ON THE CONVERGENCE RATE
OF FINITE DIFFERENCE METHODS FOR DEGENERATE
CONVECTION-DIFFUSION EQUATIONS IN SEVERAL SPACE DIMENSIONS

Kenneth Hvistendahl Karlsen1, Nils Henrik Risebro1
and Erlend Briseid Storrøsten1

Abstract. We analyze upwind difference methods for strongly degenerate convection-diffusion equations in several spatial dimensions. We prove that the local L^1-error between the exact and numerical solutions is $O(\Delta x^{2/(19+d)})$, where d is the spatial dimension and Δx is the grid size. The error estimate is robust with respect to vanishing diffusion effects. The proof makes effective use of specific kinetic formulations of the difference method and the convection-diffusion equation. This paper is a continuation of [K.H. Karlsen, N.H. Risebro E.B. Storrøsten, Math. Comput. 83 (2014) 2717–2762], in which the one-dimensional case was examined using the Kružkov–Carrillo entropy framework.

Mathematics Subject Classification. 65M06, 65M15, 35K65, 35L65.

1. Introduction

The design of numerical methods for convection-diffusion problems is important for many applications in science and engineering. It is especially challenging to construct accurate methods for nonlinear problems in which the “diffusion part” is small or vanishing, relative to the “convection part” of the problem. Connected to this is the difficult problem of deriving error estimates for numerical methods that are robust in the singular limit as the diffusion coefficient vanishes, thereby avoiding the usual exponential growth of error constants.

In this paper we are interested in deriving error estimates for a class of finite difference methods for nonlinear, possibly strongly degenerate, convection-diffusion problems of the form

\[
\begin{aligned}
\partial_t u + \nabla \cdot f(u) & = \Delta A(u), \quad (t, x) \in \Pi_T, \\
u(0, x) & = u_0(x), \quad x \in \mathbb{R}^d,
\end{aligned}
\]

(1.1)

where $\Pi_T = (0, T) \times \mathbb{R}^d$, $T > 0$, $d \geq 1$, and $u : \Pi_T \to \mathbb{R}$ is the unknown function that is sought. The initial datum u_0 is an integrable and bounded function, while the flux function $f : \mathbb{R} \to \mathbb{R}^d$ and the diffusion function A are given.

Keywords and phrases. Degenerate convection-diffusion equations, entropy conditions, finite difference methods, error estimates.

1 Department of Mathematics, University of Oslo, P.O. Box 1053, Blindern, 0316 Oslo, Norway.
kennethk@math.uio.no; nilshr@math.uio.no; erlenbs@math.uio.no

Article published by EDP Sciences © EDP Sciences, SMAI 2016
A : \mathbb{R} \to \mathbb{R} satisfy the standing assumptions

\[f, A \text{ locally } C^1; \quad A(0) = 0; \quad A \text{ nondecreasing.} \tag{1.2} \]

By \textit{strongly degenerate} it is meant that we allow for \(A'(u) = 0 \) for all \(u \) in some interval \([\alpha, \beta] \subset \mathbb{R}\). The resulting class of equations therefore contains parabolic and hyperbolic equations, as well as a mix thereof. In the nondegenerate (uniformly parabolic) case \(A' > 0 \), it is well-known that (1.1) admits a unique classical solution. On the other hand, for strongly degenerate equations with discontinuous solutions, the well-posedness is ensured only in a class of weak solutions satisfying an entropy condition. The following result is known: For \(u_0 \in L^1(\mathbb{R}^d) \cap L^\infty(\mathbb{R}^d) \), there exists a unique solution \(u \in C((0, T); L^1(\mathbb{R}^d)) \), \(u \in L^\infty(\Pi_T) \) of (1.1) such that \(\partial_x A(u) \in L^2(\Pi_T) \) and for all convex functions \(S \) with \(q'_S = S'f' \) and \(r'_S = S'A' \),

\[\partial_t S(u) + \nabla \cdot q_S(u) - \Delta r_S(u) \leq 0, \quad \text{weakly on } [0, T) \times \mathbb{R}^d. \]

These inequalities are referred to as entropy inequalities and the corresponding solution is called an entropy solution.

For conservation laws (\(A' \equiv 0 \)), the well-posedness of entropy solutions is a celebrated result due to Kružkov [26]. Carrillo [8] extended this result to degenerate parabolic problems such as (1.1). For uniqueness of entropy solutions in the BV class, see [35, 36]. An alternative well-posedness theory, based on the so-called kinetic formulation, was developed by Lions, Perthame, and Tadmor [29] and Chen and Perthame [10]. We refer to [2, 16] for an overview of the relevant literature on hyperbolic and mixed hyperbolic-parabolic problems.

In this paper we derive error estimates for numerical approximations of entropy solutions to convection-diffusion equations. Convergence results, without error estimates, have been obtained for difference methods [17, 18, 23]; finite volume methods [1, 21]; splitting methods [22]; and BGK approximations [3, 6], to mention a few references. For \textit{a posteriori} error estimates for finite volume methods, see [31].

We are herein interested in estimating the error committed by a class of monotone difference methods. The monotone methods make use of an upwind discretization of the convection term and a centred discretization of the parabolic term. For notational simplicity in the introduction, let us assume \(f^{ij}(\cdot) \geq 0 \) and consider the prototype (semi-discrete) difference method

\[\frac{d}{dt}u_\alpha + \sum_{i=1}^{d} \frac{f_i(u_\alpha) - f_i(u_{\alpha - e_i})}{\Delta x} = \sum_{i=1}^{d} A(u_{\alpha + e_i}) - 2A(u_\alpha) + A(u_{\alpha - e_i}), \]

where \(\alpha = (\alpha_1, \ldots, \alpha_d) \in \mathbb{Z}^d \) is a multi-index, \(e_i \) is the \(i \)-th unit vector in \(\mathbb{R}^d \), and \(\Delta x > 0 \) is the spatial grid size. Although our methods are semi-discrete, i.e., not discretized in time, the results and proofs can be adjusted to cover some fully discrete methods, such as the implicit method analyzed in [18]. We refer to [25] for a discussion of this topic when \(d = 1 \).

Denote by \(u_{\Delta x} \) the piecewise constant interpolant linked to \(u_\alpha \). The goal is to determine a number (convergence rate) \(\gamma \geq 0 \) such that

\[\|u_{\Delta x}(t, \cdot) - u(t, \cdot)\|_{L^1} \leq C\Delta x^\gamma, \quad (u_0 \in BV), \tag{1.3} \]

for some constant \(C > 0 \) independent of \(\Delta x \) and (the smallness of) \(A' \).

In the purely hyperbolic case (\(A' \equiv 0 \)), a prominent result due to Kuznetsov [28] says that \(\gamma = 1/2 \) for monotone difference methods, as well as for the vanishing viscosity method. Influenced by [28], a number of works have further developed the “Kružkov–Kuznetsov” error estimation theory for conservation laws. We refer to [5, 13] for an overview of the relevant results. Making use of the kinetic formulation, Perthame [33] provided an alternative route to error estimates.

With regard to convection-diffusion equations (1.1) with \(A'(\cdot) \geq 0 \), the subject of error estimates is significantly more difficult. It is only recently that there has been some progress. The simplest case is the vanishing viscosity method. Denote by \(u^\eta \) the solution of the uniformly parabolic equation

\[u^\eta_t + \nabla \cdot f(u^\eta) = \Delta A^\eta(u^\eta), \quad A^\eta(u) = A(u) + \eta u, \tag{1.4} \]
where \(\eta > 0 \) is a (small) viscosity parameter. We have the following error estimate for the viscosity approximation \(u^0 \):
\[
\| u^0(\cdot, t) - u(\cdot, t) \|_{L^1} \leq C \sqrt{\eta}, \quad (u_0 \in BV),
\]
(1.5)
where \(u \) is the entropy solution of (1.1). A “Kružkov–Kuznetsov” type proof of this result is given in [19], see also [20] for a boundary value problem. The error bound (1.5) can also be seen as an outcome of continuous dependence estimates [11,13] or the kinetic formulation [12,30].

For conservation laws, the error estimate (1.5) for the viscous equation reveals what to expect for monotone difference methods [28]. This suggestive link breaks down for degenerate convection-diffusion equations (1.1), is unknown and also far from the convergence rate \(\gamma \). A technical aspect of the proof of (1.3) is that we are not applying the difference method directly to (1.1) but rather to (1.4). Denoting the corresponding numerical solution by \(u_{\Delta x}^n, u^n \) replaced by \(u_{\Delta x}^n, u^0 \), respectively, and that the error constant \(C \) is not depending on the parameter \(\eta \). Our original claim (1.3) follows from this, since we have the error estimate (1.5).

To help motivate the technical arguments coming later, let us lay out a “high-level” overview of the analysis and some of the difficulties involved. As just alluded to, we will mostly work under the assumption (1.3) with
\[
\gamma = \frac{2}{19 + d} \quad (d \text{ is the spatial dimension}),
\]
(1.6)
for general diffusion functions \(A \) obeying (1.2).

A technical aspect of the proof of (1.3) is that we are not applying the difference method directly to (1.1) but rather to (1.4). Denoting the corresponding numerical solution by \(u_{\Delta x}^n \), we will prove that (1.3) holds with \(u_{\Delta x}, u \) replaced by \(u_{\Delta x}^n, u^0 \), respectively, and that the error constant \(C \) is not depending on the parameter \(\eta \). Our original claim (1.3) follows from this, since we have the error estimate (1.5).

To help motivate the technical arguments coming later, let us lay out a “high-level” overview of the analysis and some of the difficulties involved. As just alluded to, we will mostly work under the assumption \(A' > 0 \). As a consequence no information is lost upon working with \(A(u) \) instead of \(u \) in the kinetic formulation (compare with the \(u \)-based formulation in [10]). Set \(B = A^{-1} \) and define \(g \) by \(g \circ A = f \). Then the solution \(u \) of (1.1) satisfies
\[
B'(\zeta) \partial_t \chi_{A(u)} + g'(\zeta) \cdot \nabla \chi_{A(u)} - \Delta \chi_{A(u)} = \partial_t m_{A(u)},
\]
(1.7)
where
\[
m_{A(u)} = m_{A(u)}(\zeta) = \delta(\zeta - A(u)) |\nabla A(u)|^2,
\]
\[
\chi_{A(u)}(\zeta) = \begin{cases}
1 & \text{if } 0 < \zeta \leq A(u), \\
-1 & \text{if } A(u) < \zeta < 0, \\
0 & \text{otherwise}.
\end{cases}
\]

This new formulation, although restricted to nondegenerate (isotropic) diffusion, allows for a simpler proof of the \(L^1 \) contraction property and thus the error estimate (1.3). More specifically, certain error terms linked to the regularization of the \(\chi \) function [10] can be avoided, a fact that we use to our benefit.

Now we indicate how (1.7) leads to the \(L^1 \) contraction property. Let \(u \) and \(v \) be solutions to (1.1) with initial values \(u_0 \) and \(v_0 \), respectively. Following [10,33], we introduce the microscopic contraction functional
\[
Q_{u,v}(\xi) = |\chi_u(\xi)| + |\chi_v(\xi)| - 2\chi_u(\xi)\chi_v(\xi).
\]
(1.8)
Under the change of variable \(\zeta = A(\xi) \),
\[
|u - v| = \int_R Q_{u,v}(\xi) \, d\xi = \int_R B'(\zeta)Q_{A(u),A(v)}(\zeta) \, d\zeta,
\]
and hence

\[
\begin{aligned}
\partial_t |u - v| &= \int_\mathbb{R} B'(\zeta) \partial_t Q_{A(u),A(v)}(\zeta) \, d\zeta \\
&= \int_\mathbb{R} B'(\zeta) \partial_t |\chi_{A(u)}(\zeta)| \, d\zeta + \int_\mathbb{R} B'(\zeta) \partial_t |\chi_{A(v)}(\zeta)| \, d\zeta \\
&\quad - 2 \int_\mathbb{R} B'(\zeta) \partial_t \left(\chi_{A(u)}(\zeta) \chi_{A(v)}(\zeta) \right) \, d\zeta.
\end{aligned}
\] (1.9)

In view of (1.7), the chain rule yields

\[
B'(\zeta) \partial_t |\chi_{A(u)}| + g'(\zeta) \cdot \nabla |\chi_{A(u)}| - \Delta |\chi_{A(u)}| = \text{sign}(\zeta) \partial_\zeta m_{A(u)},
\] (1.10)

with an analogous equation for \(v\). Using the equations for \(\chi_{A(u)},\chi_{A(v)}\) and Leibniz’s product rule, we easily check that

\[
\begin{aligned}
B'(\zeta) \partial_t \left(\chi_{A(u)} \chi_{A(v)} \right) + g'(\zeta) \cdot \nabla \left(\chi_{A(u)} \chi_{A(v)} \right) - \Delta \left(\chi_{A(u)} \chi_{A(v)} \right) \\
= \chi_{A(v)} \partial_\zeta m_{A(u)} + \chi_{A(u)} \partial_\zeta m_{A(v)} - 2 \nabla \chi_{A(u)} \cdot \nabla \chi_{A(v)}.
\end{aligned}
\] (1.11)

Making use of (1.10) and (1.11) in (1.9) yields

\[
\begin{aligned}
\partial_t |u - v| &= - \int_\mathbb{R} g'(\zeta) \cdot \nabla Q_{A(u),A(v)}(\zeta) \, d\zeta + \int_\mathbb{R} \Delta Q_{A(u),A(v)}(\zeta) \, d\zeta \\
&\quad + \int_\mathbb{R} D(\zeta) \, d\zeta,
\end{aligned}
\] (1.12)

where

\[
D(\zeta) = \left(\text{sign}(\zeta) - 2 \chi_{A(v)}(\zeta) \right) \partial_\zeta m_{A(u)} + \left(\text{sign}(\zeta) - 2 \chi_{A(u)}(\zeta) \right) \partial_\zeta m_{A(v)} \\
+ 4 \nabla \chi_{A(u)}(\zeta) \cdot \nabla \chi_{A(v)}(\zeta) \\
=: D_1(\zeta) + D_2(\zeta) + D_3(\zeta);
\]

the term \(D(\cdot)\) accounts for the parabolic dissipation effects associated with \(u, v\). Integrating (1.12) in \(x\) gives

\[
\frac{d}{dt} \int |u(t,x) - v(t,x)| \, dx = \int \int_\mathbb{R} D(\zeta) \, d\zeta \, dx.
\]

Although the computations have been formal up to this point, they are valid when interpreted in the sense of distributions. Moreover, as will be seen later, these computations can with some effort be replicated at the discrete level, \(i.e.,\) when we replace the function \(v\) by the numerical solution \(u_{\Delta x}\).

Clearly, the \(L^1\)-contraction property follows if we can confirm that

\[
\int_\mathbb{R} D(\zeta) \, d\zeta \leq 0.
\] (1.13)

This step is rather delicate and will ask for a regularization of the \(\chi\) functions. Indeed, the hard part of the proof leading up to (1.3), (1.6) is related to this step. Let us for the moment ignore the regularization procedure, and continue with formal computations. Note that

\[
\text{sign}(\zeta) - 2 \chi_{A(v)}(\zeta) = \text{sign}(\zeta - A(v)),
\]

and thus, after an integration by parts followed by an application of the chain rule,

\[
\begin{aligned}
\int_\mathbb{R} D_1(\zeta) \, d\zeta &= -2 \int_\mathbb{R} \delta(\zeta - A(u)) \delta(\zeta - A(v)) |\nabla A(u)|^2 \, d\zeta.
\end{aligned}
\]
Similarly,
\[
\int_{\mathbb{R}} D_2(\zeta) \, d\zeta = -2 \int_{\mathbb{R}} \delta(\zeta - A(u)) \delta(\zeta - A(v)) \, |\nabla A(v)|^2 \, d\zeta.
\]
Again by the chain rule,
\[
D_3(\zeta) = 4 \delta(\zeta - A(u)) \delta(\zeta - A(v)) \nabla A(u) \cdot \nabla A(v).
\]
Combining these formal computations we finally arrive at (1.13):
\[
\int_{\mathbb{R}} D(\zeta) \, d\zeta = -2 \int_{\mathbb{R}} \delta(\zeta - A(u)) \delta(\zeta - A(v)) \, |\nabla A(u) - \nabla A(v)|^2 \, d\zeta \leq 0.
\]

One crucial insight in [25] is that the convergence rate can be improved if one can send a certain parameter \(\varepsilon\) to zero independently of the grid size \(\Delta x\), where \(\varepsilon\) controls the regularization of the Kružkov entropies. In this paper the regularization of the entropies is replaced by the regularization of the \(\chi\) functions, and as before we would like to send \(\varepsilon\) to zero independently of \(\Delta x\) (and other parameters). It turns out that in one spatial dimension we can do this, reaching the convergence rate \(\gamma = 1/3\) as in [25]. In several dimensions we have not been able to carry out this “\(\varepsilon \to 0\) before other parameters” program.

A serious difficulty stems from the lack of a chain rule for finite differences, in combination with the highly nonlinear nature of the dissipation function \(D(\cdot)\), resulting in a series of intricate error terms. A feature of the kinetic approach is that the crucial error term can be expressed via the parabolic dissipation measure. To be a bit more precise, at the continuous level, the convergence rate \(\gamma = 1/3\) in the one-dimensional case depends decisively on the (weak) continuity of the map
\[
c \mapsto \int_{\mathbb{R}} \delta(\zeta - c) m_{A(u)}(\zeta) \, d\zeta = \delta(c - A(u))(\partial_x A(u))^2,
\]
where \(u\) is the entropy solution and \(m_{A(u)}\) is the parabolic dissipation measure. The continuity of this map follows from (1.7). Unfortunately, in several space dimensions the continuity becomes a subtle matter, since the parabolic dissipation measure splits into directional components,
\[
m_{A(u)} = \sum_{i=1}^{d} m_{A(u)}^i, \quad m_{A(u)}^i = \delta(\zeta - A(u))(\partial_{x_i} A(u))^2.
\]
It appears difficult to claim from the kinetic equation (1.7) the continuity of the individual components
\[
c \mapsto \int_{\mathbb{R}} \delta(\zeta - c) m_{A(u)}^i(\zeta) \, d\zeta = \delta(c - A(u))(\partial_{x_i} A(u))^2, \quad i = 1, \ldots, d.
\]
Not being able to send the \(\chi\)-regularisation parameter \(\varepsilon\) to zero, we must instead balance \(\varepsilon\) against the grid size \(\Delta x\) and a number of other parameters, at long last arriving at (1.3) with the convergence rate (1.6).

The optimality of (1.6) \((d > 1)\), in the \(L^\infty \cap BV\) class, is an open problem. It is informative to compare with recent results on viscosity solutions and error bounds for degenerate fully nonlinear elliptic and parabolic equations. We refer to Krylov [27], Barles and Jakobsen [4], and Caffarelli and Souganidis [7] for some recent works. For monotone approximations of fully nonlinear, first-order equations with Lipschitz solutions, Crandall and Lions [15] proved in 1984 the optimal \(L^\infty\) convergence rate 1/2. However, finding a rate for degenerate second order equations remained an open problem. The first result is due to Krylov with the rate 1/27. Later Barles and Jakobsen improved this to to 1/5, with a further improvent by Krylov to 1/2 for equations with special structure. We remark that these results concern equations with convex nonlinearities. Caffarelli and Souganidis proved that there is an algebraic rate of convergence for a class of nonconvex equations. The convergence rate is not explicit but known to be some (small) positive number. Here we should point out that in our framework convexity plays no role; the error estimate applies to general nonlinearities.
The remaining part of this paper is organized as follows: In Section 2 we gather some relevant \textit{a priori} estimates for nondegenerate convection-diffusion equations and state precisely the definition of an entropy solution. The difference method and the main result are presented in Section 3. In Section 4 we supply certain kinetic formulations of the convection-diffusion and difference equations. Section 5 is devoted to the proof of the main result, achieved through the derivation of an error equation based on the kinetic formulations, along with a lengthy series of estimates bounding “unwanted” terms in this equation. In Appendix 5.4 we collect results relating to well-posedness and \textit{a priori} estimates for the difference method.

2. Viscosity approximations and entropy solutions

Let us define the viscosity approximations. Set $A^n(u) := A(u) + \eta u$ for any fixed $\eta > 0$, and consider the uniformly parabolic problem

$$
\begin{cases}
 u_t^n + \nabla \cdot f(u^n) = \Delta A^n(u^n), & (t, x) \in \Pi_T, \\
 u^n(0, x) = u_0(x), & x \in \mathbb{R}^d.
\end{cases}
$$

(2.1)

It is well-known that (2.1) admits a unique classical (smooth) solution. We collect some relevant (standard) estimates from [35].

