgallp2wr ) + eV rgn = Pellp2gor ) = 0. (3.18)

(wip
Third, orthogonality (3.15) implies | r9n dI" = 0 if we consider the constant function 1 € S?(&,r ). There-
fore, the Friedrichs inequality and (3. 18) predict uniform boundedness ||gn || 1 ( Wlg) S HVpgnHLz(wr ) < C < oo
as n — 00. According to weak compactness in Hilbert spaces, we may thus extract a weakly convergent subse-

quence. Without loss of generality, we may thus assume

n—o0

In —=5 goo € H* (wz p) in weak H'-sense. (3.19)

Fourth, the combination of (3.18) and (3.19) implies Vrgee = @P¢. This follows from the fact that
19¢ = Vr()llz2@r,) 1s convex and continuous, whence weakly lower semicontinuous on H'(w; ), e
|Pe — VpgooHLz(wr y < liminf, [|®, — VFQVLHL%WYE) =0.

Fifth, the Rellich compactness theorem proves that the convergence in (3.19) does also hold in strong L?-
sense. Together with (3.18) and @y = Vgs., we now observe strong H'—convergence

||goo - gnH%p(W[E) = Hgoo - gn”%p(weFE) + H@Z - VanHiz(w£ ) n—oe, 0,

whence ||gos || 1 (o1 ,) = 1 as well as goo € Sp(é’g\wa)L according to (3.15).

On the other hand, Vygs = &y € Pp_1(55|w£E) implies goo € Sp(55|w£E). This yields go € Sp(55|w£E) N
SP(El,r )+ = {0} and contradicts ||gool|?1, r , = 1.

Wi B H (“"g,E)
This contradiction proves the upper bound in (3.12). A standard scaling argument verifies that the constant

Cq4ir > 0 does only depend on the shape of w{ & but not on the diameter. As stated above, newest vertex

bisection guarantees that only finitely many shapes of patches wz g May occur, i.e. Cair > 0 depends only on 7
and the use of newest vertex bisection. Summing (3.12) over all Dirichlet facets, we see

osch ¢ = llhg"*(L = L)V rgliary) < 10>V (L = T0gl32(ry)

S D hde (= 1)Vrglieer,)
Eeegp ,

1/2
< b2 (0 = )V rgl3a )

1/2

where the final estimate holds due to uniform shape regularity. O

Corollary 3.2. It holds ||(1 — P¢)gllg/2(ry) < Cosc0scp,e, where Cosc > 0 depends on I'p, the polynomial

degree p > 1, stability Csap, > 0, the initial mesh Ty, and the use of newest vertex bisection.

Proof. By use of the projection property and stability of P, one sees |[(1 — Po)g| g1/2(r,) = [[(1 = Pe)(1 —
Il m2rpy S 1= J0)gllgr/2(ryy- The approximation estimate (3.11) and Proposition 3.1 conclude [|(1 —

309l 2 (rpy S >V (1 = 30)gl 12(rp) = 05cpe. O
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3.5. Proof of reliability and efficiency (Prop. 2.4)

We consider a continuous auxiliary problem

—Aw =20 in 2,
w=(1-Py)g on Ip,
Opw =10 on Iy, (3.20)

with unique solution w € H'(£2). We then have norm equivalence [|wl|g1 (o) = [|(1 = Pe)gll gr1/2(1p) as well as
u—Up —w € HH(£2). From this, we obtain

|u = Uellz (o) S IV(u = Ue —w)||12(0) + [[(1 = Pe)gll grr2(rpy-

The first term on the right—hand side can be handled as for homogeneous Dirichlet data, i.e. use of the Galerkin
orthogonality combined with approximation estimates for a Clément—type quasi—interpolation operator (e.g.
the Scott-Zhang projection). This leads to

V(u— U —w)||12(0) S ¢

Details are found e.g. in [4]. The H'/?(I'p)-norm is dominated by the Dirichlet data oscillations oscp ¢, see
Corollary 3.2.
By use of bubble functions and local scaling arguments, one obtains the estimates

T f + AU 320y S IV (= Ue)|13 21y + 0ser o(T)? + osen o(OT N Iy),
TN [0nUA N 2800 S IV (u—= Uo7z, ») + 0ser e(we)?,

TV ¢ = 0nUel 2 (mary) S IV (@ = Ub)llT20, ) + 0ser e(we,g)? + osen,o(E N Tn)?,

where 2y p =TT UT~ denotes the facet patch of TTNT~ = E € &. Details are found e.g. in [3,30]. Summing
these estimates over all elements, one obtains the efficiency estimate (2.20).

4. CONVERGENCE

In this section, we aim to prove Theorem 2.5. Our proof of the convergence theorem relies on the estimator
reduction principle from [2], i.e. we verify that the error estimator is contractive up to some zero sequence.

4.1. Estimator reduction estimate

Note that the estimator 57 = o7 + 05020,2 can be localized over elements via

m= Y m(T)® with n(T)* = 0u(T)* +|T|"Y*|(1 = )V rglzorarm) (4.1)
TeT,

with IT, : L*(I'p) — PP~1(EP) the (even £P—piecewise) L?(I'p)-orthogonal projection.

