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MATHEMATICAL MODELING OF TIME-HARMONIC AEROACOUSTICS
WITH A GENERALIZED IMPEDANCE BOUNDARY CONDITION

Eric luneville1 and Jean-Francois mercier1

Abstract. We study the time-harmonic acoustic scattering in a duct in presence of a flow and of a dis-
continuous impedance boundary condition. Unlike a continuous impedance, a discontinuous one leads
to still open modeling questions, as in particular the singularity of the solution at the abrupt transition
and the choice of the right unknown to formulate the scattering problem. To address these questions
we propose a mathematical approach based on variational formulations set in weighted Sobolev spaces.
Considering the discontinuous impedance as the limit of a continuous boundary condition, we prove
that only the problem formulated in terms of the velocity potential converges to a well-posed problem.
Moreover we identify the limit problem and determine some Kutta-like condition satisfied by the ve-
locity: its convective derivative must vanish at the ends of the impedance area. Finally we justify why
it is not possible to define limit problems for the pressure and the displacement. Numerical examples
illustrate the convergence process.
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1. Introduction

We are interested in the modeling of sound propagation in lined ducts with flow. This problem has been
extensively studied, in particular because of its industrial applications, especially acoustic treatment used on the
inside surface of commercial aircraft jet engines for fan noise reduction. We consider a 2D straight duct, a uniform
subsonic mean flow with lining of impedance type, described by the Ingard–Myers boundary condition [1, 2].
This condition incorporates both the impedance of the lining and the effect of the slipping mean flow [3, 4].

In this paper we focus on the case of sound scattering by liner discontinuities. We consider a localized lining
where the treated area is a finite segment and involving two impedance discontinuities between a hard wall
and a lined wall. Due to the flow such sharp transition leads to modeling and mathematical difficulties and
there is as of yet no complete description of the physical mechanisms which take place at the transition. Indeed
the Myers boundary condition involves a second order tangential derivative: it requires some regularity of the
acoustic field on the treated boundary which is rather incompatible with a discontinuous impedance. The two
main open questions are the following:
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– the behavior of the solution near a discontinous transition between rigid and lined surfaces,
– the choice of the right unknown used for the representation of the acoustic field.

The second point is linked to the first since the nature of the singularity observed at the liner discontinuity is
different depending on whether the acoustic variable is pressure, velocity potential, displacement potential, etc . . .

These issues have been already addressed in previous studies of the acoustic scattering at a liner disconti-
nuity using modal matching methods or Wiener–Hopf approaches, and some insights have been gained. Mode-
matching techniques are widely used, particularly in acoustical engineering, to predict sound propagation in
ducts. They require understanding the behavior of the acoustic field at the liner discontinuity since the choice
of a particular mode-matching method relates to such a behavior: using pressure and velocity in the standard
matching conditions implies that these quantities are sufficiently well behaved to apply the matching. With
no flow, mode-matching methods are relatively well established, and the continuity of pressure and axial ve-
locity is generally applied. In lined ducts with flow, the same continuity conditions are currently used in most
mode-matching schemes, although the validity of such an approach is questionable since the behavior of the
solution at the transition between a hard wall and a lined wall is not well understood. Even when the flow
in the duct is uniform, singularities of acoustic pressure can occur at impedance discontinuities and must be
taken into account when solutions are matched [5, 6]. Different mode-matching conditions, mixing the velocity
and the pressure, have been proposed [5, 7–9] but there is no rigorous mathematical theory yet. Recently, in
order to deal more accurately with liner discontinuity with flow, a modified mode-matching scheme based on
conservation of mass and momentum has been proposed to derive the corresponding matching conditions [6].
Different matching conditions have been compared and significant differences have been observed. In the process
of deriving the matching conditions, it appeared that in addition to the matching conditions, edge conditions
have to be introduced to specify the behavior of the solution at the liner discontinuity. To express such edge
conditions, the choice of variable becomes important: the normal acoustic displacement and its axial derivative
can be taken to be continuous and such conditions lead to an acoustic field that corresponds to smooth stream-
lines along the wall. Continuity of the velocity potential can also be considered. This edge condition is relevant
when comparing with finite element models based on the full potential theory which is written for the velocity
potential.

An alternative way to solve the problem of sound scattering by an impedance discontinuity in a duct with
flow is to use Wiener−Hopf techniques [10]. An explicit Wiener−Hopf solution has been derived to describe
the scattering of duct modes at a hard-soft wall impedance transition in a circular duct with uniform mean
flow [11,12]. In Wiener−Hopf techniques, vortex shedding from the wall discontinuity can be taken into account.
Such vorticies are due to the excitation of an unstable surface wave [13–15]. When taking into account instability,
it is possible to control the behavior of the solution near the discontinuity by introducing a parameter that
can be interpreted as the amount of vorticity shedding across the discontinuity. This parameter is fixed by
application of the Kutta condition [16, 17]. Note that this additional degree of freedom does not appear so
clearly in mode-matching techniques but has certainly a link with the edge conditions of the mode-matching
techniques. With no Kutta condition a plausible edge condition at x = 0 (the location of the discontinuity)
requires at least a continuous wall streamline r = 1 + h(x, t) (for a duct of radius R = 1) no more singular than
h = O(x1/2) (this implies the same singularity for the pressure p which varies like h on the boundary). When
vortex shedding is taken into account, the edge condition requires the wall streamline to be no more singular
than h = O(x3/2). The physical relevance of this Kutta condition is still an open question, but the use of a
Kutta or no-Kutta condition at the discontinuity has been shown to affect significantly the modal scattering.
The available experiments [18,19] give indirect but convincing arguments for the possible existence of instability
waves along the liner.

As there is no model to deal completely satisfactorily with a discontinuous transition treated/rigid boundary,
we propose as a first step, a complete theoretical analysis for a regularized transition (with a transition area
of width ε). In a second step, we study the limit process as ε goes to 0. A variational approach is chosen,
because it enables a rigorous mathematical treatment of the difficulties and also it simplifies the treatment of
the regularity at the discontinuous transition: the singular behavior of the solution is naturally controlled by



MODELING OF AN IMPEDANCE CONDITION IN AEROACOUSTICS 1531

the choice of the variational space. No specific treatment like the edge conditions for mode-matching methods
or the Kutta condition for the Wiener−Hopf approach has to be introduced. Due to the presence of a second
order tangential derivative in the Myers condition, the case of a discontinuous transition is incompatible with
a variational approach: the integration by parts of the Myers condition induces some non-controlled boundary
terms. Treatment of these terms is delicate. Either it is not precised [20] or else it is achieved thanks to a
specific treatment of the pressure gradient [21]: a gradient elimination which requires adding new functions to
the finite element basis or the gradient evaluation which imposes to use C1 continuous elements. Note that these
boundary terms cannot be simply removed since the singular behavior of the solution at the liner discontinuities
is unknown.

To avoid such singular boundary terms we consider a smooth transition over a finite distance of length ε. Then
we take the limit as ε → 0 to model an abrupt discontinuity. Such an approach has been successfully used to
establish appropriate matching conditions [6] or to derive the variational formulation of the potential problem,
when both the base flow velocity and the acoustic velocity derive from scalar potentials [22]. We propose a
complete theoretical analysis for such a regularized transition, considering three different unknows: the pressure
pε, the velocity potential ϕε and the displacement potential ζε. Since these unknows are linked by the relations
pε = Dϕε and ϕε = Dζε where D is the convective derivative, each of them has a different singular behavior at
the liner discontinuity. In this paper we will show that the advantages of considering a smooth transition are
the following:

(1) the three unknowns, pε or ϕε or ζε satisfy different variational formulations which are all well-posed, con-
sidering weighted sobolev spaces [23, 24],

(2) no boundary condition at the liner ends are necessary to derive any of the variational formulations.

The limit ε→ 0 is delicate to perform since we have to face a singularly perturbed problem [25–28]: the solution
for ε = 0 is more regular on the treated boundary than the solution for any finite value of ε. This sudden change
of variational space has to be treated carefully. In the following we will prove that

• we can define a limit problem (for ε = 0) when considering the velocity potential formulation and that ϕε

converges to the solution ϕ0 of the limit problem when ε→ 0,
• ϕ0 satisfies a Kutta-like condition at the liner ends: Dϕ0 = 0
• only the velocity formulation converges to a well-posed variational problem when ε→ 0,
• we can formally determine the limit of pε and of ζε and understand why they don’t satisfy a well-posed

variational limit problem,
• the limit p0 of pε is discontinuous on the wall and vanishes at the end of the treated area.

The outline of the paper is the following. In Section 2 we present the equations for the three unknowns−velocity
potential, pressure and displacement−and we explain the difficulties due to discontinuous impedance. Sections 3
and 4 focus on the velocity potential formulation. In Section 3 the well-posedness of the velocity potential
formulation for a continuous boundary is proved, introducing weighted Sobolev spaces. Section 4 concerns
the convergence of the regularized velocity potential formulation to the limit problem when ε goes to 0. The
variational formulations for the two other unknowns are presented in Section 5 and the limit pressure and limit
displacement are exhibited. Finally, Section 6 is concerned with the numerical illustrations of the limit process.
We have reported in the appendix the intricate mathematical proofs.