Lemma 2.1. Suppose $u_0 \in L^\infty(\mathbb{R}^d) \cap L^1(\mathbb{R}^d) \cap BV(\mathbb{R}^d)$, and let u^n be the unique classical solution of (2.1). Then for any $t > 0$,

$$
\|u^n(t, \cdot)\|_{L^1(\mathbb{R}^d)} \leq \|u_0\|_{L^1(\mathbb{R}^d)},
$$

$$
\|u^n(t, \cdot)\|_{L^\infty(\mathbb{R}^d)} \leq \|u_0\|_{L^\infty(\mathbb{R}^d)},
$$

$$
\|u^n(t, \cdot)\|_{BV(\mathbb{R}^d)} \leq \|u_0\|_{BV(\mathbb{R}^d)}.
$$

Lemma 2.2. Suppose $u_0 \in L^\infty(\mathbb{R}^d) \cap L^1(\mathbb{R}^d)$ and $\nabla \cdot (f(u_0) - \nabla A(u_0)) \in L^1(\mathbb{R}^d)$. Let u^n be the unique classical solution of (2.1). Then for any $t_1, t_2 > 0$,

$$
\|u^n(t_2, \cdot) - u^n(t_1, \cdot)\|_{L^1(\mathbb{R})} \leq \|\nabla \cdot (f(u_0) - \nabla A(u_0))\|_{L^1(\mathbb{R})} |t_2 - t_1|.
$$

These results imply that the family $\{u^n\}_{n>0}$ is relatively compact in $C([0, T]; L^1_{loc}(\mathbb{R}^d))$. If $u = \lim_{\eta \to 0} u^n$, then

$$
\|u^n - u\|_{L^1(\Pi_T)} \leq C\eta^{1/2}, \quad (2.2)
$$

for some constant C which does not depend on η, see, \textit{e.g.}, [19]. Moreover, u is an entropy solution according to the following definition.

Definition 2.3. An \textit{entropy solution} of (1.1) is a measurable function $u = u(t, x)$ satisfying:

(D.1) $u \in L^\infty([0, T]; L^1(\mathbb{R}^d)) \cap L^\infty(\Pi_T) \cap C((0, T); L^1(\mathbb{R}^d)).$

(D.2) $A(u) \in L^2([0, T]; H^1(\mathbb{R}^d)).$

(D.3) For all constants $c \in \mathbb{R}$ and all test functions $0 \leq \phi \in C^\infty_0(\mathbb{R}^d \times [0, T])$, the following entropy inequality holds:

$$
\int_{\Pi_T} |u - c| \partial_t \phi + \text{sign}(u - c) (f(u) - f(c)) \cdot \nabla \phi + |A(u) - A(c)| \Delta \phi \, dt dx + \int_{\mathbb{R}^d} |u_0 - c| \phi(x, 0) \, dx \geq 0.
$$

The uniqueness of entropy solutions is proved in [8], see the introduction for additional references.
3. Difference method and main result

Let \(f = (f^1, \ldots, f^d) \), and let \(\Delta x \) denote the mesh size. For simplicity we consider a uniform grid in \(\mathbb{R}^d \) consisting of cubes with sides \(\Delta x \). For a multi-index \(\alpha = (\alpha_1, \ldots, \alpha_d) \in \mathbb{Z}^d \), we let \(I_\alpha \) denote the grid cell

\[
I_\alpha = [x_{\alpha_1 - 1/2}, x_{\alpha_1 + 1/2}] \times \cdots \times [x_{\alpha_d - 1/2}, x_{\alpha_d + 1/2}],
\]

where \(x_{j+1/2} = (j + 1/2)\Delta x \) for \(j \in \mathbb{Z} \). Let \(e_k \in \mathbb{Z}^d \) be the vector with value one in the \(k \)th component and zero otherwise. Then we define the forward and backward discrete partial derivatives in the \(k \)th direction as

\[
D^k_±(\sigma_\alpha) = \pm \frac{\sigma_{\alpha + e_k} - \sigma_\alpha}{\Delta x}, \quad k = 1, \ldots, d.
\]

Definition 3.1 (numerical flux). We call a function \(F \in C^1(\mathbb{R}^2) \) a monotone two point numerical flux for \(f \), if \(F(u, u) = f(u) \) and

\[
\frac{\partial}{\partial u} F(u, v) \geq 0 \quad \text{and} \quad \frac{\partial}{\partial v} F(u, v) \leq 0
\]

holds for all \(u \) and \(v \). We say that the numerical flux splits whenever \(F \) can be written

\[
F(u, v) = F_1(u) + F_2(v).
\]

Note that \(F'_1 \geq 0 \) and \(F'_2 \leq 0 \) whenever \(F \) is monotone.

Let \(F^k \) be a numerical flux function corresponding to \(f^k \) for \(k = 1, \ldots, d \). The semi-discrete approximation of (1.1) is the solution of the equations

\[
\begin{aligned}
\frac{d}{dt} u_\alpha + \sum_{i=1}^d D^i_- F^i(u_\alpha, u_{\alpha + e_i}) &= \sum_{i=1}^d D^i_- D^i_+ A(u_\alpha), \quad \alpha \in \mathbb{Z}^d, \quad t \in (0, T), \\
u_\alpha(0) &= u_{\alpha,0},
\end{aligned}
\]

(3.1)

where \(u_{\alpha,0} = \frac{1}{\Delta x^d} \int_{I_\alpha} u_0(x) \, dx \). See Appendix 5.4, in particular Lemmas A.2 and A.3, regarding existence and solution properties to this infinite system of ODEs.

Define the piecewise constant (in \(x \)) function \(u_{\Delta x} \) by

\[
u_{\Delta x}(t, x) = u_\alpha(t) \quad \text{for} \quad x \in I_\alpha.
\]

(3.2)

Our main result is the following:

Theorem 3.2. Suppose \(f \) and \(A \) satisfy (1.2) and the initial function \(u_0 \) is in \(BV(\mathbb{R}^d) \cap L^\infty(\mathbb{R}^d) \cap L^1(\mathbb{R}^d) \). Let \(F^i \) be a monotone, Lipschitz, two point numerical flux corresponding to \(f^i \) that splits for \(1 \leq i \leq d \). Let \(u \) be the entropy solution to (1.1) and \(u_{\Delta x} \) be defined by (3.2), where \(u_\alpha \) is the solution to (3.1).

Then, for any positive \(R \) and \(T \), there exists a constant \(C \) depending only on \(f, A, u_0, R \) and \(T \), such that

\[
\| u_{\Delta x}(t) - u(t) \|_{L^1(\mathbb{R})} \leq C \Delta x \frac{2}{1 + d}, \quad t \in [0, T].
\]

4. Kinetic formulations

In this section we supply certain kinetic formulations of the continuous and discrete equations (1.1) and (3.1). As a preparation for the error estimate, we also regularize the kinetic equations by mollification. As explained in the introduction, due to the application of the viscous approximations in the proof of the error estimate, we assume \(A' > 0 \) for these intermediate results.
4.1. Kinetic formulation of convection-diffusion equation

Lemma 4.1. Assume that \(A' > 0 \) and set \(B := A^{-1} \). Let \(u \) be the solution of (1.1). Define \(g \) by \(g(A(z)) = f(z) \) for all \(z \in \mathbb{R} \). Let \(S \in C^2(\mathbb{R}) \),

\[
\psi(u) = \int_{0}^{u} S'(z)B'(z) \, dz, \quad \psi_A(u) = \psi(A(u)),
\]

\[
q(u) = \int_{0}^{u} S'(z)g'(z) \, dz, \quad q_A(u) = q(A(u)),
\]

and \(S_A(u) = S(A(u)) \). Then

\[
\partial_t \psi_A(u) + \nabla \cdot q_A(u) - \Delta S_A(u) = -S''_A(u) |\nabla A(u)|^2.
\]

Proof. Multiplying (1.1) by \(\psi'_A(u) \) gives

\[
\partial_t \psi_A(u) + \psi'_A(u) \nabla \cdot f(u) = \psi'_A(u) \Delta A(u).
\]

Using a change of variables \(A(\sigma) = z \),

\[
q'_A(u) = \partial_u \left(\int_{0}^{A(u)} S'(z)g'(z) \, dz \right)
\]

\[
= \partial_u \left(\int_{0}^{u} S'(A(\sigma))g'(A(\sigma))A'(\sigma) \, d\sigma \right) = S'(A(u))f'(u).
\]

Hence

\[
\psi'_A(u) \nabla \cdot f(u) = \nabla \cdot q_A(u).
\]

Similarly we obtain \(\psi'_A(u) = S'(A(u)) \). Finally, observe that

\[
\Delta S_A(u) = S''(A(u)) |\nabla A(u)|^2 + \psi'_A(u) \Delta A(u).
\]

The above entropy equation can be rephrased in terms of the \(\chi \) function. Recall that for any locally Lipschitz continuous \(\Psi : \mathbb{R} \to \mathbb{R} \),

\[
\Psi(u) - \Psi(0) = \int_{\mathbb{R}} \Psi'(\xi)\chi(u; \xi) \, d\xi, \quad (u \in \mathbb{R}).
\]

The next lemma reveals the equation satisfied by \(\chi(A(u); \zeta) \), where \(u \) solves (1.1), i.e., the kinetic formulation of the convection-diffusion equation.

Lemma 4.2. Assume that \(A' > 0 \) and set \(B := A^{-1} \). Let \(u \) be the solution of (1.1). Define \(\rho(t, x, \zeta) = \chi(A(u(t, x)); \zeta) \). Then

\[
\begin{cases}
B'(\zeta) \partial_t \rho + g'(\zeta) \cdot \nabla \rho - \Delta \rho = \partial_\zeta m & \text{in } \mathcal{D}'((0, T) \times \mathbb{R}^d \times \mathbb{R}), \\
\rho(0, x, \zeta) = \chi(A(u_0(x)); \zeta), & (x, \zeta) \in \mathbb{R}^d \times \mathbb{R},
\end{cases}
\]

where

\[
m(t, x, \zeta) = \delta(\zeta - A(u)) |\nabla A(u)|^2,
\]

and \(g \) satisfies \(g(A(z)) = f(z) \) for all \(z \in \mathbb{R} \).

Proof. By Lemmas 4.1 and (4.1),

\[
\partial_t \int_{\mathbb{R}} S'(\zeta)B'(\zeta) \chi(A(u); \zeta) \, d\zeta + \nabla \cdot \int_{\mathbb{R}} S'(\zeta)g'(\zeta) \chi(A(u); \zeta) \, d\zeta - \Delta \int_{\mathbb{R}} S'(\zeta) \chi(A(u); \zeta) \, d\zeta = \int_{\mathbb{R}} S'(\zeta) \partial_\zeta m(t, x, \zeta) \, d\zeta.
\]

\qed
4.2. Kinetic formulation of discrete equations

Stability/uniqueness analysis for differential equations often revolve around the chain rule. The chain rule breaks down for numerical methods, but for us the next lemma will act as a substitute.

Lemma 4.3. Let \(S \in C^2(\mathbb{R}) \) satisfy \(S'(0) = 0 \). For any \(g \in C^1(\mathbb{R}) \) and any real numbers \(a, b \) and \(c \),

\[
S'(a)(g(b) - g(a)) = \int_a^b S'(z)g'(z) \, dz - \int_a^b S'(z)g'(z) \, dz + \int_a^b S''(z)(g(z) - g(b)) \, dz.
\]

Proof. For any \(\zeta \in \mathbb{R} \), integration by parts yields

\[
S'({\zeta})(g(\zeta) - g(b)) = \int_0^\zeta S'(z)g'(z) \, dz + \int_0^\zeta S''(z)(g(z) - g(b)) \, dz.
\]

Take the two equations obtained by setting \(\zeta \) be equal to \(a \) and \(b \) and subtract one from the other. \(\square \)

To make the discrete and continuous calculus notations similar, we introduce the discrete gradient

\[
D_\pm \sigma = (D_1^\pm \sigma, \ldots, D_d^\pm \sigma), \quad \text{for any } \sigma : \mathbb{Z}^d \to \mathbb{R}.
\]

The upcoming lemma contains the equation satisfied by \(\chi(u_\alpha; \zeta) \), where \(u_\alpha \) is the solution of the scheme (3.1).

Lemma 4.4. Suppose \(A' \geq 0 \). Let \(\{u_\alpha\}_{\alpha \in \mathbb{Z}^d} \) be the solution to (3.1). Then \(\rho_\alpha(t, \xi) := \chi(u_\alpha(t); \xi) \) satisfies

\[
\partial_t \rho + (F'_\xi((\xi) \cdot D_- + F'_\xi((\xi) \cdot D_+) \rho - A'_\xi D_\cdot D_+ \rho = \partial_\xi (m_F + m_A),
\]

\[
\zeta_\alpha(0, \xi) = \chi(u_\alpha,0; \xi),
\]

in \(D'([0,T]) \) for each \(\alpha \in \mathbb{Z}^d \), where

\[
m_F = \sum_{i=1}^d \left((F_i^+(\xi) - F_i^+(u_{\alpha_{-e_i}}))D_i^+ \chi(u_\alpha; \xi) + (F_i^-(\xi) - F_i^-(u_{\alpha_{e_i}}))D_i^- \chi(u_\alpha; \xi) \right)
\]

and

\[
m_A = \sum_{i=1}^d \left(\frac{1}{\Delta x}(A(u_{\alpha_{e_i}}) - A(\xi))D_i^+ \chi(u_\alpha; \xi) + \frac{1}{\Delta x}(A(\xi) - A(u_{\alpha_{-e_i}}))D_i^- \chi(u_\alpha; \xi) \right).
\]

Proof. Since \(\{u_\alpha\} \) is a solution of (3.1),

\[
S'(u_\alpha(t))\partial_t u_\alpha(t) + \sum_{i=1}^d S'(u_\alpha(t))D_i^+ F_i^+(u_\alpha(t), u_{\alpha_{e_i}}(t)) = \sum_{i=1}^d S'(u_\alpha(t))D_i^+ D_i^+ A(u_\alpha(t)), \quad (4.3)
\]

for all \(t \in (0,T) \) and \(\alpha \in \mathbb{Z}^d \). By the chain rule

\[
S'(u_\alpha(t))\partial_t u_\alpha(t) = \partial_\xi S(u_\alpha(t)).
\]

Consider the flux term. For each \(i \), we have that \(F^i = F_2^i + F_2^i, \) and therefore

\[
S'(u_\alpha(t))D_i^+ F_i^+(u_\alpha(t), u_{\alpha_{e_i}}(t)) = S'(u_\alpha(t))D_i^+ F_i^+(u_\alpha) + S'(u_\alpha(t))D_i^+ F_2^i(u_\alpha).
\]
By Lemma 4.3, with \(g \) equal to \(F_1^i \) and \(F_2^i \), we obtain
\[
S'(u_\alpha(t))D_\leftarrow F_1^i(u_\alpha) = D_\leftarrow Q_1^i(u_\alpha) - \frac{1}{\Delta x} \int_{u_\alpha}^{u_{\alpha - \epsilon}} S''(z)(F_1^i(z) - F_1^i(u_{\alpha - \epsilon})) \, dz,
\]
\[
S'(u_\alpha(t))D_\rightarrow F_2^i(u_j) = D_\rightarrow Q_2^i(u_\alpha) + \frac{1}{\Delta x} \int_{u_\alpha}^{u_{\alpha + \epsilon}} S''(z)(F_2^i(z) - F_2^i(u_{\alpha + \epsilon})) \, dz,
\]
where
\[
Q_j^i(u) := \int_0^u S'(z)(F_j^i)'(z) \, dz \text{ for } j = 1, 2.
\]
Consider the term on the right-hand side of (4.3). Let
\[
R(u) := \int_0^u S'(z)A'(z) \, dz.
\]
Fix \(i \) and apply Lemma 4.3 with \(g = A, a = u_\alpha, b = u_{\alpha - \epsilon} \), and \(u_{\alpha + \epsilon} \). Adding the two equations yields
\[
S'(u_\alpha)D_\leftarrow D_\rightarrow (A(u_\alpha)) = D_\leftarrow D_\rightarrow R(u_\alpha)
\]
\[
+ \frac{1}{\Delta x^2} \int_{u_\alpha}^{u_{\alpha + \epsilon}} S''(z)(A(z) - A(u_{\alpha + \epsilon})) \, dz
\]
\[
+ \frac{1}{\Delta x^2} \int_{u_\alpha}^{u_{\alpha - \epsilon}} S''(z)(A(z) - A(u_{\alpha - \epsilon})) \, dz.
\]
Hence (4.3) turns into
\[
\partial_t S(u_\alpha) + \sum_{i=1}^d \left(D_\leftarrow Q_1^i(u_\alpha) + D_\rightarrow Q_2^i(u_\alpha)\right) - \sum_{i=1}^d D_\leftarrow D_\rightarrow R(u_\alpha)
\]
\[
= \sum_{i=1}^d \frac{1}{\Delta x} \int_{u_\alpha}^{u_{\alpha - \epsilon}} S''(z)(F_1^i(z) - F_1^i(u_{\alpha - \epsilon})) \, dz
\]
\[
- \sum_{i=1}^d \frac{1}{\Delta x} \int_{u_\alpha}^{u_{\alpha + \epsilon}} S''(z)(F_2^i(z) - F_2^i(u_{\alpha + \epsilon})) \, dz
\]
\[
+ \sum_{i=1}^d \frac{1}{\Delta x^2} \int_{u_\alpha}^{u_{\alpha + \epsilon}} S''(z)(A(z) - A(u_{\alpha + \epsilon})) \, dz
\]
\[
+ \sum_{i=1}^d \frac{1}{\Delta x^2} \int_{u_\alpha}^{u_{\alpha - \epsilon}} S''(z)(A(z) - A(u_{\alpha - \epsilon})) \, dz.
\]
By equation (4.1),
\[
D_\leftarrow Q_1^i(u_\alpha) + D_\rightarrow Q_2^i(u_\alpha) = \int_\mathbb{R} S'(\xi)(F_1^i)'(\xi)D_\leftarrow + (F_2^i)'(\xi)D_\rightarrow \chi(u_\alpha; \xi) \, d\xi.
\]
Similarly,
\[
D_\leftarrow D_\rightarrow R(u_\alpha) = \int_\mathbb{R} S'(\xi)A'(\xi)D_\leftarrow D_\rightarrow \chi(u_\alpha; \xi) \, d\xi.
\]
Consider the right-hand side. For any \(g \in C(\mathbb{R}) \),
\[
\int_a^b S''(z)(g(z) - g(b)) \, dz = \int_\mathbb{R} S''(\xi)(g(\xi) - g(b)) (\chi(b; \xi) - \chi(a; \xi)) \, d\xi.
\]
Hence
\[
\frac{1}{\Delta x} \int_{u_{\alpha}}^{u_{\alpha+\epsilon_i}} (F_1'(z) - F_1'(u_{\alpha+\epsilon_i})) \, dz = - \int_{\mathbb{R}} S''(\xi) (F_1'(\xi) - F_1'(u_{\alpha+\epsilon_i})) D_-^\xi \chi(u_{\alpha}; \xi) \, d\xi,
\]
\[
- \frac{1}{\Delta x} \int_{u_{\alpha}}^{u_{\alpha+\epsilon_i}} (F_2'(z) - F_2'(u_{\alpha+\epsilon_i})) \, dz = - \int_{\mathbb{R}} S''(\xi) (F_2'(\xi) - F_2'(u_{\alpha+\epsilon_i})) D_+^\xi \chi(u_{\alpha}; \xi) \, d\xi.
\]
Similarly,
\[
\frac{1}{\Delta x^2} \int_{u_{\alpha}}^{u_{\alpha+\epsilon_i}} S''(z)(A(z) - A(u_{\alpha+\epsilon_i})) \, dz
\]
\[
= - \frac{1}{\Delta x} \int_{\mathbb{R}} S''(\xi)(A(u_{\alpha+\epsilon_i}) - A(\xi)) D_+^\xi \chi(u_{\alpha}; \xi) \, d\xi,
\]
\[
= \frac{1}{\Delta x} \int_{u_{\alpha}}^{u_{\alpha-\epsilon_j}} S''(z)(A(z) - A(u_{\alpha-\epsilon_j})) \, dz
\]
\[
= - \frac{1}{\Delta x} \int_{\mathbb{R}} S''(\xi)(A(\xi) - A(u_{\alpha-\epsilon_j})) D_-^\xi \chi(u_{\alpha}; \xi) \, d\xi.
\]
The result follows. \(\square\)

For a function \(u : \mathbb{R}^d \rightarrow \mathbb{R}\) we define the shift operator \(S_y\) by \(S_y u(x) = u(x + y)\). Then the discrete derivatives may be expressed as
\[
D_{\pm}^i u = \pm \frac{S_{\pm \Delta x_i} u - u}{\Delta x},
\]
where \(\Delta x_i = \Delta x \epsilon_i\).