Lemma 4.1 (modified marking implies Dérfler marking). For arbitrary 0 < 601,02,9 < 1 in Algorithm 2.1,
there is some parameter 0 < 6 < 1 such that the error estimator 0} = g7 + 0sc2Dj satisfies

On; < > m(T)?, (4.2)
TeM,

and all elements T € My are refined by at least one bisection.
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Proof. First, assume OSC%M <7 and let M, C 7Ty satisfy (2.11). Then,

01(07 +osch ) <01 (L+0)of <(1+9) > ou(T)*
TeM,

Therefore, the Dérfler marking (4.2) holds with 8 < 6;(1 + )~ L.
Second, assume oscf, , > 0 ¢ and let M C Ef satisfy (2.12). Then,

92(93 + OSCQDVZ) < 60(1+4 1971)OSC2D7Z <(1+ 1971) Z oscD7g(E)2.
EeMp

Therefore, the Dorfler marking (4.2) holds with 8 < 02(1 +9~!)~!, and all elements which have some facet
E € MP are refined. O

Proposition 4.2 (estimator reduction). Let 7, € refine(7y) be an arbitrary refinement of Ty and M, C T\ 7T
a subset of the refined elements which satisfies the Dorfler marking (4.2) for some 0 < 0 < 1. Then,

773 S Qred 77[? + Cred ||V(U* - UZ)”%;(_Q) (43)

with certain constants 0 < qreq < 1 and Cieq > 0 which depend only on the parameter 0 < 6 < 1, shape regularity
of Ty, and the polynomial degree p > 1.

Proof. The proof follows along the lines of the proof for homogeneous Dirichlet data, which is found in [10],
Corollary 3.4, Proof of Theorem 4.1. For details, the reader is referred to the extended preprint of this
work [1]. O

4.2. A priori convergence of Scott—Zhang projection

We assume that (Jp41v)|r = (Jev)|r for all T € T, N Tpqq with wer € U(Ze N Zy1) which can always be
achieved by an appropriate choice of the dual basis functions in the definition of Jyy1. In this section, we prove
that under the aforegoing assumptions and for arbitrary refinement, i.e. 7, = refine(7y_1) for all £ € N, the
limit of the Scott-Zhang interpolants J,v exists in H'({2) as £ — oo. In particular, this provides the essential
ingredient to prove that, under the same assumptions, the limit of Galerkin solutions Uy exists in H'(§2). For
2D and first—order elements p = 1, this result has first been proved in [14], Lemma 18. The proof transfers
directly to the present setting without any other but the obvious modifications.

Proposition 4.3. Let v € H*(£2). Then, the limit Joov := limy Jyv exists in H'(£2) and defines a continuous
linear operator Jo : HY(£2) — H'($2).
Corollary 4.4. Under the assumptions of Proposition 4.3, the limit goo := limy Jog exists in HY?(I'p).

Proof. Let g € H'/?(I") denote an arbitrary extension of g. With some lifting operator £, we define v := £g
and note that (Jev)|r, = (Jeg)|rp, = Jeg. Since Joov = limg Jpv exists in H!(£2), we obtain

~ {—o00
|Jocv) o = Jegllarr2 )y < 1Toov)r = Jegll z1/2(ry < [Jocv = Jevl 1) — 0.

This concludes the proof with (Joov)|r, =: goo- O

4.3. A priori convergence of orthogonal projections

In this subsection, we recall an early observation from [8], Lemma 6.1 which will be applied several times. We
stress that the original proof of [8] is based on the orthogonal projection. However, the argument also works for
(possibly nonlinear) projections with Py P, = P, for ¢ < k which satisfy a Céa—type quasi—optimality. Since the
Scott—Zhang projection satisfies JoJ, # J¢, in general, Proposition 4.3 is not a consequence of such an abstract
result.
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Lemma 4.5. Let H be a Hilbert space and Xy be a sequence of closed subspaces with Xy C Xyyq for all £ > 0.
Let Py : H — X, denote the H—-orthogonal projection onto Xy. Then, for each x € H, the limil x := Klim Ppx

— 00
exists in H.

Since the discrete trace spaces SP(£F) are finite dimensional and hence closed subspaces of H'/2(I'p), the
lemma immediately applies to the H'/ 2(I'p)-orthogonal projection.

Corollary 4.6. Let P, : HY?(I'p) — SP(EP) denote the HY*(I'p)-orthogonal projection. Then, the limit
Joo 1= élim Pyg exists in H'/?(I'p).
— 00

Corollary 4.7. Let m : L*(I'p) — SY(EP) denote the L?(I'p)-orthogonal projection. Then, the limit goo =
Zlim meg exists weakly in HY(I'p) and strongly in H*(I'p) for all 0 < a < 1.
— 00

Proof. According to Lemma 4.5, the limit g, = lim, m¢g exists strongly in L?(I'p). Moreover and according
to [19], Theorem 6, the 7, are uniformly stable in H'(I'p), since we use newest vertex bisection. Hence, the
sequence (7¢g) is uniformly bounded in H'(I'p) and thus admits a weakly convergent subsequence (7, g) with
weak limit go. € H*(I'p), where weak convergence is understood in H'(I'p). Since the inclusion H(I'p) C
L?(I'p) is compact, the sequence (7, g) converges strongly to go, in L?(I'p). From uniqueness of limits, we
conclude goo = goo- Iterating this argument, we see that each subsequence of (7,g) contains a subsequence which
converges weakly to goo in H*(I'p). This proves that the entire sequence converges weakly to go, in H*(I'p).
Strong convergence in H*(I'p) follows by compact inclusion H'(I'p) € H*(I'p) for all 0 < o < 1. O

4.4. A priori convergence of Galerkin solutions

We now show that the limit of Galerkin solutions U, exists as £ — oo provided that the meshes are nested,
i.e. Tpy1 = refine(7p).

Proposition 4.8. Under Assumption (2.21) that go, := limy Pyg exists in H'/?(I), also the limit Uy, := lim, U,
of Galerkin solutions exists in H'(2).

Proof. We consider the continuous auxiliary problem

—Awy; =0 in £,
we =Pyg onIp,

Opwe =0 on I'y.