2. Problem setting

2.1. Geometry and equations

We consider a two-dimensional infinite duct Ω̃∞ = {(x, y); 0 < y < H} of height H and of boundary
∂Ω̃∞ = Γ̃ ∪ Γ̃∞

0 where Γ̃ = {(x, y); y = H and 0 < x < L} is the treated boundary and Γ̃∞
0 is a hard wall. The
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Figure 1. Geometry of the problem.
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Figure 2. Restriction to a bounded problem.

duct is filled with a compressible fluid in a uniform flow of velocity noted U (U ≥ 0), see Figure 1. In the time-
harmonic regime and with a time dependence e−iωt omitted, the equation of mass conservation combined with
the equation of state, and the equation of momentum conservation are⎧⎪⎪⎨

⎪⎪⎩
div v =

1
ρ0c20

(
U
∂

∂x
− iω

)
p,

ρ0

(
U
∂

∂x
− iω

)
v = −∇p,

(2.1)

where v is the velocity perturbation, p is the acoustic pressure, and ρ0 and c0 are the constant ambient density
and speed of sound in air. Pressure, velocities, and lengths are, respectively, divided by ρ0c

2
0, c0 and L to reduce

equations (2.1) to the dimensionless form {
div v = Dp,
Dv = −∇p,

(2.2)

where D = M∂/∂x − ik is the dimensionless convective derivative with M = U/c0 the Mach number and
k = ωL/c0 the dimensionless wave number. Eliminating the pressure in equation (2.2) leads to the convected
Helmholtz equation

−Δp+D2p = 0 in Ω∞, (2.3)

where Ω∞ = {(x, y); 0 < y < h} with h = H/L. The boundary condition on the hard walls Γ0 is the slip
condition which reads v · n = 0 = ∂p/∂n where n is the normal vector to the wall. The Myers boundary
conditions on the liner Γ = {(x, y); y = h and 0 < x < 1} will be detailed in the next section.

In order to formulate the diffraction problem, we will derive a formulation set in the bounded domain
Ω = {(x, y) ∈ Ω∞;−R < x < R, 0 < y < h} (see Fig. 2) where R > 1 (such that ∂Ω includes the liner Γ ).
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To do so, we define on the fictitious boundaries Σ± = {(x, y);x = ±R and 0 < y < h} the exact radiation
conditions

∂p

∂n
= −T±p, on Σ±.

The Dirichet-to-Neumann operators are defined (more completely in Appendix 7) as follows

T± : H
1
2 (Σ±) → H− 1

2 (Σ±),

p → ∓i
∑
n≥0

β±
n (p, wn)Σ±wn,

where wn(y) are the transverse guide modes and (u, v)Σ± =
∫

Σ±
uv̄dy.

2.2. Impedance boundary condition

On the liner Γ the Myers boundary condition [2] reads

βp = −iωξ · n,

where β(x) is the liner admittance with �e(β) > 0 (to absorb sound) and ξ is the fluid displacement, linked to
the velocity by v = Dξ. In a dimensionless form this boundary condition becomes

Y p = −ikξ · n,

where Y (x) = ρ0c0β(x) is the dimensionless admittance. If Y is extended by 0 outside Γ then this condition is
valid on the whole upper wall (ξ ·n = 0 on Γ0). The Myers boundary condition naturally mixes the pressure and
the displacement. It is usual to express it in terms of only one unknown, the pressure, the velocity potential ϕ
(v = ∇ϕ) or the displacement potential ζ (ξ = ∇ζ). Then the Myers boundary condition takes three different
forms

(1) Pressure model

Using D(ξ · n) = v · n and D(v · n) = − ∂p

∂n
leads to

∂p

∂n
=

1
ik
D2 (Y p) .

Note that since Y depends on x it does not commute with the operator D.
(2) Velocity potential model

From p = −Dϕ and D(ξ · n) =
∂ϕ

∂n
one gets

∂ϕ

∂n
=

1
ik
D (Y Dϕ) .

(3) Displacement potential model
The links ϕ = Dζ and p = −D2ϕ lead to

∂ζ

∂n
=
Y

ik
D2ζ.
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Note that although the form of the impedance boundary condition depends on the variable choice, this is not
the case for the convected Helmholtz equation (2.3): this equation is valid for the pressure, the velocity or the
displacement potential.

2.3. The difficulties of a discontinuous transition

In this part we will show that whichever is the chosen unknown, p, ϕ or ζ, a discontinuous boundary condition
leads to mathematical problems. Indeed for a discontinuous transition due to an admittance constant by parts
Y (x) = Y0η(x) with η = 1 for x ∈ [0, 1], η = 0 for x < 0 and x > 1 and Y0 a complex constant, the boundary
condition at y = h reads (formally):

(1) for the pressure model

∂p

∂n
=
Y0

ik

[
(δ′0 − δ′1)M

2p+ 2(δ0 − δ1)MDp+ ηD2p
]
;

(2) for the velocity potential model

∂ϕ

∂n
=
Y0

ik

[
(δ0 − δ1)MDϕ+ ηD2ϕ

]
;

(3) for the displacement potential model

∂ζ

∂n
=
Y0

ik
ηD2ζ.

For the pressure and the velocity potential models the boundary conditions involve Dirac distributions and thus
it requires some appropriate regularity properties for the pressure and for the velocity potential at the liner
edges (more regular than H1(Ω)). The displacement potential seems to be the right unknown to choose since no
Dirac distribution appears in the boundary condition. However when establishing the variational formulation of
the scattering problem, the integration by parts introduces some non-conventional terms on the wall at y = h

Y0

ik

∫
R

η(D2ζ)ζ̄dx =
Y0

ik

∫
Γ

(D2ζ)ζ̄dx = −Y0

ik

{∫
Γ

DζDζdx− [
M(Dζ)ζ

]x=1

x=0

}
.

The term
[
(Dζ)ζ

]x=1

x=0
is not compliant with a variational approach, unless Dζ = 0 or ζ = 0 at x = 0 and x = 1

but such an assumption requires knowing the behavior of ζ at the liner edges.
An alternative to treat a discontinuous boundary condition is to consider a smooth impedance transition.

Then the three unknowns lead to well-posed variational formulations, which gives a mathematical framework
to study the convergence toward a discontinuous impedance. In particular we will prove that the velocity
potential converges to a limit problem whose solution ϕ satisfies on the treated part Γ : ϕ ∈ H1(Γ ), ∂ϕ/∂n =
(1/ik)D (Y Dϕ) in D′(Γ ) with Dϕ(0+, h) = 0 = Dϕ(1−, h). The last boundary conditions at the ends of the
treated wall was not obvious.

Remark 2.1. Since the admittance is obtained by some homogenization process completely neglecting the
transition zone from the lined to the rigid part of the walls, an abrupt change in the admittance is physically
not relevant and a smooth transition is certainly closer to reality. However, the explicit expression of this smooth
transition is unknown, and it is useful to determine the limit problem without continuous transition.
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3. Velocity solution in the regularized case

3.1. Variational formulation

In this section we restrict ourselves to a regularized impedance boundary condition and we focus on the
velocity potential problem for a source f ∈ L2(Ω) compactly supported in Ω⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−Δϕ+D2ϕ = f, in Ω,

∂ϕ

∂n
= 0, on Γ0,

∂ϕ

∂n
= −T±ϕ, on Σ±,

∂ϕ

∂n
=
Y0

ik
D (ηεDϕ) , on Γ.

(3.1)

Y0 ∈ C is a constant and ηε(x) ∈ C0(R) is the regularisation function which for ε ≤ 1/2 is chosen as

ηε =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x

ε
if x ≤ ε,

1 if ε ≤ x ≤ 1 − ε,

1 − x

ε
if 1 − ε ≤ x ≤ 1.

(3.2)

Let us introduce the two weighted Sobolev spaces

Vε =
{
ϕ ∈ H1(Ω), η

1
2
ε D(ϕ|Γ ) ∈ L2(Γ )

}
, (3.3)

and
V =

{
ϕ ∈ H1(Ω), η

1
2D(ϕ|Γ ) ∈ L2(Γ )

}
(3.4)

where D (ϕ|Γ ) has to be understood in the distributional sense on Γ and where we note

η =
1
2
η 1

2
=

{
x if x ≤ 1

2 ,

1 − x if 1
2 ≤ x ≤ 1.

Note that
{
ϕ ∈ H1(Ω), ϕ|Γ ∈ H1(Γ )

} ⊂ V ⊂ {
ϕ ∈ H1(Ω), ϕ|Γ ∈ H1

loc(Γ )
}
.

Problem (3.1) has the equivalent variational form{
Find ϕε ∈ V such that

aε(ϕε, ψ) =
∫

Ω fψ̄dxdy for all ψ ∈ V,
(Pε)

where the sesquilinear form aε(ϕ, ψ) is defined by

aε(ϕ, ψ) =
∫

Ω

(∇ϕ · ∇ψ̄ −DϕDψ
)
dxdy + 〈S±ϕ, ψ〉± +

Y0

ik

∫
Γ

ηεDϕDψdx.

The Dirichlet-to-Neumann operators S± are defined by

S±ϕ = (1 −M2)T±ϕ∓ ikMϕ = −i
∑
n≥0

√
k2 −

(nπ
h

)2

(1 −M2) (ϕ,wn)Σ±wn,

and where 〈·, ·〉± is the duality product between H
1
2 (Σ±) and its dual H− 1

2 (Σ±).
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Remark 3.1. Note that the natural space should be Vε defined in (3.3) instead of V . It is easy to see that for
all 0 < ε ≤ 1/2, the spaces family Vε does not depend on ε and more precisely that all the spaces Vε are equal
to V . Indeed Vε is the space of the functions ϕ ∈ H1(Ω) with ϕ|Γ ∈ H1

loc such that x|∂ϕ(x, h)/∂x|2 is integrable
at x = 0 and (1 − x)|∂ϕ(x, h)/∂x|2 is integrable at x = 1.

Note also that the boundary term obtained after integration by parts

Y0

ik
M

[
ηε(Dϕ)ψ̄

]x=1

x=0
,

vanishes thanks to ηε(0) = 0 = ηε(1) without requiring any condition on ψ.

Remark 3.2. In fact the space V controls the singular behavior of the velocity potential at the discontinuous
transition: the solution is such that ϕ ∈ H1(Ω) and ϕ|Γ ∈ H1

loc(Γ ) and as we will show later (Lem. A.2) we
have at the liner ends the regularity lim

x→0+
x

1
2ϕ(x, h) = 0 = lim

x→1−
(1 − x)

1
2ϕ(x, h). Although the behavior of the

solution at the liner ends is not required to pass to the limit ε→ 0, it is possible to specify more explicitely the
nature of the singularities at the liner ends. For instance in the neighborhood of the point (0, h), using polar
coordinates (r, θ) and the Euler change of variable (r, θ) → (z, θ) with z = − log r, such singular behaviors can
be found, analytically if Y0 is real, numerically in other cases by solving a dispersion relation.