Making a change of variable \(\zeta = A(\xi)\), we can obtain an equation satisfied by \(\chi(A(u_{\Delta x}); \zeta)\), where \(u_{\Delta x}\) is the numerical solution of (3.2), resulting in the “discrete” kinetic formulation to be utilized later.

Lemma 4.5. Suppose \(A' > 0\). Let \(\{u_\alpha\}\) be the solution to (3.1) and define \(u_{\Delta x}\) by (3.2). Let \(G_j : \mathbb{R} \rightarrow \mathbb{R}^d\) satisfy \(G_j(A(u)) = F_j(u) \forall u\), for \(j = 1, 2\). Then \(\rho^\Delta x(t, x, \zeta) = \chi(A(u_{\Delta x}(t, x)); \zeta)\) satisfies
\[
B'(\zeta) \partial^\Delta x + (G_1'(\zeta) \cdot D_+ + G_2'(\zeta) \cdot D_-) \rho^\Delta x - D_- \cdot D_+ \rho^\Delta x = \partial_t (n_{\Delta x}^G + n_{\Delta x}^A),
\]
\[
\rho^\Delta x(0, \zeta) = \chi(A(u_{\Delta x}^0); \zeta),
\]
in \(D'(\mathbb{R} \times H_T)\), where
\[
n_{\Delta x}^G = \sum_{i=1}^{d} \left(G_1'(\zeta) - G_1'(A(S_{-\Delta x_i} u_{\Delta x})) \right) D_-^i \chi(A(u_{\Delta x}); \zeta) + \sum_{i=1}^{d} \left(G_2'(\zeta) - G_2'(A(S_{\Delta x_i} u_{\Delta x})) \right) D_+^i \chi(A(u_{\Delta x}); \zeta) + \sum_{i=1}^{d} \left(G_1'(\zeta) - G_1'(A(S_{\Delta x_i} u_{\Delta x})) \right) D_+^i \chi(A(u_{\Delta x}); \zeta)
\]
and
\[
n_{\Delta x}^A = \sum_{i=1}^{d} \left(A(S_{\Delta x_i} u_{\Delta x}) - \zeta \right) D_+^i \chi(A(u_{\Delta x}); \zeta) + \sum_{i=1}^{d} \left(\zeta - A(S_{-\Delta x_i} u_{\Delta x}) \right) D_-^i \chi(A(u_{\Delta x}); \zeta).
\]

Proof. Let \(S \in C^\infty_c(\mathbb{R})\) and define \(S_A(\xi) = S(A(\xi))\). By Lemma 4.4,
\[
\partial_t \int_{\mathbb{R}} S_A(\xi) \chi(u_{\alpha}; \xi) \, d\xi + \int_{\mathbb{R}} S_A(\xi) (F_1'(\xi) \cdot D_- + F_2'(\xi) \cdot D_+) \chi(u_{\alpha}; \xi) \, d\xi
\]
\[- \int_{\mathbb{R}} S_A(\xi) A'(\xi) D_- \cdot D_+ \chi(u_{\alpha}; \xi) \, d\xi = - \int_{\mathbb{R}} S_A'(\xi) (m_F + m_A) \, d\xi.
\]
Let $\zeta = A(\xi)$ and note that $\chi(u, \xi) = \chi(A(u); A(\xi))$. The terms on the left-hand side are straightforward to verify. Next,

$$\int_{\mathbb{R}} S'_A(\zeta)m_F(\xi) \, d\xi = \sum_{i=1}^{d} \int_{\mathbb{R}} S'(\xi)(G_1^i(\xi) - G_1^i(A(u_{A-\epsilon_i})))D_{\xi}^i \chi(A(u); A(\xi))A'(\xi) \, d\xi$$

$$+ \sum_{i=1}^{d} \int_{\mathbb{R}} S'(\xi)(G_1^i(\xi) - G_1^i(A(u_{A+\epsilon_i})))D_{\xi}^i \chi(A(u); A(\xi))A'(\xi) \, d\xi$$

$$= \sum_{i=1}^{d} \int_{\mathbb{R}} S'(\zeta)(G_1^i(\zeta) - G_1^i(A(u_{A-\epsilon_i})))D_{\zeta}^i \chi(A(u); \zeta) \, d\zeta$$

$$+ \sum_{i=1}^{d} \int_{\mathbb{R}} S'(\zeta)(G_2^i(\zeta) - G_2^i(A(u_{A+\epsilon_i})))D_{\zeta}^i \chi(A(u); \zeta) \, d\zeta.$$

A similar computation shows the second equality involving n_A^{4x}. \hfill \Box

4.3. Various regularizations

In this section we study mollified versions of Lemmas 4.2 and 4.5. Let us first introduce some notation. Let $J \in C^\infty_c(\mathbb{R})$ denote a function satisfying

$$\text{supp}(J) \subset [-1,1], \quad \int_{\mathbb{R}} J(x) \, dx = 1 \quad \text{and} \quad J(-x) = J(x)$$

for all $x \in \mathbb{R}$. That is, J is a symmetric mollifier on \mathbb{R} with support in $[-1,1]$. For any $\sigma > 0$ we let $J_\sigma(x) = \sigma^{-1}J(\sigma^{-1}x)$. For any $n \geq 1$, $J_\sigma^{\otimes n}$ is a symmetric mollifier on \mathbb{R}^n with support in $[-\sigma, \sigma]^n$. In general the dimension of the argument will define n, so to simplify the notation we write J_σ instead of $J_\sigma^{\otimes n}$.

Let $\psi : \mathbb{R}^2 \to \mathbb{R}$ be a continuous function and $u, v \in L^1(\mathbb{R})$. Then we define

$$(\psi(u,v) \star f \otimes g)(x) := \int_{\mathbb{R}} \int_{\mathbb{R}} \psi(u(y_1), v(y_2)) f(x - y_1) g(x - y_2) \, dy_1 dy_2,$$

where $f, g \in L^1(\mathbb{R})$. Similarly, we let

$$\psi(u,v) \star (u) f := \int_{\mathbb{R}} \psi(u(y), v(x)) f(x - y) \, dy.$$

This notation generalizes in an obvious way to functions of several variables.

We start by introducing regularizations of $\text{sign}(\cdot)$ and $\chi(u, \cdot)$

Lemma 4.6. For $\varepsilon > 0$, define

$$\text{sign}_\varepsilon(\xi) := 2 \int_0^\xi J_\varepsilon(\zeta) \, d\zeta, \quad \chi_\varepsilon(u; \xi) := \int_{\mathbb{R}} \chi(u; \zeta) J_\varepsilon(\xi - \zeta) \, d\zeta.$$

Then

(i) For each ξ, $u \mapsto \chi_\varepsilon(u; \xi) \in C^\infty(\mathbb{R})$ and $\partial_u \chi_\varepsilon(u; \xi) = J_\varepsilon(\xi - u)$.

(ii) For all u and ξ

$$\text{sign}_\varepsilon(\xi) - 2\chi_\varepsilon(u; \xi) = \text{sign}_\varepsilon(\xi - u).$$

(iii) For any u

$$\int_{\mathbb{R}} |\chi_\varepsilon(u; \xi) - \chi(u; \xi)| \, d\xi \leq 4\varepsilon.$$

Proof. We first prove (i). Let $H'_\varepsilon(\sigma) = J_\varepsilon(\sigma)$. Since $J_\varepsilon(\xi - \zeta) = J_\varepsilon(\zeta - \xi)$,
\[
\lim_{h \to 0} \frac{1}{h} \int_\mathbb{R} (\chi(u + h; \zeta) - \chi(u; \zeta)) J_\varepsilon(\xi - \zeta) \, d\zeta = \lim_{h \to 0} \frac{1}{h} (H_\varepsilon(u + h - \xi) - H_\varepsilon(u - \xi)) = J_\varepsilon(u - \xi).
\]
Next we prove (ii). Let $\sigma = \zeta - \xi$. By the symmetry of J_ε,
\[
\chi_\varepsilon(u; \xi) = \int_\mathbb{R} \chi(u; \sigma + \xi) J_\varepsilon(\sigma) \, d\sigma.
\]
A calculation (or (5.24)) yields
\[
\chi(u; \sigma + \xi) = \chi(u - \xi; \sigma) - \chi(-\xi; \sigma).
\]
Note that $\chi(-\xi; \sigma) = -\chi(\xi; -\sigma)$. Hence
\[
\chi_\varepsilon(u; \xi) = \int_\mathbb{R} (\chi(u - \xi; \zeta) + \chi(\xi; -\zeta)) J_\varepsilon(\zeta) \, d\zeta.
\]
It follows that
\[
\text{sign}_\varepsilon(\xi) - 2\chi_\varepsilon(u; \xi) = -2 \int_\mathbb{R} \chi(u - \xi; \zeta) J_\varepsilon(\zeta) \, d\zeta + 2 \int_\mathbb{R} (\chi(\xi; \zeta) - \chi(\xi; -\zeta)) J_\varepsilon(\zeta) \, d\zeta
\]
\[=: \mathcal{T}_1 + \mathcal{T}_2.
\]
Since $(\chi(\xi; \zeta) - \chi(\xi; -\zeta))$ is antisymmetric in ζ and J_ε is symmetric it follows that $\mathcal{T}_2 = 0$. Now
\[
\mathcal{T}_1 = -2 \int_0^{u - \xi} J_\varepsilon(\zeta) \, d\zeta = 2 \int_0^{\xi - u} J_\varepsilon(\zeta) \, d\zeta = \text{sign}_\varepsilon(\xi - u).
\]
To prove (iii), note that
\[
|\chi_\varepsilon(u; \xi) - \chi(u; \xi)| = 0 \text{ whenever } \xi \notin (-\varepsilon, \varepsilon) \cup (u - \varepsilon, u + \varepsilon).
\]
For $\varepsilon > 0$ and $f \in C(\mathbb{R})$, let $R^f_\varepsilon : \mathbb{R}^2 \to \mathbb{R}$ be defined by
\[
\int_\mathbb{R} f(\sigma) \chi(u; \sigma) J_\varepsilon(\zeta - \sigma) \, d\sigma = R^f_\varepsilon(u, \zeta) + f(\zeta) \chi_\varepsilon(u; \zeta),
\]
for all $u, \zeta \in \mathbb{R}$.

Now we are ready to provide “regularized” versions of Lemmas 4.2 and 4.5. As the mollification will take place on a slightly smaller region, we introduce the notation $\Pi^T_{r_0} := (r_0, T - r_0) \times \mathbb{R}^d$.

We start with the regularization of the kinetic formulation of the convection-diffusion equation.

Lemma 4.7. Assume that $A' > 0$. Let u be the solution of (1.1) and define
\[
\rho_{\varepsilon,r,r_0} := \chi(A(u); \cdot) \ast J_{r_0} \otimes J_r \otimes J_\varepsilon.
\]
Then for $(t, x, \zeta) \in \Pi^T_{r_0} \times \mathbb{R}$, the function ρ_{ε,r,r_0} satisfies
\[
B'(\zeta) \partial_t \rho_{\varepsilon,r,r_0} + g'(\zeta) \cdot \nabla \rho_{\varepsilon,r,r_0} - \Delta \rho_{\varepsilon,r,r_0} + \partial_t R^{B'}_{\varepsilon,r,r_0} + \nabla \cdot R^{g'}_{\varepsilon,r,r_0} = \partial_t n_{A,\varepsilon,r,r_0},
\]
where
\[
R^{f}_{\varepsilon,r,r_0} = R^f_{\varepsilon}(A(u), \zeta) \ast J_r \otimes J_{r_0},
\]
with R^f_{ε} defined by (4.5), and
\[
n_{A,\varepsilon,r,r_0}(t, x, \zeta) = \left(J_{\varepsilon}(\zeta - A(u)) |\nabla A(u)|^2 \ast J_{r_0} \otimes J_r \right)(t, x).
\]
Proof. Starting off from Lemma 4.2, take the convolution of equation (4.2) with J_{r} and apply (4.5). Finally, convolve the resulting equation with $J_{r} \otimes J_{r_{0}}$.

Next up is the regularization of the kinetic formulation of the discrete equations.

Lemma 4.8. Under the same assumptions and with the same notation as in Lemma 4.5, define

$$
\rho_{\Delta x}^{\Delta x} := \chi(A(u_{\Delta x}); \cdot) \ast J_{r_{0}} \otimes J_{r} \otimes J_{r}.
$$

For $(t, x, \zeta) \in \Pi_{T}^{r_{0}} \times \mathbb{R}$, the function $\rho_{\Delta r, r_{0}}^{\Delta x}$ satisfies

$$
B'(\zeta) \partial_{t} \rho_{\Delta x}^{\Delta x} + g'(\zeta) \cdot \nabla \rho_{\Delta x}^{\Delta x} - \Lambda \rho_{\Delta x}^{\Delta x} + G_{1}'(\zeta) \cdot (D_{+} - \nabla) \rho_{\Delta x}^{\Delta x} + G_{2}'(\zeta) \cdot (D_{-} - \nabla) \rho_{\Delta x}^{\Delta x} + (\Lambda - D_{-} \cdot D_{+}) \rho_{\Delta x}^{\Delta x} + \partial \cdot R_{\Delta x}^{B_{+}, \Delta x} + D_{+} \cdot \nabla G_{1}'(\zeta),
$$

where $\rho_{\Delta x}^{\Delta x}(t, x, \zeta) = \chi_{\zeta}(A(u_{\Delta x}); \cdot)$ and $n_{A, r, r_{0}}^{\Delta x} = n_{A, r_{0}}^{\Delta x} \ast J_{r} \otimes J_{r_{0}}$ and $n_{G, r, r_{0}}^{\Delta x} = n_{G, r_{0}}^{\Delta x} \ast (J_{r} \otimes J_{r} \otimes J_{r_{0}})$.

Proof. In view of Lemmas 4.5 and (4.5),

$$
B'(\zeta) \partial_{t} \rho_{\Delta x}^{\Delta x} + (G_{1}'(\zeta) \cdot D_{+} + G_{2}'(\zeta) \cdot D_{-}) \rho_{\Delta x}^{\Delta x} - D_{-} \cdot D_{+} \rho_{\Delta x}^{\Delta x} + \partial \cdot R_{\Delta x}^{B_{+}, \Delta x} + D_{+} \cdot \nabla G_{1}'(\zeta) = \partial_{\zeta} (n_{A, r}^{\Delta x} + n_{G, r}^{\Delta x}),
$$

where $\rho_{\Delta x}^{\Delta x}(t, x, \zeta) = \chi_{\zeta}(A(u_{\Delta x}); \cdot)$ and $n_{A, r, r_{0}}^{\Delta x} = n_{A, r_{0}}^{\Delta x} \ast J_{r}$ and $n_{G, r, r_{0}}^{\Delta x} = n_{G, r_{0}}^{\Delta x} \ast J_{r}$. Take the convolution of the above equation with $J_{r} \otimes J_{r_{0}}$. Recall that $G_{1}' + G_{2}' = g'$ and add and subtract to obtain the result. □

5. PROOF OF THEOREM 3.2

We are now ready to embark on the proof of the error estimate (Thm. 3.2). Instead of working directly with the microscopic contraction functional (1.8), we introduce a regularized version Q_{ε} of it. For $u, v, \xi \in \mathbb{R}$, define

$$
Q_{\varepsilon}(u, v; \xi) := \text{sign}_{\varepsilon}(\xi) \chi_{\varepsilon}(u; \xi) + \text{sign}_{\varepsilon}(\xi) \chi_{\varepsilon}(v; \xi) - 2 \chi_{\varepsilon}(u; \xi) \chi_{\varepsilon}(v; \xi),
$$

(5.1)

where $\text{sign}_{\varepsilon}$ and χ_{ε} are given in Lemma 4.6. One may show that

$$
\int_{\mathbb{R}} (\chi_{\varepsilon}(u; \xi) - \chi_{\varepsilon}(v; \xi))\, d\xi = \int_{\mathbb{R}} Q_{\varepsilon}(u, v; \xi)\, d\xi.
$$

This equality is, however, not directly useful to us, since we will be working with functions like $\chi_{\varepsilon}(A(u); \xi)$ with $A(\cdot)$ nonlinear, but see the related Lemma 5.18.

5.1. Main error equation

We will use the kinetic formulations of the convection-diffusion equation and the difference method to derive a fundamental equation for the error quantity $Q_{\varepsilon}(A(u(t, x)), A(u_{\Delta x}(t, x)); \zeta)$ (properly regularized).

Lemma 5.1. Assume that $A' > 0$. With the notation of Lemmas 4.7 and 4.8, define

$$
Q_{\varepsilon, r, r_{0}}(\zeta) = Q_{\varepsilon}(A(u), A(u_{\Delta x}); \zeta) \ast J_{r_{0}} \otimes J_{r} \otimes J_{r_{0}} \otimes J_{r}.
$$
Then, for all \((t, x) \in \Pi_T^\circ\),

\[
\int_{\mathbb{R}} B'(\zeta) \partial_t Q_{\varepsilon, r, r_0} d\zeta + \int_{\mathbb{R}} g'(\zeta) \cdot \nabla Q_{\varepsilon, r, r_0} d\zeta \tag{5.2}
\]

\[
= \int_{\mathbb{R}} \Delta Q_{\varepsilon, r, r_0} d\zeta + 2 \int_{\mathbb{R}} \nabla \rho_{\varepsilon, r, r_0} \cdot (2\nabla - (D_+ + D_-)) \rho_{\varepsilon, r, r_0} d\zeta \tag{5.3}
\]

\[
- \int_{\mathbb{R}} (\text{sign}_\varepsilon (\zeta - A(u_{\Delta x})) * J_{r_0} \otimes J_r) \partial_t R_{\varepsilon, r, r_0}^B d\zeta \tag{5.4}
\]

\[
- \int_{\mathbb{R}} (\text{sign}_\varepsilon (\zeta - A(u)) * J_{r_0} \otimes J_r) \partial_t R_{\varepsilon, r, r_0}^{B', \Delta x} d\zeta \tag{5.5}
\]

\[
- \int_{\mathbb{R}} (\text{sign}_\varepsilon (\zeta - A(u)) * J_{r_0} \otimes J_r) \nabla \cdot R_{\varepsilon, r, r_0}^g d\zeta \tag{5.6}
\]

\[
- \int_{\mathbb{R}} (\text{sign}_\varepsilon (\zeta - A(u)) * J_{r_0} \otimes J_r) \left(D_+ \cdot R_{\varepsilon, r, r_0}^{G_1', \Delta x} + D_- \cdot R_{\varepsilon, r, r_0}^{G_2', \Delta x} \right) d\zeta \tag{5.7}
\]

\[
- \int_{\mathbb{R}} (\text{sign}_\varepsilon (\zeta - A(u)) * J_{r_0} \otimes J_r) (G_1' (\zeta) \cdot (D_+ - \nabla) + G_2' (\zeta) \cdot (D_- - \nabla)) \rho_{\varepsilon, r, r_0}^{\Delta x} d\zeta \tag{5.8}
\]

\[
+ \int_{\mathbb{R}} (\text{sign}_\varepsilon (\zeta - A(u)) * J_{r_0} \otimes J_r) (\Delta - D_- \cdot D_+) \rho_{\varepsilon, r, r_0}^{\Delta x} d\zeta \tag{5.9}
\]

\[
- 2 \int_{\mathbb{R}} (J_{e}(\zeta - A(u)) * J_{r_0} \otimes J_r) n_{\Delta x_{A, e, r}} d\zeta \tag{5.10}
\]

\[
- 2 \int_{\mathbb{R}} E_{\Delta x_{\varepsilon, r, r_0}} (\zeta) d\zeta \tag{5.11}
\]

where

\[
E_{\Delta x_{\varepsilon, r, r_0}} (\zeta) = -\nabla \rho_{\varepsilon, r, r_0} \cdot (D_+ + D_-) \rho_{\varepsilon, r, r_0}^{\Delta x} + (J_{e}(\zeta - A(u_{\Delta x})) * J_{r_0} \otimes J_r) n_{A_{\Delta x}} + (J_{e}(\zeta - A(u)) * J_{r_0} \otimes J_r)n_{\Delta x_{A, e, r}}. \tag{5.12}
\]

Proof. By definition,

\[
Q_{\varepsilon, r, r_0}(t, x, \zeta) = \text{sign}_\varepsilon (\zeta) \rho_{\varepsilon, r, r_0}(t, x, \zeta) + \text{sign}_\varepsilon (\zeta) \rho_{\varepsilon, r, r_0}^{\Delta x}(t, x, \zeta) - 2 \rho_{\varepsilon, r, r_0}(t, x, \zeta) \rho_{\varepsilon, r, r_0}^{\Delta x}(t, x, \zeta).
\]