Let wy € H'(£2) be the unique (weak) solution and note that the trace gy := we|r € HY/?(I') provides an
extension of Pyg with

1Gell ey < Mlwellzr @y S WPegllarrzryy < Gell a2y

For arbitrary k, ¢ € N, the same type of arguments proves

1Ge = Grll g2 (ry = |(Pe — Pr)gll g2y

According to Assumption (2.21), (Pyg) is a Cauchy sequence in H'/?(I'p). Therefore, gy is a Cauchy sequence in
H'/2(I"), whence convergent with limit g, € H'/2(I"). Next, note that (J,£g¢)|r, = Peg, where £ : H'/2(I") —
H'(£2) denotes some lifting operator. Therefore, Uy = U, — JeLge € ST (Tp) is the unique solution of the
variational formulation

(YU, Vi) = (Vu, VVi) g — (VILGe, Vi)  for all V; € S2(Ty). (4.4)

Finally, we need to show that (7( and J,Lg, are convergent to conclude convergence of Uy = (7( + JeLge.
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With convergence of (g¢) to goo and Proposition 4.3, we obtain
13eLGe — Joo LGoo | 1 (2) < 1Te(LGe — LGoo )l m1(2) + 1JeLGoo — Joo LGoo |l 1 (02)
~ ~ ~ ~ l—
S 1ge — gooHH1/2(r) + [[JeLGoo — Joo LYoo | 1 (2) —=0.

This proves convergence of JoLgs t0 JooLGoo as £ — oo. To see convergence of (7@, let (7@’00 € 8P (7;) be the
unique solution of the discrete auxiliary problem

(VUioo, VYo = (Vu, Vi) o — (VIeLioo s Vi) for all Vi € 8P (Tp). (4.5)

Due to the nestedness of the ansatz spaces S7,(7;), Lemma 4.5 predicts a priori convergence Tj’gm Lo, Tj'oo €

HY(£2p). With the stability of (4.4) and (4.5), we obtain
rr rr ~ ~ {—o00
IV(Ut,oo = Uo)llz2(2) S 1JeLGe — Joo LGoo | 1 (2) — 0,

and therefore Uy ~—°% Us, in H'(£2p).
Finally, we now deduce

Up = Uy + J0LGe 2= Une + Joo Lo =: Uno € HY(£2),
which concludes the proof. O

4.5. Proof of convergence theorem (Thm. 2.5)

(i) Since the limit Uy, = lim, Uy exists in H!(§2), we infer lim, |V (Upy1 — Uo)llz2(2) = 0. In view of this and
Lemma 4.1, the estimator reduction estimate (4.3) takes the form

77?+1 < Gred 77% +ap foralll>0

with some non—negative ay > 0 such that limy oy = 0, i.e. the estimator is contractive up to a non-negative
zero sequence. It is a consequence of elementary calculus that limg 7, = 0, see e.g. [2], Lemma 2.3. Finally,
reliability [|u — Upl| g1 () < 1e thus concludes the proof.

(ii) The verification of Assumption (2.21) is done in Corollary 4.4 for the Scott—Zhang projection, Corollary 4.6
for the H'/?(I'p)-orthogonal projection, and Corollary 4.7 for the L?(I'p)-orthogonal projection.

5. CONTRACTION

In principle, the convergence rate of limy; Uy = u from Theorem 2.5 could be slow. Moreover, Theorem 2.5
restricts the Dirichlet projection Py by Assumption (2.21). In this section, we aim to show linear convergence
for some quasi-error quantity A, ~ 77 = g%—i—ochD’ , with respect to the step £ of Algorithm 2.1 and independently
of the projection Py chosen. The essential observation is that the marking step in Algorithm 2.1 is in some sense
independent of the Py chosen.

5.1. Implicit Dorfler marking

Let sz € SP(7y) be a Galerkin solution of (2.5) with different Dirichlet data sz = Pyg on I'p, where
Py : HY*(I'p) — SP(EP) is a uniformly stable projection onto SP(££) in the sense of (2.17). Let 72 = o/ 4o0sc}, ,
be the associated error estimator. In the following, we prove that marking in Algorithm 2.1 with 77? = gf —|—osc%7 ¢
and sufficiently small 0 < ¢ < 1 implicitly implies the simple Doérfler marking (4.2) for 7;.
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Lemma 5.1 (local equivalence of error estimators for different projections). For arbitrary Uy, C Ty, it holds that

C’e_q1 Z 00(T)* < Z 00(T)? —l—osc%x and C’e_q1 Z 00(T)* < Z 00(T)? + osch 4. (5.1)
TeU, TeU, TeU, TeU,

The constant Coq > 1 depends only on shape regularity of Ty and on Csiar, > 0. In particular, this implies
equivalence

(Coq+ 1)} <77 < (Coq+1) ;. (5.2)
Proof. Arguing as for the estimator reduction, it follows from the triangle inequality and scaling arguments that
0e(T)? < 0e(T)? + |[V(Ue = U220,y for all T € T,

where wy(T) = {T/ el :T'NT # (Z)} denotes the element patch of T'. Consequently, a rough estimate gives

> 0TS a(T)? + V(U = U3 forall Uy C 7o
TeU, Teu,

Recall the Galerkin orthogonality
(V(Uy = Uy), VVy) = (V(u—Uy), VVi) = (V(u—Uy), VV;) =0 for all V; € S%(Ty).

Let § € HY*(I") be an arbitrary extension of (U — Udlr, = (P, — P)g € HY2(I'p). We choose the test
function V; = (U, — Uy) — Jo LG € SH(Ty) to see

IV (Ue — ﬁé)”%z(n) = (VU - Up), VILG) o
Stability of Scott—Zhang projection J, and lifting operator £ thus give
IV(We = Ua)llczca) < IVIeLll 2oy S 1l ey
Since g was an arbitrary extension of (P, — P;)g, we end up with
IV(Ue = Uo)llz2) S 1B = Po)gllmsairpy < (Be = Dgllarrary) + (1= Pogllaery) S osen.e,

where we have used Corollary 3.2. This proves the first estimate in (5.1), and the second follows with the same
arguments. O

The following lemma is the main reason, why we stick with Stevenson’s modified Dorfler marking (2.11)—(2.12)
instead of simple Dérfler marking (4.2).