Our first aim is to prove the well-posedness of problem (3.1) in V , which equipped with the norm ‖ϕ‖2
V =

‖ϕ‖2
H1(Ω) +

∣∣∣∣∣∣η 1
2D(ϕ|Γ )

∣∣∣∣∣∣2
L2(Γ )

is an Hilbert space.

3.2. Well-posedness of the regularized problem

To prove the well-posedness we mainly follow a rather standard procedure, for instance detailed in [29]. How-
ever the presence of an impedance boundary condition introduces new difficulties and requires the introduction
of new proof arguments, which we will detail now.

We now establish a Fredholm decomposition of formulation (Pε). It is obvious that

aε(ϕ, ψ) = bε(ϕ, ψ) + cε(ϕ, ψ),

where

bε(ϕ, ψ) =
∫

Ω

[
(1 −M2)

∂ϕ

∂x

∂ψ

∂x
+
∂ϕ

∂y

∂ψ

∂y
+ ϕψ

]
dxdy +

〈
Se
±ϕ, ψ

〉
± +

Y0

ik

∫
Γ

ηεDϕDψdx,

and

cε(ϕ, ψ) =
∫

Ω

[
−(1 + k2)ϕψ + ikM

(
ϕ
∂ψ

∂x
− ∂ϕ

∂x
ψ

)]
dxdy +

〈
Sp
±ϕ, ψ

〉
± .

The Dirichlet-to-Neuman operators Sp/e
± are defined by

⎧⎪⎨
⎪⎩
Sp
±ϕ = −i∑n≤N

√
k2 − (

nπ
h

)2 (1 −M2) (ϕ,wn)Σ±wn,

Se
±ϕ =

∑
n>N

√(
nπ
h

)2 (1 −M2) − k2 (ϕ,wn)Σ±wn,

where N is the integer part of kh/π
√

1 −M2. Sp is the “propagative” part of S in the sense that only the
propagative guide modes are taken into account in the modal expansion and Se is the “evanescent” part.
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Theorem 3.3. For �e(Y0) > 0, problem (Pε) is of Fredholm type.

Proof. This theorem results from the following properties:

(1) Coercivity
Taking ψ = ϕ leads to

bε(ϕ,ϕ) =
∫

Ω

[
(1 −M2)

∣∣∣∣∂ϕ∂x
∣∣∣∣
2

+
∣∣∣∣∂ϕ∂y

∣∣∣∣
2

+ |ϕ|2
]

dxdy +
〈
Se
±ϕ,ϕ

〉
± − iY0

k

∫
Γ

ηε |Dϕ|2 dx.

Let us note iY0 = i�e(Y0) − �m(Y0) = |Y0| eiθ where θ = Arg(Y0) + π/2 ∈]0, π[. We introduce the decom-
position

bε(ϕ,ϕ) = α(ϕ) − eiθβ(ϕ) + γ(ϕ),

where we have introduced the positive forms

α(ϕ) =
∫

Ω

[
(1 −M2)

∣∣∣∣∂ϕ∂x
∣∣∣∣
2

+
∣∣∣∣∂ϕ∂y

∣∣∣∣
2

+ |ϕ|2
]

dxdy,

β(ϕ) =
|Y0|
k

∫
Γ

ηε |Dϕ|2 dx,

γ(ϕ) =
〈
Se
±ϕ,ϕ

〉
± =

∑
n≥N

√(nπ
h

)2

(1 −M2) − k2 |(ϕ,wn)Σ± |2 .

The lower bound: |bε(ϕ,ϕ)|2 = |λ − eiθβ|2 = (λ − β)2 + 4λβ sin2

(
θ

2

)
≥ sin2

(
θ

2

)
(λ + β)2 for λ = α + γ,

leads to the coercivity constant

|bε(ϕ,ϕ)| ≥ sin
(
θ

2

)
min

[
(1 −M2),

|Y |
k

]
‖ϕ‖2

V ,

since γ(ϕ) ≥ 0 and ηε ≥ η. Note that sin (θ/2) �= 0 because θ = 0 implies that �e(Y0) = 0.

Remark 3.4. In the unphysical case �e(Y0) < 0, bε(ϕ, ψ) is also coercive. If �e(Y0) = 0 there is coercivity
if �m(Y0) > 0.

(2) The bounded operator Cε of V defined by the identity

(Cεϕ, ψ)V = cε(ϕ, ψ) for all ϕ, ψ ∈ V

is compact. Indeed

cε(ϕ, ψ) =
∫

Ω

[
−(1 + k2)ϕψ̄ + ikM

(
ϕ
∂ψ

∂x
− ∂ϕ

∂x
ψ̄

)]
dxdy,

− i
∑
n≤N

√
k2 −

(nπ
h

)2

(1 −M2) (ϕ,wn)Σ±(wn, ψ)Σ± .

Therefore it is infered from the compacity of the embedding of H1(Ω) (and thus of V ) into L2(Ω) and from
the fact that the number of terms in the sum is finite. �

By using the Fredholm alternative, problem (Pε) is well-posed if and only if the homogeneous problem

Find ϕ ∈ V such that aε(ϕ, ψ) = 0 for all ψ ∈ V, (3.5)

has no solution except the trivial one ϕ = 0. We first characterize this solution.
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Lemma 3.5. For �e(Y0) > 0, if ϕ is a nontrivial solution of (3.5), then it is a solution of

Find ϕ ∈ H1(Ω) such that a′(ϕ, ψ) = 0 ∀ψ ∈ H1(Ω) (3.6)

where

a′(ϕ, ψ) =
∫

Ω

(∇ϕ · ∇ψ̄ −DϕDψ
)
dxdy +

〈
Se
±ϕ, ψ

〉
± .

Proof. Let us recall first that

aε(ϕ, ψ) = a′(ϕ, ψ) +
〈
Sp
±ϕ, ψ

〉
± +

Y0

ik

∫
Γ

ηεDϕDψdx.

The proof consists in considering �m[aε(ϕ,ϕ)] = 0. It reads

−�m[aε(ϕ,ϕ)] =
∑
n≤N

√
k2 −

(nπ
h

)2

(1 −M2) |(ϕ,wn)Σ± |2 +
1
k
�e(Y0)

∫
Γ

ηε|Dϕ|2dx.

Since �e(Y0) > 0 we deduce that (ϕ,wn)Σ± = 0 ∀n ≤ N (this proves that the solutions of the homogeneous
problem (3.5) have an exponential decay at infinity) and that Dϕ = 0 in L2(Γ ). Therefore Sp

±ϕ = 0 and

Y0

ik

∫
Γ

ηεDϕDψdx = 0. �

Remark 3.6. In the unphysical case �e(Y0) ≤ 0 Lemma 3.5 does not apply.

We can now conclude this paragraph with the

Theorem 3.7. Problem (Pε) is well-posed.

Proof. By Fredholm alternative, problem (Pε) is well-posed if and only if the homogeneous problem (3.6) has
no solution except the trivial one ϕ = 0. Such a solution can be extended to a solution w in the unbounded
domain Ω∞, defined by

Find w ∈ H1(Ω∞) such that a′′(w,ψ) = 0 ∀ψ ∈ H1(Ω∞),

where

a′′(w,ψ) =
∫

Ω∞

(∇w · ∇ψ̄ −DwDψ
)
dxdy.

This extension w of ϕ is simply{
w = ϕ|Ω in Ω,

w =
∑

n>N (ϕ,wn)Σ±eiβ±
n (x∓R)wn(y) for ± x > R.

Note that w ∈ H1(Ω∞) since the serie expansions just involve evanescent modes. Therefore we have to find
w ∈ H1(Ω∞) such that

−Δw +D2w = 0 in D′(Ω∞),

∂w

∂n
= 0 on ∂Ω∞.
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To conclude we just have to show that w = 0. The horizontal Fourier transform ŵ(ξ, y) satisfies for all ξ ∈ R

−d2ŵ

dy2
= [(Mξ − k)2 − ξ2]ŵ for y ∈]0, h[,

dŵ
dy

= 0 at y = 0 and h.

Decomposing ŵ on the transverse L2-basis (wn)n∈N, it is easy to prove that ŵ = 0 for nearly every values of ξ
(ŵ �= 0 only if (Mξ − k)2 − ξ2 = (nπ/h)2, n ∈ N). �

4. Convergence results

We will now consider the limit ε → 0. First we will determine the limit problem and then we will prove the
convergence of the solution of the problem Pε toward the solution of the limit problem P0.

4.1. The limit problem

To prove the convergence of ϕε as ε tends to 0, we have to derive (formally) the “limit” problem (for ε = 0)
and to prove its well-posedness. Its solution will be proved in Paragraph 4.2 to be the limit of the sequence ϕε.
Defining the limit space

V0 =
{
ϕ ∈ H1(Ω), D(ϕ|Γ ) ∈ L2(Γ )

}
, (4.1)

the limit problem (P0) is obviously:
Find ϕ0 ∈ V0 such that

a0(ϕ0, ψ) =
∫

Ω

fψ̄dxdy for all ψ ∈ V0, (P0)

where for all ϕ and ψ ∈ V0

a0(ϕ, ψ) =
∫

Ω

(∇ϕ · ∇ψ̄ −DϕDψ
)
dxdy + 〈S±ϕ, ψ〉± +

Y0

ik

∫
Γ

DϕDψdx.

Remark 4.1. The strong associated problem is found to be:
Find ϕ ∈ V0 such that ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−Δϕ+D2ϕ = f, in Ω,

∂ϕ

∂n
= 0, on Γ0,

∂ϕ

∂n
= −T±ϕ, on Σ±,

∂ϕ

∂n
=
Y0

ik
D2ϕ, on Γ,

Dϕ(0+, h) = 0 = Dϕ(1−, h).

Only the boundary conditions at the liner ends x = 0 and x = 1 was not easy to guess. Note that such conditions
can be seen as Kutta-like conditions.

As for the regularized problem we have the results

(1) The space V0 defined in (4.1) equipped with the norm ‖ϕ‖2
0 = ‖ϕ‖2

H1(Ω) + ||D(ϕ|Γ )||2L2(Γ ) is an Hilbert
space.

