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ELECTROMAGNETIC STEKLOV EIGENVALUES: APPROXIMATION
ANALYSIS

Martin Halla1,2,*

Abstract. We continue the work of Camano et al. [SIAM J. Math. Anal. 49 (2017) 4376–4401] on
electromagnetic Steklov eigenvalues. The authors recognized that in general the eigenvalues do not
correspond to the spectrum of a compact operator and hence proposed a modified eigenvalue problem
with the desired properties. The present article considers the original and the modified electromagnetic
Steklov eigenvalue problem. We cast the problems as eigenvalue problem for a holomorphic operator
function 𝐴(·). We construct a “test function operator function” 𝑇 (·) so that 𝐴(𝜆) is weakly 𝑇 (𝜆)-coercive
for all suitable 𝜆, i.e. 𝑇 (𝜆)*𝐴(𝜆) is a compact perturbation of a coercive operator. The construction
of 𝑇 (·) relies on a suitable decomposition of the function space into subspaces and an apt sign change
on each subspace. For the approximation analysis, we apply the framework of T-compatible Galerkin
approximations. For the modified problem, we prove that convenient commuting projection operators
imply T-compatibility and hence convergence. For the original problem, we require the projection oper-
ators to satisfy an additional commutator property which concerns the tangential trace. The existence
and construction of such projection operators remain open questions.
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1. Introduction

Novel nondestructive evaluation methods based on inverse scattering [9] give rise to a multitude of new
eigenvalue problems. Among these are so-called transmission eigenvalue problems [11] and Steklov eigenvalue
problems [10]. Not all of these eigenvalue problems fall into classes which are covered in classical literature.
Among the important questions on these eigenvalue problems are

– Fredholmness,
– discreteness of the spectrum,
– existence of eigenvalues,
– estimates on the number of eigenvalues,
– properties of the eigenvalue distribution, such as accumulation points and eigenvalue free zones,
– results on the completeness of eigenfunctions,
– and reliable computational approximations.
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The electromagnetic Steklov eigenvalue problem to find (𝜆, 𝑢) so that

curl curl 𝑢− 𝜔2𝜖𝑢 = 0 in Ω,

𝜈 × curl 𝑢 + 𝜆 𝜈 × 𝑢× 𝜈 = 0 at 𝜕Ω.

was considered in the recent publication [12]. Therein the authors of [12] considered the case that Ω is a ball
and the material parameter 𝜖 is constant. For this setting they proved the existence of two infinite sequences of
eigenvalues, one converging to zero and one converging to infinity. Consequently the eigenvalue problem can’t
be transformed to an eigenvalue problem for a compact operator. This observation led the authors of [12] to
discard the original eigenvalue problem and to modify instead the boundary condition to

𝜈 × curl 𝑢 + 𝜆𝑆(𝜈 × 𝑢× 𝜈) = 0 at 𝜕Ω.

with a suitable operator 𝑆. The authors of [12] proved that the modified eigenvalue problem can indeed be
transformed to an eigenvalue problem for a compact operator.

In this note we consider the original as well as the modified electromagnetic Steklov eigenvalue problem. We
formulate the problems as holomorphic operator function eigenvalue problems to find (𝜆, 𝑢) ∈ C × 𝑋 so that
𝐴(𝜆)𝑢 = 0.

We assume reasonable conditions on the material parameters and the domain to analyze the Fredholmness
of 𝐴(𝜆). We prove that for the original problem 𝐴(𝜆) is Fredholm if and only if 𝜆 ∈ C ∖ {0}, while for the
modified problem 𝐴(𝜆) is Fredholm for all 𝜆 ∈ C. For our analysis we construct an operator function 𝑇 (·) which
is bijective at each 𝜆 ∈ C ∖ {0} (respective 𝜆 ∈ C) so that 𝑇 (𝜆)*𝐴(𝜆) is a compact perturbation of a coercive
operator. The construction of 𝑇 (·) relies on a decomposition of the function space into subspaces and an apt
sign change on each subspace.