Lemma 5.2 (modified Dorfler marking implies Dorfler marking for different projection). For arbitrary 0 <

01,05 < 1 and sufficiently small 0 < O < 1, there is some 0 < § < 1 such that the marking criterion (2.11)—
(2.12) for n? = o + osc%x implies the Dorfler marking

0nf < Y (1) (5:3)

forn =0} + OSCQDVZ. The parameter 0 < 8 < 1 depends on 0 < 01,02,9 <1 and on Csq > 0.
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Proof. We argue as in the Proof of Lemma 4.1. First, assume OSCQDVZ < 9 ? and let M, C 7; satisfy (2.11).
According to Lemma 5.1, we see

O1m; < 01(1+9)0; < (1+9) Z 00(T)? < Ceq(1+ 1) ( Z 0u(T)? +osc%,e>

TeM, TeM,

< Cog(1+ ) ( > §g(T)2+19g§>.

TeM,

This proves

(OLC A+ =) ng < > wu(T)>.
TeM,

Together with (Coq+1)~' 77 < 17, we thus obtain the Dérfler marking (5.3) with 0 < 0 < (Ceq+1)~! (1 Co (14
)71 — 19) < 1, provided that 0 < 9 < 1 is sufficiently small compared to 0 < 6; < 1.
Second, assume osc}, , > ¥ o7 and let MP C EP satisty (2.12). Then,

0217 < 62(1+ 9 Mosch, , < (L+07" Z oscp(B)? < (14971 Z 7e(T)%,
EEMD TeM,

where My = {T €T, : 3E € MP E C 8T} is defined in step (iv) of Algorithm 2.1. As before (Coq+1)"1 77 <
n; thus proves (4.2) with 0 < 0 < C;l6:(1+97 1)1 < 1. O

2. Quasi—Pythagoras theorem

To prove Theorem 2.6, we consider a theoretical auxiliary problem: Throughout the remainder of Section 5,
U, € 87(T;) denotes the Galerkin solution of (2.5) with Dirichlet data U, = Pyg on I'p, where Pg H1/2(FD)
SP(EP) denotes the H'/2(I'p)-orthogonal projection. Associated with Uy is the error estimator ;) = 07 +0sc 4,
where gy is defined in (2.10) with Uy replaced by U,.

Recall that the aforegoing statements of Section 3 and Section 4 hold for any uniformly H'/?(I'p)-stable
projection P, and thus apply to 77 = 97 + osc%,e. We shall need reliability |ju — ﬁe”ill(ﬂ) < 07 as well as
the estimator reduction (4.3) from Proposition 4.2 for %2, which is a consequence of Lemma 5.2. Our concept
of proof of Theorem 2.6 goes back to [10], proof of Theorem 4.1. Therein, however, the proof relies on the
Pythagoras theorem ||V (u — UZ)H%2(Q) = ||V(u— U[+])H%2(Q) +|V(Upgr — UZ)”QL?(Q) which does not hold in
case of inhomogeneous Dirichlet data and Pyg # Pyy1¢, in general. Instead, we rely on a quasi-Pythagoras
theorem which will be used for the auxiliary problem.

Lemma 5.3 (quasi-Pythagoras theorem). Let 7, € refine(7;) be an arbitrary refinement of T; with the asso-
ciated auziliary solution U, € SP(T,), where U, = P,g on I'p. Then,

(1-a)[[V(u— ﬁ*)”%?(rz) <[V(u— (718)||2L2(n) - HV((?* - ﬁf)”%?(m
+a! Coytn || (Px _PK)QH?WM(FD) (5.4)
for all ae > 0. The constant Clyen > 0 depends only on the shape reqularity of o(7¢) and o(7) and on 2 and I'p.

Proof. For p =1 and nodal interpolation for 2D, a similar result is found in [22], Lemma 5.1 or [14], Lemma 12.
Essentially the same arguments can also be employed here. Details are found in the extended preprint of this
work [1]. O
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5.3. Proof of contraction theorem (Thm. 2.6)
Using the quasi-Pythagoras theorem (5.4) with 7, = 7y41, we see
(1=a)[V(u- (7@+1)H%2(n) < |IV(u— (76)||2L2(Q) — IV (Ues1 — ﬁé)“%?(n)
+ O‘_lcpyth [ (Pe+1 — PZ)QH?{l/z(FD)-

The use of the HY/ 2(I'p)-orthogonal projection provides the orthogonality relation

(1 - P€+1)9||§11/2(FD) + [[(Pey1 — Pé)gnip/?(pD) =||(1- PZ)QH?{l/z(rDy
Combining the last two estimates, we obtain
(1= ) [Vt = T )y + 0~ Conll (L = Pest)gll 2o )
< V(u=T)lF2(0) + @ Coynll(1 = P9Il /2(ry) — IV U1 = Uo)1 202
Applying Lemma 5.2, we see that Algorithm 2.1 for 77% = Q% +OSCQD,Z implicitly implies the Dorfler marking (5.3)

(resp. (4.2)) for 57 = 9} + osc}, ;. Therefore, the estimator reduction (4.3) of Proposition 4.2 applies to the
auxiliary problem and provides

ﬁZ%rl < Qred 552 + Ored”v(ﬁZ-H — (7@)”%2(9) for all £ > 0.
Now, we add the last two estimates to see, for 5 > 0,
(1= ) [IV(u = Tl 72y + @ Coyinl (1 = Pes1)gl3 /2y + B2
< IV (= T2y + 0™ Copenl (1 = P)gl2r2/2 1) + Bivea 7
+ (BCrea = 1) [V (Ur1 = Uo) 720