(2) Problem (P0) is of Fredholm type and is well-posed.

Now we will prove that Pε → P0 when ε→ 0. The main difficulty lies in the variational spaces: for all ε > 0 the
problem Pε is defined in the space V (defined in Eq. (3.4)) independent of ε while P0 is defined in V0 (defined
in Eq. (4.1)) with V0 ⊂ V , V0 �= V . Therefore there is no continuous transition for the solution spaces.
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4.2. Convergence of the regularized problem

First we will prove that the solution ϕε of Pε converges weakly to the solution ϕ0 of P0 when ε → 0. To
prove the strong convergence, the key point will be to prove that V0 is dense in V (Lem. 4.6).

Before taking the limit ε→ 0 let us introduce a definition: for all ϕ ∈ V

‖ϕ‖2
ε = ‖ϕ‖2

H1(Ω) +
∣∣∣∣∣∣η 1

2
ε D(ϕ|Γ )

∣∣∣∣∣∣2
L2(Γ )

. (4.2)

Remark 4.2. Although the norm ‖ϕ‖ε is not well adapted to the limit process ε→ 0 since it depends on ε, it
will turn out to be useful since it appears naturally in the variational formulation. Note that for all ϕ ∈ V

‖ϕ‖V ≤ ‖ϕ‖ε,

and moreover for all ϕ ∈ V0 ⊂ V
‖ϕ‖V ≤ ‖ϕ‖ε ≤ ‖ϕ‖0,

since η ≤ ηε ≤ 1. Therefore for any sequence ϕε ∈ V , if ‖ϕε − ϕ‖ε → 0 as ε→ 0, then ϕ ∈ V but this does not
imply that ϕ ∈ V0. This is the complicated point of our study.

Now we will prove the

Theorem 4.3. If ϕε ∈ V is the solution of (Pε) and ϕ0 ∈ V0 the solution of (P0), then ‖ϕε − ϕ0‖2
ε =

‖ϕε − ϕ0‖2
H1(Ω) +

∣∣∣∣∣∣η 1
2
ε D(ϕε − ϕ0)

∣∣∣∣∣∣2
L2(Γ )

→ 0 as ε→ 0.

In this aim we proceed in three steps: in the first step, we suppose that the sequence ϕε ∈ V is such that
‖ϕε‖ε is bounded and prove that it converges weakly to ϕ0. In the second step, we prove that the convergence is
strong. Finally in the third step, we prove that the hypothesis of the first step (boundedness of ϕε) is necessarily
true, which achieves the proof.

4.2.1. Weak convergence

Let us assume that the sequence ϕε ∈ V is such that ‖ϕε‖ε is bounded. Then due to the definition (4.2) of
‖ · ‖ε, it is deduced that we can extract a sequence, denoted also ϕε, which satisfies: there exists ϕ ∈ H1(Ω)
and w ∈ L2(Γ ) such that ⎧⎨

⎩
ϕε ⇀ ϕ in H1(Ω),

η
1
2
ε D(ϕε|Γ ) ⇀ w in L2(Γ ).

We will show now that w = D(ϕ|Γ ) in L2(Γ ). In this aim we will prove that η
1
2
ε D(ϕε|Γ ) → D(ϕ|Γ ) in D′(Γ ).

Thanks to the continuity of the trace application from H1(Ω) into H
1
2 (Γ ) and thanks to the compact embedding

of H
1
2 (Γ ) into L2(Γ ) we deduce that

ϕε|Γ → ϕ|Γ in L2(Γ ).

It follows that η
1
2
ε ϕε|Γ → ϕ|Γ in L2(Γ ) since

‖η 1
2
ε ϕε − ϕ‖L2(Γ ) ≤ ‖η 1

2
ε (ϕε − ϕ)‖L2(Γ ) + ‖(η 1

2
ε − 1)ϕ‖L2(Γ ),

≤ ‖ϕε − ϕ‖L2(Γ ) +
(∫

Γ

(η
1
2
ε − 1)2 |ϕ|2 dx

) 1
2

,

the last term tending to 0 thanks to Lebesgue’s theorem. In addition since ϕε|Γ → ϕ|Γ in D′(Γ ) we deduce that

∂

∂x
(ϕε|Γ ) → ∂

∂x
(ϕ|Γ ) in D′(Γ ),
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and also that
η

1
2
ε
∂

∂x
(ϕε|Γ ) → ∂

∂x
(ϕ|Γ ) in D′(Γ ).

Indeed ∀φ ∈ D(Γ ), η
1
2
ε φ = φ for ε small enough (as soon as Supp(φ) ⊂]ε, 1 − ε[). Therefore〈

η
1
2
ε
∂ϕε

∂x
, φ

〉
=
∫

Γ

η
1
2
ε
∂ϕε

∂x
φ dx =

∫
Γ

∂ϕε

∂x
φ dx =

〈
∂ϕε

∂x
, φ

〉

for ε small enough. Note that
∫

Γ

∂ϕε

∂x
φ dx is defined since ϕε|Γ ∈ H1

loc(Γ ). To conclude we just have to notice

that
η

1
2
ε D (ϕε|Γ ) → w in D′(Γ ),

which implies that D(ϕ|Γ ) = w in D′(Γ ) and consequently in L2(Γ ).
To prove that ϕ = ϕ0 and that all the sequence ϕε converges, we will show that ϕ solves P0 (P0). Let ψ be

in V . We want to take the limit of problem Pε (Pε) when ε → 0. From ηεD (ϕε|Γ ) → D(ϕ|Γ ) in D′(Γ ), we
deduce that ηεD(ϕε|Γ ) ⇀ D(ϕ|Γ ) in L2(Γ ) thanks to the density of D(Γ ) in L2(Γ ). Therefore, using the fact
that ϕε ⇀ ϕ in H1(Ω), by weak convergence we get for ε→ 0

aε(ϕε, ψ) → a0(ϕ, ψ) ∀ψ ∈ V.

Remark 4.4. We have just proved the weak convergence ϕε ⇀ ϕ0 in the sense⎧⎨
⎩
ϕε ⇀ ϕ0 in H1(Ω),

η
1
2
ε D(ϕε|Γ ) ⇀ D(ϕ0|Γ ) in L2(Γ ).

We want to prove now that this convergence is a strong one. It is sufficient to prove that ‖ϕε−ϕ0‖ε → 0: indeed

η
1
2
ε [D(ϕ|Γ ) −D(ϕ0|Γ )] → 0 in L2(Γ ) implies that η

1
2
ε D(ϕ|Γ ) → D(ϕ0|Γ ) in L2(Γ ) since∫

Γ

ηε |Dϕ0|2 →
∫

Γ

|Dϕ0|2 ,

thanks to Lebesgue’s theorem. We have been unable to prove directly the strong convergence because V0 ⊂ V ,
V0 �= V . Indeed starting from a0(ϕ0, ψ) =

∫
Ω fψdxdy = aε(ϕε, ψ) for all ψ ∈ V0 and introducing the spliting

ϕε = ϕε − ϕ0 + ϕ0 it is easily deduced that

aε(ϕε − ϕ0, ψ) = a0(ϕ0, ψ) − aε(ϕ0, ψ),

=
Y0

ik

∫
Γ

(Dϕ0 − ηεDϕ0)Dψdx.

To prove that ‖ϕε −ϕ0‖ε → 0 the usual last step is to take ψ = ϕε −ϕ0. However this is not possible in a0(·, ·)
because ϕε−ϕ0 /∈ V0. In the following paragraph we explain how we proceeded to prove the strong convergence.

4.2.2. Strong convergence

Now the strong convergence of ϕε to ϕ0 will be proved. This is achieved by introducing an auxiliary sequence
between ϕε and ϕ0 called ϕ̃ε ∈ V0 which will tend to both these quantities. To build this sequence, we have first
proved that V0 is dense in V . This is done by defining concretely for any element of V a sequence of V0 tending
to this element. ϕ̃ε will be built in a similar way.

The difference between V and V0 is the regularity on Γ . For any ϕ ∈ V , ϕ|Γ belongs to the spaceW defined by

W =
{
v ∈ H

1
2 (Γ ), η

1
2
dv
dx

∈ L2(Γ )
}
, (4.3)
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0 α 1

ûα(x)

x

u(1 − α, h)u(α, h)

1 − α

Figure 3. Construction of ϕ̂α ∈ H1(Γ ) from ϕ ∈W .

equipped with the norm

‖v‖2
W = ‖v‖2

H
1
2 (Γ )

+
∣∣∣∣
∣∣∣∣η 1

2
dv
dx

∣∣∣∣
∣∣∣∣
2

L2(Γ )

,

whereas ϕ|Γ ∈ H1(Γ ) when ϕ ∈ V0. Therefore to prove that V0 is dense in V we will first focus on the trace
behaviors and prove the

Theorem 4.5. The space H1(Γ ) is dense in W defined in (4.3).

Proof. Let us take ϕ ∈ W . For all 0 < α < 1/2 we define ϕ̂α ∈ H1(Γ ) such that

⎧⎪⎪⎨
⎪⎪⎩
ϕ̂α(x) = ϕ(x) on Γα =]α, 1 − α[,

ϕ̂α(x) = ϕ(α) on Γ−
α =]0, α[,

ϕ̂α(x) = ϕ(1 − α) on Γ+
α =]1 − α, 1[.

ϕ(α) and ϕ(1 − α) are defined since ϕ ∈ H1
loc(Γ ) (see Fig. 3). We introduce v̂α = ϕ − ϕ̂α ∈ W , explicitely

defined by ⎧⎪⎪⎨
⎪⎪⎩
v̂α(x) = 0 on Γα,

v̂α(x) = ϕ(x) − ϕ(α) on Γ−
α ,

v̂α = ϕ(x) − ϕ(1 − α) on Γ+
α .