We apply the framework of [17] to analyze the convergence of Galerkin approximations. To this end, we need
to prove the existence of apt approximations of 𝑇 (·). We prove for the modified problem, that the existence
of convenient commuting projections imply the existence of such apt approximations of 𝑇 (·). This implies the
convergence of convenient 𝐻(curl)-finite element methods. For the original problem, we require the projection
operators to satisfy an additional commuting property, which concerns the tangential trace, to establish the
same result. Thus it is unclear if common 𝐻(curl)-finite element methods converge. Further numerical studies
are necessary to determine if this is the case or not. If common 𝐻(curl)-finite element methods fail, then our
analysis may raise ideas for the construction of new suitable elements. On the other hand, if common 𝐻(curl)-
finite element methods work, then it is likely that such commuting projection operators exist. If the existence
of such commuting projection operators can be proven, then this would complete our presented convergence
analysis.

We report on the existence of eigenvalues and properties of their distribution of the electromagnetic Steklov
eigenvalue problems in the self adjoint case in the companion article [16]. In particular, we report therein that
the spectrum of the original problem consists of three disjoint parts: The essential spectrum consisting of the
point zero, an infinite sequence of positive eigenvalues which accumulate only at infinity and an infinite sequence
of negative eigenvalues which accumulate only at zero. The spectrum of the modified problem consists of an
infinite sequence of eigenvalues which accumulate only at positive infinity.

The remainder of this article is organized as follows. In Section 2 we set our notation and formulate our
assumptions on the domain and the material parameters. We also recall some classic regularity, embedding
and decomposition results which will be essential for our analysis. In Section 3 we introduce the considered
electromagnetic Steklov eigenvalue problem and define the associated holomorphic operator function 𝐴𝑋(·). We
define 𝑇 (·) and prove that 𝐴𝑋(·) is weakly 𝑇 (·)-coercive on C∖{0} while 𝐴𝑋(0) is not Fredholm. In Section 4 we
prove that Galerkin approximations which admit uniformly bounded commuting projections are asymptotically
(with respect to the discretization index) reliable. In Section 5 we introduce the modified electromagnetic
Steklov eigenvalue problem and define the associated holomorphic operator function 𝐴𝑋̃(·). We define 𝑇 and
prove that 𝐴𝑋̃(·) is weakly 𝑇 -coercive. We introduce a reformulation of the eigenvalue problem by means of an
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operator function ˜̃𝐴𝑙(·), which avoids the explicit appearance of 𝑆. Likewise we define ˜̃𝑇 𝑙(·) and prove that ˜̃𝐴𝑙(·)
is weakly ˜̃𝑇 𝑙(·)-coercive. In Section 6 we prove that Galerkin approximations which admit uniformly bounded
commuting projections are asymptotically (with respect to the discretization index) reliable. We further discuss
the computational implementation of the Galerkin approximations. We conclude in Section 7.

2. General setting

In this section we set our notation, formulate assumptions on the domain and material parameters and recall
necessary results from different literature.

2.1. Functional analysis

For generic Banach spaces (𝑋, ‖ · ‖𝑋), (𝑌, ‖ · ‖𝑌 ) denote 𝐿(𝑋, 𝑌 ) the space of all bounded linear operators
from 𝑋 to 𝑌 with operator norm ‖𝐴‖𝐿(𝑋,𝑌 ) := sup𝑢∈𝑋∖{0} ‖𝐴𝑢‖𝑌 /‖𝑢‖𝑋 , 𝐴 ∈ 𝐿(𝑋, 𝑌 ). We further set 𝐿(𝑋) :=
𝐿(𝑋,𝑋). For generic Hilbert spaces (𝑋, ⟨·, ·⟩𝑋), (𝑌, ⟨·, ·⟩𝑌 ) and 𝐴 ∈ 𝐿(𝑋, 𝑌 ) we denote 𝐴* ∈ 𝐿(𝑌,𝑋) its adjoint
operator defined through ⟨𝑢, 𝐴*𝑢′⟩𝑋 = ⟨𝐴𝑢, 𝑢′⟩𝑌 for all 𝑢 ∈ 𝑋,𝑢′ ∈ 𝑌 . We say that an operator 𝐴 ∈ 𝐿(𝑋) is
coercive if inf𝑢∈𝑋∖{0} |⟨𝐴𝑢, 𝑢⟩𝑋 |/‖𝑢‖2𝑋 > 0. We say that 𝐴 ∈ 𝐿(𝑋) is weakly coercive, if there exists a compact
operator 𝐾 ∈ 𝐿(𝑋) so that 𝐴+𝐾 is coercive. For bijective 𝑇 ∈ 𝐿(𝑋) we say that 𝐴 is (weakly) 𝑇 -coercive, if 𝑇 *𝐴
is (weakly) coercive. Let Λ ⊂ C be open and connected and consider operator functions 𝐴(·), 𝑇 (·) : Λ → 𝐿(𝑋)
so that 𝑇 (𝜆) is bijective for all 𝜆 ∈ Λ. We call 𝐴(·) (weakly) (𝑇 (·)-)coercive if 𝐴(𝜆) is (weakly) (𝑇 (𝜆)-)coercive
for all 𝜆 ∈ Λ. We denote the spectrum of 𝐴(·) as 𝜎