Hence,

\[
\partial_t \int_{\mathbb{R}} Q_{\varepsilon, r, r_0} B'(\zeta) d\zeta = \int_{\mathbb{R}} \text{sign}_\varepsilon (\zeta) \partial_t (\rho_{\varepsilon, r, r_0} + \rho_{\varepsilon, r, r_0}^{\Delta x}) B'(\zeta) d\zeta
\]

\[
+ \int_{\mathbb{R}} \partial_t (\rho_{\varepsilon, r, r_0} \rho_{\varepsilon, r, r_0}^{\Delta x}) B'(\zeta) d\zeta
\]

\[
=: \mathcal{F}_1 + \mathcal{F}_2.
\]
By Lemmas 4.7 and 4.8,

\[
\mathcal{F}_1 = - \int_R \text{sign}_\varepsilon (\zeta) g'(\zeta) \cdot \nabla (\rho_{\varepsilon,r,r_0} + \rho_{\varepsilon,r,r_0}^{Ax}) \, d\zeta \\
+ \int_R \text{sign}_\varepsilon (\zeta) \Delta (\rho_{\varepsilon,r,r_0} + \rho_{\varepsilon,r,r_0}^{Ax}) \, d\zeta - \int_R \text{sign}_\varepsilon (\zeta) \partial_t (R_{\varepsilon,r,r_0}^{B'} + R_{\varepsilon,r,r_0}^{B,\Delta x}) \, d\zeta \\
- \int_R \text{sign}_\varepsilon (\zeta) \left(\nabla \cdot R_{\varepsilon,r,r_0}^{B} + D_+ \cdot R_{\varepsilon,r,r_0}^{G_1',\Delta x} + D_- \cdot R_{\varepsilon,r,r_0}^{G_2',\Delta x} \right) \, d\zeta \\
+ \int_R \text{sign}_\varepsilon (\zeta) \left(\partial_\zeta n_{A,\varepsilon,r,r_0} + \partial_\zeta n_{A,\varepsilon,r,r_0}^{\Delta x} \right) \, d\zeta
\]

Similarly for \(\mathcal{F}_2 \) we obtain

\[
\mathcal{F}_2 = 2 \int_R g'(\zeta) \cdot \nabla (\rho_{\varepsilon,r,r_0} \rho_{\varepsilon,r,r_0}^{Ax}) \, d\zeta - 2 \int_R \rho_{\varepsilon,r,r_0} \Delta \rho_{\varepsilon,r,r_0}^{Ax} + \Delta \rho_{\varepsilon,r,r_0} \rho_{\varepsilon,r,r_0}^{Ax} \, d\zeta \\
+ 2 \int_R \rho_{\varepsilon,r,r_0} \partial_t R_{\varepsilon,r,r_0}^{B',\Delta x} + \rho_{\varepsilon,r,r_0}^{\Delta x} \rho_{\varepsilon,r,r_0} \partial_t R_{\varepsilon,r,r_0}^{B'} \, d\zeta \\
+ 2 \int_R \rho_{\varepsilon,r,r_0}^{\Delta x} \nabla \cdot R_{\varepsilon,r,r_0}^{G_1'} + \rho_{\varepsilon,r,r_0} \nabla \cdot D_+ \cdot R_{\varepsilon,r,r_0}^{G_1',\Delta x} + \rho_{\varepsilon,r,r_0} D_- \cdot R_{\varepsilon,r,r_0}^{G_2',\Delta x} \, d\zeta \\
- 2 \int_R \rho_{\varepsilon,r,r_0} \partial_\zeta n_{A,\varepsilon,r,r_0} + \rho_{\varepsilon,r,r_0}^{\Delta x} \partial_\zeta n_{A,\varepsilon,r,r_0} \, d\zeta \\
+ 2 \int_R \rho_{\varepsilon,r,r_0} (G_1'(\zeta) \cdot (D_+ - \nabla) + G_2'(\zeta) \cdot (D_- - \nabla)) \rho_{\varepsilon,r,r_0}^{\Delta x} \, d\zeta \\
- 2 \int_R \rho_{\varepsilon,r,r_0} (\Delta - D_- \cdot D_+) \rho_{\varepsilon,r,r_0}^{\Delta x} \, d\zeta - 2 \int_R \rho_{\varepsilon,r,r_0} \partial_\zeta n_{A,\varepsilon,r,r_0}^{Ax} \, d\zeta .
\]
We compute $\mathcal{T}_1 + \mathcal{T}_2$ term by term, and thereby explain each of the terms (5.3)–(5.11) in the lemma. We start with
\[
\mathcal{T}_1^1 + \mathcal{T}_2^1 = -\int_{\mathbb{R}} g'(\zeta) \cdot \nabla Q_{\varepsilon,r,r_0} \, d\zeta,
\]
which gives the last term in (5.2).

To make the second derivative terms a complete derivative we need to add and subtract. Hence we may write
\[
\mathcal{T}_1^2 + \mathcal{T}_2^2 = \Delta \int_{\mathbb{R}} Q_{\varepsilon,r,r_0} \, d\zeta + 4 \int_{\mathbb{R}} \nabla \rho_{\varepsilon,r,r_0} \cdot \nabla \rho_{\varepsilon,r,r_0}^\Delta \, d\zeta
\]
\[
= \Delta \int_{\mathbb{R}} Q_{\varepsilon,r,r_0} \, d\zeta + 2 \int_{\mathbb{R}} \nabla \rho_{\varepsilon,r,r_0} \cdot (D_+ + D_-) \rho_{\varepsilon,r,r_0}^\Delta \, d\zeta
\]
\[
+ 2 \int_{\mathbb{R}} \nabla \rho_{\varepsilon,r,r_0} (2\nabla - (D_+ + D_-)) \rho_{\varepsilon,r,r_0}^\Delta \, d\zeta,
\]
which explains (5.3) and the first term in $E_{\Delta x,\varepsilon,r,r_0}$.

By Lemma 4.6 it follows that
\[
\text{sign}_\varepsilon(\zeta) - 2\rho_{\varepsilon,r,r_0} = \text{sign}_\varepsilon(\zeta - A(u)) * J_{\varepsilon,r_0} \otimes J_r,
\]
\[
\text{sign}_\varepsilon(\zeta) - 2\rho_{\varepsilon,r,r_0}^\Delta = \text{sign}_\varepsilon(\zeta - A(u_{\Delta x})) * J_{\varepsilon,r_0} \otimes J_r.
\]

Hence,
\[
\mathcal{T}_1^3 + \mathcal{T}_2^3 = -\int_{\mathbb{R}} (\text{sign}_\varepsilon(\zeta - A(u_{\Delta x})) * J_{\varepsilon,r_0} \otimes J_r) \partial_t R_{\varepsilon,r,r_0}^B \, d\zeta
\]
\[
- \int_{\mathbb{R}} (\text{sign}_\varepsilon(\zeta - A(u)) * J_{\varepsilon,r_0} \otimes J_r) \partial_t R_{\varepsilon,r,r_0}^B \Delta x \, d\zeta,
\]
which explains (5.4) and (5.5) Similarly,
\[
\mathcal{T}_1^4 + \mathcal{T}_2^4 = -\int_{\mathbb{R}} (\text{sign}_\varepsilon(\zeta - A(u_{\Delta x})) * J_{\varepsilon,r_0} \otimes J_r) \nabla \cdot R_{\varepsilon,r,r_0}^G \, d\zeta
\]
\[
- \int_{\mathbb{R}} (\text{sign}_\varepsilon(\zeta - A(u)) * J_{\varepsilon,r_0} \otimes J_r) (D_+ + D_-) \left(R_{\varepsilon,r,r_0}^G \Delta x + R_{\varepsilon,r,r_0}^G \right) \, d\zeta,
\]
which explains the presence of (5.6) and (5.7).

Performing integration by parts we obtain, using Lemma 4.6,
\[
\mathcal{T}_1^5 + \mathcal{T}_2^5 = \int_{\mathbb{R}} (\text{sign}_\varepsilon(\zeta - A(u_{\Delta x})) * J_{\varepsilon,r_0} \otimes J_r) \partial_t n_{A,\varepsilon,r,r_0}
\]
\[
+ (\text{sign}_\varepsilon(\zeta - A(u)) * J_{\varepsilon,r_0} \otimes J_r) \partial_t n_{A,\varepsilon,r,r_0}^\Delta \, d\zeta
\]
\[
= -2 \int_{\mathbb{R}} (J_\varepsilon(\zeta - A(u_{\Delta x})) * J_{\varepsilon,r_0} \otimes J_r) n_{A,\varepsilon,r,r_0}
\]
\[
+ (J_\varepsilon(\zeta - A(u)) * J_{\varepsilon,r_0} \otimes J_r) n_{A,\varepsilon,r,r_0}^\Delta \, d\zeta,
\]
which explains the two last terms in $E_{\Delta x,\varepsilon,r,r_0}$.

Similarly,
\[
\mathcal{T}_1^6 + \mathcal{T}_2^6 = -\int_{\mathbb{R}} (\text{sign}_\varepsilon(\zeta - A(u)) * J_{\varepsilon,r_0} \otimes J_r) (G^1_\varepsilon(\zeta) \cdot (D_+ - \nabla)
\]
\[
+ G^2_\varepsilon(\zeta) \cdot (D_- - \nabla)) \rho_{\varepsilon,r,r_0}^\Delta \, d\zeta,
\]
and
\[\mathcal{F}_1^7 + \mathcal{F}_2^7 = \int_{\mathbb{R}} (\text{sign}_e(\zeta - A(u)) \ast J_{r_0} \otimes J_r)(\Delta - D_+ \cdot D_+)\rho_{\varepsilon,r,r_0}^x \, d\zeta, \]
explaining the terms (5.8) and (5.9).

Finally, integration by parts yields
\[\mathcal{F}_1^8 + \mathcal{F}_2^8 = -2 \int_{\mathbb{R}} (J_e(\zeta - A(u)) \ast J_{r_0} \otimes J_r)n_{G,\varepsilon,r,r_0}^x \, d\zeta, \]
which is the term (5.10).

\[\square \]

5.2. Dissipative term

In this subsection we are concerned with finding an upper bound on (5.12). In the continuous setting, this “dissipative” term is negative, cf. (1.13), which comes as a consequence of the chain rule of calculus. The following elementary lemma will help us contend with the lack of a discrete chain rule.

Lemma 5.2. Let \(a \) and \(b \) be two real numbers. Then there exist real numbers \(\tau = \tau_e(a, b, \zeta) \) and \(\theta = \theta_e(a, b, \zeta) \) such that \(\tau \) and \(\theta \) are between \(a \) and \(b \), and
\[
\begin{align*}
\int_{\mathbb{R}} J_e(\zeta - \xi)(\chi(b; \xi) - \chi(a; \xi)) \, d\xi &= J_e(\zeta - \theta)(b - a), \quad (5.13) \\
\int_{\mathbb{R}} J_e(\zeta - \xi)(b - \xi)(\chi(b; \xi) - \chi(a; \xi)) \, d\xi &= \frac{1}{2} J_e(\zeta - \tau)(b - a)^2. \quad (5.14)
\end{align*}
\]
Furthermore, whenever \(a \neq b \):

(i)
\[
J_e(\zeta - \theta) = \frac{1}{b - a} \int_a^b J_e(\zeta - \xi) \, d\xi;
\]
\[
J_e(\zeta - \tau) = \frac{2}{(b - a)^2} \int_a^b J_e(\zeta - \xi)(b - \xi) \, d\xi;
\]

(ii)
\[
(J_e(\zeta - \theta) - J_e(\zeta - \tau))(b - a) = \frac{1}{b - a} \int_a^b J_e(\zeta - \xi)(2\xi - (b + a)) \, d\xi;
\]

(iii)
\[
J_e(\zeta - \tau) - J_e(\zeta - a) = \frac{2}{(b - a)^2} \left(\int_a^b (J_e(\zeta - \xi) - J_e(\zeta - a))(b - \xi) \, d\xi \right);
\]

(iv)
\[
J_e(\zeta - \theta_e(a, b, \zeta)) - J_e(\zeta - \tau_e(a, b, \zeta)) = -(J_e(\zeta - \theta_e(b, a, \zeta)) - J_e(\zeta - \tau_e(b, a, \zeta))).
\]

Proof. To prove (5.14), note that
\[
\int_{\mathbb{R}} J_e(\zeta - \xi)(b - \xi)(\chi(b; \xi) - \chi(a; \xi)) \, d\xi = \int_a^b J_e(\zeta - \xi)(b - \xi) \, d\xi.
\]
By the mean value theorem there exists a \(\tau \) between \(a \) and \(b \) such that
\[
\int_a^b J_e(\zeta - \xi)(b - \xi) \, d\xi = J_e(\zeta - \tau) \int_a^b (b - \xi) \, d\xi.
\]
Equation (5.13) follows in a similar way. The proof of (i) is immediate. Let us prove (ii). By (i)

\[
(J_\varepsilon(\zeta - \theta) - J_\varepsilon(\zeta - \tau))(b - a) = \int_a^b J_\varepsilon(\zeta - \xi) \left(1 - 2 \frac{b - \xi}{b - a}\right) \, d\xi.
\]

It remains to observe that

\[
1 - 2 \frac{b - \xi}{b - a} = \frac{2\xi - (b + a)}{b - a}.
\]

To prove (iii), note that

\[
J_\varepsilon(\zeta - a)(b - a)^2 = 2 \int_a^b J_\varepsilon(\zeta - a)(b - \xi) \, d\xi.
\]

Hence (iii) follows by (i). To prove (iv), observe that the expression on the right-hand side of (ii) is symmetric in \(a\) and \(b\).

The next result can be viewed as a discrete counterpart of the the chain rule, enabling us to write the nonlinear term \(n_A^{dx}\), properly regularized, on a form that resembles a parabolic dissipation term like (1.14).

Lemma 5.3. With the notation of Lemma 4.5, for each \(1 \leq i \leq d\), let

\[
\tau_{\Delta x,i}^+ = \tau_\varepsilon(A(u_{\Delta x}), S_{\Delta x}, A(u_{\Delta x}), \zeta), \quad \tau_{\Delta x,i}^- = \tau_\varepsilon(A(u_{\Delta x}), S_{-\Delta x}, A(u_{\Delta x}), \zeta)
\]

and

\[
\theta_{\Delta x,i}^+ = \theta_\varepsilon(A(u_{\Delta x}), S_{\Delta x}, A(u_{\Delta x}), \zeta), \quad \theta_{\Delta x,i}^- = \theta_\varepsilon(A(u_{\Delta x}), S_{-\Delta x}, A(u_{\Delta x}), \zeta),
\]

where \(\tau_\varepsilon, \theta_\varepsilon\) is defined in Lemma 5.2. Then

(i) \(n_A^{dx} \ast J_\varepsilon(t, x, \zeta) = \frac{1}{2} \sum_{i=1}^d J_\varepsilon(\zeta - \tau_{\Delta x,i}^+)(D^i_+ A(u_{\Delta x}))^2 + \frac{1}{2} \sum_{i=1}^d J_\varepsilon(\zeta - \tau_{\Delta x,i}^-)(D^i_- A(u_{\Delta x}))^2;\)

(ii) for \(1 \leq i \leq d\),

\[
D^i_+ \chi_\varepsilon(A(u_{\Delta x}); \zeta) = J_\varepsilon(\zeta - \theta_{\Delta x,i}^+)(D^i_+ A(u_{\Delta x})),
\]

\[
D^i_- \chi_\varepsilon(A(u_{\Delta x}); \zeta) = J_\varepsilon(\zeta - \theta_{\Delta x,i}^-)(D^i_- A(u_{\Delta x})).
\]

Proof. By the definition (4.4) of \(n_A^{dx}\), recalling that \(S_y\) commutes with function evaluation,

\[
n_A^{dx} \ast J_\varepsilon(t, x, \zeta) = \sum_{i=1}^d \frac{1}{\Delta x^2} \int_R J_\varepsilon(\zeta - \xi)(S_{\Delta x}, A(u_{\Delta x}) - \xi)(\chi(S_{\Delta x}, A(u_{\Delta x}); \xi) - \chi(A(u_{\Delta x}); \xi)) \, d\xi
\]

\[
+ \sum_{i=1}^d \frac{1}{\Delta x^2} \int_R J_\varepsilon(\zeta - \xi)(S_{-\Delta x}, A(u_{\Delta x}) - \xi)(\chi(S_{-\Delta x}, A(u_{\Delta x}); \xi) - \chi(A(u_{\Delta x}); \xi)) \, d\xi.
\]

Hence (i) follows by Lemma 5.2. To prove (ii) note that by Lemma 5.2,

\[
D^i_\varepsilon \int_R \chi(A(u_{\Delta x}); \xi) J_\varepsilon(\zeta - \xi) \, d\xi = \frac{1}{\Delta x} \int_R J_\varepsilon(\zeta - \xi)(\chi(S_{\Delta x}, A(u_{\Delta x}); \xi) - \chi(A(u_{\Delta x}); \xi)) \, d\xi
\]

\[
= J_\varepsilon(\zeta - \theta_{\Delta x,i}^+)(D^i_+ A(u_{\Delta x})).
\]

The same argument applies to \(\theta_{\Delta x,i}^-\).
We have now come to the key result of this subsection, namely a lower bound on the discrete dissipation term (5.12).

Lemma 5.4. Let $E_{\Delta x, \varepsilon, r, r_0}$ be defined in Lemma 5.1. Then

$$E_{\Delta x, \varepsilon, r, r_0} \geq \sum_{k=1}^{2} (R_k^+ + R_k^-) \text{ everywhere in } (r_0, T - r_0) \times \mathbb{R}^d \times \mathbb{R},$$

for all positive numbers Δx, ε, r, and r_0, where

$$R_1^+(\zeta) = \sum_{i=1}^{d} ((J\varepsilon(\zeta - \tau^+_{\Delta x,i}) - J\varepsilon(\zeta - \theta^+_{\Delta x,i}))D^i_+ A(u_{\Delta x}) * J_{r_0} \otimes J_r) \partial_{x_i} \rho_{\varepsilon, r, r_0},$$

$$R_1^-(\zeta) = \sum_{i=1}^{d} ((J\varepsilon(\zeta - \tau^-_{\Delta x,i}) - J\varepsilon(\zeta - \theta^-_{\Delta x,i}))D^i_- A(u_{\Delta x}) * J_{r_0} \otimes J_r) \partial_{x_i} \rho_{\varepsilon, r, r_0},$$

$$R_2^+(\zeta) = \frac{1}{2} \sum_{i=1}^{d} \left[\left((J\varepsilon(\zeta - A(u_{\Delta x})) - J\varepsilon(\zeta - A(\tau^+_{\Delta x,i}))) * J_{r_0} \otimes J_r \right) \right.$$

$$\times \left(J\varepsilon(\zeta - A(u))(\partial_{x_i} A(u))^2 * J_{r_0} \otimes J_r \right],$$

$$R_2^-(\zeta) = \frac{1}{2} \sum_{i=1}^{d} \left[\left((J\varepsilon(\zeta - A(u_{\Delta x})) - J\varepsilon(\zeta - A(\tau^-_{\Delta x,i}))) * J_{r_0} \otimes J_r \right) \right.$$

$$\times \left(J\varepsilon(\zeta - A(u))(\partial_{x_i} A(u))^2 * J_{r_0} \otimes J_r \right].$$

Proof. By Lemma 5.3,

$$(J\varepsilon(\zeta - A(u)) * J_{r_0} \otimes J_r)n_{\Delta x, \varepsilon, r, r_0} = \frac{1}{2} \sum_{i=1}^{d} (J\varepsilon(\zeta - A(u)) * J_{r_0} \otimes J_r)(J\varepsilon(\zeta - \theta^+_{\Delta x,i}))(D^i_+ A(u_{\Delta x}))^2 * J_{r_0} \otimes J_r$$

$$+ \frac{1}{2} \sum_{i=1}^{d} (J\varepsilon(\zeta - A(u)) * J_{r_0} \otimes J_r)(J\varepsilon(\zeta - \theta^-_{\Delta x,i}))(D^i_- A(u_{\Delta x}))^2 * J_{r_0} \otimes J_r$$

$$=: \mathcal{J}_1^+ + \mathcal{J}_1^-.$$

Observe that

$$\partial_{x_i} \rho_{\varepsilon, r, r_0} = \partial_{x_i}(\chi\varepsilon(A(u); \zeta) * J_{r_0} \otimes J_r) = J\varepsilon(\zeta - A(u))\partial_{x_i} A(u) * J_{r_0} \otimes J_r.$$

Using Lemma 5.3 once more gives

$$(D^i_+ + D^i_-)\rho_{\varepsilon, \Delta x, r_0} = (J\varepsilon(\zeta - \theta^+_{\Delta x,i})D^i_+ A(u_{\Delta x}) * J_{r_0} \otimes J_r$$

$$+ J\varepsilon(\zeta - \theta^-_{\Delta x,i})D^i_- A(u_{\Delta x})) * J_{r_0} \otimes J_r.$$

