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ERROR ESTIMATES OF RUNGE-KUTTA DISCONTINUOUS GALERKIN
METHODS FOR THE VLASOV-MAXWELL SYSTEM *

HE Yanc! AND FENGYAN Li!

Abstract. In this paper, error analysis is established for Runge-Kutta discontinuous Galerkin
(RKDG) methods to solve the Vlasov—Maxwell system. This nonlinear hyperbolic system describes
the time evolution of collisionless plasma particles of a single species under the self-consistent elec-
tromagnetic field, and it models many phenomena in both laboratory and astrophysical plasmas. The
methods involve a third order TVD Runge-Kutta discretization in time and upwind discontinuous
Galerkin discretizations of arbitrary order in phase domain. With the assumption that the exact solu-
tions have sufficient regularity, the L? errors of the particle number density function as well as electric
and magnetic fields at any given time T are bounded by Ch**'/24+C7% under a CFL condition T/h <.
Here k is the polynomial degree used in phase space discretization, satisfying k > df; L (with d, being
the dimension of spatial domain), 7 is the time step, and h is the maximum mesh size in phase space.
Both C' and ~ are positive constants independent of h and 7, and they may depend on the polynomial
degree k, time T, the size of the phase domain, certain mesh parameters, and some Sobolev norms of
the exact solution. The analysis can be extended to RKDG methods with other numerical fluxes and
to RKDG methods solving relativistic Vlasov—Maxwell equations.
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1. INTRODUCTION

In this paper, we will establish error estimates of the Runge—Kutta discontinuous Galerkin (RKDG) methods
for solving the dimensionless Vlasov—-Maxwell (VM) equations

8tf+v'vxf+(E+UXB)'vvf:07
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with
p(w,t):/ flz,v,t)do,  J(x,t) :/ f(z,v,t)vdo. (1.2)
2, 2,

This system describes the time evolution of collisionless plasma particles of a single species, such as electrons or
ions, under the self-consistent electromagnetic field. Here f(z,v,t) > 0 is the particle number density function
in the phase space with (x,v) at time ¢, E(x,t) is the electric field, B(xz,t) is the magnetic field, J(x,t) is
the current density, p(x,t) is the charge density, and p; is the charge density of the background particles. The
system (1.1) is defined on the phase domain 2 = 2, x £2,, where 2, = [L; 1, L, 2]% is the spatial domain
and 2, = [Ly 1, Ly )% is the velocity domain (dy,d, = 1,2 or 3), with periodic boundary conditions in z. In
v direction, f is assumed to have compact support. We further assume the VM system is globally neutral, i.e.
/. o, (p — pi)dz = 0. Note that this is compatible with the periodic boundary conditions in x.

The VM equations model many phenomena in both laboratory and astrophysical plasmas, and accurate and
reliable numerical simulation of this system has fundamental importance. Particle methods [3,10,15] have been
widely used since 60’s because of their low computational cost especially when the dimension of the phase space
is high, yet with their numerical noise, it is hard for the methods to produce very accurate approximations. In
recent years, many high order Eulerian methods have been developed in the context of Vlasov—Poisson equations
or the VM equations. Some examples include semi-Lagrangian methods [6,17,18,20], continuous finite element
methods [24,25], and methods based on Fourier transform [12,13,16].

In reference [5], one of the authors and her collaborators proposed and analyzed semi-discrete discontinu-
ous Galerkin (DG) methods for the VM system. The methods were further combined with Runge-Kutta time
discretizations, resulting in Runge-Kutta discontinuous Galerkin (RKDG) methods, and their performance in
accuracy, stability, and conservation was demonstrated numerically. Note that DG methods were previously
proposed and studied in references [1,2,4,14] for the Vlasov—Poisson system. DG discretizations are chosen for
the phase domain in reference [5] due to their high accuracy, compactness, high efficiency in parallel imple-
mentations, flexibility with complicated geometry as well as boundary conditions and adaptive simulations. All
aforementioned properties make the methods a competitive candidate to simulate the VM system accurately
with reasonable computational cost especially for lower dimensional cases (e.g. the 1D2V or 2D2V system). This
is even so if one further makes good use of the modern computer architectures. More importantly, with properly
designed numerical fluxes and up to some boundary effect, semi-discrete DG methods have provable conservation
property of both mass and total energy, and this is shared by very few high order methods. On the other hand,
though RKDG methods have been widely used in many applications since they were introduced [8,9], theoreti-
cal analysis for such fully discrete methods is relatively little. Error estimations based on Fourier analysis and
some symbolic computations were carried out in references [23,29] when RKDG methods are applied to linear
problems on uniform meshes. Important developments were made by Zhang and Shu in references [26-28], where
error estimates to the smooth solutions on uniform or non-uniform meshes were developed for RKDG methods
with the second order RK time discretization for scaler [26] and symmetrizable conservation laws [27], and with
the third order RK method for scaler conservations laws in reference [28]. In reference [28], L2-norm stability
was also obtained for linear conservation laws, and such analysis so far is unavailable for nonlinear cases. In this
paper, we use the idea in reference [28] to obtain the error estimates of the fully discrete RKDG methods for the
VM system when the exact solutions have sufficient regularity. In particular, a third order TVD Runge-Kutta
method [19], a commonly used Runge-Kutta method in RKDG schemes, is considered as time discretization
together with DG discretizations of arbitrary accuracy in phase domain. The second order Runge-Kutta time
discretization analyzed in reference [26] is not examined here partially due to their restrictive condition on
timestep when the spatial accuracy is higher than second order [26,27]. Our analysis is based on Taylor ex-
pansion, energy analysis, some techniques for analyzing the semi-discrete DG methods of the VM system [5]
and for analyzing the third order Runge-Kutta time discretization within the method of lines framework. To
treat the nonlinearity due to the nonlinear coupling of the Vlasov and Maxwell parts, the polynomial degree k
is required to satisfy k > df”Q—H. In addition, a priori assumption is made for the L error of the electric and
magnetic fields. This assumption will be proved later by mathematical induction. Even though the Gauss’s laws
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are not considered in formulating the numerical methods, they are shown to be approximated accurately when
the exact solutions have sufficient regularty.

The remaining of this paper is organized as follows. In Section 2, the formulations of RKDG methods are
presented for the VM system. We also introduce notations and review some standard approximation results
and inverse inequalities in finite element methods. In Section 3, error estimates are established for the RKDG
methods. Here we start with the error equations and energy equations. Based on these equations, the errors
from the Vlasov and Maxwell parts are estimated and then combined. To better present the analysis, the proofs
of some lemmas are given in Section 4. Finally, we summarize and generalize our work in Section 5.

2. FORMULATION OF RUNGE-KUTTA DISCONTINUOUS GALERKIN METHODS

In this section, we will introduce notations, review some standard approximation results and inverse inequal-
ities, and present the formulation of Runge-Kutta discontinuous Galerkin methods for the Vlasov—Maxwell
system (1.1).

2.1. Some preliminaries

Throughout this paper, standard notations are used for Sobolev spaces and norms: for a bounded domain D
and any nonnegative integer m, we denote the L2-Sobolev space of order m by H™ (D) equipped with Sobolev
norm ||+ ||m,p, and the L>-Sobolev space of order m by W™ (D) with the Sobolev norm ||+ ||m,00,p. When
m =0, L?(D) is used instead of H(D), so is L>(D) instead of W%°°(D). For the brevity of notation, we use
* = x or v in this subsection. For the computational domain 2 = §2, x §2,, assume T} = {K,} is a partition of {2,
with K, being a (rotated) Cartesian element or a simplex, then T}, = {K : K = K, x K,,,VK, € T} VK, € T’}
defines a partition of £2. Let £, be the set of the edges of T}, then the edges of T}, will be £ = {T}7 x &, JU{E, x T}V }.
In addition, let &, = £ UEL with £ (resp. £Y) consisting of all interior (resp. boundary) edges of Y. The mesh
size of T}, is denoted as h = max(hy, hy) = maxger, hi, where h, = maxg, et hi, with b, = diam(K, ), and

— H — h ic - he . ha
hx = max(hk,,hk,) with K = K, x K,. When the mesh is refined, we assume both Fowm = mingyery ey
and 5 USRS — ;— are uniformly bounded above by a positive constant og. Therefore in our analysis
x,min ming . ET,‘: Kg

we do not always distinguish h, ha, he, hi, and hg,. It is further assumed that {7}, is shape-regular. That
is, if pg, denotes the diameter of the largest sphere included in K, there is Z%: < o., VK, € T, for a positive
constant o, independent of h,.

Next we introduce two finite dimensional discrete spaces

Gr ={9€ L*(2) : glx € P*(K),VK € T}, },

i = {U e [122))" Ul € [PH0))° VK. € T )

where P*(D) is the set of polynomials of the total degree at most k on D, with k being any nonnegative integer.
Note that functions in g’,f (resp. Z/l,{f) are piecewise defined with respect to T}, (resp. T}). For such function, we
would need the notations of jumps and averages. Given an edge e = (K;f N K) € £, with nT as the outward
unit normal vector of KX, for any g € Q’,f and U € Z/l,’f with g* = g|KTi and U+ = U\KTi, the averages of g and
U across e are:

1 _ 1 _
ot =50 +97), {Uba=5 U +U7),
and the jumps are:
Yle =g"nf +g7ng, [Ul=U"-ni+U" ng, [Uln=U"xng+U" xn,.