(︀
𝐴(·)

)︀
:= {𝜆 ∈ Λ: 𝐴(𝜆) is not bijective} and the resolvent

set as 𝜌
(︀
𝐴(·)

)︀
:= Λ ∖ 𝜎

(︀
𝐴(·)

)︀
. For a closed subspace 𝑋𝑛 ⊂ 𝑋 denote 𝑃𝑛 ∈ 𝐿(𝑋, 𝑋𝑛) the orthogonal projection.

Consider 𝐴 ∈ 𝐿(𝑋) to be weakly 𝑇 -coercive. For a sequence (𝑋𝑛)𝑛∈N of finite dimensional subspaces 𝑋𝑛 ⊂ 𝑋
with lim𝑛∈N ‖𝑢 − 𝑃𝑛𝑢‖𝑋 = 0 for each 𝑢 ∈ 𝑋, we say that the Galerkin approximation 𝑃𝑛𝐴|𝑋𝑛

∈ 𝐿(𝑋𝑛) is
𝑇 -compatible, if there exists a sequence (𝑇𝑛)𝑛∈N, 𝑇𝑛 ∈ 𝐿(𝑋𝑛) so that

‖𝑇 − 𝑇𝑛‖𝑛 := sup
𝑢𝑛∈𝑋𝑛∖{0}

‖(𝑇 − 𝑇𝑛)𝑢𝑛‖𝑋/‖𝑢𝑛‖𝑋 (2.1)

tends to zero as 𝑛 →∞. Let 𝐴(·) : Λ → 𝐿(𝑋) be weakly 𝑇 (·)-coercive. We say that the Galerkin approximation
𝑃𝑛𝐴(·)|𝑋𝑛 : Λ → 𝐿(𝑋𝑛) is 𝑇 (·)-compatible, if 𝑃𝑛𝐴(𝜆)|𝑋𝑛 ∈ 𝐿(𝑋𝑛) is 𝑇 (𝜆)-compatible for each 𝜆 ∈ Λ.

We recall from Corollary 2.8 of [17]: Let 𝐴(·) : Λ → 𝐿(𝑋) be a weakly 𝑇 (·)-coercive holomorphic operator
function with non-empty resolvent set and 𝐴𝑛(·) : Λ → 𝐿(𝑋𝑛) be a 𝑇 (·)-compatible Galerkin approximation.
Then

(i) For every eigenvalue 𝜆0 of 𝐴(·) exists a sequence (𝜆𝑛)𝑛∈N converging to 𝜆0 with 𝜆𝑛 being an eigenvalue of
𝐴𝑛(·) for almost all 𝑛 ∈ N.

(ii) Let (𝜆𝑛, 𝑢𝑛)𝑛∈N be a sequence of normalized eigenpairs of 𝐴𝑛(·), i.e.

𝐴𝑛(𝜆𝑛)𝑢𝑛 = 0,

and ‖𝑢𝑛‖𝑋 = 1, so that 𝜆𝑛 → 𝜆0 ∈ Λ, then
(a) 𝜆0 is an eigenvalue of 𝐴(·),
(b) (𝑢𝑛)𝑛∈N is a compact sequence and its cluster points are normalized eigenelements of 𝐴(𝜆0).