We choose 3 > 0 sufficiently small to guarantee 5Cieq—1 < 0, i.e. the last term on the right—hand side of the last
estimate can be omitted. Then, we use the reliability ||u— UZ||H1 @) S < 7 and the estimate ||(1— Pg)g||H1/2(FD) <

oscDx < 77Z from Corollary 3.2 in the form

[V (u— (76)||2L2(Q) +[[(1 = Pz)gH?{l/z(rD) < 07762
to see, for arbitrary v,0 > 0
(1-0) [Vt = Tr) 2y + 0 Coyenll (L = Pest)gl 22 + BT
< V(= T2y + 0~ Coynl (1 = POgl2/o 1) + Beea i
< (1= BC) [V (u = T0) |2y + (1~ 88C)a™ Coyan 101~ POglp1so 1y,
+ Blarea + v+ 607 Coyen) 17

For 0 < a < 1, we may now rearrange this estimate to end up with

h ﬁ
[V (u U€+1)HL2 @ T a(l — Gy @) (1 PZ+1)9HH1/2 ) T, W+1

1
<1 760

prth
<2 pregaeet [

IV = Ty + (1= 4601 s

L= P22

+ (Qred + Y + 504_1prth) m ﬁ;'



1226 M. AURADA ET AL.

It remains to choose the free constants 0 < a,~y,d < 1, whereas § > 0 has already been fixed:

e First, choose 0 < < 1 sufficiently small to guarantee 0 < greq +v < 1 and 0 < v8C~! < 1.
e Second, choose 0 < o < 1 sufficiently small such that 0 < (1 —y3C~1)/(1 — a) < 1.
e Third, choose § > 0 sufficiently small with greq + v + 5a_1prth < 1.

With p = 3/(1 — @), A := o *Cpyin/(1 — @), and 0 < x < 1 the maximal contraction constant of the three
contributions, we end up with the contraction estimate (2.24).

It thus only remains to prove equivalence (2.25): According to the definition of Ay in (2.23), we have equiv-
alence A, ~ 72. Finally, Lemma 5.1 implies 777 ~ n? and concludes the proof.

6. QUASI-OPTIMALITY

In this section, we aim to prove Theorem 2.8-2.9. In some sense, the heart of the matter of the quasi—optimality
analysis is the discrete local reliability of Proposition 6.1. This is, however, only proved for discrete Dirichlet data
obtained by the Scott—Zhang projection. We therefore consider this as an auxiliary problem: Let U, € SP(7;)
denote the Galerkin solution of (2.5) with respect to the Scott—Zhang projection, i.e. U, = Jeg on I'p. Finally
and as above, 77(2 = 552 +osc%7 ¢ denotes the error estimator for this auxiliary problem. Although the discrete local
reliability of 7, does not imply discrete local reliability of the error estimator 7y for the primal problem, we will
see that nevertheless discrete local reliability of an equivalent error estimator is sufficient for quasi—optimality.

6.1. Optimality of Dorfler marking

Throughout, we assume that the Scott—Zhang projections are chosen with respect to the assumptions of
Section 4.2.

Proposition 6.1 (discrete local reliability for Scott—Zhang projection). Let 7, € refine(7;) be an arbitrary
refinement of Ty and U, € SP(T,) the corresponding Galerkin solution (2.5) with Uy = Ji«g on I'n. Then, there
is a set Ry C Ty which contains the refined elements, T)\T, C Ry such that

1T, = Uellmiqy < Cawe Y (D) and  #Ry < Cret #(T\T2). (6.1)
TeER,

The constants Cqyy, Crer > 0 depend only on Ty and the use of newest vertex bisection.
Proof. We consider a discrete auxiliary problem

(VW,, VVi)o =0 forall V, € S (T;)

with unique solution W, € 8?(7;) with W, |p, = (J. —J¢)g. Then, (U, — U, — W,) € S (7.), and the H'-norm
is bounded by the H!-seminorm. Moreover, arguing as in [10], Lemma 3.6, we see

1T, = Ue = Willti (o) S IV = Ue = Willzzy S D @< D w(T)
TeT,\T. TeT\Tx

According to the triangle inequality, it thus only remains to bound [|[Wi[[z1(2) by D orer, 7¢(T)? with some
appropriate Ry O 7;\7,. To that end, let £ : HY/2(I') — H'(§2) be a lifting operator and § € H'/?(I') an
arbitrary extension of (J, — J¢)g € HY/2(I'p). With V, := W, — J,.Lg € S} (T,), we obtain

Wellz22) < WVallz2o) + 135LGl 2 (2) S NIV Vallzzo) + 136L7] 222
SIVWillzz() + 13 LGl 2 () -



AFEM WITH INHOMOGENEOUS DIRICHLET DATA 1227

Moreover, the variational formulation for W, € SP(7,) yields
0=(VW.., VV.) o= [VW.[[3a(0) — (VW. . VI.L5) e, whence (VWi 1a) < [VI.L3] 15
Combining the last two estimates, we obtain
”W*”Hl(()) § ||J*£§HH1(Q) 5 ||§||H1/2(F)-
Since g was an arbitrary extension, this proves
[Wellzr 2y S 11T = J) gl mrr2crpy-
To abbreviate the notation in the remainder of the proof, let RY := EP\&; denote the refined Dirichlet facets.
We define inductively
wy = U E, w}= U E forn>1,
EERY {Beep :Bruy—1#0}
i.e. wy denotes the region of the refined Dirichlet facets plus n layers of (non-refined) Dirichlet facets with

respect to SZD . Note that w; is nothing but the usual patch of ’R? . Due to the local definition of J; and J, we
observe