The averages and jumps across any interior edge e = (K, N K, ) € £ can be defined similarly. For a boundary
edge in % with n, being the outward unit normal vector, we set [g], = gn, and {g}, = 3g. This is consistent
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with the exact solution f being compactly supported in {2,. Below are some equalities which will be frequently
used in the analysis and can be easily verified,

%[92}* = {g}:lg], (2.3a)
[9192]35 - {gl}x[g2]x - {92}3:[91]3: =0, (23b)
[U X V]w + {V}w : [U}tan - {U}x . [V]tan = 0, (2.30)

where g, g1, g2 € Q,’f, and U,V € Z/{,{f. We also introduce some shorthand notations, fQ = fTh = ZKETh fK’ f(l* -
iz = Srcscr Jir Jo, = Sece, - Additionaly, [lgloe = (1o

1 1
(fgz fT,g gzdvdé‘x) 2, HQHO,T; XEy = (fT;T fgv gzdsvdl") 2’ and HgHo,sm = (fgw gzdsx)%-
Let IT* denote the L? projection onto g,’j, and IT¥ be the L? projection onto U}’f. In this paper, the following
approximation properties in (2.4) and inverse inequalities in (2.5) will be used: there exists a constant C' > 0,
such that Vg € HF1(02), YU € [HF1(02,)]?,

1 .
Beory + 11913 zpce,)? with llgllo.e,xry =

0.0k < ChIgllkerx, VK € Th,

1
U = I5U ok, + hie, [|U = ITEU |k, + b U = U 0,0k, < CHEEN|U k41 k., VK € Ty, (24)
U = IS U o,00,16, < CREHUkt1,00, 1, - Vo € T

1
lg — IT%gllo,xc + g — 1T%g|

In addition, there exists a constant C' > 0, such that Vg € P*(K), VU € [P*(K,)]?,

gHO,K?

x v

{ IVagllo,x < Chillglloies I Vogllo,x < Chig! 25)
_dg _1 :
Ulo,00. 5, < Chye P [[Ullo.rcs [[U]lo,or, < Chy |IU]

0,Kq-

Each positive constant C' in (2.4) and (2.5) is independent of the mesh sizes hx, and hg,, and it depends on k
and the shape regularity parameters o, and (or) o, of the mesh. One can refer to [7] for more details of such
standard results.

Throughout the paper, 7 is used to denote the time step and t" = n7. Without loss of generality, we assume
the time steps are uniform and 7, h < 1. The analysis in this paper also holds for non-uniform time steps. Even
though the numerical methods and error analysis will be presented when both the (exact and approximated)
electric and magnetic fields have three components, they can be easily adapted to reduced VM equations, such
as the one to study Weibel instability in [5] when d, = 1 and d, = 2, where some components of E and B
vanish and need not be approximated numerically.

2.2. Runge—Kutta discontinuous Galerkin methods

Now we are ready to present the RKDG methods for the VM system, where upwind DG methods of arbitrary
accuracy are used as the spatial and phase discretization and a third order TVD Runge-Kutta method [19] is
used as the time discretization. Note that on the PDE level, the two Gauss’s laws in (1.1) involving the divergence
of the magnetic and electric fields can be derived from the remaining equations of the VM system as long as
they are satisfied by the initial data, these equations will not be discretized numerically just as in reference [5].
For sufficiently smooth solutions as considered in this work, the divergence equations can be approximated
accurately by the proposed methods (see Thm. 3.1). One should be aware that for general cases, imposing
divergence equations in numerical simulations can be important. To initialize the simulation, let f,? = IT% fy,
E2 = H;jEO and BY = HfBO, where fo, Ey and By are the initial data of the VM system. Then for n > 0, the
approximate solutions at time t"*! = (n + 1)7 are defined as follows. We look for 2’1, 2’2, ;;'H € g;’f, and
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n,1 n,2 n+1 n,1 n,2 n+1 k : :
E By By By, BT, By € Uy satisfying

(£1h9) = (i) + Tan (5 B Bisg). (2.63)
(5pmv), +(Brhv), = <E7;,U>Q, + (B}l V) g, + i (B}, By, £ U V),
n,2 3 T n,l n,1l n,l
(h ’g>Q:< fh+ v,g) +Zah( h th th 79)7 (26b)
3 3 1 T
EM U BV :< Ep 4 = E”1 U> +<—B”+—B”’1,V> by (ERY B LUV
(B2 0), + (B1%),, = (35 LGB By ) e (BB U Y),
2
(e a)a = (30 + %)+ o (F2 B0 5% (2.60)
9]

(BpLU) g, + BV, = <§E,§L+§Eh’2,U> +<§B{j+§Bh’2,V> +§bh (Eh’z,Bh’z, h’Q;U,V>,

2, 25

for any g € Q’,f and U,V € Zx[,’f, where
an(fn, En, Br; g) = / frv - Vaog+ fr(En +v x By) - Vygdedy
Q
— Z (/ fngdszdv —|—/ fu(Ey +/U?Bh) -nvgdsvdx> ,
K, JOK, K, JOK,

K=K;xK,€Tp,
Z / (nmh-U—nmh~V) ds,
oK,

bh(EhvBhanUaV):/ B, -VxU=-E, -VxVde+
o K. €Ty

—/ Jp, - Udz, Jh(ac,t):/ fr(x, v, t)odo.

Here n, and n, are outward unit normal vectors of dK, and 0K, respectively. All the hat functions are
upwinding numerical fluxes defined as

|v - ngl

fh/v\nx = ({fhv}x + T[fh]x) * N,

fn (En WBh) Ny = ({fh(Eh +v X Bp)}o + (B + v ; Bh) - | [fh}v) My,

— 1 — 1
Ny X Eh = Ng X ({Eh}z + E[Bh}tan> ) Ng X Bh =Ng X <{Bh}z - E[Eh]tan> 5
and they further specify an(fn, En, Br; g) = an,1(fn; 9) + an2(fn, En, Br; g) with

anatio) = [ oo ogtao— [ [ (et EFE AL )l

an2(fn, En, B g) Z/ fu(En +v x By) - Vygdadv
(93

_/: /g ({fh(Eh +ux Byl + |(En +vx Bh)'nv[.fh}v> [glodsude,

2
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and

bh(Eh,Bh,fh;U,V):/ (Bh-VxU—Eh-VxV)da:—/ JuUdz
2, 2,

1 1
+ [ (B2 = 51Euln ) - Ohin = ({BDs + 51Bnlin )+ WV hands

Note that both a1 and by, are linear with respect to each argument, yet ap 2(fn, En, Br;g) is linear with
respect to fp and g only. The overall RKDG methods are consistent, and this will be used to derive the error
equations in next section.

3. ERROR ESTIMATES

This section is devoted to the main result of the paper, which is given in Theorem 3.1. More specifically, we
will establish error estimates at any given time T > 0 for the fully discrete RKDG methods in Section 2.2 when
they are used to solve sufficiently smooth solutions. The analysis of the present work is based on the following
assumptions on the regularity of the exact solutions.

Regularity Assumption
(a'l) f(v ‘,t),E(',t),B(',t) € C4([0 T])
(a.2) OLf(-, - t) € L3(2), OLE(-,t),04B(-,t) € L*(§2,) uniformly in t € [0, T];

B(,
(33) (BfEnvaafB)Vv((atEnvaat ) v( t )), Vx((atE—H)xat ) U(atf)),at(((?tE—H)x@tB)at(VUf)),
(02E+vx0?B)02(V,f) € L*(2),0;E,0; B € Wh(02,), V(0 f), Vo ((0: E+vx0;B)-V (0, f)) € L>(£2)
uniformly in ¢ for s = 0,1, 2;

(a.4) OFE(-,1),0:B(-,t) € H*T1(82,),0: f(-,-,t) € H*1(0), (0:F + v x 0;B) - V,(0cf) € H*1(£2) uniformly
int € [0,T], s=0,1,2. These, together with equations (3.8), will ensure f™* € H**1(2), E™* B"* ¢
H*1(£2,) uniformly in n for s = 0, 1, 2.

The assumption (a.3) can be replaced by the following,

(a.3’) All the mixed partial derivatives (in ¢, z, and v) of E and B up to the second order, in addition to
O3 E and 0} B, are in L°°(f2,) uniformly in ¢t € [0,7]; V(9 f),s = 0,1,2 and V,(V,0;f) are in L>(§2)
uniformly in ¢ € [0,7]; All the mixed partial derivatives (in ¢, z, and v) of f up to the third order are in
L?(2) uniformly in ¢ € [0,T].

The assumption on L? norms of functions together with (a.1) is for the third order accuracy in time discretization,
while (a.4) is for the accuracy in the spatial and/or phase domain. The assumption on L> norms of functions
is used to deal with the nonlinear coupling in the Vlasov part.

Unless otherwise specified, C' is used to denote a generic positive constant, and it can take different values
at different occurrences. This constant is independent of n,h,7, and may depend on polynomial degree k,
mesh parameter og, 0., 0, domain parameters L, ;, L, ;, ¢ = 1,2, and the time 7T'. It may also depend on the
exact solution in the form of its certain Sobolev norms or semi-norms. The constant v; in Theorem 3.10, 5 in
Theorem 3.16, and « in Theorem 3.1 have similar dependence as the generic constant C. For convenience, we
do not distinguish the upper indices n, 0 and n. For instance, we regard ¢g™° = g™ for any function g. With the
analysis being very technical, to make it easier to follow, the proofs of some lemmas are given later in Section 4.

Theorem 3.1. Let (f, E, B) be a sufficiently smooth exact solution to the VM system (1.1). Let (f*, E}}, By) €
G X U x U be the solution to the scheme (2.6) at time t™ with k > %=L, Under a CFL condition 7 < ~h,
with h < hg for some hy > 0, we have

1f Coost™) = fRIB . + 1B (") = BRI o, + 1B (t") = BRll§ o, < CR** + O7°
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for any n < T/7. In addition,
IE (-, t™) —

and the Gauss’s laws in (1.1) are approxzimated as below for anyn < T/,

1B (-, t"™) — Bi*|0.00,02, < Ch, Ym+1<T/r,

1 1
IV By = i+ pillosc, < O (W2 4+7%) . IV Billo.a, < O3 (W5 477,

Here pj(-) = [ fii (- v)dv, and p () = pi(- 7).