(iii) For every compact Λ̃ ⊂ 𝜌(𝐴) the sequence (𝐴𝑛(·))𝑛∈N is stable on Λ̃, i.e. there exist 𝑛0 ∈ N and 𝑐 > 0
such that ‖𝐴𝑛(𝜆)−1‖𝐿(𝑋𝑛) ≤ 𝑐 for all 𝑛 > 𝑛0 and all 𝜆 ∈ Λ̃.

(iv) For every compact Λ̃ ⊂ Λ with rectifiable boundary 𝜕Λ̃ ⊂ 𝜌
(︀
𝐴(·)

)︀
such that 𝜎

(︀
𝐴(·)

)︀
∩ Λ̃ = {𝜆0} exists an

index 𝑛0 ∈ N such that

dim 𝐺(𝐴(·), 𝜆0) =
∑︁

𝜆𝑛∈𝜎(𝐴𝑛(·))∩Λ̃

dim 𝐺(𝐴𝑛(·), 𝜆𝑛)
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for all 𝑛 > 𝑛0, whereby 𝐺(𝐵(·), 𝜆) denotes the generalized eigenspace of an operator function 𝐵(·) at
𝜆 ∈ Λ.
Let Λ̃ ⊂ Λ be a compact set with rectifiable boundary 𝜕Λ̃ ⊂ 𝜌

(︀
𝐴(·)

)︀
, Λ̃ ∩ 𝜎

(︀
𝐴(·)

)︀
= {𝜆0} and

𝛿𝑛 := max
𝑢0∈𝐺(𝐴(·),𝜆0)
‖𝑢0‖𝑋≤1

inf
𝑢𝑛∈𝑋𝑛

‖𝑢0 − 𝑢𝑛‖𝑋 , 𝛿*𝑛 := max
𝑢0∈𝐺(𝐴*(·),𝜆0)

‖𝑢0‖𝑋≤1

inf
𝑢𝑛∈𝑋𝑛

‖𝑢0 − 𝑢𝑛‖𝑋 ,

whereby 𝜆0 denotes the complex conjugate of 𝜆0 and 𝐴*(·) the adjoint operator function of 𝐴(·) defined
by 𝐴*(𝜆) := 𝐴(𝜆)* for each 𝜆 ∈ Λ. Then there exist 𝑛 ∈ N and 𝑐 > 0 such that for all 𝑛 > 𝑛0,

(v)
|𝜆0 − 𝜆𝑛| ≤ 𝑐(𝛿𝑛𝛿*𝑛)1/κ(𝐴(·),𝜆0)

for all 𝜆𝑛 ∈ 𝜎
(︀
𝐴𝑛(·)

)︀
∩ Λ̃, whereby κ (𝐴(·), 𝜆0) denotes the maximal length of a Jordan chain of 𝐴(·) at

the eigenvalue 𝜆0,
(vi)

|𝜆0 − 𝜆mean
𝑛 | ≤ 𝑐𝛿𝑛𝛿*𝑛

whereby 𝜆mean
𝑛 is the weighted mean of all the eigenvalues of 𝐴𝑛(·) in Λ̃

𝜆mean
𝑛 :=

∑︁
𝜆∈𝜎(𝐴𝑛(·))∩Λ̃

𝜆
dim 𝐺(𝐴𝑛(·), 𝜆)
dim 𝐺(𝐴(·), 𝜆0)

,

(vii)

inf
𝑢0∈ker 𝐴(𝜆0)

‖𝑢𝑛 − 𝑢0‖𝑋 ≤ 𝑐

⎛⎜⎝|𝜆𝑛 − 𝜆0|+ max
𝑢′0∈ker 𝐴(𝜆0)

‖𝑢′0‖𝑋≤1

inf
𝑢′𝑛∈𝑋𝑛

‖𝑢′0 − 𝑢′𝑛‖𝑋

⎞⎟⎠ ≤ 𝑐
(︁
𝑐(𝛿𝑛𝛿*𝑛)1/κ(𝐴(·),𝜆0) + 𝛿𝑛

)︁

for all 𝜆𝑛 ∈ 𝜎
(︀
𝐴𝑛(·)

)︀
∩ Λ̃ and all 𝑢𝑛 ∈ ker 𝐴𝑛(𝜆𝑛) with ‖𝑢𝑛‖𝑋 = 1.