We just need to prove that v̂α → 0 in W when α → 0. In this aim we will need two results, proved in the
appendix:

(1) Lemma A.1. there exists C > 0 such that ∀v ∈ W defined in (4.3),

‖v‖2

H
1
2 (Γ )

≤ C

(
‖v‖2

L2(Γ ) +
∣∣∣∣
∣∣∣∣η 1

2
dv
dx

∣∣∣∣
∣∣∣∣
2

L2(Γ )

)
.
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More precisely Lemma A.1 indicates that W =
{
v ∈ L2(Γ ), η

1
2
dv
dx

∈ L2(Γ )
}

.

(2) Lemma A.2. For all ϕ ∈ V , lim
x→0

x
1
2ϕ(x) = 0 = lim

x→1
(1 − x)

1
2ϕ(x).

Therefore we have

‖v̂α‖2

H
1
2 (Γ )

≤ C

(
‖v̂α‖2

L2(Γ ) +
∣∣∣∣
∣∣∣∣η 1

2
dv̂α

dx

∣∣∣∣
∣∣∣∣
2

L2(Γ )

)
,

where

‖v̂α‖2
L2(Γ ) +

∣∣∣∣
∣∣∣∣η 1

2
dv̂α

dx

∣∣∣∣
∣∣∣∣
2

L2(Γ )

=
∫

Γ−
α

|ϕ(x) − ϕ(α)|2 dx+
∫

Γ+
α

|ϕ(x) − ϕ(1 − α)|2 dx+
∫

Γ±
α

η

∣∣∣∣∂ϕ∂x
∣∣∣∣
2

dx,

≤ 2
(
α |ϕ(α)|2 + α |ϕ(1 − α)|2 +

∫
Γ±

α

|ϕ(x)|2 dx
)

+
∫

Γ±
α

η

∣∣∣∣∂ϕ∂x
∣∣∣∣
2

dx.

The integrals tend to zero thanks to Lebesgue’s theorem, the other terms tending to zero thanks to the
Lemma A.2. �

A direct consequence of Theorem 4.5 is the

Lemma 4.6. The space V0 is dense in V .

Proof. Let us take ϕ ∈ V . Then ϕ|Γ ∈ W defined in (4.3) and following the proof of Theorem 4.5, if for all
0 < α < 1/2 we define ϕ̂α ∈ H1(Γ ) such that

⎧⎪⎪⎨
⎪⎪⎩
ϕ̂α(x) = ϕ(x, h) for x ∈ Γα =]α, 1 − α[,

ϕ̂α(x) = ϕ(α, h) for x ∈ Γ−
α =]0, α[,

ϕ̂α(x) = ϕ(1 − α, h) for x ∈ Γ+
α =]1 − α, 1[,

then v̂α = ϕ|Γ − ϕ̂α → 0 in W . Now we introduce ϕ̃α the unique solution in V0 of
{

(ϕ̃α, ψ)H1(Ω) = (ϕ, ψ)H1(Ω) for all ψ ∈ H1(Ω), ψ = 0 on Γ,

ϕ̃α|Γ = ϕ̂α on Γ.

We just need to prove that eα = ϕ− ϕ̃α → 0 in V when α→ 0. eα is the unique solution in V of{
(eα, ψ)H1(Ω) = 0 for all ψ ∈ H1(Ω), ψ = 0 on Γ,

eα|Γ = v̂α on Γ.
(4.4)

Since problem (4.4) is well-posed, there exists C > 0 such that

‖eα‖2
H1(Ω) ≤ C‖v̂α‖2

H
1
2 (Γ )

,

which simply tends to zero. Finally we use

‖eα‖2
V = ‖eα‖2

H1(Ω) +
∣∣∣∣∣∣η 1

2Deα

∣∣∣∣∣∣2
L2(Γ )

,
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to get eα → 0 in V . Indeed the last term reads∣∣∣∣∣∣η 1
2Dv̂α

∣∣∣∣∣∣
L2(Γ )

≤M

∣∣∣∣
∣∣∣∣η 1

2
dv̂α

dx

∣∣∣∣
∣∣∣∣
L2(Γ )

+ k ||v̂α||L2(Γ ) ,

which has been found to tend to zero in the proof of Theorem 4.5. �

Now we introduce the auxiliary sequence ϕ̃ε ∈ V0 which will be used throughout all the rest of the section.
For all 0 < ε < 1/2 and all ϕε ∈ V , proceeding similarly as in the proof of Lemma 4.6, we note ϕ̃ε the unique
solution in V0 of {

(ϕ̃ε, ψ)H1(Ω) = (ϕε, ψ)H1(Ω) for all ψ ∈ H1(Ω), ψ = 0 on Γ,

ϕ̃ε|Γ = ϕ̂ε on Γ.
(4.5)

Here ϕ̂ε ∈ H1(Γ ) is defined by⎧⎪⎪⎨
⎪⎪⎩
ϕ̂ε(x) = ϕε(x, h) for x ∈ Γε =]ε, 1 − ε[,

ϕ̂ε(x) = ϕε(ε, h) for x ∈ Γ−
ε =]0, ε[,

ϕ̂ε(x) = ϕε(1 − ε, h) for x ∈ Γ+
ε =]1 − ε, 1[.

Before proving that ‖ϕε−ϕ0‖ε → 0, it is proved in Appendix 7 successively that the auxiliary sequence satisfies
‖ϕε − ϕ̃ε‖ε → 0 and ‖ϕ0− ϕ̃ε‖0 → 0. These proofs are close to the one of Lemma 4.6, but more difficult because
of the definition of ϕ̂ε: ϕ̂ε(ε) depends in two ways of ε.

Now we are able to prove the strong convergence result for the model problem:

Theorem 4.7. If ϕε ∈ V , the sequence solution of (Pε), is such that ‖ϕε‖ε is bounded (see definition (4.2)),
then ‖ϕε − ϕ0‖ε → 0 where ϕε is solution of (Pε) and ϕ0 the solution of (P0).

Proof. We have proved that if the sequence ϕε ∈ V solution of (Pε) is such that ‖ϕε‖ε is bounded then
‖ẽε‖ε = ‖ϕε − ϕ̃ε‖ε → 0 and ‖eε‖0 = ‖ϕ0 − ϕ̃ε‖0 → 0 where ϕ0 ∈ V0 is the solution of (P0). Therefore
‖ϕε − ϕ0‖ε ≤ ‖ϕε − ϕ̃ε‖ε + ‖ϕ̃ε − ϕ0‖0 → 0.

Now, we must prove that ϕε is necessarily bounded. We proceed by contradiction. So we assume that there
is a subsequence (noted also ϕε) such that: ‖ϕε‖ε → ∞ and we set: Uε =

ϕε

‖ϕε‖ε
. It is obvious that ‖Uε‖ε is

bounded. Moreover, it solves (Pε) with f replaced by
f

‖ϕε‖ε
→ 0. With the arguments used in the previous

steps, we prove that there exists U0 ∈ V0 such that ‖Uε−U0‖ε → 0, where U0 is the solution of the homogeneous
problem (3.5). By hypothesis, this solution is trivial. Then, we obtain a contradiction since

‖Uε‖ε → 0 and ‖Uε‖ε = 1. �

5. Other formulations

In Sections 3 and 4 we focused on the velocity potential formulation. We have proved that the solution ϕε for a
continuous boundary condition has a limit when ε→ 0 and that this limit ϕ0 for a discontinuous transition is well
defined since it satisfies a well-posed problem. Now we will consider the pressure and displacement formulations.
We will show that although for a continuous boundary condition the pressure and the displacement potential
satisfy well-posed problems, we are unable to prove they converge when ε→ 0, due to the fact that the expected
limits don’t satisfy well-posed limit problems.

Now we define the regularized problems satisfied by the pressure pε and by the displacement potential ζε and
determine their limits when ε→ 0.



MODELING OF AN IMPEDANCE CONDITION IN AEROACOUSTICS 1545

5.1. Link between the velocity, the pressure and the displacement formulations

We recall that the radiation problem for the three natural unknowns reads:
Find u ∈ H1(Ω) (u = pε, ϕε or ζε) such that

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−Δu+D2u = f, in Ω,

∂u

∂n
= 0, on Γ0,

∂u

∂n
= −T±u, on Σ±,

and on Γ :

If u = pε :
∂pε

∂n
=
Y0

ik
D2 (ηεpε) ,

If u = ϕε :
∂ϕε

∂n
=
Y0

ik
D (ηεDϕε) ,

If u = ζε :
∂ζε
∂n

=
Y0

ik
ηεD

2ζε.

(5.1)

The important point is that if ϕε is solution of the velocity potential formulation of problem (5.1), then pε =

−Dϕε is solution of the pressure formulation. In particular applying the operator D to
∂ϕε

∂n
=
Y0

ik
D (ηεDϕε)

leads to
∂pε

∂n
=
Y0

ik
D2 (ηεpε). In a same way if ζε is solution of the displacement formulation then ϕε = Dζε is

solution of the velocity formulation.
The variational formulation of the radiation problem reads aε(u, v) =

∫
Ω f v̄ where the sesquilinear form

aε(u, v) is defined by

• For the velocity potential

aε(ϕ, ψ) =
∫

Ω

(∇ϕ · ∇ψ̄ −DϕDψ
)
dxdy + 〈S±ϕ, ψ〉± +

Y0

ik

∫
Γ

ηεDϕDψdx.

• For the pressure

aε(p, q) =
∫

Ω

(∇p · ∇q̄ −DpDq
)
dxdy + 〈S±p, q〉± +

Y0

ik

∫
Γ

(
ηεDpDq +M

dηε

dx
pDq

)
dx.

• For the displacement potential

aε(ζ, θ) =
∫

Ω

(∇ζ · ∇θ̄ −Dζ Dθ
)
dxdy + 〈S±ζ, θ〉± +

Y0

ik

∫
Γ

(
ηεDζ Dθ +M

dηε

dx
Dζθ

)
dx.

Remark 5.1. To define well-posed variational formulations for pε and ζε we need more regularity for ηε and
we choose ηε ∈ C1(Γ ). Also to get rid of the boundary terms on Γ at x = 0 and x = 1 we need that ηε and
dηε/dx vanish at these two points. For the velocity potential model we just needed ηε to vanish.