3.1. Error equations
Let (f(z,v,t"), E(z,t"™), B(x,t™)) be the exact solution to the system (1.1) and (1.2) at time t" = nr. We
denote f™(x,v) = f(z,v,t"), E™(z) = E(x,t"), B"(z) = B(z,t"), J"(z fn f™(z,v)vdv, and define
fPl=f"— 7 -Vaf"+(E"+vx B")-V,f"),
E"' = E"+7(VxB"-J"), B"'=B"'—7(VxE"),

3 1
fn,2 — an + an,l _ i (U . wan,l + (En,l Lo x Bn,l) _vvfn,l) ,

(3.7)
Jmt = / ftude,  Jm? = / f™?vdo,

2, 2y
En’2 — §En + lEn,l + Z (V % Bn,l _ J”71) Bn,2 — §Bn + an,l _ I (V % En’l)

4 4 4 ’ 4 4 4 .

Equations in (3.7) are obtained by applying one step of the third order Runge-Kutta time discretization in
reference [19] to the VM system (without the divergence conditions) from ¢ = ¢t" with the exact solution as the
initial data at t,,. From (1.1) and (3.7), one can further represent f™f E™* and B™* (4 = 1,2) in terms of f",
E™, B™ and their derivatives as below,

[Pt =f"+ 10, ", E™ =E"+719,E", B™ =B"+719,B

2 3
FY2 = SO R = T (BT 40 X 0B") -V, (90f"), (3.8)
2 2
E™? = B 4 %@E” + TzafEn, B™2 = B" 4 gatB” + Tzaan.

In the next lemma, local truncation errors from each step of the Runge-Kutta time discretization are given.
The results can be verified straightforwardly based on (3.8) and Taylor expansion, and the proof is omitted.

Lemma 3.2. If we define

f (ac,v,t”“) = %f” + ; n,2 2?? ( SV f™? 4+ (E"’2 + v X B”’Q) -va"’2) + TF (x,v),
E (2, ") = %E -+ §E” 2 %T (V x B™? — J™?) + Tp(z), (3.9)
B (z, ") = %B” + gB "2 %T (V x E™?) + Th(x),

where T} (z,v), T (z), T(x) are the local truncation errors in the n-th time step Vn : (n+1)7 <T', then

1T7 .0 1TENo0.2, + 1TB .0, < O
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For each stage of the Runge-Kutta method, we denote the error by e?’ﬁ = fol — f:’ﬁ = f}”ﬁ - n}”ﬁ, where
mE = qrk et — 8 and g = Ik o — fndfor § = 0, 1,2. Given that ™ can be estimated in a standard
f h f f

way from the approximation results in (2.4) of the discrete spaces, our error analysis will focus on the term §?’ﬁ,

which is also called the projected error due to f}l’ﬁ =1I ke?’ﬁ. Similar comments and conventions on notation

go to e%’ﬁ, e%’ﬁ, %’ﬁ, §g’u, ng’ﬁ and ng’ﬁ. Next we multiply an arbitrary test function g € GF (vesp. U,V € UJ) on

both sides of the equations corresponding to the Vlasov equation (resp. Maxwell equations) in (3.7) and (3.9),
integrate over each mesh element K (resp. K ), take integration by parts, and sum up with respect to all K € T},
(or all K, € T{¥). We then subtract (2.6a)—(2.6¢) from the resulting equations, and reach the error equations,

(6}“1,9)9 = (£},9), +7I(9),
n,2 _ 3 n 1 n,l T
(ff ’g)() = (4§f + 4§f g Q+ 4K(g)a (3.10)
1 2 27
n+1 _ ) “ n,2 _E
(&9), <3§f + 28 ,g>9+ 5 L(9),
("0)  +(€8%V), = (€8 Vg, + (€5 V)g, +TQUV),
(&20),, + (@), - Gergeto) +(Gariatv) +ROM. g
4 4 o, \4 4 0, 4 :
. N 1 2 . 1 2 . 27
(§E+la U) Qa + (£B+la V) 2. = <§£g' + §£E’2v U) + (ggg + 553’27 V> + ?S(Ua V)
o, o,
Here
nn,l o nn
JI(g) = (%f,g> +an (f" E",B";g) — an (fi), B}, Byi9) »
(9]
An? —3np — il il on
K(g) = ( g | +an(f" B B"y) —an (BB g)
(9]
3t — g — 2% 4 3T (2, 0)
L(g) = ( ! ! QTf ! 9| +an(f2E™2 Bv%g) —ah( 2’27E2L’2,BZ’2;9),
(9]
nn,l o nn nn,l o 77n
Q(U7 V) = (%Ev(]> + (Bvav> + bh (6%,6%,6?; U7 V) )
o, o,
4n,2_3n_n,1 4”,2_37’1_”71
R(U, V) = ( g e — Mg U + B B — "l v + by, (e%,17€7113,1’e?,1;U’ V),
T o, T o,
n ,2 n ,2
SW.V) = (377E+1 — g —QEUE + 3Tj(2) U) N (3773+1 — —2277% +3Tj(x) V)
T T
.Q:L Q.ﬁ

o (€2 el e UV ),

n,l_ _n
with any test functions g € GF and U,V € UJ}. For the functional J(-), we denote Ji(g) = (u,g) and
Q

T

J2(9) = an(f™, E",B™; g) — an(f}, E}, B}; g). Similarly, one can define Ky, Ly, Qp, Ry, Sy, =1, 2.
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We now take the test function g = &Fs 4{;}’1 and 6{;}’2 in each equation of (3.10), respectively, sum them up
and obtain the energy equations

d

§?+1H;Q-—3|K?H;Q::7'L7(§?)—FK:(£?1>ﬁ—4ﬁ(§?2)] (3.12)

+ et gt -

2
3(n+1_ n’ n+1_2 n,2 n) )
O,.(Z+ 1§ YRS £+ & o
Similarly, the following equation holds
2 2 "2 n)2
3(Iles™ 5 0, + 165" Mo . ) — 3 (€815 0, +11EBIG.0,)
n en n,l sn,l n,2 #n,2 n,2 n,l n 2 n,2 n,l n 2
—r|Qek en) + R (5" 65") +45 (657 6%) | + |2en7 i - +|pen-en-en]|

+3 (" —ep gt —agpt + 6p)  +3(T BT -2+ 6) (3.13)

x

The main error estimate will be established based on equations (3.12)-(3.13) which describe how the L? norms
of the projected errors are accumulated in one time step. In particular, in the next two subsections, we will
estimate the errors from the Vlasov and Maxwell solvers, respectively, and the results will be combined in
Section 3.4 to get the main result of this paper.

Before continuing, we will make a priori assumption for the L error of the magnetic and electric fields,
L>®-Assumption: For any integer n + 1 < T/7, ||e%*|[0.c0.2., [|€5|0.00.0. < Ch, with # = 0,1,2, hold for
small enough h, where C is a fixed positive constant depending only on the initial conditions.

This assumption will be used in Section 3.2 and Lemma 3.3-(2) to estimate terms with ap o as this is where
the nonlinear coupling of the Vlasov and Maxwell parts lies, and this assumption will eventually be established
rigorously by mathematical induction in Section 3.4.

Our presentation will also benefit from the following shorthand notations,

STAB; = [ [ o nalighPaso+ [ [ 10840 B nlighPas.de, (3.14a)
Ty JE, Ty JéE,

STABLp = / (IEEanl® + [[€5]kan[*)dse,  N* = |IEFII3 o + 1€EIIS 2, + [IE511E 0, - (3.14b)

x

where x = n or n,f. The terms STAB with different subscripts or superscripts provide stability mechanism
due to the upwind phase and spatial discretizations. Later on another type of stability mechanism will emerge
which is due to the temporal discretization.

In our analysis, we will frequently encounter certain linear combinations of 72, 7g ’1, Mo 2 and ntl o= f,E,B.
In the next lemma, the estimates for such terms are summarized, with their proofs given in Section 4.

Lemma 3.3. Let d? = don! + dmg’l + dgnZ’Q +d3nttt, o = f,E, B, where dy,dy,ds,ds are four constants
satisfying doy + di + da + ds = 0 and independent of n, h, 7. Then for any g € Q’,f and U,V € U,{f, we have

1
1) [NdF|l, o+ hE |dF]l, o < CTREY, ld2 .0, + B2 1Mo e, < CTHER, = B, B; (3.15a)

@) Jon (a3, 57", B3 g)] < CLH-lg

lo.e

0.0 < C% (B2 4 [g]2 o), 5 =0,1,2; (3.15b)
(3) |bn (dy,d, d}; U V)| < CTR* (UG 0, +IVI.0,) - (3.15¢)
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3.2. The Vlasov equation part

We start with a key decomposition of the error change in one time step [28], namely, f}’“ =&} = G+ G +Gy,

where G = g}"l —&F,GE = 25?’2 — f}”l —&F and Gy = §?+1 — 2{}”2 + &} It is obvious that

2
IG2 18,0 <C D NEFHS .00 i=1,2,3. (3.16)
=0
From equations (3.10), one gets
(G5.9)0 = 5(K(9) = T(9)) = K (o), (3.17a)
(G3.9)0 = 5(2L(0) ~ K(9) = T (9)) = 5 Lrc o). (3.17b)

for any g € Gr. In addition, one can verify based on (3.12) that

3lle;

6.0 = 3lIEFI5.0 = 51+ 52 + s, (3.18)
where =; = 7[J; (f?) + K; (f?l) + 4£i(£?’2)}, i=1,2 and

Z3 = (G3,G3) o +3(G1,G5) o +3(G3,Gy) g +3(G5,G3) g -

In particular, =5 relies on the phase space discretizations, for which some results were essentially established
in the analysis of the semi-discrete DG methods for the VM system in [5]. On the other hand, = and =3
characterize more the contribution of the time discretization. One will see that there are two mechanisms
contributing to numerical stability, one is STAB} (% can be n or n,#) which comes from the phase space
discretization and is also used in analyzing the semi-discrete method in [5], the other one is ||G%||? which comes
from the third order Runge-Kutta time discretization.

We first summarize in Lemma 3.4 some estimates, which are based on the phase space discretization and are
essentially available in the analysis of the semi-discrete upwind DG method in reference [5]. For completeness,
the proofs are given in Section 4.