2.2. Lebesgue and Sobolev spaces

Let Ω ⊂ R3 be a bounded and path-connected Lipschitz domain and 𝜈 the outer unit normal vector at 𝜕Ω.
We use standard notation for Lebesgue and Sobolev spaces 𝐿2(Ω), 𝐿∞(Ω), 𝑊 1,∞(Ω), 𝐻𝑠(Ω) defined on the
domain Ω and 𝐿2(𝜕Ω), 𝐻𝑠(𝜕Ω) defined on the boundary 𝜕Ω. We recall the continuity of the trace operator
tr ∈ 𝐿

(︀
𝐻𝑠(Ω), 𝐻𝑠−1/2(𝜕Ω)

)︀
for all 𝑠 > 1/2. For a vector space 𝑋 of scalar valued functions we denote its bold

symbol as space of three-vector valued functions X := 𝑋3 = 𝑋 ×𝑋 ×𝑋, e.g. L2(Ω), H𝑠(Ω), L2(𝜕Ω), H𝑠(𝜕Ω).
For L2(𝜕Ω) or a subspace, e.g. H𝑠(𝜕Ω), 𝑠 > 0, the subscript 𝑡 denotes the subspace of tangential fields. In
particular L2

𝑡 (𝜕Ω) = {𝑢 ∈ L2(𝜕Ω): 𝜈 · 𝑢 = 0} and H𝑠
𝑡 (𝜕Ω) = {𝑢 ∈ H𝑠(𝜕Ω): 𝜈 · 𝑢 = 0}. Let further 𝐻1

0 (Ω) be
the subspace of 𝐻1(Ω) of all functions with vanishing Dirichlet trace, 𝐻1

* (Ω) be the subspace of 𝐻1(Ω) of all
functions with vanishing mean, i.e. ⟨𝑢, 1⟩𝐿2(Ω) = 0 and 𝐻1

* (𝜕Ω) be the subspace of 𝐻1(𝜕Ω) of all functions with
vanishing mean ⟨𝑢, 1⟩𝐿2(𝜕Ω) = 0.

2.3. Additional function spaces

Denote 𝜕𝑥𝑖
𝑢 the partial derivative of a function 𝑢 with respect to the variable 𝑥𝑖. Let

∇𝑢 := (𝜕𝑥1𝑢, 𝜕𝑥2𝑢, 𝜕𝑥3𝑢)⊤,

div(𝑢1, 𝑢2, 𝑢3)⊤ := 𝜕𝑥1𝑢1 + 𝜕𝑥2𝑢2 + 𝜕𝑥3𝑢3,

curl(𝑢1, 𝑢2, 𝑢3)⊤ := (𝜕𝑥2𝑢3 − 𝜕𝑥3𝑢2, 𝜕𝑥3𝑢1 − 𝜕𝑥1𝑢3, 𝜕𝑥1𝑢2 − 𝜕𝑥2𝑢1)⊤.
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For a bounded Lipschitz domain Ω let ∇𝜕 , div𝜕 and curl𝜕 = 𝜈 × ∇𝜕 be the respective differential opera-
tors for functions defined on 𝜕Ω. We recall that for 𝑢 ∈ L2(Ω) with curl 𝑢 ∈ L2(Ω) the tangential trace
tr𝜈× 𝑢 ∈ H−1/2(div𝜕 ; 𝜕Ω) := {𝑢 ∈ H−1/2(𝜕Ω): div𝜕 𝑢 ∈ 𝐻−1/2(𝜕Ω)}, ‖𝑢‖2

H−1/2(div𝜕 ;𝜕Ω)
:= ‖𝑢‖2

H−1/2(𝜕Ω)
+

‖ div𝜕 𝑢‖2
𝐻−1/2(𝜕Ω)

is well defined and ‖ tr𝜈× 𝑢‖2
H−1/2(div𝜕 ;𝜕Ω)

is bounded by a constant times ‖𝑢‖2L2(Ω) +

‖ curl 𝑢‖2L2(Ω). Likewise for 𝑢 ∈ L2(Ω) with div 𝑢 ∈ 𝐿2(Ω) the normal trace tr𝜈· 𝑢 ∈ 𝐻−1/2(𝜕Ω) is well defined
and ‖ tr𝜈· 𝑢‖2𝐻−1/2(𝜕Ω)

is bounded by a constant times ‖𝑢‖2L2(Ω) +‖div 𝑢‖2𝐿2(Ω). For d ∈ {curl, div, tr𝜈×, tr𝜈·} let