Hence,

$$\nabla \rho_{\varepsilon, r_0} \cdot (D^i_+ + D^i_-)\rho_{\varepsilon, \Delta x, r_0} = \sum_{i=1}^{d} (J\varepsilon(\zeta - A(u))\partial_{x_i} A(u) * J_{r_0} \otimes J_r)(J\varepsilon(\zeta - \theta^+_{\Delta x,i})D^i_+ A(u_{\Delta x}) * J_{r_0} \otimes J_r)$$

$$+ \sum_{i=1}^{d} (J\varepsilon(\zeta - A(u))\partial_{x_i} A(u) * J_{r_0} \otimes J_r)(J\varepsilon(\zeta - \theta^-_{\Delta x,i})D^i_- A(u_{\Delta x})) * J_{r_0} \otimes J_r).$$
Adding and subtracting we obtain

\[-\nabla \rho_{\varepsilon,r,r_0} \cdot (D_+ + D_-) \rho_{\varepsilon,r,r_0}^\Delta x = \mathcal{F}_2^+ + \mathcal{F}_2^- + R_1^+ + R_1^-,
\]

where

\[
\mathcal{F}_2^+ = -\sum_{i=1}^d (J_\varepsilon(\zeta - A(u))\partial_{x_i} A(u) * J_{r_0} \otimes J_r)(J_\varepsilon(\zeta - \tau_{\Delta x,i}^+) D_+^i A(u_{\Delta x}) * J_{r_0} \otimes J_r),
\]

\[
\mathcal{F}_2^- = -\sum_{i=1}^d (J_\varepsilon(\zeta - A(u))\partial_{x_i} A(u) * J_{r_0} \otimes J_r)(J_\varepsilon(\zeta - \tau_{\Delta x,i}^-) D_-^i A(u_{\Delta x}) * J_{r_0} \otimes J_r).
\]

For each $1 \leq i \leq d$,

\[
J_\varepsilon(\zeta - A(u_{\Delta x})) = \frac{1}{2} \left(J_\varepsilon(\zeta - A(u_{\Delta x})) - J_\varepsilon(\zeta - A(\tau_{\Delta x,i}^+)) \right)
+ \frac{1}{2} \left(J_\varepsilon(\zeta - A(u_{\Delta x})) - J_\varepsilon(\zeta - A(\tau_{\Delta x,i}^-)) \right)
+ \frac{1}{2} \left(J_\varepsilon(\zeta - A(\tau_{\Delta x,i}^+)) + J_\varepsilon(\zeta - A(\tau_{\Delta x,i}^-)) \right).
\]

It follows that

\[
(J_\varepsilon(\zeta - A(u_{\Delta x})) * J_{r_0} \otimes J_r) n_{A,\varepsilon,r,r_0} = \mathcal{F}_3^+ + \mathcal{F}_3^- + R_2^+ + R_2^-,
\]

where

\[
\mathcal{F}_3^+ = \frac{1}{2} \sum_{i=1}^d (J_\varepsilon(\zeta - A(\tau_{\Delta x,i}^+)) * J_{r_0} \otimes J_r)(J_\varepsilon(\zeta - A(u))(\partial_{x_i} A(u))^2 * J_{r_0} \otimes J_r),
\]

\[
\mathcal{F}_3^- = \frac{1}{2} \sum_{i=1}^d (J_\varepsilon(\zeta - A(\tau_{\Delta x,i}^-)) * J_{r_0} \otimes J_r)(J_\varepsilon(\zeta - A(u))(\partial_{x_i} A(u))^2 * J_{r_0} \otimes J_r).
\]

Note that

\[
E_{\Delta x,\varepsilon,r,r_0} = \sum_{k=1}^3 (\mathcal{F}_k^+ + \mathcal{F}_k^-) + \sum_{k=1}^2 (R_k^+ + R_k^-).
\]

Now,

\[
\sum_{k=1}^3 \mathcal{F}_k^+ = \frac{1}{2} \sum_{i=1}^d (J_\varepsilon(\zeta - A(u)) * J_{r_0} \otimes J_r)((J_\varepsilon(\zeta - \tau_{\Delta x,i}^+) (D_+^i A(u_{\Delta x}))^2 * J_{r_0} \otimes J_r)
- \sum_{i=1}^d (J_\varepsilon(\zeta - A(u))\partial_{x_i} A(u) * J_{r_0} \otimes J_r)(J_\varepsilon(\zeta - \tau_{\Delta x,i}^+) D_+^i A(u_{\Delta x}) * J_{r_0} \otimes J_r)
+ \frac{1}{2} \sum_{i=1}^d (J_\varepsilon(\zeta - A(\tau_{\Delta x,i}^+)) * J_{r_0} \otimes J_r)(J_\varepsilon(\zeta - A(u))(\partial_{x_i} A(u))^2 * J_{r_0} \otimes J_r)
= \frac{1}{2} \sum_{i=1}^d J_\varepsilon(\zeta - A(u)) J_\varepsilon(\zeta - A(\tau_{\Delta x,i}^+))(\partial_{x_i} A(u) - D_+^i A(u_{\Delta x}))^2 * J_{r_0} \otimes J_r \otimes J_{r_0} \otimes J_r \geq 0.
\]
The obtained inequality holds for all \((t, x, \zeta) \in (r_0, T - r_0) \times \mathbb{R}^d \times \mathbb{R}\). Similarly,
\[
\sum_{i=1}^{3} \mathcal{G}_i(t, x, \zeta) \geq 0 \quad \text{for all } (t, x, \zeta) \in (r_0, T - r_0) \times \mathbb{R}^d \times \mathbb{R}.
\]

This concludes the proof of the lemma. \(\square\)

5.3. Bounding error terms

We are going to estimate a series of “unwanted” terms coming from Lemmas 5.1 and 5.4. To this end, we will need to gather three technical lemmas, the first one being a simple application of Young’s inequality for convolutions.

Lemma 5.5. Let \(\psi : \mathbb{R}^2 \to \mathbb{R}\) be a measurable function, and \(u, v : \mathbb{R}^d \to \mathbb{R}\) be measurable functions satisfying
\[
|\psi(u(x_1), v(x_2))| \leq K_1(x_1)K_2(x_2) \quad (x_1, x_2 \in \mathbb{R}^d),
\]
for some \(K_1 \in L^p(\mathbb{R}^d), 1 \leq p \leq \infty, \) and \(K_2 \in L^1(\mathbb{R}^d). \) Then
\[
\left\| \psi(u, v) * f \otimes g \right\|_{L^1(\mathbb{R}^d)} \leq \left\| K_1 \right\|_{L^p(\mathbb{R}^d)} \left\| K_2 \right\|_{L^1(\mathbb{R}^d)} \left\| f \right\|_{L^p(\mathbb{R}^d)} \left\| g \right\|_{L^1(\mathbb{R}^d)},
\]
for any \(g \in L^1(\mathbb{R})\) and \(f \in L^q(\mathbb{R})\) where \(p^{-1} + q^{-1} = 1.\)

Proof. Observe that
\[
\left\| \psi(u, v) * f \otimes g \right\|_{L^1(\mathbb{R}^d)} \leq \iint_{\mathbb{R}^d \times \mathbb{R}^d} K_1(y_1)K_2(y_2) |f(x - y_1)| |g(x - y_2)| \, dy_1dy_2dx
\]
\[
= \left\| (K_1 * |f|)(K_2 * |g|) \right\|_{L^1(\mathbb{R}^d)}.
\]

By Hölder’s inequality,
\[
\left\| (K_1 * |f|)(K_2 * |g|) \right\|_{L^1(\mathbb{R}^d)} \leq \left\| K_1 \right\|_{L^\infty(\mathbb{R}^d)} \left\| f \right\|_{L^p(\mathbb{R}^d)} \left\| K_2 \right\|_{L^1(\mathbb{R}^d)} \left\| g \right\|_{L^1(\mathbb{R}^d)}.
\]

By Young’s inequality for convolutions, \(\left\| K_1 \right\|_{L^\infty(\mathbb{R}^d)} \leq \left\| K_1 \right\|_{L^p(\mathbb{R}^d)} \left\| f \right\|_{L^p(\mathbb{R}^d)} \) and \(\left\| K_2 \right\|_{L^1(\mathbb{R}^d)} \leq \left\| K_2 \right\|_{L^1(\mathbb{R}^d)} \left\| g \right\|_{L^1(\mathbb{R}^d)}. \) Equation (5.15) follows, since
\[
\left| \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} \psi(u(y_1), v(y_2)) f(x - y_1)g(x - y_2) \, dy_1dy_2 \right| \leq \left\| \psi \right\|_{L^\infty(\mathbb{R}^2)} \left\| f \right\|_{L^1(\mathbb{R}^d)} \left\| g \right\|_{L^1(\mathbb{R}^d)}. \quad \square
\]

The next lemma is at the heart of the matter, permitting us to estimate some terms involving convolutions against approximate delta functions.

Lemma 5.6. For real numbers \(a\) and \(b,\) let \(\tau = \tau_\varepsilon(a, b, \zeta)\) and \(\theta = \theta_\varepsilon(a, b, \zeta)\) be as in Lemma 5.2.

(i) For \(f \in L^1_{\text{loc}}(\mathbb{R}),\) define
\[
\mathcal{G}_\varepsilon(f) = \int_{\mathbb{R}} (J_\varepsilon(\zeta - \tau) - J_\varepsilon(\zeta - a)) f(\zeta) \, d\zeta.
\]

Then
\[
|\mathcal{G}_\varepsilon(f)| \leq \left| \int_a^b |\partial_\varepsilon(f * J_\varepsilon)(\xi)| \, d\xi \right|.
\]
(ii) For \(f \in L^\infty(\mathbb{R}) \), define
\[
\mathcal{T}_\varepsilon^2(f) = \int_{\mathbb{R}} (J_\varepsilon(\zeta - \theta) - J_\varepsilon(\zeta - \tau))(b - a)f(\zeta) \, d\zeta.
\]
Then
\[
|\mathcal{T}_\varepsilon^2(f)| \leq \frac{1}{2} \|f\|_{L^\infty(\mathbb{R})} |b - a|.
\]

(iii) Suppose \(\{f_\varepsilon\}_{\varepsilon > 0} \subset W^{1,1}_{\text{loc}}(\mathbb{R}) \) and assume that there exists \(f \in W^{1,1}_{\text{loc}}(\mathbb{R}) \) such that \(f_\varepsilon \to f \) in \(W^{1,1}_{\text{loc}}(\mathbb{R}) \). Then
\[
\left| \lim_{\varepsilon \to 0} \mathcal{T}_\varepsilon^1(f_\varepsilon) \right| \leq \int_a^b |f'(\xi)| \, d\xi.
\]

Proof. Assume that \(a < b \). By Lemma 5.2 and Fubini’s theorem,
\[
\mathcal{T}_\varepsilon^1(f) = \frac{2}{(b - a)^2} \int_a^b ((f * J_\varepsilon)(\xi) - (f * J_\varepsilon)(a)) (b - \xi) \, d\xi.
\]
Since \(\partial\xi(b - \xi)^2 = -2(b - \xi) \), integration by parts yields
\[
\mathcal{T}_\varepsilon^1(f) = \int_a^b \partial\xi(f * J_\varepsilon)(\xi) \frac{(b - \xi)^2}{(b - a)^2} \, d\xi.
\]
(5.16)
Then statement (i) follows, since
\[
\frac{(b - \xi)^2}{(b - a)^2} \leq 1, \quad \text{whenever} \quad a \leq \xi \leq b.
\]
(5.17)
By Lemma 5.2,
\[
\mathcal{T}_\varepsilon^2(f) = \frac{1}{b - a} \int_a^b (f * J_\varepsilon)(\xi)(2\xi - (a + b)) \, d\xi.
\]
As \(\|f * J_\varepsilon\|_{L^\infty(\mathbb{R})} \leq \|f\|_{L^\infty(\mathbb{R})} \), we may conclude that
\[
\mathcal{T}_\varepsilon^2(f) \leq \frac{1}{b - a} \int_a^b \|f\|_{L^\infty(\mathbb{R})} |(2\xi - (a + b))| \, d\xi.
\]
This implies statement (ii), because
\[
\int_a^b |2\xi - (a + b)| \, d\xi = \frac{1}{2} (b - a)^2.
\]

Finally, we establish statement (iii). By the triangle inequality and Young’s inequality for convolutions,
\[
\|f_\varepsilon' * J_\varepsilon - f'\|_{L^1(V)} \leq \|f_\varepsilon' - f'\|_{L^1(V)} + \|f' * J_\varepsilon - f'\|_{L^1(V)}
\]
for any compact \(V \subset \mathbb{R} \). Hence \((f_\varepsilon' * J_\varepsilon) \to f' \) in \(L^1_{\text{loc}}(\mathbb{R}) \) as \(\varepsilon \downarrow 0 \). By (5.16) and (5.17) it follows that
\[
\lim_{\varepsilon \to 0} \mathcal{T}_\varepsilon^1(f_\varepsilon) = \lim_{\varepsilon \to 0} \int_a^b (f_\varepsilon' * J_\varepsilon)(\xi) \frac{(b - \xi)^2}{(b - a)^2} \, d\xi = \int_a^b f'(\xi) \frac{(b - \xi)^2}{(b - a)^2} \, d\xi.
\]
The estimate follows thanks to (5.17). \(\square \)

We need one more lemma bounding some specific convolution integrals.
Lemma 5.7. Suppose \(f \in C(\mathbb{R}) \) and let \(R^f_\varepsilon : \mathbb{R}^2 \to \mathbb{R} \) be defined by (4.5). Then
\[
R^f_\varepsilon(u, \zeta) = \int_0^u (f(\sigma) - f(\zeta)) J_\varepsilon(\sigma - \zeta) \, d\sigma,
\]
(5.18)
for all \(u, \zeta \in \mathbb{R} \). Furthermore, if \(f \) is Lipschitz continuous, then
\[
\int_\mathbb{R} |R^f_\varepsilon(u, \zeta)| \, d\zeta \leq \varepsilon \| f \|_{\text{Lip}} |u|.
\]
(5.19)
Suppose \(A' \geq \eta > 0 \) and let \(g \) be defined by \(g \circ A = f \). For \(a, b \in \mathbb{R} \), let
\[
Z(a, b) = \int_\mathbb{R} \text{sign}_\varepsilon(\zeta - a) R^g_\varepsilon(b; \zeta) \, d\zeta.
\]
Then
\[
|Z(a, b)| \leq 4 \| f \|_{\text{Lip}} \frac{\varepsilon}{\eta}.
\]
(5.20)
Proof. Observe that
\[
\int_\mathbb{R} f(\sigma) \chi(u; \sigma) J_\varepsilon(\zeta - \sigma) \, d\sigma = \int_\mathbb{R} (f(\sigma) - f(\zeta)) \chi(u; \sigma) J_\varepsilon(\zeta - \sigma) \, d\sigma + f(\zeta) \chi_e(u; \zeta).
\]
Let \(q'(\sigma) = (f(\sigma) - f(\zeta)) J_\varepsilon(\zeta - \sigma) \). Equation (5.18) follows, since
\[
\int_\mathbb{R} (f(\sigma) - f(\zeta)) \chi(u; \sigma) J_\varepsilon(\zeta - \sigma) \, d\sigma = q(u) - q(0) = \int_0^u q'(\sigma) \, d\sigma.
\]
To prove (5.19) observe that
\[
\int_\mathbb{R} |R^f_\varepsilon(u, \zeta)| \, d\zeta \leq \int_\mathbb{R} |\chi(u; \sigma)| \left(\int_\mathbb{R} |f(\sigma) - f(\zeta)| J_\varepsilon(\zeta - \sigma) \, d\zeta \right) \, d\sigma.
\]
The result follows as
\[
\int_\mathbb{R} |f(\sigma) - f(\zeta)| J_\varepsilon(\zeta - \sigma) \, d\sigma \leq \| f \|_{\text{Lip}} \varepsilon.
\]
Let us prove (5.20). Take
\[
H^g_\varepsilon(b; \zeta) = \int_0^\zeta R^g_\varepsilon(b; \sigma) \, d\sigma.
\]
Integration by parts yields
\[
Z(a, b) = -2 \int_\mathbb{R} J_\varepsilon(\zeta - a) H^g_\varepsilon(b; \zeta) \, d\zeta = -(H^g_\varepsilon(b; \cdot) \ast J_\varepsilon)(a).
\]
By (5.18),
\[
H^g_\varepsilon(b; a) = \int_0^a \int_0^b (g'(\omega) - g'(\sigma)) J_\varepsilon(\omega - \sigma) \, d\omega \, d\sigma.
\]
Due to the symmetry of J_ε,

$$H^g_\varepsilon(b; a) = \int_0^b \int_0^a g'(\omega) J_\varepsilon(\omega - \sigma) \, d\omega \, d\sigma$$

$$- \int_0^a \int_0^b g'(\sigma) J_\varepsilon(\omega - \sigma) \, d\omega \, d\sigma$$

$$= \int_0^a \int_0^b g'(\omega) J_\varepsilon(\omega - \sigma) \, d\omega \, d\sigma$$

$$- \int_0^b \int_0^a g'(\omega) J_\varepsilon(\omega - \sigma) \, d\omega \, d\sigma$$

$$= \int_0^a \int_0^b g'(\omega) \chi(b; \omega) \left(\int_0^a J_\varepsilon(\omega - \sigma) \, d\sigma \right) \, d\omega$$

$$- \int_0^b \int_0^a g'(\omega) \chi(a; \omega) \left(\int_0^b J_\varepsilon(\omega - \sigma) \, d\sigma \right) \, d\omega.$$

Note that

$$\int_0^a J_\varepsilon(\omega - \sigma) \, d\sigma = \int_\mathbb{R} \chi(a; \sigma) J_\varepsilon(\omega - \sigma) \, d\sigma = \chi_\varepsilon(a; \omega).$$

Hence,

$$H^g_\varepsilon(b; a) = \int_\mathbb{R} g'(\omega) \left(\chi(b; \omega) \chi_\varepsilon(a; \omega) - \chi(a; \omega) \chi_\varepsilon(b; \omega) \right) \, d\omega.$$

Set

$$\lambda(a, b; \omega) := \chi(b; \omega) \chi_\varepsilon(a; \omega) - \chi(a; \omega) \chi_\varepsilon(b; \omega).$$

To find the support of $\lambda(a, b; \omega)$ we first observe that $\lambda(a, b; \omega) = -\lambda(b, a; \omega)$. This reduces the situation to the following cases:

$$\begin{cases}
0 \leq a \leq b & : |\lambda(a, b; \omega)| \leq \mathbb{1}_{|a-\omega| \leq \varepsilon}, \\
b \leq a \leq 0 & : |\lambda(a, b; \omega)| \leq \mathbb{1}_{|a-\omega| \leq \varepsilon}, \\
a \leq 0 \leq b & : |\lambda(a, b; \omega)| \leq \mathbb{1}_{|\omega| \leq \varepsilon}.
\end{cases}$$

It thus follows that

$$|H^g_\varepsilon(b, a)| \leq 2 \|g'\|_\infty \varepsilon.$$

Statement (5.20) follows as $g'(A(z))A'(z) = f'(z)$, which implies $\|g'\|_\infty \leq \|f\|_{\text{Lip}} \eta^{-1}$. \qed

We have now the tools needed to start estimating the error terms in Lemmas 5.1 and 5.4, starting with those in Lemma 5.4.