Lemma 3.4. For§=0,1,2, we have

1
(1) an (&% ER BE ) = —5STAB}, (3.19a)
1 d

(2) an (n;vﬁ, By B g;vﬁ) < Ch*FL 4 ONME 4 S STABYY,  fork > = (3.19b)

(3) |an (5%, B, B4 g) — an (174, B3, Bitig)| < € (e o + Cllellloe) lglloa, Vg € G,
(3.19¢)
moreover ‘ah (f”’u, E™ Bt f?ﬁ> —ay, (f”’u, E}?’ﬁ, Bs’u; f?ﬁ)‘ < Ch?F+2 4 ON™E, (3.19d)

Proposition 3.5. The following estimates hold for =1 and =5,
2
(1) Z<Cr (B2 479 +0r ) [IEPHR o (3.20a)
#=0
2 7 d

(2) Z < Crh*H 4 COry N - o (STAB? +STAB}' +4 STAB?’z) k> 7”5 (3.20b)

=0
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Proof. Recall =1 = 7[J1(£}) + K1 (5?’1) + 4[,1(5?’2)], with similarity, we only estimate [,1({;}’2). Applying
Cauchy—Schwarz inequality, (3.15a) in Lemma 3.3, and truncation error estimate in Lemma 3.2, we get

. 3t — g — 2 4 3T (2, 0) N
L4 (ff,z) _ < f f f f 7£f,2
17

2T

ot 3177 ) 657

5?,2“09 SC(h2k+2+7_6)+O‘

1
< 3n+1_ n_2n,2
S (A
2

< C (W47 ‘ (3.21)

2
&

0,2
To estimate =5, due to similarity, we will only estimate J5 (5}‘) Using the results in Lemma 3.4, one has
T2 (5}1) = ap (fna Ena Bn’g}z) — ap (fl?a Elrzlv BZ?&?)
= an, (&}, B}, Bii€F) + (an (f™, E", B™;€F) — an (f", B}, Bii€F)) — an (0}, By, B €F)

< Ch* T 4+ ON™ — %STAB}‘.

O

Next we will estimate Z3. One key is to use —||G%|[ (, to control (CF + C;—E)HGQH%Q under some condition
on the time step 7. To make the details tractable, we first give some preparatory results.

Lemma 3.6. Forr=20,1,2, s=0,1, and any g € Q,’j

(1) lan ()" BR B g) — an (n) 7 B B g) | 0., (3.220)

(1) a gl
(2) |(1h (5?,T’EZ,5+1’BZ,5+1;9) —ay, (f}%T»E}?Sa Z,s;g) | 14

<C
<o) o, o

0.0 (3.22b)

Lemma 3.7. For any g € g,’:, we have

2
.
Lrr(g) <C (14—%)2(‘ g”on +‘£gﬁ ’09 +’§}lvﬁ‘on+hk+1)+73 |\g\|o7g+ah( 37E271’BZ71;9)
§=0 o o ’
(3.23a)
e (1+1)i lewl o+l o+l +ne rt 1982 ) oo (523
- h = E o, B o, Folloe h e
2
T n,f4 n,f n, 4 k41 n n,l pn,l
KRK(Q)SC(1+E> (’ E ’09 +‘ B ‘on +’£f ’09+h ) HgHO’Q+ah( By By ;g).
§=0 o o ’
(3.23¢)
Lemma 3.8.
n n,1 n,1l. ~n n n,1 n,1, ~mn
jon (G2, R B GE) + an (G, B B GY)
TN | on 12 C 2 1 n n,1
<O (1+7) €51l o+ 7 16311 o + 75 (STAB} + STAB}). (3.24)

With all the preparation in Lemmas 3.6-3.8, we are now ready to estimate =7.
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Proposition 3.9.

(1)

3<C(T(1+%>+T2(1+%>2> i:N"’ﬁ—khzk“ + o7

§=0

T 72 n
Proof. First note that

(3.25)
Sy = — IG5 5.0 +2(G5,G5) o +3(GY, G5 +3(G5.GY) g +3(G5,GY),y
= — 1G5 5 o + 7 (Kri (G5) + L (GY) + Lrx (G5)) +3(G5,G5) (3.26)
Based on (3.23a) and (3.23c),

Knic (G3) + Lac (GF) < an (G, B B G ) +an (G, B B G

+C (1+%)22:<

n,f
E

|

n, 4
’ +
oo * I

f?’ﬁ

pR+1 3 (G” an )
‘o,nm ’0794_ +7 1GY llo,0 + G2 lo,2

We now apply Lemma 3.8 to estimate the first two terms on the right, and apply Cauchy—Schwartz inequality
and (3.16) to estimate the last term, and get

2
K (G3) + Lrwe (G1) < C (14 1) [ SIN™ 4 p2+2 | 4070 4 ||G”||0 o+ =

(STAB +STAB}") .
=0
(3.27)
In order to estimate Lrx (G%) in (3.26), we apply (3.23b) of Lemma 3.7. In particular, take ¢ = G% in (3.23b)
and use (3.16), we have
cuc 6 <0 ( (1+ 1) 3 (Jerdl, e, + il =)+ + 122 ) oy
fEA2) = h = E lo,0, B lo,0, P llo,e h
. 2
<C (1+ E) SONE 4 22 | o764 ||G"||OQ (3.28)
=0
For 3(G%,G%)q = TLri (GY), we take g = G% in (3.23b) and obtain
n||2 T\ v n.f n.f 4 k+1 5, 165100 n
sleslie<cr|(1+7) 2_: n ]O,% + |lén \OQ : ’O,Q+h + 704 =22 Gl g
< Or? (1 n h) ZNM LR | o ch2 IG3 112 o + G320 -
§=0
Therefore, with a different constant C' we have
mn mn n mn 2
3(G.Gg <0 (14 h) ZN L I +ch2 lapl2., . (3.29)
=0

Finally, we complete the proof by combing (3.26)—(3.29)
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Now we are ready to establish the main error estimate result for the Vlasov solver.

Theorem 3.10. Let (f, E,B) be a sufficiently smooth exact solution to equations (1.1). Let (', E},Bj) €
GF x UF x UF be the solution to the scheme (2.6) at time t" with k > %1, Under the L°°-Assumption, there
exists a positive constant vy, such that for any 7 < 1, the following estimate holds for ¥n:n+1< T/t

Proof. Since the constant C' in the result (3.25) is independent of n, h, 7, there exists a positive constant 7,

5”““0 —3||ep|2 , < OrhH 4 OrT 1 OTZN"” (3.30)
$2 #=0

independent of n, h, 7, such that —1—1—0%—1—02—2 < —% as long as 7 < 1. Under such condition, we combine (3.18)

and the estimates in Propositions 3.5 and 3.9 and get

2
1
<Ok 4 O+ CT Y N 3 G315, — % (3STAB? +3STAB}' + 14STAB?’2)
=0
2
< Crh***t 4 o + Cr Z N, O
=0

§"+1H0 —3|jEpll2 , = 51+ E2 + B

3.3. The Maxwell equations part

In this section, we estimate how error accumulates in the Maxwell solver. The procedure is parallel to the
Vlasov part in Section 3.2. We start with a decomposition of the error change in one time step

W - = XTI+ X+ X3, Y -y =27 + 73 + 28,
n,1 o n,2 n,1 n __ n+1 n,2 n,l n,2 n,1
where X1 —§E _fEaXz 2§E §E _fE,X:; = 2§E +fEaZ1 —fB _§Ba Z2 —253 53 _fBa

and Z§ = €T — 2617 + €. Tt is obvious that

n|2 n,f 2 .
X Ml, 02 < » ‘O Lo =123 (3.31)

2
4 2
B ’o,m 28, <

Based on equations (3.11), the following hold for any U,V € UF.

(X3 V), + (Z5. V), = 5 (R(U.V) = QU.V)) = TRk (U.V),
(X§\U)g, +(25,V)g, = 2 2SWUV) = R(WV) = QU,V)) = £Sax (U, V)
In addition, one can verify based on (3.13) that
3(1lE5 15 g, + 1657115 0. ) = 3 (16815 .0, + 18150, ) = €1 + 62 + 65, (3.32)
where
0; = T(%(ﬁ%aﬁ%)*‘Ri (5}3 34 )+45 (fE 34 ))v t=12 (3.33)

O3 = (X;7X§L)Qz ‘1'3(X17X3)Qz +3(X37X3)Qw +3(X§L,X§’)Ql
+(22,25)q, +3(241,25) q, +3(22,25) o, +3(25,Z5)q, - (3.34)
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In particular, @5 depends on the spatial discretization, while @1 and @3 characterizes the contribution from
the time discretization. Similarly as in the Vlasov part, there are two stability mechanisms, with one being
STABY,; (x can be n or n, ) from the spatial discretization, and the other is related to || X3||?, ||Z2||? arising
from the third order Runge-Kutta time discretization.

Next we will estimate @; and ©@3. Some estimates for the spatial discretizations of the Maxwell part are
summarized in Lemma 3.11.