Since the additional terms, compared to the velocity formulation, namely the integrals on Γ of Mη′εpDq and
of Mη′εDζθ, are compact perturbations, it is straightforward to prove that the variational formulations for the
pressure and the displacement potential are well-posed for any ε > 0. However we are unable to deduce limit
problems when ε → 0. Indeed |dηε/dx| → ∞ at x = 0 and 1 when ε → 0. But we can determine formally the
limits of the pressure and of the displacement, which is done in the next paragraph.
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5.2. Limit process for the pressure and the displacement solutions

Using the links between the pressure, the displacement potential and the velocity potential we can determine
the limits of pε and ζε. Indeed if ϕε is solution of the velocity problem then pε = −Dϕε and ζε is defined such
that ϕε = Dζε. Since ϕε ∈ V tends to ϕ0 ∈ V0 in the sense⎧⎪⎪⎪⎨

⎪⎪⎪⎩
ϕε → ϕ0 in H1(Ω),

η
1
2
ε D(ϕε|Γ ) → D(ϕ0|Γ ) in L2(Γ ),

with Dϕ0(0+, h) = 0 = Dϕ0(1−, h),

we deduce immediatly some convergence results for pε and ζε:

• For the pressure ⎧⎪⎪⎪⎨
⎪⎪⎪⎩
pε → p0 in L2(Ω),

η
1
2
ε pε|Γ → p0|Γ in L2(Γ ),

with p0 = −Dϕ0 and p0(0+, h) = 0 = p0(1−, h)

• For the displacement potential⎧⎪⎪⎪⎨
⎪⎪⎪⎩
Dζε → Dζ0 in H1(Ω),

η
1
2
ε D[(Dζε)|Γ ] → D[(Dζ0)|Γ ] in L2(Γ ),

with ϕ0 = Dζ0 and D2ζ0(0+, h) = 0 = D2ζ0(1−, h).

Remembering that the natural space to define the variational formulations for the three unknowns is H1(Ω),
we understand now clearly why we cannot define variational problems satisfied by p0 or ζ0 thanks to the limit
process ε→ 0. p0 is too weak, it belongs only to L2(Ω). On the other hand ζ0 is too regular to be associated to
a H1 variational formulation.

Note that the Wiener−Hopf approach indicates that the pressure varies close to x = 0 like
√
x without

the Kutta condition or x3/2 with the Kutta condition [11, 12], in accordance with our result p0(0+, h) = 0 =
p0(1−, h).

6. Numerical results: limit process ε → 0

Now we investigate numerically, thanks to the Finite Element code MELINA [30], the behavior of the three
unknowns on the upper wall with the liner at y = h when ε → 0. We have used standard P2 Lagrange finite
elements, which lead to a conforming approximation of V . On Figure 4 is plotted in solid line the real part
of ϕε for decreasing values of ε. The liner is located at ]0, 3[. ϕε is found to tend to a continuous function.
In dotted line is represented the real part of the convective derivative of ϕε: we confirm numerically that the
velocity potential tends to a function ϕ0 satisfying the local behavior Dϕ0(0+, h) = 0 = Dϕ0(3−, h). Note that
the behavior of Dϕ0 seems to be singular outside the liner: |Dϕ0(0−, h)| = ∞ = |Dϕ0(3+, h)|.

Figure 5 shows the pressure and the displacement potential for a small value ε = 0.01 (we recall that we do
not know how to define the limit problems for ε = 0 for these unknowns). Contrary to Figure 4 where ηε defined
in equation (3.2) was a C0(R) function, now ηε is chosen as a C1(R) function (see Rem. 5.1): it is an order 2
polynomial on [0, ε] and on [3 − ε, 3]. This means that Dϕε determined in Figure 4 should be different from pε

plotted on Figure 5a, the relation pε = Dϕε being rigorously valid only if both quantities are defined with the
same ηε. In practice this is not the case and pε plotted of Figure 5a is very close to Dϕε of Figure 4c. This shows
that the choice of the regularity of ηε does not seem to be sensitive in the limit process ε → 0. Numerically
the pressure is found to become singular outside the lined area when approaching a discontinuous transition.
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Figure 4. Solid line: �e[ϕε(x, h)], dotted line: �e[Dϕε(x, h)] for (a): ε = 0.1, (b): ε = 0.01 and
(c): ε = 0.
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Figure 5. For ε = 0.01, (a): �e[pε(x, h)], (b): solid line: �e[ζε(x, h)], dotted line: �e[Dζε(x, h)]

Since the quality of the convergence of the finite element approximation (when the mesh size decreases) depends
on the regularity of the solution, the precision of the approximation becomes bad. This confirms that the velocity
formulation should be preferred to the pressure one. As expected the pressure tends to a function p0 satisfying
p0(0+, h) = 0 = p0(3−, h).

Finally the displacement (Fig. 5b in solid line) tends to a regular function (in particular in C1(R)). As
expected Dζε plotted in dotted line is very close to ϕε. Note that both the velocity and the displacement
potentials tend to continuous functions on the upper wall: we recover the edge conditions of the mode-matching
methods [6], which impose some regularity to the velocity or to the displacement, not to the pressure.
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7. Conclusion

We have shown that to study the acoustic scattering in presence of a flow and of a discontinuous boundary
condition between a hard wall and a lined wall, the velocity potential seems to be a better unknown to choose
than the pressure or the displacement. Indeed although the three unknowns satisfy well-posed problems for a
continuous boundary condition, only the velocity converges to the solution of a well-posed problem when the
function discribing the boundary condition tends to a discontinuous function. Moreover some edge conditions
must be considered for the velocity potential: its convective derivative must vanish at the liner ends.

An improvement of our study would be to take into account the presence of a vorticity line developing from
the boundary discontinuities. This has been done in the case of the acoustic diffraction by a rigid plate in a duct
in presence of a flow [31]: the usual modeling of viscous effects is that the pressure can be infinite at the plate
trailing edge but it must be finite at the leading edge. To impose such regularity, a wake is introduced behind
the plate and a Kutta condition is applied at the trailing edge to adjust the wake amplitude. This procedure is
not straightforward to extend to the case of an impedance boundary condition instead of a rigid plate: we do
not know any analytical expression of the wake, we do not know if the wake extends from the leading edge or
only from the liner trailing edge and finally the expected behavior of the pressure at the liner ends is unknown.

Another way to study the scattering problem is to consider a shear flow with a varying Mach number profile
M(y) vanishing on the liner. Then the Myers boundary condition becomes simply ∂u/∂y = ikY u for u = p, ϕ
or ζ and this leads to well posed problems even when Y is discontinuous. However then the convected Helmholtz
equation (2.3) is no longer valid. The full Euler equations must be considered, which complicates a lot the study.

Appendix A. Regularity on the treated boundary

Here are demonstrated two lemmas necessary to prove the density of V0 (defined in Eq. (4.1)) in V (defined
in Eq. (3.4)).

Lemma A.1. If u ∈ W0 =
{
u ∈ L2(Γ ); η

1
2
du
dx

∈ L2(Γ )
}

, then u ∈ H
1
2 (Γ ) and there exists C > 0 such that

∀u ∈ W0

‖u‖2

H
1
2 (Γ )

≤ C

(
‖u‖2

L2(Γ ) +
∣∣∣∣
∣∣∣∣η 1

2
du
dx

∣∣∣∣
∣∣∣∣
2

L2(Γ )

)
.

Proof. Let us remark first that W0 ⊂ H1
loc(Γ ). Therefore we just need to prove that x(du/dx)2 integrable in

x = 0 implies that u is locally in H
1
2 close to 0 (the same for (1 − x)(du/dx)2 close to 1). In this aim we note

Γ− =
]
0, 1

2

[
(or ]0, δ[ for any 0 < δ < 1/2) and we introduce the quarter of disk of radius 1/2

Ω− =
{

(x, y) ∈ R
2;x2 + y2 ≤ 1

4
, 0 ≤ x ≤ 1

2
and 0 ≤ y ≤ 1

2

}
.

For all u ∈ W0 (which implies x
1
2
du
dx

∈ L2(Γ−)), we define in Ω− the function v(x, y) = u(
√
x2 + y2). It reads

in polar coordinates ṽ(r, θ) = v(r cos θ, r sin θ) = u(r). v belongs to H1(Ω−) since

‖v‖2
H1(Ω−) =

π

4

∫ 1
2

0

(
|u(r)|2 +

∣∣∣∣dudr
∣∣∣∣
2
)
rdr ≤ π

4

(∫ 1
2

0

1
2
|u(r)|2dr +

∫ 1
2

0

∣∣∣∣dudr
∣∣∣∣
2

rdr

)
,

since r ≤ 1/2. Thanks to the Trace theorem from H1(Ω−) to H
1
2 (Γ−) we deduce that there exists C > 0 such

that

‖u‖2

H
1
2 (Γ−)

= ‖v|Γ−‖2

H
1
2 (Γ−)

≤ C′‖v‖2
H1(Ω−) ≤ C

(
‖u‖2

L2(Γ−) +
∣∣∣∣
∣∣∣∣η 1

2
du
dx

∣∣∣∣
∣∣∣∣
2

L2(Γ−)

)
.
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In a same way noting Γ+ =
]
1
2 , 1

[
and introducing the change of variable x̃ = 1 − x we can prove that there

exists C > 0 such that

‖u‖2

H
1
2 (Γ+)

≤ C

(
‖u‖2

L2(Γ+) +
∣∣∣∣
∣∣∣∣η 1

2
du
dx

∣∣∣∣
∣∣∣∣
2

L2(Γ+)

)
.

Since u ∈ H
1
2 (Γ+) ∩H 1

2 (Γ−) ∩H1
loc(Γ ), it is easy to conclude using the definition

‖u‖2

H
1
2 (Γ )

=
∫

Γ

∫
Γ

∣∣∣∣u(x) − u(y)
x− y

∣∣∣∣
2

dx dy + ‖u‖2
L2(Γ ) . �

Lemma A.2. For all u ∈W defined in (4.3), lim
x→0

x
1
2 u(x) = 0 = lim

x→1
(1 − x)

1
2u(x).