(J, —Jo)g=0 onIp\w;. (6.2)

Let (o, € SY(EP) denote the hat function associated with some node z € KP of EP. Clearly, the hat func-

. . . D . V. . _ . _ 1
tions {CAZ 2z e K } provide a partition of unity Zzelcf ¢, = 1 on I'p resp. Zzelc,{?mw,} Cr,- = 1 on wy.
Exploiting (6.2), we see

ST G —Tog

zEICZDﬂw%

1T = Il m1r2(rp) = (6.3)

H1/2(FD)

We now adapt the arguments of [9,13] to our setting. Analogously to the proof of [9], Theorem 3.2 resp. [13],
Proposition 4.3, we obtain

S G —To)g

zEICZDﬂw%

SO G- = 10l

H'Y/2(I'p) zeKPNw}

S Y NCe-Te = I0)gll e o 1Ge: e = Tl i (1)

zeKPNw}
where the final estimate is just the interpolation estimate. As above, let
wp,={z}, wi,=U{Ee€&’: EﬂwZ;l #0} forn>1,
i.e. wéz = U{E € SZD Dz € E} denotes the node patch of z € ICZD which is just the support of the hat

function (s, on I'p. To proceed, we apply the Friedrichs inequality to the summands on the right-hand side of
the estimate above and derive

ST G —T0g

zEICZDﬂw%

< Y. diam( )|V (G = J09) 172

H'Y/2(I'p) zeEKPNw}

~ 3 IV (G = 309) e - (6.4)

zEICZDﬂwl}
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Here, hy € L>(I'p) denotes the local mesh-width function he|p = |T|/? for E € P and T € 7; the unique
element with £ C 9T. Formally, the constants in the Friedrichs inequality depend on the shape of wt},z. Note,
however, that there are only finitely many shapes of patches due to the use of newest vertex bisection. Next,
we use the estimate |V (. |p| ~ diam(E)~! ~ h,!|p for E € EP. This and the product rule yield

102V 1 (e (T = 3009) 2

1/2 1/2
< Ihe*(VrGes) T = J0g 32 + by Ve = T0gl3e
< by 2@, — J0glZ2s )+ 1By >V (3 — J0)9l 7z )

= 117 231 = T0)gllZey y + V3.1 = Bo)gllFaey -

Finally, the local stability of J, and the local approximation property of J, yield
10V 0 (Gee (@ = 3009) iy y S I 21 = Te)glacez  + 10> Ve = Bo)gllFas
SR>V e (1 =309l 32
SR = 1)V gl (6.5)

where we have finally used Estimate (3.12) of Proposition 3.1. Now, let ﬁ? = {E e&P . EC w?} denote

the set of Dirichlet facets which lie in w} and note that #ﬁ? ~ #RP < #(T)\T,) up to shape regularity. The
combination of (6.3)-(6.5) yields

1/2
Wl S 10 =309y S 30 B0 = )V rgli2as
zEICZDﬂw% ,
by (1 = )V rgl3 2,
S Z oscpo(F)?,

EERY

1

due to (3.12)-(3.13) in Proposition 3.1. Defining the set
Re:=T\LU{T €T, : 3EcRP Ecar},

we observe Ty)\7, C Ry as well as #R¢ < #(7:\7Z.). Moreover, the definition of the local contributions of 7
n (4.1) shows

D osep(E)? < > m(T).

EeRP TER,

This concludes the proof. O

Corollary 6.2 (optimality of Dorfler marking for Scott—Zhang projection). For arbitrary 0 < k, < 1, there is
a constant 0 < 0, < 1 such that for all £ € Ny and all meshes T, € refine(7;) with 1?2 < k. 772, the set Ry C Ty
from Proposition 6.1 satisfies the Dorfler marking

077 < Y i(T)? (6.6)
TeER,y

for all0 < 6 <4,.
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Proof. We split the estimator into the contributions on the non-refined resp. refined elements

it= > mT)?P= > )P+ ) (1)

TEeT, TeT,NT. TET\T,

Arguing as for the estimator reduction in Proposition 4.2 with § = 1, we see

Yo oI <2 Y D) 4 Crea [V(Us = U720y < 2717 + Crea | V(Us = Uo) 13 2(02)-

TeT,NT, TeT,NT,

We now combine both estimates and use 772 < . 777 as well as the discrete local reliability with R, 2 7\ 7, to
see

W < 202+ Crea [V (O = U0 [Faoy + D W(T)? < 20070 + (CreaCare +1) Y T(T)*.
TET\T, TEeR,

Rearranging this estimate, we obtain

(CreaCare + 1) (1 = 26,) 77 < > Tu(T)?,

TERy
so that 0 < 6, := (CreaCair + 1)1 (1 — 2k4) < 1 concludes the proof. dJ

6.2. Optimality of newest vertex bisection

The quasi—optimality analysis of AFEM requires two properties of the mesh-refinement which are satisfied
for newest vertex bisection: First, for two triangulations 7/, 7" € T, let 7/ & 7" € T be the coarsest common
refinement of both. Since newest vertex bisection is a binary refinement rule, it can be proved that 7' & 7"
is just the overlay of both meshes, see [27], Proof of Lemma 5.2 for 2D and the generalization to arbitrary
dimension in [10], Lemma 3.7. Moreover, the number of elements of the overlay is controlled by

#(T' &T") <H#T' +#T" - #7T, (6.7)

since both meshes are generated from the initial mesh 7.