Lemma 3.11. For§=0,1,2, we have

- ng ent ? n||” L ng
() o (e ettt ) <c ‘OQ ‘ n ‘0 . )~ 3STABLE, (3.35a)
2
(ii) ‘bh (77,; JE s e ﬁ)‘ < Op2kt m, ‘ 1—65TAB”Tj (3.35b)
Proposition 3.12. The following estimates hold for ©1 and Os.
2
6, <Cr (h2k+2 + 7'6) +Cr Z Nt (3.36a)
1=0
2
O < Crh?H 1 Or Y N™E - 16 (STAB "5 +STABYL + 4STAng) . (3.36b)

§=0

Proof. Recall that ©1 = 7 (Ql(fE,gB) +R1(£E &5 )—|—4Sl(£E &5 )), with similarity, we only estimate
S1 (ng, Egz). Applying Cauchy—Schwarz inequality, Lemma 3.2, Lemma 3.3(1), one gets

S ( n2 n,2> _ (377"+1 — 1 — 20” + 3T () n,2> N (i’m”+1 0 — 20" + 3T (x) n,2>
9] 25

E 5B 2T B 2T 5B
go(

To bound Oy = 7 (Qz(gg,gg) +R2(fg’1,§g’1) + 482({%’2,62’2)), with similarity, we only need to look at
Qo (&R, &R ). By definition, and Lemma 3.11,

Qs (€3 €) = bn (€. 1. EB) = bn (€5, EB EF: €3 EB) — bn (. €5 €B)
7
< OnH 40 (|61 o + 168150, ) — 1 STABE

x

n,2

+ 1188

2
H ‘ 42kt 4 7_6) <C (Nn,z 42kt 7_6) _
0,02, 0,92,

< Oh*FH L ON™ — %STAB%B. O

Next we will estimate ©3. One key is to use —[|X2'[[§ o — [[Z2][5 , to control CE(||X3([5 o, + [1255.0,)-
To make the analysis easy to follow, we first present some preparatory results in two lemmas.

Lemma 3.13. For any U,V € U,{f, we have
Sric (U, V) < C (R* + 7hY +73) ( ) 4 by (X2, Z8 G U, V) (3.37a)
<o (Wt (||Z2 o, +1X5l.0,) ) )

+ C[|G3llo.0 1U]]o,0, - (3.37D)
Rek(U,V) < C (W +71%) (|Ullo.2, + IVIlo.2.) + b (XT, 27, G} U, V). (3.37c)
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Lemma 3.14.

C 2
< 5 (X210, +12818.0,) + €3 (6316 0 + 15215 )
j=1

Now we get ready to estimate Os.

1 1
+ 15 (STABY, + STABY} ).
Proposition 3.15.

T T2
03 < O (K2 + 72h%F + 79) + (—1 + CE + C§> (||X§||§7Qm +1Z32 )

2

o " (STABy + STABj,) + Cr Y N™. (3.38)
=0

Proof. First note that

2 2
O3 = — | X3 (0,0, — 122

(Rrk (X3, Z3) + Sk (X1, Z7') + Sri (X3, Z3)) + 3| X5 [l5 o, + 31125 (I, (3.39)
Based on (3.37a), (3.37¢), and Lemma 3.14, in addition to (3.16) and (3.31) we have

Rrr (X3, Z5) + Srx (X1, Z7)

< b (X], 25, G X7, 20) + b (XY, 20, G5 X5, 28) + C (W 7+ 7%) (1Tl g, + 128 o, )

n
lo.e2.)

% (STAB%B + STAB%’E) +C (h2k+2 4+ 2Rk 4 7_6)

+C (Wt (g

C
<= (180 0, +12505.0,) +

2 2 2
+cz(uayuo,9+ X705 0.+ 12215 0,

=1

D‘IQ

2
1 n
(||X2 12 0, + 12512 0, ) + (STABgB + STABE’,13> +C (W2 4 2207 4 7%) 4+ C 3T N™E (3.40)

j=1
Next we estimate Spx (X%, ZF) by using (3.37b) in Lemma 3.13

Snrc (X, 23) <c(h’f“+m’“+7 3 (128 .0, +1XE o 0, ))(|X;|0,9 +1123

n, C n |2
< C (2 4+ 720 4 7%) + CZN f4 0 (HZ2

Jj=1

2.) FCIIGE o, 1X2 10,0,

2
RES

| ) . (3.41)

83
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Finally we turn to 3|[X#|[3 . + 3|[Z3[[5 o, in (3.39). By applying (3.37b) in Lemma 3.13,

ni2 ni2 n n
3X3 o 0, +31123 5 0, = 7SrK (X5, Z3)

. 1
<or (1o 400+ 1 (1280 0, + 165 ho,) ) (1Ko, + 128 0.) + €71 o1,
2
T 2 2 2 2 2
<O (R e 4 1) 1 0T (12312 0, + X510, ) + O IGS IR + X5 0, + 1251,

therefore, with a different value of C, we have

2
2 2 T 2 2 2
31X 0.0, +3128 00,0, < C (F2R*+? 47407 4+ 7%) + O3 (IIZS 0.0, + HXS‘HO,QE) +C7° G35 - (342)

Now by combining the results in (3.39)-(3.42) and (3.16), we can conclude the estimate for ©3 in (3.38). O

The main error estimate result for the Maxwell solver is now established as following.

Theorem 3.16. Let (f, E,B) be a sufficiently smooth exact solution to equations (1.1). Let (f',E},Bj) €
Q’,j X Z/l,’f X Z/l,’f be the solution to the scheme (2.6) at time t™. There exists a positive constant vz, such that for
7 < 72, the following estimate holds for Vn :n+1<T/7

2

3(Iles ™ 0.q, + 1657 M0 0. ) — 3 (I€81G 0, + 15150, ) < CTAHH! +C77 + 0T > N", (3.43)
£=0

Proof. Since the constant C' in the estimate (3.38) is independent of n, h, 7, there exists a positive constant o
independent of n, h, 7, such that —1 + C7 + C;—z < —% as long as 7 < 2. Under this condition on the time

step 7, we also have 72h%% < 421252 Now we combine the estimates for ©;, i = 1,2,3 in Propositions 3.12

and 3.15, and get

3 (€815 g, + 1657 6.0, ) = 3 (IERIZ 0, + IEBI 0, ) = €1 + 62 + €5
2

1
< CTh®H 4 OO Y N = o (X215 o, #1125 5., ) — 5 (3STABY; + 3STAB, + USTAB )
£=0
2
< CrhPM 4 CrT 4+ CTY N O
§=0

Remark 3.17. Unlike in Theorem 3.10, the a priori assumption about the L° norm of the error in the magnetic

and electric fields, together with the condition of k > %, are not needed in Theorem 3.16. This difference is

due to the nonlinear coupling terms in the Vlasov equation.

3.4. Proof of the main result: Theorem 3.1

The following lemma is the final preparation.
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Lemma 3.18. Suppose 7 < «, where « is a positive constant independent of n,h, 7. Then under the L -

Assumption, the following inequalities are satisfied
0.0.)

2 2
}“Hm <cr 2y e (|lgpfs o + gk

2
o, TR

n,2 2k+2 n,1 n,l n,l
<
‘gf Hon Ch +C<H§f|‘on & Hon+ ‘gE Hon T ‘53 Horz)
2
1 2k+2 2
2., sonrec(s ||sf||m+usE A
2
n,2 2k+2 nl n,1 n,1
< CH**E 40 R
el < (e l] , + vt + ezl + e
2
n,l
&'l < on o (Il o, + 16800, )
2 2
n,2 2k+2 n,l
< Ch C H H
B 0,2, + ( E 0,2, +H£B 0,2,
A direct consequence of these inequalities is
2
> ON™E< ON™ + ChFF2, (3.44)

=0
Now we are ready for the proof of Theorem 3.1.

Proof. First we make the a priori assumption for the L error of the magnetic and electric fields as in L°°-
Assumption. Based on Theorem 3.10 and Theorem 3.16, for any 7 < := min(y1,72), we get

2
BN 3N" < O77 4 Crh* 4 07 Y N < O (¢7 + R 4 rN") (3.45)
=0

Here (3.44) is used to get the last inequality. Let 7, = N"/(1 + %)", then (3.45) leads to 7, — V1 <

Ao 2k+1
CE 4 ") We now sum up Ty — T3-1 and use Ty = 0 to obtain

3(1—&-%7’)"
" C’ 77T 4 TRkl
T, < Z —) < 70 4 p2htL (3.46)
=1 3 (1 + %r)
Therefore o
N" = (1 + %) T, < oM (70 4 h2EFL) < T (78 4 p2RHL) (3.47)
for any n < T'/7. This can also be written as
n||2 n |2 n 2
IEFIZ , + IR o + I€BI2 o, < C (8 + B2+, (3.48)

Next we will establish the L°°-Assumption using mathematical induction. For n = 0, 5? =& =¢% =
0 and the approximation property (2.4) implies that ||€%|]0.00.2., ||€%0,00,2. < Ch, where C depends only

1197

on the initial conditions and is independent of n, h, 7. Furthermore, Lemma 3.18 shows HE?’ﬁ
€% 0,2, < CR**! for § = 1,2. Thus

[EXZ )

ﬁHo@on < Ch**Hg pRHL < ChF+1-% <Ch,

HeEuHOOO.Q
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detl o do
12 > 21

< Ch. Suppose ||e}]]0,00,2.5|€%]l0.00,02, < Ch for all n < m, therefore inequality (3.48) with
1135 2 €5 o

for small enough h. Here the inverse inequality (2.5) and the condition k& > are used. Similarly

el
n=m —|— 1 is satlsﬁed Combining this with Lemma 3 18 implies Hff
C(r3 4+ h¥*2) for § = 0,1,2. Thus

0,00,82; 0,82,
< Ch= %73 4+ O 3% < 0313~ + CRFHE—% < Cphlte, (3.49)
for k > df”Q—H (recall d, < 3), under the condition 7 < v and with ¢ = min(k — dg detl 9 — de) > 0. The positive

constant Cy depends on T in general and is independent of m, h, 7. One can see that there exists hg > 0, such
that Cyh® < C, hence Hemﬂ’ﬁ [0,00,02, < Ch for h < ho. Up to now the a priori assumption is established, and
this also completes the L? error estimates of f, F and B.

Finally we will show how the Gauss’s laws are approximated by the proposed methods. Based on the fact
that the Gauss’s laws are satisfied by the exact solutions, using inverse inequalities (2.5) and approximating
properties of the discrete spaces in (2.4), and applying the L? error estimate of f and E, we get

IV Ep = ph+0illoo, = IV-ER —pp +pi — (V- E" = p" + p)lo.0,
=V (Ey = E") = (ph — 0")lo.c0,

< V- 77%”0,(2z + V- 5}@”0,% +C He?”o I

< (thr% +73) .

xT

< R |E g, + 3 €8T 0, + € (143 +7%) <

Similarly one can get ||V - B}||0,0, < hg(hk"’? + 73). This completes all the estimates in Theorem 3.1. O

Remark 3.19. The condition k > %=L
results, the requirement k& > 7‘” is enough.