𝐿2(d) :=

⎧⎪⎨⎪⎩
L2(Ω), d = curl,
𝐿2(Ω), d = div,
L2

𝑡 (𝜕Ω), d = tr𝜈×,
𝐿2(𝜕Ω), d = tr𝜈·

. (2.2a)

Let
𝐻(d; Ω) := {𝑢 ∈ 𝐿2(Ω): d𝑢 ∈ 𝐿2(d)},

⟨𝑢, 𝑢′⟩𝐻(d;Ω) := ⟨𝑢, 𝑢′⟩𝐿2(Ω) + ⟨d𝑢, d𝑢′⟩𝐿2(d),
(2.2b)

𝐻(d0; Ω) := {𝑢 ∈ 𝐻(d; Ω): d𝑢 = 0}. (2.2c)

Also for
d1, d2, d3, d4 ∈ {curl, div, tr𝜈×, tr𝜈·, curl0, div0, tr0𝜈×, tr0𝜈·}

let
𝐻(d1, d2; Ω) := 𝐻(d1; Ω) ∩𝐻(d2; Ω),

⟨𝑢, 𝑢′⟩𝐻(d1,d2;Ω) := ⟨𝑢, 𝑢′⟩𝐿2(Ω) + ⟨d1𝑢, d1𝑢
′⟩𝐿2(d1) + ⟨d2𝑢, d2𝑢

′⟩𝐿2(d2),
(2.2d)

𝐻(d1, d2, d3; Ω) := 𝐻(d1; Ω) ∩𝐻(d2; Ω) ∩𝐻(d3; Ω),
⟨𝑢, 𝑢′⟩𝐻(d1,d2,d3;Ω) := ⟨𝑢, 𝑢′⟩𝐿2(Ω) + ⟨d1𝑢, d1𝑢

′⟩𝐿2(d1) + ⟨d2𝑢, d2𝑢
′⟩𝐿2(d2)

+ ⟨d3𝑢, d3𝑢
′⟩𝐿2(d3),

(2.2e)

and
𝐻(d1, d2, d3, d4; Ω) := 𝐻(d1; Ω) ∩𝐻(d2; Ω) ∩𝐻(d3; Ω) ∩𝐻(d4; Ω),
⟨𝑢, 𝑢′⟩𝐻(d1,d2,d3,d4;Ω) := ⟨𝑢, 𝑢′⟩𝐿2(Ω) + ⟨d1𝑢, d1𝑢

′⟩𝐿2(d1) + ⟨d2𝑢, d2𝑢
′⟩𝐿2(d2)

+ ⟨d3𝑢, d3𝑢
′⟩𝐿2(d3) + ⟨d4𝑢, d4𝑢

′⟩𝐿2(d4).

(2.2f)

2.4. Assumptions on the domain and material parameters

Assumption 2.1 (Assumption on 𝜖). Let 𝜖 ∈
(︀
𝐿∞(Ω)

)︀3𝑥3 be so that there exists 𝑐𝜖 > 0 with

𝑐𝜖|𝜉|2 ≤ ℜ(𝜉𝐻𝜖(𝑥)𝜉) and 0 ≤ ℑ(𝜉𝐻𝜖(𝑥)𝜉) (2.3)

for all 𝑥 ∈ Ω and all 𝜉 ∈ C3.

Assumption 2.2 (Assumption on 𝜇). Let 𝜇−1 ∈
(︀
𝐿∞(Ω)

)︀3𝑥3 be so that there exists 𝑐𝜇 > 0 with

𝑐𝜇|𝜉|2 ≤ ℜ(𝜉𝐻𝜇−1(𝑥)𝜉) and 0 ≤ −ℑ(𝜉𝐻𝜇−1(𝑥)𝜉) (2.4)

for all 𝑥 ∈ Ω and all 𝜉 ∈ C3.