Estimate 5.8. Let R^+_1 be defined in Lemma 5.4. Then there exists a constant $C = C(d, J)$ such that

$$\left\| \int_\mathbb{R} R^+_1(\zeta) + R^+_1(\zeta) \, d\zeta \right\|_{L^1(H^m_\kappa)} \leq C \frac{\Delta_x}{r} \left(1 + \frac{\Delta_x}{r} \right) \|D_- A(u_{\Delta x})\|_{L^1(H^1; \mathbb{R}^d)}.$$

Proof. Let us first make an observation regarding the similarity of these terms. By statement (iv) of Lemma 5.2, recalling also the definition of $\theta_{\Delta x, i}^\pm$ and $\tau_{\Delta x, i}^\pm$ in Lemma 5.3,

$$S_{\Delta x, i} \left(J_\varepsilon(\zeta - \theta_{\Delta x, i}^\pm) - J_\varepsilon(\zeta - \theta_{\Delta x, i}^-) \right)$$

$$= J_\varepsilon(\zeta - \theta_{\Delta x, i}^+ S_{\Delta x} A(u_{\Delta x}), A(u_{\Delta x}), \zeta) - J_\varepsilon(\zeta - \theta_{\Delta x, i}^- S_{\Delta x} A(u_{\Delta x}), A(u_{\Delta x}), \zeta)$$

$$= - \left(J_\varepsilon(\zeta - \theta_{\Delta x, i}^+ - J_\varepsilon(\zeta - \theta_{\Delta x, i}^-) \right).$$
Recalling that \(\rho_{r,r_0} = \chi_\varepsilon(A(u); \cdot) \ast (J_{r_0} \otimes J_r) \), which implies

\[
R^+_1(\zeta) + R^-_1(\zeta) = -\sum_{i=1}^d S_{\Delta x_i} \left[\left(J_\varepsilon(\zeta - \tau_{\Delta x_i}) - J_\varepsilon(\zeta - \theta_{\Delta x_i}) \right) D^-_i(u_{\Delta x}) \ast (J_{r_0} \otimes J_r) \right] \partial_{x_i}, \rho_{r,r_0}
\]

\[
+ \sum_{i=1}^d \left[\left(J_\varepsilon(\zeta - \tau_{\Delta x_i}) - J_\varepsilon(\zeta - \theta_{\Delta x_i}) \right) D^+_i(u_{\Delta x}) \ast (J_{r_0} \otimes J_r) \right] \partial_{x_i}, \rho_{r,r_0}
\]

\[
= -\sum_{i=1}^d (S_{\Delta x_i} - 1) \partial_{x_i}, \rho_{r,r_0} \left[\left(J_\varepsilon(\zeta - \tau_{\Delta x_i}) - J_\varepsilon(\zeta - \theta_{\Delta x_i}) \right) D^-_i(u_{\Delta x}) \ast (J_{r_0} \otimes J_r) \right]
\]

\[
= -\Delta x \sum_{i=1}^d \left(J_\varepsilon(\zeta - \tau_{\Delta x_i}) - J_\varepsilon(\zeta - \theta_{\Delta x_i}) \right) D^+_i A(u_{\Delta x}) \chi_\varepsilon(A(u); \cdot) \]

\[
\ast \left(J_{r_0} \otimes \partial_{x_i}, J_r \otimes (J_{r_0} \otimes D^+_i J_r) \right).
\]

By statement (ii) of Lemma 5.6,

\[
\left| \int R^+_1(\zeta) + R^-_1(\zeta) \, d\zeta \right| \leq \frac{\Delta x}{2} \sum_{i=1}^d \| \chi_\varepsilon(A(u); \cdot) \|_{L^\infty(\mathbb{R})} \left| D^- A(u_{\Delta x}) \right| \ast \left(J_{r_0} \otimes \partial_{x_i}, J_r \otimes (J_{r_0} \otimes D^+_i J_r) \right). \tag{5.21}
\]

By Lemma 5.5,

\[
\left\| \int R^+_1(\zeta) + R^-_1(\zeta) \, d\zeta \right\|_{L^1(\mathbb{R}^d)} \leq \frac{\Delta x}{2} \sum_{i=1}^d \left| D^- A(u_{\Delta x}) \right| \ast \left(\partial_{x_i}, J_r \otimes (J_{r_0} \otimes D^+_i J_r) \right). \tag{5.22}
\]

Recall that \(\| \partial_{x_j} J_r \|_{L^1(\mathbb{R}^d)} \leq 2 \| J' \|_{L^\infty} r^{-1} \). Note that

\[
\left| D^+_i J_r(x) \right| = \frac{1}{\Delta x} \left| J_r(x_i + \Delta x) - J_r(x_i) \right| \prod_{j \neq i} J_r(x_j) \leq \frac{1}{r^2} \| J' \|_{L^\infty} \mathbb{I}_{|x_i| \leq r + \Delta x} \prod_{j \neq i} J_r(x_j).
\]

Hence

\[
\left| D^+_i J_r \right|_{L^1(\mathbb{R}^d)} \leq \frac{1}{r^2} \| J' \|_{L^\infty} \int_{\mathbb{R}} \mathbb{I}_{|x_i| \leq r + \Delta x} \, dx_i = 2 \| J' \|_{L^\infty} \frac{1}{r} \left(1 + \frac{\Delta x}{r} \right). \tag{5.22}
\]

The estimate follows from (5.22) and (5.21).

\[\square \]

Estimate 5.9. Let \(R^+_2 \) be defined in Lemma 5.4. Then there exists a constant \(C = C(d, J) \) such that

\[
\left| \int R^+_2(\zeta) + R^-_2(\zeta) \, d\zeta \right| \leq C \frac{\Delta x}{\varepsilon^2 \sqrt{r_0 r^d}} \| D_+ A(u_{\Delta x}) \|_{L^2(\mathbb{R}^d)} \| \nabla A(u) \|_{L^2(\mathbb{R}^d)} \cdot \tag{5.23}
\]

Proof. Let us consider \(R^+_2 \). The term \(R^-_2 \) is treated the same way. By Lemma 5.6,

\[
\left| \int R^+_2(\zeta) \, d\zeta \right| \leq \frac{1}{2} \sum_{i=1}^d \left| \int_\mathbb{R} \left(J_\varepsilon(\zeta - A(u_{\Delta x})) - J_\varepsilon(\zeta - A(\tau_{\Delta x,i})) \right) J_\varepsilon(\zeta - A(u)) \, d\zeta \right|
\]

\[
\times (\partial_{x_i} A(u))^2 \ast \left(J_{r_0} \otimes J_r \right) \otimes (J_{r_0} \otimes J_r)
\]

\[
\leq \frac{1}{2} \sum_{i=1}^d \left| \int_{A(u_{\Delta x})} \left| \partial_{x_i} (J_\varepsilon(\cdot - A(u)) \ast J_\varepsilon(\xi)) \right| \, d\xi \right|
\]

\[
\times (\partial_{x_i} A(u))^2 \ast \left(J_{r_0} \otimes J_r \right) \otimes (J_{r_0} \otimes J_r).
\]
By Young’s inequality for convolutions,
\[\|J_{\epsilon} (\cdot - A(u)) \ast J'_{\epsilon} \|_{L^\infty(\mathbb{R})} \leq \|J_{\epsilon} (\cdot - A(u))\|_{L^\infty(\mathbb{R})} \cdot \|J'_{\epsilon}\|_{L^1(\mathbb{R})} \leq \frac{2}{\epsilon^2} \cdot \|J'\|_{\infty}. \]

Hence,
\[\left| \int_{\mathbb{R}} R^+_2 (\zeta) \, d\zeta \right| \leq \frac{\Delta x}{\epsilon^2} \cdot \|J\|_{\infty} \cdot \|J'\|_{\infty} \sum_{i=1}^d \|D^1_+ A(u_{\Delta x})\| (\partial_x, A(u))^{(u_{\Delta x})} (J_{r_0} \otimes J_r) \otimes (J_{r_0} \otimes J_r). \]

Estimate 5.10. Let \(R^+_1 \) be defined in Lemma 5.4 and suppose \(d = 1 \). Then there exists a constant \(C = C(J) \) such that
\[\lim_{\epsilon \to 0} \int_{\mathbb{R}} R^+_2 (\zeta) + R^-_2 (\zeta) \, d\zeta \|_{L^1(\mathbb{R}^d)} \leq C \left(\frac{\Delta x}{r} \cdot \|f\|_{\text{Lip}} + \frac{\Delta x}{r^2} \cdot \|A\|_{\text{Lip}} + \frac{\Delta x}{r_0} \cdot \|D_+ u_{\Delta x}\|_{L^1(\mathbb{R})} \right). \]

Proof. We consider \(R^+_2 \). The \(R^-_2 \) term can be treated similarly. Note that for \(d = 1 \),
\[\int_{\mathbb{R}} R^+_2 (\zeta) \, d\zeta = \int_{\mathbb{R}} \left(J_{\epsilon} (\zeta - A(u_{\Delta x})) - J_{\epsilon} (\zeta - A(r_{\Delta x}^+)) \right) n_{A, \epsilon, r, r_0} (\zeta) \, d\zeta \ast J_{r_0} \otimes J_r, \]
where \(n_{A, \epsilon, r, r_0} \) is defined in Lemma 4.7. The map \(\zeta \mapsto n_{A, \epsilon, r, r_0} (t, x, \zeta) \) belongs to \(W^{1,1}_{\text{loc}}(\mathbb{R}) \) for each fixed \((t, x) \in (r_0, T - r_0) \times \mathbb{R} \). Due to Lemmas 4.7, 5.7, and 4.6,
\[\lim_{\epsilon \to 0} \partial_\zeta n_{A, \epsilon, r, r_0} (\zeta) = B' (\zeta) \partial_t \rho_r, r_0 (\zeta) + g' (\zeta) \partial_x \rho_r, r_0 (\zeta) - \partial^2 \rho_{r, r_0} (\zeta) \]
in \(L^1(\mathbb{R}) \) for each fixed \((t, x) \), where
\[\rho_{r, r_0} (\zeta) = \chi (A(u); \zeta) \ast J_{r_0} \otimes J_r. \]
By statement (iii) of Lemma 5.6,
\[\lim_{\epsilon \to 0} \int_{\mathbb{R}} R^+_2 (\zeta) \, d\zeta \leq \int_{A(u_{\Delta x})} S_{\Delta x} A(u_{\Delta x}) \left(B' (\zeta) \partial_t \rho_r, r_0 (\zeta) \right) \, d\zeta \ast J_{r_0} \otimes J_r + \int_{A(u_{\Delta x})} S_{\Delta x} A(u_{\Delta x}) \left(g' (\zeta) \partial_x \rho_r, r_0 (\zeta) \right) \, d\zeta \ast J_{r_0} \otimes J_r + \int_{A(u_{\Delta x})} S_{\Delta x} A(u_{\Delta x}) \left(\partial^2 \rho_{r, r_0} (\zeta) \right) \, d\zeta \ast J_{r_0} \otimes J_r \]
\[=: \mathcal{F}_1 + \mathcal{F}_2 + \mathcal{F}_3. \]
We consider each term separately. Let \(B(\zeta) = \xi \) or equivalently \(A(\xi) = \zeta \). It follows that
\[
\mathcal{F}_1 \leq \left| \int_{\mathcal{A}(u_{\Delta x})} S_{\Delta x} A(u_{\Delta x}) \right| B'(\zeta) \chi(A(u); \zeta) \, d\zeta \leq \left| \int_{\mathcal{A}(u_{\Delta x})} \partial_t J_{r_0} \otimes J_r \otimes J_{r_0} \otimes J_r \right|
\]
By Lemma 5.5,
\[
\| \mathcal{F}_1 \|_{L^1(\mathcal{M}_T)} \leq 2 \frac{\Delta x}{r_0} \| J' \|_{\infty} \| D_u \|_{L^1(\mathcal{M}_T)} \cdot
\]
Observe that \(g'(A(\xi)) A'(\xi) = f'(\xi) \) and \(d\zeta = A'(\xi) d\xi \). Hence,
\[
\mathcal{F}_2 \leq \left| \int_{\mathcal{A}(u_{\Delta x})} S_{\Delta x} A(u_{\Delta x}) \right| g'(\zeta) \chi(A(u); \zeta) \, d\zeta \leq \left| \int_{\mathcal{A}(u_{\Delta x})} \partial_t J_{r_0} \otimes J_r \otimes J_{r_0} \otimes J_r \right|
\]
By Lemma 5.5,
\[
\| \mathcal{F}_2 \|_{L^1(\mathcal{M}_T)} \leq 2 \| f \|_{\text{Lip}} \frac{\Delta x}{r} \| J' \|_{\infty} \| D_u \|_{L^1(\mathcal{M}_T)} \cdot
\]
Similarly,
\[
\mathcal{F}_3 \leq \left| \int_{\mathcal{A}(u_{\Delta x})} S_{\Delta x} A(u_{\Delta x}) \right| \chi(A(u); \zeta) \, d\zeta \leq \left| \int_{\mathcal{A}(u_{\Delta x})} \partial^2 J_r \otimes J_{r_0} \otimes J_r \otimes J_r \right|
\]
By Lemma 5.5,
\[
\| \mathcal{F}_3 \|_{L^1(\mathcal{M}_T)} \leq 2 \frac{\Delta x}{r} \| J'' \|_{\infty} \| D_u \|_{L^1(\mathcal{M}_T)} \cdot \Box
\]

Estimate 5.11. Let \(U \) be the second term in (5.3), Lemma 5.1, that is,
\[
U = 2 \int_{\mathbb{R}} \nabla \rho_{\varepsilon,r,r_0} \cdot (2\nabla - (D_+ + D_-) \rho_{\varepsilon,r,r_0} \, d\zeta.
\]
Then there exists a constant \(C = C(d, J) \) such that
\[
\| U \|_{L^1(\mathcal{M}_T)} \leq C \frac{\Delta x^2}{r^3} \left(1 + \frac{\Delta x}{r} \right) \| A(u_{\Delta x}) \|_{L^1([0,T]; BV(\mathbb{R}^d))} \cdot
\]

Remark 5.12. The BV norm may be replaced by the \(L^1 \) norm at the expense of an extra factor \(r^{-1} \).

Proof. Clearly,
\[
\left\| \int_{\mathbb{R}} \nabla \rho_{\varepsilon,r,r_0} \cdot (2\nabla - (D_+ + D_-) \rho_{\varepsilon,r,r_0} \, d\zeta \right\|_{L^1(\mathcal{M}_T)} \leq \left\| \nabla \rho_{\varepsilon,r,r_0} \right\|_{L^\infty(\mathcal{M}_T; \mathbb{R}^d)} \left\| (2\nabla - (D_+ + D_-) \rho_{\varepsilon,r,r_0} \right\|_{L^1(\mathcal{M}_T; \mathbb{R}^d).}
By Young’s inequality for convolutions,
\[
\|\partial_x \rho_{\varepsilon, r, r_0}\|_{L^\infty(\mathbb{R}^d)} \leq \chi(A(u)\cdot)\|J_x \otimes \partial_x, J_r \otimes J_{r_0}\|_{L^1(\mathbb{R}^d)} \\
\leq \|\partial_x, J_r\|_{L^1(\mathbb{R}^d)} \leq 2 \|J\|_{\infty}^{-1}.
\]

We have
\[
(2\partial_x - (D^i_+ + D^i_-))\rho_{\varepsilon, r, r_0} = \chi(A(u_{\Delta x})\cdot) * J_x \otimes (2\partial_x - (D^i_+ + D^i_-))J_r \otimes J_{r_0}.
\]

Using Taylor expansions with remainder,
\[
\left((D^i_+ + D^i_-) - 2\partial_x \right) J_r(x) = \frac{1}{2\Delta x} \int_0^{\Delta x} (z - \Delta x)^2 \partial^3_x J_r(x_i + z) \Pi_{j \neq i} J_r(x_j) \\
+ \frac{1}{2\Delta x} \int_{-\Delta x}^0 (z + \Delta x)^2 \partial^3_x J_r(x_i + z) \Pi_{j \neq i} J_r(x_j)
\]
\[
=: \partial_x (\varphi'_1(x) + \varphi'_2(x)),
\]

see for instance ([25], p. 25). Hence
\[
(2\partial_x - (D^i_+ + D^i_-))\rho_{\varepsilon, r, r_0} = \partial_x, (\chi(A(u_{\Delta x})\cdot) * J_x \otimes (\varphi'_1 + \varphi'_2) \otimes J_{r_0}).
\]

By Young’s inequality for convolutions
\[
\left\| (2\partial_x - (D^i_+ + D^i_-))\rho_{\varepsilon, r, r_0} \right\|_{L^1(\mathbb{R}^d)} \leq \chi(A(u_{\Delta x})\cdot)\|J_x \otimes \chi(A(u_{\Delta x})\cdot)\|_{L^1([0, T] \times \mathbb{R}^d) \times BV(\mathbb{R}^d)} \times \|\varphi'_1 + \varphi'_2\|_{L^1(\mathbb{R}^d)}.
\]

Note that \(\|\chi(A(u_{\Delta x})\cdot)\|_{L^1([0, T] \times \mathbb{R}^d) \times BV(\mathbb{R}^d)} = \|A(u_{\Delta x})\|_{L^1([0, T], BV(\mathbb{R}^d))}\). Now, as \(\partial_x, J_r(x_i + z) \leq r^{-3} \|J\|_{\infty} \frac{\Pi_{|x_i + z| \leq r}}{r^2},\) it follows that
\[
\left\|\varphi'_1\right\|_{L^1(\mathbb{R}^d)} = \frac{1}{2\Delta x} \int_0^{\Delta x} (z - \Delta x)^2 \partial^2_x J_r(x_i + z) \Pi_{j \neq i} J_r(x_j) \Pi_{j \neq i} J_r(x_j) \\
\leq \frac{(r + \Delta x)}{\Delta x} \|J\|_{\infty} \int_0^{\Delta x} (z - \Delta x)^2 \Pi_{j \neq i} J_r(x_j) \\
\leq \frac{1}{3} \|J\|_{\infty} \frac{\Delta x^2}{r^2} \left(1 + \frac{\Delta x}{r} \right).
\]

The same estimate applies to \(\varphi'_2\). \(\Box\)

Estimate 5.13. Let \(\mathcal{F}\) be the term (5.9) from Lemma 5.1, that is,
\[
\mathcal{F} = \int_R (\text{sign}_\varepsilon (\zeta - A(u)) \star J_{r_0} \otimes J_r)(\Delta - D_- \cdot D_+)\rho_{\varepsilon, r, r_0} d\zeta.
\]

Then there exists a constant \(C = C(d, J)\) such that
\[
\|\mathcal{F}\|_{L^1(\mathbb{R}^d)} \leq C \frac{\Delta x^2}{r^3} \left(1 + \frac{\Delta x}{r} \right) \|A(u_{\Delta x})\|_{L^1([0, T], BV(\mathbb{R}^d))}.
\]

Remark 5.14. At the cost of an extra factor \(r^{-1}\), the \(BV\) norm may be replaced by the \(L^1\) norm.
Proof. First note that $|\text{sign}_x (\zeta - A(u)) \ast J_{r_0} \otimes J_r| \leq 1$, so

$$|\mathcal{T}| \leq \left\| (\Delta - D_+ \cdot D_+) \rho^\Delta_{\varepsilon, r, r_0} \right\|_{L^1(\mathbb{R}^d)}.$$

Now,

$$(\partial^2_{x_i} - D^i_- D^i_+) \rho^\Delta_{\varepsilon, r, r_0} = \chi(A(u \Delta x); \cdot) \ast J_{\varepsilon} \otimes (\partial^2_{x_i} - D^i_- D^i_+) J_r \otimes J_{r_0}.$$

Using a Taylor expansion ([25], p. 24),

$$(\partial^2_{x_i} - D^i_- D^i_+) J_r(x) = \frac{1}{6 \Delta x^2} \int_0^{\Delta x} (z - \Delta x)^3 \partial^3_{x_i} J_r(x_i + z) \sum_{j \neq i} J_r(x_j)$$

$$- \frac{1}{6 \Delta x^2} \int_0^{\Delta x} (z + \Delta x)^3 \partial^3_{x_i} J_r(x_i + z) \sum_{j \neq i} J_r(x_j)$$

$$= : \partial_{x_i} (\varphi^1_i(x) + \varphi^2_i(x)).$$

Hence,

$$(\partial^2_{x_i} - D^i_- D^i_+) \rho^\Delta_{\varepsilon, r, r_0} = \partial_{x_i} \left(\chi(A(u \Delta x); \cdot) \ast J_{\varepsilon} \otimes (\varphi^1_i + \varphi^2_i) \otimes J_{r_0} \right).$$

By Young’s inequality for convolutions,

$$\left\| (\partial^2_{x_i} - D^i_- D^i_+) \rho^\Delta_{\varepsilon, r, r_0} \right\|_{L^1(\mathbb{R}^d)} \leq \left\| \chi(A(u \Delta x); \cdot) \right\|_{L^1([0,T] \times \mathbb{R}; BV(\mathbb{R}^d))} \times \left\| \varphi^1_i + \varphi^2_i \right\|_{L^1(\mathbb{R}^d)}.$$

It remains to estimate the L^1 norm of φ^1_i and φ^2_i:

$$\left\| \varphi^1_i \right\|_{L^1(\mathbb{R}^d)} = \frac{1}{6 \Delta x^2} \int_{\mathbb{R}^d} \left| \int_0^{\Delta x} (z - \Delta x)^3 \partial^3_{x_i} J_r(x_i + z) dz \right| dx_i$$

$$\leq \frac{r + \Delta x}{3 \Delta x^2 r^4} \left\| J^{(3)} \right\|_{L^\infty} \left| \int_0^{\Delta x} (z - \Delta x)^3 dz \right|$$

$$= \frac{\left\| J^{(3)} \right\|_{L^\infty}}{12} \frac{\Delta x^2}{r^3} \left(1 + \frac{\Delta x}{r} \right).$$

A similar estimate applies to φ^2_i.