-Assumption, while for all the other

4. PROOFS OF SOME LEMMAS

In this section, we will provide the proofs of some lemmas in Section 3.
4.1. Proof of Lemma 3.3
To get (3.15a), we start with f™! and f™? given in (3.8), and get
dofn + dlfn,l + d2fn’2 + den+1

2 3
=ds (" =) T (d1 + ) Of" + T dad} f" — Tod (" +v x O B") -V, (9,f")

,7_2 3

= 7d30,f (a,0, %) + <d1 + ) Of" + T dad} " Tde (O E™ +v x OB") - Vy (8:f™),  (4.50)

for some t* € [t", t"T1]. Here we have used dy + dq + d2 + d3 = 0. Therefore, with I as the identity operator,

2 3
d? = (Hk — I) (Td38tf (.T, U,t ) <d1 + ) 8tfn —dgaffn — Tzdz (8tEn + v X 8tBn) . VU (8tfn)) .
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For sufficiently smooth solution, there is

|d% HO o S CThPH! e (H@f”kﬂ o+T HaszkH o+ (0B +v x 9,B) - v(atf)||k+1,9) :

Recall that 7 < 1, we further have ||d}|lo.o < C7h*"'. Similarly one can show ||d}[os < Crh¥+3. These
two estimates will lead to the upper bound in (3.15a). The proof of the results for E and B can be proceeded
similarly.

To get (3.15b), based on definition

|an (d}, B3, By g)|

< [ 1ago- Vool asavs [ [ ([gagoy, + 12,
I?) Ty JEs

n [ n,s n,s E;® 4+ v x B)”® Ny n
({df(Eh’ Fux B} + (£ . W) |[df]v)'[9}v

<C(Hd ||orz”v

) |[g}m\dsggdv—|—/Q |d} (B} +vx B*) Vg dodo

ds,dx

z

0,79 X E,x HQHOT,LXS>

; T) (Hd Hog”vaHOQ-l- Hd HOTf
C =

< Zliglloe (41l  + 2 a7l e )

C s
+llgllo (127 llg e, + 187

c (HE,?SHO,OO,Qx + ||B;:*S

) (13l + 5% 195 e, ) -

By the a priori L°°-Assumption, there is

1ER " o,00,0, < €5 0,00,0, + 1E™*l0,00,0, £ Ch+C <C, (4.51)

and similarly,

1B <c. (4.52)

||O,c>o,.(lz

Finally we apply (3.15a) and conclude
s T T
Jan (@3, B} B*:)| < OTlgllo.oh** < 0T (h742 1 |lg|3 ). (4.5)

To get (3.15¢),

b (A, d, 7 U, V) = /de%-(VxU)dw—/de%-(VXV)dm—/Qm (/Q ?vdv) Uda
b ()~ 5 051 ) Ot~ [ (54 5 05l ) Vs
- (/ dfvdv) ot [ (1 }x—i[d@m) Wl [ (1) 5 ) ) - Vs

where the second equality is due to VxU, VxV € Uy, which leads to [, d-(VxU)dz = [, d-(VxV)dx =
We now can apply inverse inequality (2.5) and (3.15a) to obtain (3.15¢). )
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2. Proof of Lemma 3.4

To get (3.19a), based on definition, for any g € GF, U,V € UF

onalgig) = [ oo Vegdrav— [ [ (tgu)os gl ) glanae
=5 ). = [ vmetaso [ [ (tore+ E5E L) sy

h Ko €Ty

LG o) e
/:/ (( ~taklg ]”C)' %I[g}xﬁ) dsdv

- /T /5 v - 10| [g] 250 (4.54)
h @
Here the property of jump and average in (2.3a) is used to get the last equality in (4.54). Similarly, there is
an2(9,U,Vig) = —% fTT Je (U+vxV)- no||[g]v|?ds,dz. Finally, taking g = f?’ﬁ, U= EZ’ﬁ, V = BZ’ﬁ leads
to (3.19a).

To get (3.19b), we will proceed the proof in two steps.

Step 1: To estimate ah71(n?’ﬁ;§}”u). By definition,

Qh,1 (nf ,f ) = /977}‘*1:11} . sz}wdxdv — /T;LJ /gl ({n}"ﬁv}z + |U2—nz‘ [n}%ﬁ} m) . {ﬁy’ﬁ]zdszdv. (4.55)

Let vg be the L? projection of the function v onto the piecewise constant space with respect to 7 W, then

/ Nyt - Vg tdady = / (v — o) - Vo€ Fdadv + / 7 g - V€t dady
22 2 2

= / n?’ﬁ(v — ) - Vmg?ﬁdwdv‘ (4.56)
7}

The last equality is satisfied because vy - Vmg?ﬁ € Q’,f and the L? projection of n}“ﬁ onto Q’,f vanishes. We further

have
0,K 0,K

;L,ﬁ ’ < O+t
0,K

n, 4

‘/Q n}”ﬁv . ng}”ﬁdxdv ny

Ve

<=l Y (42
KeTy,

< Chyllvll10,2, > PR
KeTy,

(4.57)

0,02
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Here Cauchy—Schwarz inequality and approximate properties (2.4) are used for the first and second inequality
above, respectively. Applying the similar technique to the second term of ahvl(n}l’u; f?’ﬁ), we get

/: /g ({n}“%}ﬁ ‘”'2”””‘ [n}“”]x) g dseav
n,f
<L (o (o L0 1

1
2
< //2 ‘{U}Lﬁ}
v e v

n,f 2 1
2 H:T]f:| L 2
+ | ——= |v - ng|dsgdv / / [v - ngl {f?} ‘ ds,dv

2 Ty Je. @

1
2 2 |

‘ / / [v - 1) {f}m] ‘ ds,dv | < COhFtz / / [v - 1)
0.1 % \Jrv Je, z T Je,

By (4.57), (4.58) and Young’s inequality, there is

2 1
‘ +C’h2k+1+—/ / v gl
0,0 16 v JE,

{5?,11} mr dszdv> ) . (4.58)

et 7] ) ]2 ds,dv. (4.59)

an,1 (n?’”;f?’ﬁ) < C‘

Step 2: To estimate a2 (1}, E;F, B! €1%). Let Eo = II9E™#, By = I19B™# be the L? projection of E"™#, B™#
onto piecewise constant vector space with respect to T}, then

‘/ﬂ n?’u (E;Zu +v x Bg’ﬁ) ~VU£?’ﬁdacdv

- ‘/ﬂ npt (Bt = Bo+ v x (Bpt = Bo) ) - Vog dado

< (HEZ’ﬁ—EOH (4.60)

Voéy*

‘o,rz'

n,
"y ‘0,9 H

volmptn, )
0,00,82; 0,00,§2;

The first equality of (4.60) is satisfied because (FEg + v X By) - va}l’u € GF, combining with the fact that the
L? projection of U}L’ﬁ onto GF is equal to zero. Since the operator II* is bounded in any LP (1 < p < o)
norm [11], we can further estimate HE;L”i — Eollo,00,0, < HE;L”i — ITFE™| 000, + [ TTFE™F — El)0.00.02,, and
1ITEE™ — Eollo,00,0, = |TE(E™ = Eo)llo,00,2, < CIIE™ = Eollo,0,0, < Chal|[E"||1,00,0,- Thus, ||E}* —
Eollo.00.2, < [|€-%10.00.2, + Chy. Similar treatment can be applied to HBZ’ﬁ — Bol|o,00,102, - Therefore,

[yt e t)wigasa] < (6], 65, + ) ], o557
(R T A = 2
;00,80 ,00,82, R
_dx
< Ch % (’%,a ’09, lgg,ﬁ m)‘gy,u‘oﬁcflkﬂ‘g}z,u‘od

(4.61)
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Here we have apphed the inverse inequality in (2.5) to the last inequality above. The second term in
a ( n,f Enﬁ Bnﬁ b : d .
n2(Mf" ,f ) can be estimated as

[ (e ey S g Y ] o

n.f4
Ny }
S (e e+ ) )
_/;T/Su K " o h v 77f v + 2 5f v
1
2 2
< / / 2‘{(”?0 } dsydx / / ’(EZ’u—l-vaZ’ﬁ) n
}T “"'U v z. E'u
2
n,f4 n,4 nt ) ot
‘07T5X51) (HEh 0.00.02, ) </; /gq)’(Eh +UXBh ) Ty |:£f :|v’ dSUd.T>
< Opk+ (HEM

o) ([ [ Ny [59] ones)

2
1 1 1
Note 1E7 15 e, < NEBH IS oue, + INTEE™ G o 0, < NIEREIG .. From the inverse in-

L . . l
=T (€5 0,0, Since || .0, is bounded, [|E||2 o <

dz

1
2

] o)

1
2

’(EZ’ﬁ—H) X BZ’ﬁ> My

2

n HB”ﬁ

0,000,825

N
0,00,82,

equality in (2.5), there is ||¢m*
C(1+h™ g

1
5 0, ). A similar estimate also holds for || .- Combing the results, we have

1
HE”‘ +HB””‘ <c(1+n % ‘ ”ﬁ‘ ‘ ”’ﬁ‘z . (4.63)
0,00,822 0,00,822 0,92, B o0,
Equations (4.61)-(4.63) lead to
N Enﬁ Bnﬁ n, ﬁ) < Ohkf— ‘ n,f ‘ ’ n,f ’ ’ Chk+1 ‘ n, 4 ‘
ahQ(nf &5 3 0,9m+ B o0, o,n+ & 0,02
1 d 3 2 :
+ChFte <1+h’f (\52” +’ &, )) (/ / ’(EZ’quvaZ’ﬁ) "1y [5}“”} ’ dsvdw>
0,82, ;Z' Ey v
Ch2k—d 8 # 2 C # 2 Ch2k+2
< —dy n mn, T,
- (‘5 ‘on ’53 ’o,nz> i ‘gf ‘0,9+
2k+1 —da , , 1 , , , 2
+ OR2t <1+h : (\gg”\WT gﬁloﬂm))+1—6/’1/&‘(E;ﬁ+vx33”)-n [g;ﬁ]v\ dsydz.