Proof. We will just prove the result at x = 0, the result at x = 1 can be proved in a similar way. Let us take
u ∈ C∞(Γ ). For all x ∈ [0, 1],

x
1
2u(x) =

∫ x

0

d
dt

(
t

1
2u(t)

)
dt =

∫ x

0

(
du
dt
t

1
2 +

t−
1
2

2
u(t)

)
dt.

Now we use Cauchy−Schwarz inequality to find an upper bound. Since W �= H
1
2
00(Γ ), for u ∈W we do not have

necessarily t−
1
2 u ∈ L2(Γ ). However W ⊂ H

1
2 (Γ ) and we use Hardy’s inequality for all 0 < s < 1/2, there exists

Cs > 0 and C′
s > 0 such that for all u ∈ H

1
2 (Γ ) ⊂ Hs(Γ )∣∣∣∣

∣∣∣∣ uηs

∣∣∣∣
∣∣∣∣
L2(Γ )

≤ Cs‖u‖Hs(Γ ) ≤ C′
s‖u‖H

1
2 (Γ )

This means that for all 0 < s < 1/2, (u/ts)2 is integrable at t = 0. Therefore for x ≤ 1/2

x
1
2 |u(x)| ≤ x

1
2

(∫ x

0

t

∣∣∣∣dudt
∣∣∣∣
2

dt

) 1
2

+
1
2
xs

√
2s

(∫ x

0

∣∣∣ u
ts

∣∣∣2 dt
) 1

2

≤ x
1
2

∣∣∣∣
∣∣∣∣ηdu

dt

∣∣∣∣
∣∣∣∣
L2(Γ )

+
1
2
xs

√
2s
C′

s ||u||H 1
2 (Γ )

.

Thus we get limx→0 x
1
2u(x) = 0. This result remains valid in W by density of C∞(Γ ) in W .

Appendix B. Limits of the auxiliary sequence

Here are presented the technical proofs of the two lemmas characterizing the convergence of the auxiliary
sequence ϕ̃ε.

Lemma B.3. If ϕε ∈ V , the sequence solution of (Pε), is such that ‖ϕε‖ε is bounded (see definition (4.2)),
then ‖ϕε − ϕ̃ε‖ε → 0 where ϕ̃ε is defined in (4.5).

Proof. We introduce ẽε = ϕε − ϕ̃ε which is the unique solution in V of{
(ẽε, ψ)H1(Ω) = 0 for all ψ ∈ H1(Ω), ψ = 0 on Γ,

ẽε|Γ = v̂ε on Γ,
(B.1)

where v̂ε ∈ W defined in (4.3) is such that{
v̂ε(x) = 0 for x ∈ Γε =]ε, 1 − ε[,

v̂ε(x) = ϕε(x, h) − ϕε(ε±, h) for x ∈ Γ±
ε ,



1550 E. LUNEVILLE AND J.-F. MERCIER

where ε+ = ε and ε− = 1−ε and where we note ϕε|Γ (x, h) instead of ϕε|Γ (x, h). We will show that the quantity

‖ẽε‖2
ε = ‖ẽε‖2

H1(Ω) +
∣∣∣∣∣∣η 1

2
ε Dẽε

∣∣∣∣∣∣2
L2(Γ )

,

tends to zero. In this aim we will prove successively that

• ẽε → 0 in H1(Ω);

•
∫

Γ±
ε

ηε

∣∣∣∣∂ϕε

∂x

∣∣∣∣
2

dx→ 0;

•
∣∣∣∣∣∣η 1

2
ε Dẽε

∣∣∣∣∣∣2
L2(Γ )

→ 0.

(1) Proof of ẽε → 0 in H1(Ω)
To prove that ẽε = ϕε−ϕ̃ε → 0 in V we will need two lemmas, proved in the Appendix 7. Since problem (B.1)
is well-posed and thanks to Lemma A.1 we have

‖ẽε‖2
H1(Ω) ≤ C′‖v̂ε‖2

H
1
2 (Γ )

≤ CC′
(
‖v̂ε‖2

L2(Γ ) +
∣∣∣∣
∣∣∣∣η 1

2
dv̂ε

dx

∣∣∣∣
∣∣∣∣
2

L2(Γ )

)
,

with

‖v̂ε‖2
L2(Γ ) +

∣∣∣∣
∣∣∣∣η 1

2
dv̂ε

dx

∣∣∣∣
∣∣∣∣
2

L2(Γ )

=
∫

Γ−
ε

|ϕε(x, h) − ϕε(ε, h)|2 dx

+
∫

Γ+
ε

|ϕε(x, h) − ϕε(1 − ε, h)|2 dx+
∫

Γ±
ε

η

∣∣∣∣∂ϕε

∂x

∣∣∣∣
2

dx,

≤ 2
(
ε |ϕε(ε, h)|2 + ε |ϕε(1 − ε, h)|2 +

∫
Γ±

ε

|ϕε(x, h)|2 dx
)

+
∫

Γ±
ε

η

∣∣∣∣∂ϕε

∂x

∣∣∣∣
2

dx.

The two non-integral terms are proved to tend to zero by adapting the proof a Lemma A.2 to the function ϕε

depending on the parameter ε tending to zero. Indeed thanks to Lemma A.2: ∀ε > 0 and for all 0 < s < 1/2
we have

ε
1
2 |ϕε(ε, h)| ≤ ε

1
2

(∫ ε

0

t

∣∣∣∣∂ϕε

∂t

∣∣∣∣
2

dt

) 1
2

+
1
2
εs

√
2s

(∫ ε

0

∣∣∣ϕε

ts

∣∣∣2 dt
) 1

2

.

Since ‖ϕε‖ε = ‖ϕε‖2
H1(Ω) +

∣∣∣∣∣∣η 1
2
ε Dϕε

∣∣∣∣∣∣2
L2(Γ )

is bounded and using Hardy’ inequality:

For all 0 < s < 1/2, there exists C′
s > 0 such that for all ε > 0∣∣∣∣

∣∣∣∣ϕε

ηs

∣∣∣∣
∣∣∣∣
L2(Γ )

≤ C′
s‖ϕε‖

H
1
2 (Γ )

,

is deduced that both terms ∫ ε

0

t

∣∣∣∣∂ϕε

∂t

∣∣∣∣
2

dt and
∫ ε

0

∣∣∣ϕε

ts

∣∣∣2 dt,

are bounded since t ≤ t/ε = ηε on [0, ε].
Also since ϕε → ϕ0 in L2(Γ ), the first integral tends to zero thanks to Lebesgue’s theorem. But contrary to
what happened when proving the density result of Theorem 4.5, the second integral does not tend simply
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to zero thanks to Lebesgue’s theorem. Indeed we just have the weak convergence η
1
2
ε
∂

∂x
(ϕε|Γ ) ⇀

∂

∂x
(ϕ0|Γ )

in L2(Γ ). However from the definition of ηε is deduced that

∫
Γ±

ε

η

∣∣∣∣∂ϕε

∂x

∣∣∣∣
2

dx = ε

∫
Γ±

ε

ηε

∣∣∣∣∂ϕε

∂x

∣∣∣∣
2

dx,

since for x ≤ ε, η = x and ηε = x/ε (a similar result is obtained for x ≥ 1 − ε). Thus the second integral

tends to zero since
∫

Γ

ηε

∣∣∣∣∂ϕε

∂x

∣∣∣∣
2

dx is bounded.

(2) Proof of
∫

Γ±
ε

ηε

∣∣∣∣∂ϕε

∂x

∣∣∣∣
2

dx→ 0

We recall that ϕε is the unique solution in V of aε(ϕε, ψ) =
∫

Ω

fψ̄dxdy for all ψ ∈ V . Taking ψ = ẽε we

get

aε(ϕε, ẽε) =
∫

Ω

(∇ϕε · ∇ẽε −Dϕε Dẽε

)
dxdy + 〈S±ϕε, ẽε〉± +

Y0

ik

∫
Γ

ηεDϕε Dẽεdx.

The last term reads more explicitely

Y0

ik

∫
Γ

ηεDϕεDẽεdx =
Y0

ik

∫
Γ

ηε

[
M2 ∂ϕε

∂x

∂ẽε

∂x
+ ikM

(
∂ϕε

∂x
ẽε − ϕε

∂ẽε

∂x

)
+ k2ϕεẽε

]
dx.

Since ẽε|Γ = v̂ε with {
v̂ε(x) = 0 for x ∈ Γε =]ε, 1 − ε[,

v̂ε(x) = ϕε(x, h) − ϕε(ε±, h) for x ∈ Γ±
ε ,

we get the simplification

Y0

ik

∫
Γ

ηεDϕεDẽεdx =
Y0

ik

∫
Γ±

ε

ηε

[
M2

∣∣∣∣∂ϕε

∂x

∣∣∣∣
2

+ ikM

(
∂ϕε

∂x
ẽε − ϕε

∂ϕε

∂x

)
+ k2ϕεẽε

]
dx.

Finally is deduced the upper bound

∣∣∣∣Y0

k

∣∣∣∣
∫

Γ±
ε

ηεM
2

∣∣∣∣∂ϕε

∂x

∣∣∣∣
2

dx ≤
∫

Ω

(|∇ϕε||∇ẽε| + |Dϕε||Dẽε|) dxdy +
∣∣〈S±ϕε, ẽε〉±

∣∣ ,

+
∣∣∣∣Y0

k

∣∣∣∣
∫

Γ±
ε

[
kM

(∣∣∣∣η 1
2
ε
∂ϕε

∂x

∣∣∣∣ |ẽε| + |ϕε|
∣∣∣∣η 1

2
ε
∂ϕε

∂x

∣∣∣∣
)

+ k2 |ϕε| |ẽε|
]

dx+ ‖f‖L2(Ω)‖ẽε‖H1(Ω)

We have used η
1
2
ε ≤ 1. All the term in the right hand side tend to zero since

(a) ϕε ⇀ ϕ0 and ẽε → 0 in H1(Ω);

(b) ϕε|Γ → ϕ0|Γ , η
1
2
ε
∂

∂x
(ϕε|Γ ) ⇀

∂

∂x
(ϕ0|Γ ) and ẽε|Γ → 0 in L2(Γ );

(c) ϕε ⇀ ϕ0 and ẽε → 0 in H
1
2 (Σ±) and S± is continuous from H

1
2 (Σ±) to H− 1

2 (Σ±);

(d) the term |ϕε|
∣∣∣∣η 1

2
ε
∂ϕε

∂x

∣∣∣∣ tends to |ϕ0|
∣∣∣∣∂ϕ0

∂x

∣∣∣∣ in L1(Γ ) and
∫

Γ±
ε

|ϕ0|
∣∣∣∣∂ϕ0

∂x

∣∣∣∣ dx tends to zero thanks to

Lebesgue’s theorem.