Assumption 2.3 (Assumption on Ω). Let Ω ⊂ R3 be a bounded path connected Lipschitz domain so that there
exists 𝛿 > 0 and the following shift theorem holds on Ω: Let 𝑓 ∈ 𝐿2(Ω), 𝑔 ∈ 𝐻1/2(𝜕Ω) with ⟨𝑓, 1⟩𝐿2(Ω) +
⟨𝑔, 1⟩𝐿2(𝜕Ω) = 0 and 𝑤 ∈ 𝐻1

* (Ω) be the solution to

−∆𝑤 = 𝑓 in Ω, (2.5a)
𝜈 · ∇𝑤 = 𝑔 at 𝜕Ω. (2.5b)

Then the linear map (𝑓, 𝑔) ↦→ 𝑤 : 𝐿2(Ω)×𝐻1/2(𝜕Ω) → 𝐻3/2+𝛿(Ω) is well defined and continuous.
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The above assumption holds e.g. for smooth domains and Lipschitz polyhedral ([14], Cor. 23.5).

Assumption 2.4 (Assumption on Ω, 𝜖 and 𝜇−1). Let 𝜖, 𝜇−1 and Ω be so that a unique continuation principle
holds, i.e. if 𝑢 ∈ 𝐻(curl; Ω) solves

curl 𝜇−1 curl 𝑢− 𝜔2𝜖𝑢 = 0 in Ω, (2.6a)
tr𝜈× 𝑢 = 0 at 𝜕Ω, (2.6b)

tr𝜈× 𝜇−1 curl 𝑢 = 0 at 𝜕Ω, (2.6c)

then 𝑢 = 0.

To our knowledge the most general todays available result on the unique continuation principle for Maxwell’s
equations is the one of Ball, Capdeboscq and Tsering-Xiao [4]. It essentially requires 𝜖 and 𝜇−1 to be piece-wise
𝑊 1,∞.

2.5. Trace regularities and compact embeddings

We recall some classical results on traces and embeddings, which will be essential for our analysis. We recall
from Costabel [13]:

tr𝜈· ∈ 𝐿
(︀
𝐻(curl, div, tr𝜈×; Ω), 𝐿2(𝜕Ω)

)︀
, (2.7a)

tr𝜈× ∈ 𝐿
(︀
𝐻(curl, div, tr𝜈·; Ω),L2

𝑡 (𝜕Ω)
)︀
. (2.7b)

and
The embedding from 𝐻(curl, div, tr𝜈×; Ω) to L2(Ω) is compact. (2.8)

We deduce from Amrouche et al. ([1], Prop. 3.7):

If Ω satisfies Assumption 2.3, then tr𝜈× ∈ 𝐿
(︀
𝐻(curl, div, tr0𝜈·; Ω),L2

𝑡 (𝜕Ω)
)︀

is compact.
(2.9)

2.6. Helmholtz decomposition on the boundary

We recall from Buffa et al. ([8], Thm. 5.5):

L2
𝑡 (𝜕Ω) = ∇𝜕𝐻1(𝜕Ω)⊕⊥ curl𝜕 𝐻1(𝜕Ω) (2.10)

and denote the respective orthogonal projections by

𝑃∇𝜕
: L2

𝑡 (𝜕Ω) → ∇𝜕𝐻1(𝜕Ω), 𝑃∇⊤𝜕 : L2
𝑡 (𝜕Ω) → curl𝜕 𝐻1(𝜕Ω). (2.11)

Recall div𝜕 tr𝜈× ∈ 𝐿
(︀
𝐻(curl; Ω), 𝐻−1/2(𝜕Ω)

)︀
. So for 𝑢 ∈ 𝐻(curl; Ω) let 𝑧 be the solution to find 𝑧 ∈ 𝐻1

* (𝜕Ω) so
that

⟨∇𝜕𝑧,∇𝜕𝑧′⟩L2
𝑡 (𝜕Ω) = −⟨div𝜕 tr𝜈× 𝑢, 𝑧′⟩𝐻−1(𝜕Ω)×𝐻1(𝜕Ω) (2.12)

for all 𝑧′ ∈ 𝐻1
* (𝜕Ω) and set

𝑆𝑢 := ∇𝜕𝑧. (2.13)