Since h2F+Th=F (||¢)y |on ) < C(h+2-de 4 [|ept)|2 2 o) < CWPF2 4 ||et)2

|‘§B’u|‘o,nm) and h2k—d= < 1 for k > , we further have

)

an,2 (nfﬁ Et B"”,f"ﬁ) <Ch2’“+1+ON"”+—/ / ‘ E"”HxB”ﬁ) dsydz. (4.64)

Now with the results in (4.59) and (4.64), we can conclude (3.19b).
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To get (3.19¢) and (3.19d), note that with f being smooth with compact support in §2,, one has [f™#], = 0,
{f™t}, = f™f for any e € £,. Thus, applying the divergence theorem gives

ana (f74 R Brig) = /Q I (Ept 4o x Bt - Vygdado - /Q / 7 (B o x Bt - [gludsuda
= —/ Vo fmh. (E;Zti +vx BZ’ﬁ) gdadw.
Similarly, ap o(f™#, E™¥ B™% g) = — [, V, f4 . (E™F + v x B™#)gdzdv. Therefore,
jan (7%, B™, B g) — ay (f”’ﬁ, Ept Bt g)| = lan (574 B, B g) = ans (574, B8 B g)|

Ufnyﬁ . (E;llvﬁ _ E"vﬁ + v X (B;LL’ﬁ — Bn’ﬁ)) gdl‘dU
B
< 198 (|57, €57, )

<C( e”’ﬁ’ eg’ﬁ’ >
0,0 0,0

This gives (3.19¢). Taking g = 5}”, and with the approximation property in (2.4), we further get (3.19d),

)|

To get (3.22a), based on the definition of ay,, approximation property in (2.4) and inverse inequality (2.5),

n,f n,f
E B

(4.65)

jan (575, B B €10) — an (174 B B )|

o

4.3. Proof of Lemma 3.6

7,4

fgﬁ ngﬁ ny 5?711 < C'h2k+2 + CN"™¢.

*

+

*

‘O,Qﬂc ‘O,Qﬂc ‘O,Qm ‘O,Q

‘ah (nf En ,s+1 Bn s+1’g) (n}z,r’Ez,s’Bz,s;g)‘
= ’(lh 2 (n?#T’E2,8+1’BZ,S+1;g) — an2 (n}LaT’E}’/’:’S’BZd;g)’

’/ (Bpo = Bt o x (Bt = By ) Vagdedu

/ / I 7" U E”’3+1 —EM* 4 v x (BZ’SH - BZ’S» - g]ods,da

AL
2 Jry Je,

S C <HE}7L1,s+1 o E’?,s

(B o B o,

O,OO,QJC> (‘
0,00,9m> ’

_ HEn,s—i-l _ En,erl _|_En,s _ E;LI,S +En,s+1 _ g™
- h

—[(ER® + v x B;"®) - nyl

Hg]v|d5vdx

0,7 x )

n,s+1 n,s
+ ||+t - By

Y
0,00,82, 0,02

n,s+1 n,s
+ HBh - By

<ol (|2 - B2,

By the a priori assumption and equation (3.8), we have

n,s+1 n,s
|E -

0,000,825 0,00,§25

< ‘ <CO(h+7). (4.66)

R A e o P
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Similarly, ||B;"**" — B}*|

0,00,2, < C(h+ 7). Therefore,

n,r n,s n,s n,r n,Ss n,s T
o, (" B B g) —an (0 BB )| < € (14 1) B lgllo.o
To get (3.22b), we follow the similar lines as to prove (3.22a) and obtain

o (677 B B ) — an (57 R B )|

O,oo,.Qz) (‘

.
e)se(e Do
0,T;x£1)|g|O’ThX5”)_ +h gf

Here (4.66) is used for the second inequality, and the inverse inequality (2.5) is used for the third one.

< C <HE}7;L,5+1 o E;rlL,s

n,s+1 n,s
+ Bt - B

&

0,9+’

v n,r
0.00.02, O,QH w9 §f

|g|o,T,.;xau)

0,TF X E,

&

&

SC(fH-T)(’ OQHVUQHO,Q—!-‘

0.0 g0, -

4.4. Proof of Lemma 3.7
By definition, we have

Lrk(g9) =2L(g) — K(g) — T (g9)

B / 3773}"'1 + 30} — 677?’2 + 377 (x,v)
T T

gdzdv + 2ay (f"’z, E™2 B™2 g) — 2ap, ( ;;’2, E}?z, 32’2; g)

— (an (/1 B B g) — an (f B BRtig) ) = (an (f7 B™, B g) = an (f7 B Biig)
=N+ Ao+ As + Ay,

A== / (317;}“ + 30} — 677?’2 + ST}’(x,v)) gdaxdv,
T T,
Ay = 2ay, (f”’z,E"’z, B”’z;g) — 2ay, (fn’Q,EZ’Z, BZ’Z;g)
- (ah (f™t E™ B g) —ap (f”’l,EZ’lvBZ’lag)) — (an (f", E",B";g) —a(f", E}, B 9))
AS = _2ah (n}L,Q’ EZ’Qv BZ’2;9> + ap (77?,13 E}Tlv BZ’1;9> + ap (77?, E}?a B}T;ag) )
Aa =20, (277 B g) — an (€7 B B g) — an (€, BiL Bilsg)
The term A; can be estimated by applying Lemmas 3.2 and 3.3,

1 " "
Al < 2 (a0 - 002+ 3170l ) lolo < C (57 47%) g

0,02+

To estimate Az, we apply (3.19¢) in Lemma 3.4, the approximation property (2.4), and obtain

2 2
AzSCZO ’09 +‘ ’09)|Q|O,QSCZ<’
=0 o o #=0

For Az, we first rewrite it as below.

n, 4 n,4 n, 4
p €p B

n,f
E

0,82, 0,82,

+hk+1) lollo.c-
A3 = —2ay, (7’]?’2 — n?’l,E2’2,BZ’2;g) — ap ("7?71 - U}L?EITLL’B}TLLag)
20, (nj! By % By s g) + 2an (np ! B By g)

—an (n?’l,EZ’l,BZ’l;g) +an (n?’l,E;?,BZ;g) :
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Applying Lemma 3.3 to the first line, and Lemma 3.6—(1) to the second and the third lines, one has

-
Ay <C (1 + E)
For A4, recall Gy = 25}172 — 5?71 — £}, and using Lemma 3.6-(2), we have
Ay = (2ah (5}12 En2 Bh ’g) 2ayp, (5?2 En1 Bh ,g)) +ah( S,Eg’l,BZ’l;g)
(ah (ff,Enl By ’g) —ap (gf’Eh»Bh, ))

<C’(1+%>(

Now we combine the estimates for A;,4 = 1,...4, and can get (3.23a),

|+
0,2,

To further bound the last term and hence obtain (3.23b), we apply the inverse inequality (2.5) and

o 1) (65,22 5% ).

n,f
B

n,f
E

+

+ah( ;LvEnl Bh 79)

‘O,Qm ‘O,Q

Lrlg)=C | (1+7) 5 (\
#=0

+hk+1) +73

By’ By 4.51)-(4.52), and get
h h
n n,1 n,l n
o (G2, 0 B g) | < € (1G9 T )
C Hl;n71 ‘ HBn’l ‘ ( G7 GQr )
+ ( | P + || B, 0.00.02, 1G5 v9llo,02 + |G5 :

C
E ||G2 ||o ? HQHO Q-

The estimate for Lrx(g) in (3.23¢) can be proved very similarly.

4.5. Proof of Lemma 3.8
First we consider ap, 1 (GT; GY) + an1 (Gy; GT).

an1 (G7;G3) +ani (G3;GY)

:/( Py VaGE o+ Ghv - VaGY) d:cdv—/v/ ( o1y, + ey, >~[G§]mdszdv

// ( (G}, + ”’” 3] )‘[G?]wdsmdv

// ([GTGy], —{GT}, [G], —{Gy}, [GT], )dswdv—/v/ v - ng| [GY], - [G3], ds,dv

_ / / v -] [GT), - [GB], ds.do. (4.67)
Ty Je.
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The third equality above is due to (2.3b). Hence,

1
n (G1563) + o (@360 < [ [ ool (G5 GILI + 8GRI ) st

S%/g/&vm(“&?]w

The last inequality in (4.68) is satisfied because of the inequality |[G7].|* = |[£}1’1 —5?]30\2 <2(] [f}’}z|2+ \ [5?’1]z|2)
and the inverse inequality in (2.5). Similarly, we can also show

- ’ [5}1’1}36’2) dsydv + % IG5 115, (4.68)

lana (G1LER B G ) vane (G5, B B G
:/$L ’(EZ’I—H)XBZ’I) “ny| [GT], - [G3], dsvdxg/z/g ‘(Eg’l-kvaZ’l) My
h Vv W/ Ew
n,1l n,l
+/ / ’(Eh +ux By, )~nv
=Je,

Denote each term on the right side of (4.69) as A; and As, respectively, then

AlS/ / ‘(E,’f’l—kvaZ’l)-nv
= Je,

1
<qg ) [ |(Etsomt) m,
i/ Ey
1
< E/w/ ‘(E;Z’l—l-’u xBZ’l) o
i Ey
here we have used the fact that ||E}"" +v x Bj"'|
Ay < //5 ’E,’f’l — Ejf +v X (Bg’l —B;;)
h v

+/ / (BR +v x BY) -yl
= Je,

<C <HE,’;’1 — B

7] |1ics), | as.aa

€71, | 11631, | dsyda (4.69)

(6l [ + a6l ) asuas

],

n1] |? Cam
(7] | dsude + 2 1G3 15 0 (4.70)

2
1G53 10,2

2
dsydz + C HE“ % Bt ‘
oGt + h v h 0,00,82,; h

0,00,02, < C due to (4.51)-(4.52). For the estimate of As,

[€71, | 1631, asaa

(€71, 1631, | dsyda

+ Bt - bR

0,00,82; O,oo,fh) Hg?fz HO’T;LE XEy HG;HO’T; XEy

1
i [ 1@ o B
16 /1y Je,

As implied in the Proof of Lemma 3.6, HEZLL1 — E7|0,00,2, < C(h+ 7). So we further have

2 C
67, | dsudo + 16315 o (471)

2
A <0 (1+7) €7l o G2 7], [ dsude

C 9 1
oo+ G 1GE G0+ 15 [ [ 18 +0x B m

T

gC(1+E> |\gfy|0ﬂ+c(1+h+ﬁ> ||G2||379+E/T’1 /‘S’U|(Eh+v><Bh).nv [gf]v] ds,da.