□

Estimate 5.15. Let \mathcal{T}_1 and \mathcal{T}_2 be the terms from (5.8) in Lemma 5.1, that is,

$$\mathcal{T}_1 = \int_{\mathbb{R}} (\text{sign}_x (\zeta - A(u)) \ast J_{r_0} \otimes J_r) G^1_{\varepsilon}(\zeta) \cdot (D_+ - \nabla) \rho^\Delta_{\varepsilon, r, r_0} d\zeta,$$

$$\mathcal{T}_2 = \int_{\mathbb{R}} (\text{sign}_x (\zeta - A(u)) \ast J_{r_0} \otimes J_r) G^2_{\varepsilon}(\zeta) \cdot (D_- - \nabla) \rho^\Delta_{\varepsilon, r, r_0} d\zeta,$$

where $G_k(A(u)) = F_k(u)$ for $j = 1, 2$. Then there exists a constant $C = C(d, J)$ such that

$$\left\| \mathcal{T}_k \right\|_{L^1(\mathbb{R}^d)} \leq C \frac{\Delta x}{r} \left(1 + \frac{\Delta x}{r} \right) \left\| F^*_k \right\|_{L^\infty(\mathbb{R}; \mathbb{R}^d)} \left\| A(u \Delta x) \right\|_{L^1([0,T]; BV(\mathbb{R}^d))}$$

for $k = 1, 2$.

Remark 5.16. Again the BV norm may be replaced by the L^1 norm at the cost of an extra factor r^{-1}.

Proof. Consider \mathcal{T}_1. We can change variables $\zeta = A(\xi)$, which yields

$$\mathcal{T}_1 = \int_{\mathbb{R}} (\text{sign}_x (A(\xi) - A(u)) \ast J_{r_0} \otimes J_r) F'_1(\zeta) \cdot (D_+ - \nabla) \rho_{\zeta, r, r_0} \, d\xi.$$

Then observe that

$$\|\mathcal{T}_1\|_{L^1([0,T]^d)} \leq \|F'_1 \cdot (D_+ - \nabla) (\chi(A(u_{\Delta x}); \cdot) \ast J_{r} \otimes J_r)\|_{L^1([0,T]^d \times \mathbb{R})}.$$

We have

$$(D_+^i - \partial_{x_i}) (\chi(A(u_{\Delta x}); \cdot) \ast J_{r} \otimes J_r) \otimes J_{r_0} = (D_+^i - \partial_{x_i}) J_r \otimes J_{r_0}.$$

By Taylor expansions,

$$(D_+^i - \partial_{x_i}) J_r(x) = \frac{1}{\Delta x} \int_0^{\Delta x} (\Delta x - z) \partial_{x_i}^2 J_r(x + z) \, dz \prod_{j \neq i} J_r(x_j)$$

$$= \partial_{x_i} \varphi(x).$$

By Young’s inequality for convolutions,

$$\|F'_1 (D_+^i - \partial_{x_i}) (\chi(A(u_{\Delta x}); \cdot) \ast J_{r} \otimes J_r)\|_{L^1([0,T]^d \times \mathbb{R})} \leq \|F'_1\|_{L^\infty(\mathbb{R})} \|\chi(A(u_{\Delta x}); \cdot)\|_{L^1([0,T] \times \mathbb{R}; BV(\mathbb{R}^d))} \|\varphi\|_{L^1(\mathbb{R}^d)}.$$

It remains to estimate $\|\varphi\|_{L^1(\mathbb{R}^d)}$:

$$\|\varphi\|_{L^1(\mathbb{R}^d)} = \frac{1}{\Delta x} \int_{\mathbb{R}} \int_0^{\Delta x} (\Delta x - z) \partial_{x_i} J_r(x_i + z) \, dz \, dx_i \leq \frac{1}{\Delta x^2} \|J'_r\|_{L^\infty} \int_0^{\Delta x} (\Delta x - z) \, dz$$

$$= \frac{\Delta x}{r} \left(1 - \frac{\Delta x}{r} \right)$$

from which the estimate of \mathcal{T}_1 follows. Similar arguments apply to \mathcal{T}_2. \hfill \Box

Estimate 5.17. Consider the terms (5.4), (5.5), (5.6), and (5.7) from Lemma 5.1. Suppose $A' > \eta$ and set $B := A^{-1}$. Let

$$\mathcal{T}_1 = \int_{\mathbb{R}} (\text{sign}_x (\zeta - A(u_{\Delta x})) \ast J_{r_0} \otimes J_r) \partial_t R^B_{\alpha, r, r_0}(\zeta) \, d\zeta,$$

$$\mathcal{T}_2 = \int_{\mathbb{R}} (\text{sign}_x (\zeta - A(u)) \ast J_{r_0} \otimes J_r) \partial_t R^B_{\alpha, \Delta x, r_0}(\zeta) \, d\zeta,$$

$$\mathcal{T}_3 = \int_{\mathbb{R}} (\text{sign}_x (\zeta - A(u_{\Delta x})) \ast J_{r_0} \otimes J_r) \nabla \cdot R^B_{\alpha, r_0}(\zeta) \, d\zeta,$$

$$\mathcal{T}_4 = \int_{\mathbb{R}} (\text{sign}_x (\zeta - A(u)) \ast J_{r_0} \otimes J_r)$$

$$\times \left(D_+ : R^B_{\alpha, \Delta x, r_0}(\zeta) + D_- : R^B_{\alpha, \Delta x, r_0}(\zeta) \right) \, d\zeta,$$
where
\[R_{\varepsilon, r, r_0}^f(\varepsilon) = R_{\varepsilon}^f(A(u), \varepsilon) \ast J_{r_0} \otimes J_r \text{ and } R_{\varepsilon, r, r_0}^{f, \Delta_x}(\varepsilon) = R_{\varepsilon}^f(A(u_{\Delta x}), \varepsilon) \ast J_{r_0} \otimes J_r \]
for any function \(f \), and \(R_{\varepsilon}^f \) is defined in equation (4.5). Then
\[
\| T_k \|_{L^\infty(H_{r_0}^1)} \leq 8 \frac{\varepsilon}{\eta r_0} \| J' \|_{L^\infty} \text{ for } k = 1, 2,
\]
\[
\| T_3 \|_{L^\infty(H_{r_0}^1)} \leq 8 \frac{\varepsilon}{\eta r} \| J' \|_{L^\infty} \sum_{i=1}^d \| f_i \|_{Lip},
\]
\[
\| T_4 \|_{L^\infty(H_{r_0}^1)} \leq 8 \frac{\varepsilon}{\eta r} \left(1 + \frac{\Delta x}{r} \right) \| J' \|_{L^\infty} \sum_{i=1}^d \| F_i \|_{Lip}.
\]

Proof. Consider \(T_1 \). Moving the \(t \) derivative onto \(J_{r_0} \), we have that
\[
T_1 = \int R_{\varepsilon}^f(A(u_{\Delta x}), \varepsilon) \ast J_{r_0} \otimes J_r \chi, \quad J_{r_0} \otimes J_r \otimes \partial_t J_{r_0} \otimes J_r.
\]
By Lemma 5.5, equation (5.15), Lemma 5.7, and equation (5.20) with \(f(z) = z \),
\[
\| T_1 \|_{L^\infty(H_{r_0}^1)} \leq 4 \frac{\varepsilon}{\eta} \| J_{r_0} \otimes J_r \|_{L^1(\mathbb{R} \times \mathbb{R}^d)} \| \partial_t J_{r_0} \otimes J_r \|_{L^1(\mathbb{R} \times \mathbb{R}^d)} \leq 8 \frac{\varepsilon}{\eta r_0} \| J' \|_{L^\infty}.
\]
The \(L^\infty \) bound on \(T_2 \) follows similarly.

Let us consider \(T_3 \):
\[
T_3 = \sum_{i=1}^d \int R_{\varepsilon}^f(A(u_{\Delta x}), \varepsilon) \chi \partial_x J_{r_0} \otimes J_r \otimes J_{r_0} \otimes \partial_x J_r.
\]
By Lemma 5.5, equation (5.15), Lemma 5.7, and equation (5.20) with \(f(z) = f_i(z) \),
\[
\| T_3 \|_{L^\infty(H_{r_0}^1)} \leq 4 \frac{\varepsilon}{\eta} \sum_{i=1}^d \| f_i \|_{Lip} \| \partial_x J_r \|_{L^1(\mathbb{R}^d)} \leq 8 \frac{\varepsilon}{\eta r} \| J' \|_{L^\infty} \sum_{i=1}^d \| f_i \|_{Lip}.
\]
The terms in \(T_4 \) are estimated in the same way, but in view (5.22) we can utilize the bound
\[
\| J_{r_0} \otimes D_{\pm} J_r \|_{L^1(\mathbb{R} \times \mathbb{R}^d)} \leq 2 \| J' \|_{L^\infty} \left(1 + \frac{\Delta x}{r} \right).
\]

\[\square \]

5.4. Concluding the Proof of Theorem 3.2

Recall that \(Q_\varepsilon \), cf. (5.1), was introduced as an approximation to the contraction functional \(Q \), cf. (1.8). Recall the basic property [10, 33]
\[
|u - v| = \int Q(u, v; \xi) \, d\xi, \quad u, v \in \mathbb{R}.
\]
(5.23)

To argue for this relation, note that
\[Q(u, v; \xi) = |\chi(u; \xi)| + |\chi(v; \xi)| - 2\chi(u; \xi)\chi(v; \xi) = (\chi(u; \xi) - \chi(v; \xi))^2. \]
Next, observe that
\[
\chi(u; \xi) - \chi(v; \xi) = \chi(u - v; \xi - v);
\]
(5.24)
indeed, for any \(S \in C^1_0(\mathbb{R}) \),
\[
\int_{\mathbb{R}} S'(\xi)(\chi(u;\xi) - \chi(v;\xi)) \, d\xi = \int_{u}^{v} S'(\xi) \, d\xi = \int_{0}^{u} S'(\sigma + v) \, d\sigma \quad \text{(here } \sigma = \xi - v \text{)}
\]
\[
= \int_{\mathbb{R}} S'(\sigma + v) \chi(u - v;\sigma) \, d\sigma
\]
\[
= \int_{\mathbb{R}} S'(\xi) \chi(u - v;\xi - v) \, d\xi.
\]
Hence, the claim follows:
\[
\int_{\mathbb{R}} (\chi(u;\xi) - \chi(v;\xi))^2 \, d\xi = \int_{\mathbb{R}} |\chi(u - v;\xi - v)| \, d\xi = |u - v|.
\]

Let us quantify the approximation properties of \(Q_\varepsilon \).

Lemma 5.18. Let \(A' \geq \eta > 0, B = A^{-1} \), and \(f = g \circ A \). Define
\[
P = \int_{\mathbb{R}} Q_\varepsilon(A(u), A(v); \zeta) B'(\zeta) \, d\zeta - |u - v|,
\]
\[
M = \int_{\mathbb{R}} Q_\varepsilon(A(u), A(v); \zeta) g'(\zeta) \, d\zeta - \text{sign}(u - v) \left(f(u) - f(v) \right),
\]
and
\[
N = \int_{\mathbb{R}} Q_\varepsilon(A(u), A(v); \zeta) \, d\zeta - |A(u) - A(v)|,
\]
for any \(u \) and \(v \), and where \(Q_\varepsilon \) is given by (5.1). Then
\[
|P| \leq 16 \varepsilon, \quad |M| \leq 8 \varepsilon, \quad |N| \leq 8 \varepsilon.
\]

Proof. Because \(A' > 0 \), \(Q(u, v; \xi) = Q(A(u), A(v); A(\xi)) \). Hence we can use (5.23) and a change of variables to obtain the identity
\[
P = \int_{\mathbb{R}} \left(Q_\varepsilon(A(u), A(v); \zeta) - Q(A(u), A(v); \zeta) \right) B'(\zeta) \, d\zeta.
\]
By definition of \(Q \) and the equality \(|\chi(u;\xi)| = \text{sign}(\xi) \chi(u;\xi) \),
\[
Q(A(u), A(v); \zeta) = \text{sign}(\zeta) \chi(A(u); \zeta) + \text{sign}(\zeta) \chi(A(v); \zeta) - 2\chi(A(u); \zeta) \chi(A(v); \zeta).
\]
Thus,
\[
P = \int_{\mathbb{R}} \left(\text{sign}_\varepsilon(\zeta) \chi_\varepsilon(A(u); \zeta) - \text{sign}(\zeta) \chi(A(u); \zeta) \right) B'(\zeta) \, d\zeta
\]
\[
+ \int_{\mathbb{R}} \left(\text{sign}_\varepsilon(\zeta) \chi_\varepsilon(A(v); \zeta) - \text{sign}(\zeta) \chi(A(v); \zeta) \right) B'(\zeta) \, d\zeta
\]
\[
+ 2 \int_{\mathbb{R}} \left(\chi(A(u); \zeta) \chi(A(v); \zeta) - \chi_\varepsilon(A(u); \zeta) \chi_\varepsilon(A(v); \zeta) \right) B'(\zeta) \, d\zeta
\]
=: \(P_1 + P_2 + P_3 \).

Finding that the measure of the support of the integrand is bounded by \(4\varepsilon \) for \(P_1, P_2 \), and \(P_3 \), we conclude that
\[
|P| \leq 16 \varepsilon \|B'\|_\infty.
\]
and then the bound on P follows since $\|B'\|_\infty \leq \eta^{-1}$.

To prove the inequality for M, note that
\[
\text{sign} \,(u - v) \,(f(u) - f(v)) = \int_{\mathbb{R}} \text{sign} \,(u - v) \,(\chi(u; \zeta) - \chi(v; \zeta)) f'(\zeta) \,d\zeta
\]
\[
= \int_{\mathbb{R}} |\chi(u, \zeta) - \chi(v, \zeta)| f'(\zeta) \,d\zeta
\]
\[
= \int_{\mathbb{R}} [\text{sign} \,(\zeta) \,\chi(u; \zeta) + \text{sign} \,(\zeta) \,\chi(v; \zeta) - 2\chi(u; \zeta)\chi(v; \zeta)] f'(\zeta) \,d\zeta.
\]
Changing variables, we arrive at
\[
\int_{\mathbb{R}} Q_\varepsilon(A(u), A(v); \zeta)\,d\zeta = \int_{\mathbb{R}} Q_\varepsilon(A(u), A(v); A(\zeta)) f'(\zeta) \,d\zeta,
\]
and, since $\text{sign} \,(\zeta) \,\chi(w; \zeta) = \text{sign} \,(A(\zeta)) \,\chi(A(w); A(\zeta))$, we find that
\[
|M| \leq \int_{\mathbb{R}} |\text{sign}_\varepsilon \,(A(\zeta)) \,\chi(A(v); A(\zeta)) - \text{sign} \,(A(\zeta)) \,\chi(A(v); A(\zeta))| \,|f'(\zeta)| \,d\zeta
\]
\[
+ \int_{\mathbb{R}} |\text{sign}_\varepsilon \,(A(\zeta)) \,\chi(A(u); A(\zeta)) - \text{sign} \,(A(\zeta)) \,\chi(A(u); A(\zeta))| \,|f'(\zeta)| \,d\zeta
\]
\[
+ 2 \int_{\mathbb{R}} |\chi(A(u); A(\zeta))\chi(A(v); A(\zeta)) - \chi(A(u); A(\zeta))\chi(A(v); A(\zeta))| \,|f'(\zeta)| \,d\zeta.
\]
Each of the three integrands is bounded by 2 and has support where $|A(\zeta)| < \varepsilon$, i.e., where $|\zeta| \leq \varepsilon/\eta$, hence $|M| \leq 8\varepsilon/\eta$. The proof of the bound on $|N|$ is similar. \qed

Concluding the Proof of Theorem 3.2. We shall choose a positive test function $\phi \leq 1$, such that $|\nabla \phi|$ and $|\Delta \phi|$ are bounded by $C\phi$. This will be convenient when we estimate terms containing $\nabla \phi$ or $\Delta \phi$.

A test function with the necessary properties can be defined as follows, fix $R > d\sqrt{d}$ and define $\hat{\phi} : \mathbb{R}^d \to \mathbb{R}$ by
\[
\hat{\phi}(x) = \begin{cases}
1 & \text{if } |x| \leq R + \sqrt{d}, \\
\exp((R + \sqrt{d} - |x|)/\sqrt{d}) & \text{otherwise}.
\end{cases}
\]
Define $\phi = \hat{\phi} \ast J^{\otimes n}$ and note that $\phi(x) = 1$ for $x \in B(0, R)$. Note that $\hat{\phi}$ is weakly differentiable and satisfies
\[
\partial_{x_i} \hat{\phi} = \begin{cases}
-\frac{1}{\sqrt{d} |x|} \hat{\phi}(x) & |x| > R + \sqrt{d}, \\
0 & |x| < R + \sqrt{d}.
\end{cases}
\]
It follows that $|\nabla \phi(x)| \leq \frac{1}{\sqrt{d}} \phi(x)$. In order to bound $\Delta \phi$ we first note that
\[
\Delta \hat{\phi}(x) = \left(\frac{1}{d} - \frac{d - 1}{\sqrt{d} |x|}\right) \hat{\phi}(x), \quad \text{for } |x| > R + \sqrt{d}.
\]
Furthermore,
\[
\frac{1}{d^2} \leq \left(\frac{1}{d} - \frac{d - 1}{\sqrt{d} |x|}\right) \leq \frac{1}{d} \quad \text{for } |x| \geq d\sqrt{d}.
\]
It follows that $|\Delta \hat{\phi}| \leq \frac{1}{d} \hat{\phi}(x)$ whenever $|x| > R + \sqrt{d}$. Hence
\[
|\Delta \phi(x)| \leq \frac{1}{d} \phi(x) \quad \text{for } |x| > R + 2\sqrt{d}.
\]
If $|x| \leq R + 2\sqrt{d}$ it follows by the lower bound $\phi(x) \geq e^{-2}$, that there exists a constant $C = C(d, J)$ such that $|\Delta \phi(x)| \leq C|\phi(x)|$.

The next lemma estimates how far $|u_{\Delta x} - u|$ is from it regularized counterpart
\[
\int B'(\zeta) \left(\chi_\varepsilon(A(u_{\Delta x}); \zeta) - \chi_\varepsilon(A(u); \zeta) \right)^2 d\zeta \star_{J_{r_0} \otimes J_r} J_{r_0} \otimes J_r.
\]

Lemma 5.19. With the notation and assumptions of Lemma 5.1,
\[
\int_{\mathbb{R}^d} \left| \int_{\mathbb{R}} B'(\zeta) Q_{\varepsilon, r, r_0}(A(u_{\Delta x}), A(u); \zeta) d\zeta - |u_{\Delta x} - u| \right| \phi \, dx \leq C \left(r + r_0 + \|\phi\|_{L^1(\mathbb{R}^d)} \frac{\varepsilon}{\eta} \right),
\]
(5.25)
\[
\int_{r_0}^T \int_{\mathbb{R}^d} \left| \int_{\mathbb{R}} g'(\zeta) Q_{\varepsilon, r, r_0}(A(u_{\Delta x}), A(u); \zeta) d\zeta \right|
- \text{sign}(u_{\Delta x} - u) \left(f(u) - f(u_{\Delta x}) \right) \cdot \nabla \phi \, dx \, dt \leq CT \left(r + r_0 + \|\phi\|_{L^1(\mathbb{R}^d)} \frac{\varepsilon}{\eta} \right),
\]
(5.26)
\[
\int_{r_0}^T \int_{\mathbb{R}^d} \left| \int_{\mathbb{R}} Q_{\varepsilon, r, r_0}(A(u_{\Delta x}), A(u); \zeta) d\zeta \right|
- |A(u_{\Delta x}) - A(u)| \right| \Delta \phi \, dx \, dt \leq CT \left(r + r_0 + \|\phi\|_{L^1(\mathbb{R}^d)} \frac{\varepsilon}{\eta} \right),
\]
(5.27)
where the constant C only depends on the initial data, A, and f.