(3) Proof of
∣∣∣∣∣∣η 1

2
ε Dẽε

∣∣∣∣∣∣2
L2(Γ )

→ 0
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Since ẽε|Γ = v̂ε on Γ , we get∣∣∣∣∣∣η 1
2
ε Dẽε

∣∣∣∣∣∣
L2(Γ )

≤M

∣∣∣∣
∣∣∣∣η 1

2
ε

dv̂ε

dx

∣∣∣∣
∣∣∣∣
L2(Γ )

+ k ||v̂ε||L2(Γ ) ,

and we have proved in the two previous proofs that both∣∣∣∣
∣∣∣∣η 1

2
ε

dv̂ε

dx

∣∣∣∣
∣∣∣∣
2

L2(Γ )

=
∫

Γ±
ε

ηε

∣∣∣∣∂ϕε

∂x

∣∣∣∣
2

dx

and ||v̂ε||2L2(Γ ) tend to zero. �

Lemma B.4. If ϕε ∈ V , the sequence solution of (Pε), is such that ‖ϕε‖ε is bounded then ‖ϕ0 − ϕ̃ε‖0 → 0.

Proof. We note eε = ϕ0 − ϕ̃ε ∈ V0 and we will prove that

• a0(eε, eε) → 0,
• eε → 0 in V0.

(1) Proof of a0(eε, eε) → 0
For all ψ ∈ V0, starting from a0(ϕ0, ψ) =

∫
Ω
fψdxdy = aε(ϕε, ψ) we introduce the writing a0(ϕ0, ψ) =

a0(ϕ0 − ϕ̃ε + ϕ̃ε, ψ) to deduce

a0(ϕ0 − ϕ̃ε, ψ) = aε(ϕε, ψ) − a0(ϕ̃ε, ψ).

Bearing in mind that eε = ϕ0 − ϕ̃ε and that ẽε = ϕε − ϕ̃ε we obtain

a0(eε, ψ) =
∫

Ω

(∇ẽε · ∇ψ̄ −DẽεDψ
)
dxdy + 〈S±ẽε, ψ〉± +

Y0

ik

∫
Γ

(ηεDϕε −Dϕ̃ε)Dψdx.

Since ϕ̃ε = ϕε, the last term simplifies in

Y0

ik

∫
Γ

(ηεDϕε −Dϕ̃ε)Dψdx =
Y0

ik

∫
Γ±

ε

(
ηεM

∂ϕε

∂x
− ik

[
ηεϕε(x, h) − ϕε(ε±, h)

])
Dψdx.

Now let us take ψ = eε ∈ V0 to get

a0(eε, eε) = d0(ẽε, eε) + e0(ϕε, eε),

with
d0(ẽε, eε) =

∫
Ω

(∇ẽε · ∇eε −DẽεDeε

)
dxdy + 〈S±ẽε, eε〉±

and

e0(ϕε, eε) =
Y0

ik

∫
Γ±

ε

(
M2

(
ηε
∂ϕε

∂x

)
∂eε

∂x
+ ikM

{(
ηε
∂ϕε

∂x

)
eε −

[
ηεϕε(x, h) − ϕε(ε±, h)

] ∂eε

∂x

}
,

+ k2
[
ηεϕε(x, h) − ϕε(ε±, h)

]
eε

)
dx.

Using eε|Γ±
ε

= ϕ0|Γ±
ε
− ϕε(ε±, h) on Γ±

ε leads to

e0(ϕε, eε) =
Y0

ik

∫
Γ±

ε

(
M2

(
ηε
∂ϕε

∂x

)
∂ϕ0

∂x

+ ikM

{(
ηε
∂ϕε

∂x

)
ϕ0(x, h) − ϕε(ε±, h) − [

ηεϕε(x, h) − ϕε(ε±, h)
] ∂ϕ0

∂x

}
,

+ k2
[
ηεϕε(x, h) − ϕε(ε±, h)

]
ϕ0(x, h) − ϕε(ε±, h)

)
dx.
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Last the modulus is found to be bounded by

|a0(eε, eε)| ≤
∫

Ω

(|∇ẽε| |∇eε| + |Dẽε| |Deε|) dxdy +
∣∣〈S±ẽε, eε〉±

∣∣ ,
+
∣∣∣∣Y0

k

∣∣∣∣
∫

Γ±
ε

[
M2

∣∣∣∣η 1
2
ε
∂ϕε

∂x

∣∣∣∣
∣∣∣∣∂ϕ0

∂x

∣∣∣∣
+ kM

(∣∣∣∣η 1
2
ε
∂ϕε

∂x

∣∣∣∣ ∣∣ϕ0(x, h) − ϕε(ε±, h)
∣∣+ ∣∣ηεϕε(x, h) − ϕε(ε±, h)

∣∣ ∣∣∣∣∂ϕ0

∂x

∣∣∣∣
)
,

+ k2
∣∣ηεϕε(x, h) − ϕε(ε±, h)

∣∣ ∣∣ϕ0(x, h) − ϕε(ε±, h)
∣∣ ]dx.

All the terms in the right hand side tend to zero (and thus |a0(eε, eε)| → 0) because
(a) ẽε → 0 and eε ⇀ 0 in H1(Ω)

(b)
∫

Γ±
ε

∣∣ηεϕε(x, h) − ϕε(ε±, h)
∣∣2 dx ≤ 2

(
ε
∣∣ϕε(ε±, h)

∣∣2 +
∫

Γ±
ε

|ϕε(x, h)|2 dx
)

→ 0

(c)
∫

Γ±
ε

∣∣ϕ0(x, h) − ϕε(ε±, h)
∣∣2 dx ≤ 2

(∫
Γ±

ε

|ϕ0(x, h)|2 dx+ ε
∣∣ϕε(ε±, h)

∣∣2) → 0

(d) ẽε → 0 and eε ⇀ 0 in H
1
2 (Σ±),

(e) η
1
2
ε
∂

∂x
(ϕε|Γ ) ⇀

∂

∂x
(ϕ0|Γ ) in L2(Γ )

To prove the first point, we have used the fact that ϕε ⇀ ϕ0 in H1(Ω) and also that since ‖ϕε − ϕ̃ε‖ε → 0
we get ϕ̃ε → ϕε in H1(Ω). We deduce that ϕ̃ε ⇀ ϕ0 in H1(Ω) which means that eε ⇀ 0 in H1(Ω).

(2) Proof of eε → 0 in V0

We split a0(ϕ, ψ) in a coercive part and a compact perturbation part

a0(ϕ, ψ) = b0(ϕ, ψ) + c0(ϕ, ψ),

where

b0(ϕ, ψ) =
∫

Ω

[
(1 −M2)

∂ϕ

∂x

∂ψ

∂x
+
∂ϕ

∂y

∂ψ

∂y
+ ϕψ̄

]
dxdy +

〈
Se
±ϕ, ψ

〉
± +

Y

ik

∫
Γ

DϕDψdx,

and

c0(ϕ, ψ) =
∫

Ω

[
−(1 + k2)ϕψ̄ + ikM

(
ϕ
∂ψ

∂x
− ∂ϕ

∂x
ψ̄

)]
dxdy +

〈
Sp
±ϕ, ψ

〉
± .

Since c0(ϕ, ψ) is compact, eε ⇀ 0 in H1(Ω) implies that c0(eε, eε) → 0 and the coercivity of b0(ϕ, ψ) on V0

leads to ‖eε‖0 = ‖ϕ0 − ϕ̃ε‖0 → 0. �

Appendix C. Exact radiation condition and DtN operator

In order to formulate the diffraction problem, we need to introduce the so-called modes of the duct (without
a liner) which are the solutions with separated variables of −Δϕ+D2ϕ = 0 in Ω with ∂ϕ/∂y = 0 at y = 0 and
y = h. They are well-known and are given by

u±n = eiβ±
n x cos

(nπy
h

)
,

where β±
n is given by
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• If n ≤ N = kh/π
√

1 −M2

β±
n =

[
−kM ±

√
k2 − n2π2

h2 (1 −M2)
]

1 −M2
·

In that case, β±
n is real and u±n is a propagative mode. The + modes correspond to a positive group velocity

and thus propagate downstream, whereas the − modes propagate upstream.
• If n > N :

β±
n =

[
−kM ± i

√
n2π2

h2 (1 −M2) − k2

]
1 −M2

·

In that case, u±n is an evanescent mode which oscillates.

To derive problem (3.1) set in the bounded domain Ω = {(x, y) ∈ Ω;−R < x < R}, we need to define on
the artificial boundaries Σ± = {(x, y);x = ±R and 0 < y < h} some suitable boundary conditions. They are
deduced from the modal decomposition of u in the exterior domains

Ω± = {(x, y) ∈ Ω;±x > R},

which reads u =
∑
n>N

(u,wn)Σ±eiβ±
n (x∓R)wn(y) in Ω± where wn(y) =

√
2
h

cos
(nπy
h

)
for n > 0, w0(y) =

√
1
h

and (u, v)Σ± =
∫

Σ±
uv̄dy. The deduced exact boundary conditions is

∂u

∂n
= −T±u, on Σ±,

where the Dirichet-to-Neumann operators are defined as follows

T± : H
1
2 (Σ±) → H− 1

2 (Σ±),

u → ∓i
∑
n≥0

β±
n (u,wn)Σ±wn.
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