Second, we need the optimality of the mesh-closure, i.e. the definition 7,11 = refine(7y, M,) leads at least
to refinement of all marked elements T' € My. In addition, further elements T' € T,\ M, have to be refined to
ensure conformity of the mesh. It has been proved in [5], Theorem 2.4 for 2D that

4
#To1 — #To < Copy Y _#M; forall £ >0, (6.8)

Jj=0

i.e. the number of elements in 7;41 is bounded by the number of marked elements. The constant Cpyp > 0
depends only on 7 in the sense that the initial reference edge distribution had to satisfy a certain assumption.
Very recently [19], it could be proved that in 2D (6.8) holds without any further assumptions on 7y. For arbitrary
dimension, (6.8) has been proved in [28], Theorem 6.1 and 7; has to satisfy a certain assumption on the initial
reference edge distribution.

6.3. Proof of quasi—optimality of AFEM (Thm. 2.8)
In a first step, we prove that #M,; S A, 1/(22) T that end, let € > 0 be a free parameter which is determined

later. According to the definition of the approxumation class A, there is some triangulation 7; € T with

ne <e and #T. — #Tp Se Ve,
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where the hidden constant depends only on A,. We consider the overlay 7, := 7. ® 7;. Arguing as for the
estimator reduction (4.3) and use of the discrete local reliability for 7., we obtain

e S0e + [|V(Us — Us)HLz(Q) Se=ne <,

where we have finally used the equivalence of both error estimators provided by Lemma 5.1. Choosing
€ = dnp =~ dnp with sufficiently small § > 0, we thus infer

ﬁ* < "A{*ﬁé

with some appropriate 0 < kK, < Ky, where arbitrary 0 < k., < 1 in Proposition 6.2 fixes 0 < 0, < 1. The
constant %, will be determined later. Together with the overlay estimate (6.7), we infer

#Ry = #(T\T) < #T. — #T, < #T. — #To Se /e
as well as the Dorfler estimate
0.2 < 3 (1)
TeER,

We now need to show that this implies Stevenson’s modified Doérfler marking. To that end, we again employ
Lemma 5.1:
e In case of OSCQD’Z <4 g%, we employ Lemma 5.1 twice to see

0.0] SO0 < Y (T +osch, S D 0T +osch, < Y o(T)’ + doj.
TER, TeER, TER,

Put differently, we obtain

((Ceq + 1)720* - 19) Qg < Z QZ(T)Qa

TER,

i.e. for 0 < 9,07 < 1 sufficiently small, the set R, C 7; satisfies the marking criterion (2.11).
e In case of osc2D’Z > o o7, we use that the Dirichlet oscillations are locally determined, i.e.

Z oscp ¢(F)? = Z oscp «(F)? < OSCQDV* <2 <R ~Remp <F(14+0971) osc%j.
EegPnep EeegPnep
This estimate yields

(1—Fu(1+07")(Ceq +1)) osc2D’Z < Z oscp o(E)?
EegP\eP

For arbitrary 0 < 6> < 1 and sufficiently small 0 < k, < 1, we infer that EKD \&P satisfies the marking
criterion (2.12).

In the first case, minimal cardinality of M, C 7; in step (iii) of Algorithm 2.1 implies #M, < #R, ~
#(7,\7.). In the second case, minimal cardinality of MP C £F and the definition of M, C 7; in step (iv) of
Algorithm 2.1 imply # M, < #MP < #(EP\EP) < #(T\T,). In either case, we thus conclude

#My SHTN\T) Se /e~ 77;1/S ~ Azl/(zs) for all ¢ > 0.
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We now conclude the proof as e.g. in [10,27]: By use of the closure estimate (6.8), we obtain

~
[

-1

—1/(25)

#HT —#T0 S #M; Sy A7
7=0

J

I
o

Note that the contraction property (2.24) of A; implies Ay < k=7 A;, whence A;l/(zs) < gU=9)/(29) Azl/(zs).

According to 0 < k < 1 and the geometric series, this gives
-1
HT = #T) S AN D@ S ATYE) U,
j=0

Altogether, we may therefore conclude that (u, f,g,¢) € A, implies ny < (#7y — #7o)° for all £ > 0. The
converse implication is obvious by definition of A,.

6.4. Characterization of approximation class (Thm. 2.9)

First, note that for a given mesh 7, € T the estimator 7, dominates all oscillation terms, i.e.

0SCT % < My, OSCDx < Mk, OSCN % < T

We assume (u, f,g,¢) € Ay for some s > 0. For each N € N it exists 7, € T such that

Nfoscr « < N°n, < C:=sup inf N, < cc. (6.9)
NeN7T.€Tn
Analogously, we have
Néoscy . <C <oo and Nfoscp, < C < 0. (6.10)

The reliability result in Proposition 2.4 yields

min NSHU—V*HH1(Q) SNSHU—U*HH1(Q) SCrelen* SC’relC<oo. (6.11)
V.eSP(T,)

Because N € N was arbitrary, the estimates (6.9)—(6.11) prove (2.30)—(2.33).
Now, we assume that (2.30)—(2.33) hold for (u, f,g,¢). We aim to prove (u, f,g,¢) € As. By use of the
efficiency estimate in Proposition 2.4 and the Céa—type estimate in Proposition 2.3, we derive

sup inf N®n, < Ceg sup inf NS<C’ 62 Min u—V,
NenTieTy = el Ul Tlery ey, esr(T, H i o)

+ OSCTV* + oscN7* + osc%l*). (6.12)
For N € N, the assumptions (2.30)(2.33) guarantee meshes 7y, 7, Tuy, Tupp € T4 such that
(N/4)*  min_ flu—V,, ||g1(0) < sup _inf min _ N®|lu — Vi||g1 (o) =: Cu < 00,

Vi €5P(T4,) N>0T€Tn ViesS?(Ty)