Proof of Lemma 5.19. We establish (5.25) as follows:
\[
\int_{\mathbb{R}^d} \left| \int_{\mathbb{R}} B'(\zeta) Q_{\varepsilon, r, r_0}(A(u_{\Delta x}), A(u); \zeta) d\zeta - |u_{\Delta x} - u| \right| \phi \, dx
\]
\[
= \int_{\mathbb{R}^d} \int_{0}^{T} \int_{\mathbb{R}^d} \left(\int_{\mathbb{R}} B'(\zeta) Q_\varepsilon(A(u_{\Delta x}(s, y)), A(u(s, y)); \zeta) d\zeta \right)
- |u_{\Delta x}(t, x) - u(t, x)| J_{r_0}(t - s) J_r(x - y) \, dy \, ds \phi \, dx
\]
\[
\leq \int_{\mathbb{R}^d} \int_{0}^{T} \int_{\mathbb{R}^d} \left| \int_{\mathbb{R}} B'(\zeta) Q_\varepsilon(A(u_{\Delta x}(s, y)), A(u(s, y)); \zeta) d\zeta \right|
- |u_{\Delta x}(s, y) - u(s, y)| J_{r_0}(t - s) J_r(x - y) \, dy \, ds \phi \, dx
\]
\[
+ \int_{\mathbb{R}^d} \int_{0}^{T} \int_{\mathbb{R}^d} \left(|u_{\Delta x}(t, x) - u_{\Delta x}(s, y)| + |u(t, x) - u(s, y)| \right)
\times J_{r_0}(t - s) J_r(x - y) \, dy \, ds \, dx
\]
\[
\leq 16 \frac{\varepsilon}{\eta} \int_{\mathbb{R}^d} \phi \, dx + 2 \left(|u_0|_{BV(\mathbb{R}^d)} + |u_{\Delta x}(0, \cdot)|_{BV(\mathbb{R}^d)} \right) (r + r_0).
\]
The bounds (5.26) and (5.27) are proved in the same way. □
Writing the equation in Lemma 5.1 as
\[\int_{\mathbb{R}} B'(\zeta) \partial_t Q_{\varepsilon, r, r_0} \, d\zeta + \int_{\mathbb{R}} g'(\zeta) \nabla Q_{\varepsilon, r, r_0} \, d\zeta = \int_{\mathbb{R}} \Delta Q_{\varepsilon, r, r_0} \, d\zeta + \mathcal{E}_{\varepsilon, r, r_0}^{\Delta x}, \]
we multiply by ϕ, integrate over $t \in [r_0, \tau]$ where $r_0 < \tau \leq T - r_0$, and integrate by parts in x, finally obtaining
\[\int_{\mathbb{R}^d} \int_{\mathbb{R}} B'((\zeta) Q_{\varepsilon, r, r_0} \, d\zeta \mid_{t=r_0} \, dx - \int_{r_0}^{T} \int_{\mathbb{R}^d} g((\zeta) Q_{\varepsilon, r, r_0} \cdot \nabla \phi \, d\zeta \, dx dt \]
\[= \int_{r_0}^{T} \int_{\mathbb{R}^d} Q_{\varepsilon, r, r_0} \phi \, dx dt + \int_{r_0}^{T} \int_{\mathbb{R}^d} \mathcal{E}_{\varepsilon, r, r_0}^{\Delta x} \phi \, dx dt. \]
Combining this with Lemma 5.19 gives
\[\int_{\mathbb{R}^d} |u_{\Delta x} - u| \phi \mid_{t=r_0} \, dx - \int_{r_0}^{T} \int_{\mathbb{R}^d} \text{sign}(u_{\Delta x} - u) (f(u_{\Delta x}) - f(u)) \cdot \nabla \phi \, dx dt \]
\[\leq \int_{r_0}^{T} \int_{\mathbb{R}^d} |A(u_{\Delta x}) - A(u)| \Delta \phi \, dx dt + \int_{r_0}^{T} \int_{\mathbb{R}^d} \mathcal{E}_{\varepsilon, r, r_0}^{\Delta x} \phi \, dx dt + C_T \left(r + r_0 + \frac{\varepsilon}{\eta} \right), \]
where C_T depends (linearly) on T. Using properties of ϕ, this can be rewritten as
\[A(\tau) - A(r_0) \leq C \int_{r_0}^{\tau} A(t) \, dt + \mathcal{E}_{\varepsilon, r, r_0}^{\Delta x, \tau}, \]
where
\[A(t) = \int_{\mathbb{R}^d} |u_{\Delta x}(t, x) - u(t, x)| \phi(x) \, dx, \]
\[\mathcal{E}_{\varepsilon, r, r_0}^{\Delta x, \tau} = \int_{r_0}^{\tau} \int_{\mathbb{R}^d} \mathcal{E}_{\varepsilon, r, r_0}^{\Delta x} \phi \, dx dt + C_T \left(r + r_0 + \frac{\varepsilon}{\eta} \right). \]
Gronwall’s inequality then implies that
\[A(\tau) \leq A(r_0) + \tau e^{C_T \left(A(r_0) + \mathcal{E}_{\varepsilon, r, r_0}^{\Delta x, \tau} \right)}. \]
Recall that u depends on η, and we now make this dependence explicit by writing u^n and A^n. Our aim is to estimate $u_{\Delta x} - u^0$. By (2.2),
\[\int_{B(0,R)} |u_{\Delta x}(\tau, \cdot) - u^0(\tau, \cdot)| \, dx dt - C \sqrt{\eta} \]
\[\leq A^n(\tau) \]
\[\leq C_T \| u_{\Delta x}(r_0, \cdot) - u^0(r_0, \cdot) \|_{L^1(\mathbb{R}^d)} + C_T \mathcal{E}_{\varepsilon, r, r_0}^{\Delta x, \tau} \]
\[\leq C r_0 + \| u_{\Delta x}(0, \cdot) - u^0(0, \cdot) \|_{L^1(\mathbb{R}^d)} + C_T \mathcal{E}_{\varepsilon, r, r_0}^{\Delta x, \tau}. \]
Next, we estimate the terms in the integral of $\mathcal{E}_{\varepsilon, r, r_0}^{\Delta x, \tau}$; these are the terms in (5.3)–(5.11). By Estimate 5.11,
\[\iint_{\mathbb{R}^d} \text{second term in (5.3)} \, dx dt \leq C \frac{\Delta x^2}{r^3} \left(1 + \frac{\Delta x}{r} \right), \]
where C depends on the initial data.
The integral of the terms (5.4)–(5.7) is bounded by Estimate 5.17:
\[
\int_{\Pi^0_{T}} |(5.4) + \ldots + (5.7)| \, dx dt \leq C_{\eta} \frac{\varepsilon}{\eta} \left(\frac{1}{r_0} + \frac{1}{r} \left(1 + \frac{\Delta x}{r} \right) \right).
\]

The integral of (5.8) is bounded by Estimate 5.15 as follows:
\[
\int_{\Pi^0_{T}} |(5.8)| \, dx dt \leq C \frac{\Delta x}{r} \left(1 + \frac{\Delta x}{r} \right).
\]

The integral of (5.9) is bounded using Estimate 5.13:
\[
\int_{\Pi^0_{T}} |(5.9)| \, dx dt \leq C \frac{\Delta x^2}{r^3} \left(1 + \frac{\Delta x}{r} \right).
\]

The term (5.11) is bounded using Estimates 5.8 and 5.9 (if \(d > 1 \)):
\[
\int_{\Pi^0_{T}} |(5.11)| \, dx dt \leq C \Delta x \left(\frac{1}{r^2} + \frac{1}{\eta} \right) + \frac{1}{\varepsilon^2 \sqrt{r_0 r^d}}.
\] (5.29a)

If \(d = 1 \), we can use Estimate 5.10 to achieve the better bound
\[
\int_{\Pi^0_{T}} \left| \lim_{\varepsilon \to 0} (5.11) \right| \, dx dt \leq C \Delta x \left(\frac{1}{r^2} + \frac{1}{r_0^1} \right).
\] (5.29b)

Finally, the term (5.10) is non-positive.

The fraction \(\Delta x/r \) will turn out to be uniformly bounded (in fact vanishingly small), so we can overestimate it by a constant. Thus the bounds (5.28)–(5.29b) give the following estimate for \(\mathcal{E}_{\varepsilon, r, r_0}^{\Delta x, \tau} \):
\[
\mathcal{E}_{\varepsilon, r, r_0}^{\Delta x, \tau} \leq C_T \left(r + r_0 + \frac{\varepsilon}{\eta} + \frac{\varepsilon}{\eta r_0} + \frac{\Delta x}{r} + \frac{\Delta x}{r^2} + \frac{\Delta x}{\varepsilon^2 \sqrt{r_0 r^d}} \right).
\]

If \(u_0 \in BV(\mathbb{R}^d) \), \(\|u_{\Delta x}(0, \cdot) - u_0\|_{L^1(\mathbb{R}^d)} \leq \|u_0\|_{BV(\mathbb{R}^d)} \Delta x \), so that
\[
\|u_{\Delta x}(\tau, \cdot) - u^0(\tau, \cdot)\|_{L^1(B(0, r_0))} \leq C_T \left(\Delta x \sqrt{\eta} + r + r_0 + \frac{\varepsilon}{\eta} + \frac{\varepsilon}{\eta r_0} + \frac{\Delta x}{\eta} + \frac{\Delta x}{r^2} + \frac{\Delta x}{\varepsilon^2 \sqrt{r_0 r^d}} \right).
\]

Now we set \(r = r_0 = \sqrt{\eta} \), \(\varepsilon = r^d \); using that \(r < 1 \), the above simplifies to
\[
\|u_{\Delta x}(\tau, \cdot) - u^0(\tau, \cdot)\|_{L^1(B(0, r))} \leq C_T \left(r + \frac{\Delta x}{r^2} \right).
\]

Finally, minimizing with respect to \(r \) yields
\[
\|u_{\Delta x}(\tau, \cdot) - u^0(\tau, \cdot)\|_{L^1(B(0, r))} \leq C_T \Delta x^{\frac{2}{19 + d}}.
\]

Remark 5.20. If \(d = 1 \), the above estimate gives a convergence rate of 1/10, which is better than the rate reported in [24]. However, when \(d = 1 \), we can use (5.29b) instead of (5.29a). Then we have no terms with \(\varepsilon \) in the denominator, so we can send \(\varepsilon \) to zero in (5.2)–(5.11) before taking absolute values and integrating. Proceeding as above, \(i.e. \), setting \(r = r_0 = \sqrt{\eta} \), this yields the bound
\[
\|u_{\Delta x}(\tau, \cdot) - u^0(\tau, \cdot)\|_{L^1(B(0, r))} \leq C_T \left(r + \frac{\Delta x}{r^2} \right),
\]
which gives the rate 1/3 [25].
WELL-POSEDNESS OF DIFFERENCE METHOD

In this appendix we establish the well-posedness of the semi-discrete method. We also collect a series of a priori bounds.

Introduce
\[\|\sigma\|_1 = \Delta x^d \sum_\alpha |\sigma_\alpha| \quad \text{and} \quad |\sigma|_{BV} = \sum_\alpha \sum_{i=1}^d |\sigma_{\alpha+e_i} - \sigma_\alpha|. \]

If these quantities are bounded we say that \(\sigma = \{\sigma_\alpha\} \) is in \(\ell^1(\mathbb{Z}^d) \) and of bounded variation. Let \(u(t) = \{u_\alpha(t)\}_{\alpha \in \mathbb{Z}^d} \) and \(u_0 = \{u_\alpha(0)\}_{\alpha \in \mathbb{Z}^d} \) and define the operator \(A : \ell^1(\mathbb{Z}^d) \to \ell^1(\mathbb{Z}^d) \) by
\[
(A(u))_\alpha = \sum_{i=1}^d D_+^i \left[F^i(u_\alpha, u_{\alpha+e_i}) - D_+^i A(u_\alpha) \right].
\]

Then (3.1) may be considered as the Cauchy’s problem
\[
\begin{aligned}
\frac{du}{dt} + A(u) &= 0, \quad t > 0, \\
u(0) &= u_0.
\end{aligned}
\]

This problem has a unique continuously differentiable solution for small \(t \), since \(A \) is Lipschitz continuous for each \(\Delta x > 0 \). The solution defines a strongly continuous semigroup \(S(t) \) on \(\ell^1 \). We want to show that this semigroup is \(\ell^1 \) contractive. This follows by the theory presented in [14], given that \(A \) is accretive, i.e.,
\[
\sum_\alpha \text{sign}(u_\alpha - v_\alpha) (A(u) - A(v))_\alpha \geq 0.
\]

This holds for any \(u \) and \(v \) in \(\ell^1(\mathbb{Z}^d) \) [32, 34].

Lemma A.1. The operator \(A : \ell^1(\mathbb{Z}^d) \to \ell^1(\mathbb{Z}^d) \) is accretive.

Proof. By definition
\[
(A(u) - A(v))_\alpha = \sum_{i=1}^d D_+^i \left[F^i(u_\alpha, u_{\alpha+e_i}) - F^i(v_\alpha, v_{\alpha+e_i}) - D_+^i (A(u_\alpha) - A(v_\alpha)) \right].
\]

Let \(\partial_1 F^i \) and \(\partial_2 F^i \) denote the partial derivatives of \(F^i \) with respect to the first and second variable respectively. Since \(F^i \) is continuously differentiable there exist for each \((\alpha, i)\) some number \(\tau_{\alpha,i} \) such that
\[
F^i(u_\alpha, u_{\alpha+e_i}) - F^i(v_\alpha, u_{\alpha+e_i}) = \partial_1 F^i(\tau_{\alpha,i}, u_{\alpha+e_i})(u_\alpha - v_\alpha)
\]
and similarly a number \(\theta_{\alpha,i} \) such that
\[
F^i(v_\alpha, u_{\alpha+e_i}) - F^i(v_\alpha, v_{\alpha+e_i}) = \partial_2 F^i(v_\alpha, \theta_{\alpha,i})(u_{\alpha+e_i} - v_{\alpha+e_i}).
\]

Let \(w_\alpha = u_\alpha - v_\alpha \) then
\[
F^i(u_\alpha, u_{\alpha+e_i}) - F^i(v_\alpha, v_{\alpha+e_i}) = F^i(u_\alpha, u_{\alpha+e_i}) - F^i(v_\alpha, u_{\alpha+e_i}) + F^i(v_\alpha, u_{\alpha+e_i}) - F^i(v_\alpha, v_{\alpha+e_i})
\]
\[
= \partial_1 F^i(\tau_{\alpha,i}, u_{\alpha+e_i}) w_\alpha + \partial_2 F^i(v_\alpha, \theta_{\alpha,i}) w_{\alpha+e_i}.
\]

Let \(A' = a \). Then there exist some \(\xi_\alpha \) such that
\[
A(u_\alpha) - A(v_\alpha) = a(\xi_\alpha) w_\alpha.
\]
Using these expressions we obtain
\[
\sum_\alpha \text{sign}(u_\alpha - v_\alpha) (A(u) - A(v))_\alpha
= \sum_\alpha \sum_{i=1}^d \text{sign}(w_\alpha) D^-_i \left[\partial_1 F^i(\tau_{\alpha,i}, u_{\alpha+e_i}) w_\alpha + \partial_2 F^i(v_\alpha, \theta_{\alpha,i}) w_{\alpha+e_i} \right]
- \sum_\alpha \sum_{i=1}^d \text{sign}(w_\alpha) D^+_i D^+_i (a(\xi_\alpha) w_\alpha) := T_1 - T_2.
\]

(A.1)

Consider T_1 first. Since
\[
D^-_i \left[\partial_1 F^i(\tau_{\alpha,i}, u_{\alpha+e_i}) w_\alpha + \partial_2 F^i(v_\alpha, \theta_{\alpha,i}) w_{\alpha+e_i} \right] = \frac{1}{\Delta x} \left[\partial_1 F^i(\tau_{\alpha,i}, u_{\alpha+e_i}) w_\alpha - \partial_1 F^i(\tau_{\alpha-e_i,i}, u_\alpha) w_{\alpha-e_i} + \partial_2 F^i(v_\alpha, \theta_{\alpha,i}) w_{\alpha+e_i} - \partial_2 F^i(v_{\alpha-e_i}, \theta_{\alpha-e_i,i}) w_\alpha \right],
\]
it follows that
\[
T_1 = \frac{1}{\Delta x} \sum_\alpha \sum_{i=1}^d \left[\partial_1 F^i(\tau_{\alpha,i}, u_{\alpha+e_i}) |w_\alpha| - \partial_1 F^i(\tau_{\alpha-e_i,i}, u_\alpha) \text{sign}(w_\alpha) w_{\alpha-e_i}
+ \partial_2 F^i(v_\alpha, \theta_{\alpha,i}) \text{sign}(w_\alpha) w_{\alpha+e_i} - \partial_2 F^i(v_{\alpha-e_i}, \theta_{\alpha-e_i,i}) |w_\alpha| \right]
= \frac{1}{\Delta x} \sum_{i=1}^d \left[\sum_\alpha \partial_1 F^i(\tau_{\alpha,i}, u_{\alpha+e_i}) |w_\alpha| - \sum_\alpha \partial_1 F^i(\tau_{\alpha,i}, u_{\alpha+e_i}) \text{sign}(w_{\alpha+e_i}) w_\alpha
+ \sum_\alpha \partial_2 F^i(v_\alpha, \theta_{\alpha,i}) \text{sign}(w_\alpha) w_{\alpha+e_i} - \sum_\alpha \partial_2 F^i(v_\alpha, \theta_{\alpha,i}) |w_{\alpha+e_i}| \right]
\]

Since each F^i is monotone, it follows that $T_1 \geq 0$. Considering T_2, we have
\[
T_2 = \frac{1}{\Delta x^2} \sum_{i=1}^d \sum_\alpha \left[a(\xi_{\alpha+e_i}) \text{sign}(w_\alpha) w_{\alpha+e_i} - 2a(\xi_\alpha) |w_\alpha| + a(\xi_{\alpha-e_i}) \text{sign}(w_\alpha) w_{\alpha-e_i} \right],
\]
from which it follows that $T_2 \leq 0$. \hfill \Box

Lemma A.2. Suppose F^i is monotone for each $1 \leq i \leq d$. For any positive T, there exists a unique solution $u = \{u_\alpha\}$ to (3.1) on $[0,T]$ with the properties:

(i) $\|u(t)\|_1 \leq \|u_0\|_1$.

(ii) For every $\alpha \in \mathbb{Z}^d$ and $t \in [0,T]$, \(\inf_{\beta} \{u_{\beta,0}\} \leq u_\alpha(t) \leq \sup_{\beta} \{u_{\beta,0}\}. \)

(iii) $|u(t)|_{BV} \leq \|u_0\|_{BV}$.

(iv) If $v = \{v_\alpha\}$ is a solution of the same problem with initial data v_0, then \(\|u(t) - v(t)\|_1 \leq \|u_0 - v_0\|_1. \)

Proof. Parts (i), (iii) and (iv) follows since $S(t)$ is a contraction semigroup. Part (ii) follows from [9]. \hfill \Box

Note that the ℓ^1 bound in [(i)] implies that $u_\alpha(t)$ exists for all t, and not only for t small.
Lemma A.3. Suppose \(F^i \) is monotone for each \(1 \leq i \leq d \). If \(u \) is a solution to (3.1) and \(A(u_0) \in \ell^1(\mathbb{Z}^d) \), then for each \(h > 0 \),
\[
\|u(t + h) - u(t)\|_{\ell^1} \leq \|A(u_0)\|_{\ell^1} h.
\]

Proof. Suppose that \(\|u'(t)\| \leq C \). Then
\[
\|u(t + h) - u(t)\| = \left\| \int_t^{t+h} u'(s) \, ds \right\| \leq \int_t^{t+h} \|u'(s)\| \, ds \leq Ch,
\]
and so Lipschitz continuity would follow. We claim that
\[
\frac{\partial}{\partial t} \|u'(t)\| \leq 0. \tag{A.2}
\]
Indeed,
\[
\frac{\partial}{\partial t} \|u'(t)\| = \frac{\partial}{\partial t} \|A(u(t))\|
= \frac{\partial}{\partial t} \left[\Delta x^d \sum_{\alpha} \text{sign}(A(u(t))_\alpha)A(u(t))_\alpha \right]
= \Delta x^d \sum_{\alpha} \text{sign}(A(u(t))_\alpha) \partial_t A(u(t))_\alpha,
\]
and
\[
\partial_t A(u(t))_\alpha = \frac{\partial}{\partial t} \sum_{i=1}^d D^i_+ \left[F^i(u_{\alpha}(t), u_{\alpha+e_i}(t)) - D^i_+ A(u_{\alpha}(t)) \right]
= \sum_{i=1}^d D^i_+ \left[\partial_1 F^i(u_{\alpha}(t), u_{\alpha+e_i}(t))u'_{\alpha}(t) + \partial_2 F^i(u_{\alpha}(t), u_{\alpha+e_i}(t))u'_{\alpha+e_i}(t) \right]
- \sum_{i=1}^d D^i_+ D^i_+ a(u_{\alpha}(t))u'_{\alpha}(t)
= - \sum_{i=1}^d D^i_- \left[\partial_1 F^i(u_{\alpha}(t), u_{\alpha+e_i}(t))A(u(t))_\alpha + \partial_2 F^i(u_{\alpha}(t), u_{\alpha+e_i}(t))A(u(t))_{\alpha+e_i} \right]
+ \sum_{i=1}^d D^i_- D^i_+ a(u_{\alpha}(t))A(u(t))_\alpha.
\]

Considering the similarity between this computation and (A.1), it is seen that (A.2) holds. We conclude that \(\|u'(t)\| \leq \|A(u_0)\| \) and so the lemma follows. \(\square \)

References