(4.72)

Note that 1,7 < #, hence 1+ + + < $. We now combine (4.68), (4.70) and (4.72) and conclude this lemma.
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4.6. Proof of Lemma 3.11

We only consider the case when § = 0. The proof for other cases follows the same line. For part (i), with
divergence theorem and equality (2.3c),

b (€3, €35, €050, €3) = / € (V % €3) da /Q € (V x €)) da / (/Q vs;:dv)fgdx
/ ({sB} [5E1m)~[£$1mdsx— / ({fE} . [5B1tan)-[fg1tandsx
— [ (8L (6 6B, (Bl dso— [ ([ o) - epao— gsTABY,
&, 2. N,

1 , .
- /Q (/Q vf}’dv) +§pdr — SSTABR, < C (Hg;”m + Hggugﬂm) — 5STAB;
For part (ii), since V x &€& € Uy, there is [, n - (V x g)de = 0. Similarly, [, 7% - (V x £)da = 0. Then

|bn (s mig 5 €5, €3 |

() o) -citos [ (toda =5 bl ) - €6t [ (015 ) - €

x v

n n n n n 2 n 2 2
<C H77f HO,Q I€Ello.0, +C (”nEHO,Sm + ||773||0,8m> </£ I€B]tanl” + I[E]tanl dsz>
1
< Ch** 4+ C€gllg e, + 75STABE
4.7. Proof of Lemma 3.13
Based on definitions of Spx (U, V), X7, ZF, and G%, in addition to Lemmas 3.2 and 3.3—(1), we have

B (377"“ 6ny” + 3 + 3Tp(x) U> . (377"“ 6ny” + 30 + 3Tp(x) V)
0 0,

T T

n,l n,l

+ by, (QeE —ept e 2 — ey —eB,Qef —ep —epU, V)
<O+ ( L)+ (X3, 25, G55 U V) = b (d, dip, ds U, V), (4.73)

where d? = 2773}’2 — nf’l —n with x = E| B, f. We further apply (3.15¢) in Lemma 3.3, and this gives (3.37a),

Sri(U,V) < C (B! + 7% 4+ 7%) (

L)+ bn (X3, 23, Gy U V). 4.74
5 2 2 2

To further obtain (3.37b), we need to estimate by, (X%, Z5, G5, U, V).

by (X3, 23, g;U,V):/ Z2~(V><de—/ XQ-VXde—/ (/ Gvdv)-de
-Q:L-

« [ (123 [XSJM) Ohanss = |

<z

+C (128 lp.e, + 1 X3 Noe, ) €

({X;}z + 5 2l )+ Vs,

x

&) (4.75)
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Now we can apply inverse equalities in (2.5), get

bn (X3, Z5,G3;U, V) <

2,) + 063

= Q

(128 1.0+ 1XE .0 ) €

hence (3.37b).
Similarly, one can get the estimate (3.37c) for Rrx (U, V).

4.8. Proof of Lemma 3.14

From the definition of by,

:/ (27 (V x XJ)da— X7+ (V x Z5) + 23 - (V x XI)de — X - (V x Z7)) da
2z

- ({z{‘}z—é[xﬁm) X dss — [ ({X;L}ﬁ%{mm) 2z ds,
/g ({z }x—%[Xé‘]tan) (X7 an 52 /g 1 ({X Yo+ [ ]m) (270 dsa
/ (/ G? vdv) -ngx—/nm (/Q vadv) - X7d.

Using divergence theorem and equality (2.3c), in addition to inverse inequality (2.5) and Young’s inequality, we
can simplify the inequality above as

_ / (X han Xl + [ Z0)0n - [Z2]yan) 50 — /Q (Gpv- X7 + Gv - XP) dad

1 1 n n n nll2
</€w (32[ Peanl” + 813 Teaul” + 55 28] aal” + 81125, )dsm+CZ(|G o0 +IXZ15.0,)

Jj=1

DIQ

2
2 1 n,1
< = (IX215.0, +12815.0,) + €3 (G315 0 + 1X7 115 0. ) + = (STAB%s +STABYL) . (476)
j=1
The last inequality of (4.76) is due to that

1zl =[5 - e8] [ <2|[en] [ +2leblal

and a similar bound for |[X{]¢an|?.
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4.9. Proof of Lemma 3.18

For any g € G¥, we first consider aj,(f™*, E™#, B¢ g) — ah(f,?’ﬁ, EZ’ﬁ, BZ’ﬁ,g) £=0,1,2

an (f75, B8, B4 g) = an (1%, B By g)
= —ayp (77f o Enﬁ Bn ?i’ ) + (ah (fn’ﬁ,En’ﬁ,B"’ﬁ;g) —ap (f"’”,EZ’ﬁ,BZ’ﬁ;g)) +ap (gnﬁ Enﬁ Bnﬁ’ )

With Cauchy—Schwarz inequality, approximation property in (2.4), inverse inequality (2.5), boundedness of
E " l0,00,2. + 1IB7 l0,00,2, in (4.51) and (4.52), we have

LE B )| < ([ 1l + [ 1,
jan (. )| < ol oz, Iollozic.
c HE"”’ HBW’ ‘ nvu‘ - n,u‘ )
+ ( W oo T B g e o 0ﬂll ny OvTﬁxgmHgHO,Thxsm
< Ch*|gllo, 0, (4.77)
o (67 m%)] < (7 9 e .
0,42 0,TY X Ey g
(U, 1) (16 1tton [, .,
+ ( h o,oo,Qw"i' oo, O,Q” f O’TﬁxnggHO,Thxsm
e
h 478
‘o,n ( )

Following the derivation to get (4.65) in Lemma 3.4, we have
an (f"4, "4, B g) — an (74, B}, B g)

= / va”’ﬁ . (EZLLﬁ — E™ 4 x (BZ’ﬁ — B”’ﬁ)) gdzdv
Q

<o (||| ez <C | x| ph+ . (479
<c(fle], o + w7, . ) ol < o el ) ello 4.19)
Equations (4.77)-(4.79) lead to
on (£, 57, 85g) - (177 577,87 %sg) < © (e ;’”\OQ ) lglloo
C
4.80
\O (4.80)
Now based on (4.80) and Lemma 3.3, we can bound j({?’l)
( ;“) +an (1B B —an (£ BB €)Y
Q

A

< C (et lo.g, + gk

a2, +hY)

C
7, 5 16

n,l
’ . 4.81
f Ho,r) (4.81)
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Based on equations (4.81) and (3.10), we get

2

', = (5467) w7 ()

< Cr (18 lo.a, + 168 o0, + 1) |

.
o0+ (e )l 657

0,2

Cancel H{?’l

lo,2 from both sides of the inequality, and take the square of both sides, we have

By further using 7 < ah, we obtain the upper bound of Hf}l’lﬂgﬂ. Similarly, Hf}mﬂgﬂ can be estimated based
on (4.80) and (3.10). Likewise, we can establish the estimates for Hfg’ﬁ lo., for g =1,2.

gl s or (16 o, + 16150, +#%) + (1+0T) 2 (1.82)
P oo S T Ello, 0, Bllo,, L fllo,2- '

0,2, 1165

5. EXTENSION AND CONCLUSION

In this paper we prove the error estimates of fully discrete methods, which involve a third order Runge-Kutta
time discretization and upwind DG discretizations of arbitrary order of accuracy in phase domain, for solving
the Vlasov-Maxwell system. When the exact solutions have enough regularity, we show that the L? errors of
the numerical solutions by such methods are of O(hk"’% +73) for k > % The third order Runge-Kutta time
integration contributes to the error O(73), while the error from the DG approximation is O(h**2), which is
expected for hyperbolic systems with upwind numerical fluxes on general meshes.

The techniques used in this paper can be applied to the RKDG methods which involve other numerical fluxes,
such as central or alternating fluxes,

(ng X En,ny X Br) = (ng x {Ep}.ng x {By}),  (central)
(nmh,n;\Bh) =n, x (E,, B,‘:‘),or Ng X (E,'f7 B;), (alternating),

in the Maxwell solver. It was shown that these fluxes will result better energy conservation in semi-discrete DG
methods [5]. On the other hand, for RKDG methods with such fluxes, the stabilization mechanism STAB%’};,
f=0,1,2, in the form of the tangential jump

[ ezt . + €8m0, 052
Ex

is no longer available from the Maxwell solver (see part (i) of Lem. 3.11), and this in general will lead to a
sub-optimal L?-norm error estimate: Ch¥ + C73. (For alternating fluxes, better estimates can be obtained on
Cartesian meshes and with the tensor structured polynomial discrete spaces.) With some insignificant modifi-
cation to the details, almost the same error estimates can be established for the RKDG methods solving the
smooth solutions of the relativistic Vlasov—-Maxwell system of one species [21,22],

v v
V14 |v]? V1+|v]?
OE=VxB-J, 0B=-VxE,
V-E=p—p;, V-B=0,

with

p(ac,t):/Q f(z,v,t)dv, J(ac,t):/Q (z,v,t)dv.

S
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