(N/4)* oscr v, < sup _inf NPoscr . =: Cosep < 00,
N>07Z+€TnN

(N/4)? oscn sy < sup _inf Noscn . =: Cogep < 00,
N>07Z+€Tn

(N/4)* oscpxp < sup _inf Nfoscp , =: Cogep < 00.
N>07Z+€Tn
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Now, we consider the overlay 7, := 7., ® T,, ® 75 ® T;,. The overlay estimate (6.7) gives #7,. < N — 3#7,
whence #7, — #7y < N. Due to the fact that II;, and II7 are projections, we get immediately by definition of
the oscillation terms and SP(7.) 2 SP(7,,)

e
v = Vellme < oo = Vel o,

0SCT + < OSCT x5  OSCN x < OSCN wn s and oscp . < 0SCD %p -

Together with (6.12), we prove

inf N°n, < CegN°* (CCéa min

2 2 2 2
u— Vi[5 + osc5 , + osc + osc )
T.eTn V.eSP(T.) H *”H (£2) T ,* N, D,x

s : 2 2 2 2
S CeffN (CCéa V., 61’2171’(17:“) ||U - V*u ||H1(_Q) + OSCT7*T + OSCN,*N + OSCDy*D)
S Ceﬁ4is(CCéaCu + COSCT + C'oscN + COSCD) < 00,

where the constants are independent of N € N. Taking the supremum over N € N, we conclude (u, f, g, ¢) € A,.

7. NUMERICAL EXPERIMENTS

In this section, we provide numerical results for mixed boundary value problems in two and three space dimen-
sions for the lowest—order case p = 1. In both examples we choose ¢ = 6; = 05 in Algorithm 2.1. For comparison
of the individual contributions g, we further define the jump terms g,(€5)? = ZEegé(Z |T|1/d\|[8nUg]H%2(E),
the volume terms 0¢(2)? == Y rcr, |T|2/d\|f\|%2(T) and the Neumann terms gy(EV)? = ZEes,g\’ T Y| —
8nUgH%2(E) for the respective space dimension d € {2,3}. Throughout this section, the Dirichlet data are dis-
cretized by means of the Scott-Zhang projection. Further examples, where the L?-orthogonal projection is used
to discretize the Dirichlet data, are found in the extended preprint of this work [1].

7.1. 2D example on Z—shape

In our first example, we consider the Z-shaped domain 2 = (—1,1)?\conv{(0,0), (-1, —1),(0,—1)} with
mixed Dirichlet and Neumann boundary conditions. We prescribe the exact solution

u(x) = /7 cos(4p/7) (7.1)

of problem (1.1) in polar coordinates x = 7(cos ¢, sin ¢) and compute the Neumann and Dirichlet data thereof.
Note, that v is harmonic so that

—Au=f=0.

The solution u as well as the Dirichlet data g = u|r show a generic singularity at the reentrant corner r = 0.

Figure 1 (left) shows a comparison between uniform and adaptive mesh refinement, where the adaptivity
parameter @ varies between 1/4 and 1/16. It is easily seen that the optimal convergence rate O(N~1/2) is
obtained for all parameters 6, whereas uniform refinement leads only to suboptimal convergence behaviour of
approximately O(N -2/ 7). Note that due to f = 0, we have no volume contributions in this example.

In Figure 2 (left), we compare the jump terms, the Neumann terms, as well as the Dirichlet oscillations oscp ¢
for uniform and adaptive refinement. Even here, we observe better convergence rates with adaptive refinement.
Due to the corner singularity of the exact solution at r = 0, uniform refinement leads to a suboptimal convergence
behaviour, even for the oscillations.
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FiGURE 1. Numerical results for gy for uniform and adaptive mesh-refinement using 6 €
{1/4,1/8,1/16} in 2D (left) and 3D (right), plotted over the number of elements N = #7;.
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FIGURE 2. Numerical results for o,(E), 0¢(EY) and oscp for uniform and adaptive mesh—
refinement using 0 = 0.25 in 2D (left) and 3D (right), plotted over the number of elements
N = 4T,

7.2. 3D example on the Fichera cube

As computational domain serves the Fichera cube 2 = (—1,1)3\[0, 1]> which has a concave corner and three
reentrant edges. The partition of the boundary I" = 02 into Dirichlet boundary I'p and Neumann boundary Iy,
as well as the initial surface mesh is shown in Figure 3. We solve problem (1.1) with right—hand side

5
f(.T,y,Z) = _1_6 (xz + y2 + 22)77/8'

The boundary data are prescribed by the trace resp. normal derivative of the exact solution
u(z,y,z) = (@ + 97 + 228

which has a singular gradient at the reentrant corner at the origin. Similar to the 2D case, we provide comparisons
for various adaptivity parameters. In Figure 1 (right), we compare uniform and adaptive mesh refinement
where the adaptivity parameter is again varied between 1/4 and 1/16. As in the 2D case, we observe optimal
convergence rate O(N~1/3) for all choices of §. Due to the generic singularity at the center, uniform refinement
leads only to suboptimal convergence rate of O(N —2/ 9).

In Figure 2 (right), we compare each contribution of the estimator separately for uniform and adaptive
refinement with § = 1/4. For adaptive refinement, we observe optimal order of convergence even for Qg(é’f ),
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F1GURE 3. Fichera cube with boundary of the initial mesh 75 and 73y with N = 200.814 for
§ = 0.25. The Dirichlet boundary I'p = {—1} x [~1,1]? is marked red, whereas the blue parts
denote the Neumann boundary I'\I'p.

0e(02), gg(SéV ), and oscp . Uniform refinement, on the other hand, leads to suboptimal convergence rate also
for the individual contributions.

The computational domain, with initial (surface) mesh 7y as well as the adaptively generated mesh 73y with
#7350 = 200.814 elements is finally shown in Figure 3. As expected, the refinement is basically concentrated
around the singularity at the origin.
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