From the construction of 𝑆 it follows 𝑆 ∈ 𝐿
(︀
𝐻(curl; Ω),L2

𝑡 (𝜕Ω)
)︀

and further

𝑆𝑢 = 𝑃∇𝜕
tr𝜈× 𝑢 (2.14)

for 𝑢 ∈ 𝐻(curl, tr𝜈×; Ω).
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3. Weak 𝑇 (·)-coercivity of the Steklov operator function

First we introduce the electromagnetic Steklov eigenvalue problem as holomorphic operator function eigen-
value problem. In Theorem 3.1 we report an apt decomposition of the respective Hilbert space into three
subspaces. Next we introduce in (3.10) an operator function 𝑇 (·) as an apt sign change on the subspaces. In
Theorem 3.2 we report the weak 𝑇 (·)-coercivity of the Steklov operator function on C ∖ {0}. In Corollary 3.3
we deduce convenient properties of the spectrum in C ∖ {0}. In Corollary 3.4 we report that 𝜆 = 0 constitutes
the essential spectrum. However, these two Corollaries make no statement on the existence of eigenvalues. We
report in a companion article [16] the existence and behavior of eigenvalues for purely real, symmetric 𝜇 and 𝜖,
i.e. in the selfadjoint case.

Let 𝜔 > 0 be fixed. For 𝜆 ∈ C let 𝐴(𝜆) ∈ 𝐿
(︀
𝐻(curl, tr𝜈×; Ω)

)︀
be defined through

⟨𝐴(𝜆)𝑢, 𝑢′⟩𝐻(curl,tr𝜈×;Ω) := ⟨𝜇−1 curl 𝑢, curl 𝑢′⟩L2(Ω) − 𝜔2⟨𝜖𝑢, 𝑢′⟩L2(Ω)

− 𝜆⟨tr𝜈× 𝑢, tr𝜈× 𝑢′⟩L2
𝑡 (𝜕Ω) for all 𝑢, 𝑢′ ∈ 𝐻(curl, tr𝜈×; Ω).

(3.1)

The electromagnetic Steklov eigenvalue problem which we investigate in this section is to

find (𝜆, 𝑢) ∈ C×𝐻(curl, tr𝜈×; Ω) ∖ {0} so that 𝐴(𝜆)𝑢 = 0. (3.2)

We note that the sign of 𝜆 herein is reversed compared to [12]. To analyze the operator 𝐴(𝜆) we introduce the
following subspaces of 𝐻(curl, tr𝜈×; Ω):

𝑉 := 𝐻(curl, div0, tr𝜈×, tr0𝜈·; Ω), (3.3a)

𝑊1 := 𝐻(curl0, div0, tr𝜈×; Ω), (3.3b)

𝑊2 := ∇𝐻1
0 ⊂ 𝐻(curl0, tr0𝜈×; Ω). (3.3c)

Theorem 3.1. It holds
𝐻(curl, tr𝜈×; Ω) = (𝑉 ⊕𝑊1)⊕⊥𝐻(curl,tr𝜈×;Ω) 𝑊2 (3.4)

in the following sense. There exist projections 𝑃𝑉 , 𝑃𝑊1 , 𝑃𝑊2 ∈ 𝐿
(︀
𝐻(curl, tr𝜈×; Ω)

)︀
with ran 𝑃𝑉 = 𝑉, ran 𝑃𝑊1 =

𝑊1, ran 𝑃𝑊2 = 𝑊2, 𝑊1, 𝑊2 ⊂ ker 𝑃𝑉 , 𝑉,𝑊2 ⊂ ker 𝑃𝑊1 , 𝑉,𝑊1 ⊂ ker 𝑃𝑊2 and 𝑢 = 𝑃𝑣𝑢 + 𝑃𝑊1𝑢 + 𝑃𝑊2𝑢 for each
𝑢 ∈ 𝐻(curl, tr𝜈×; Ω). Thus, the norm induced by

⟨𝑢, 𝑢′⟩𝑋 := ⟨𝑃𝑉 𝑢, 𝑃𝑉 𝑢′⟩𝐻(curl,tr𝜈×;Ω) + ⟨𝑃𝑊1𝑢, 𝑃𝑊1𝑢
′⟩𝐻(curl,tr𝜈×;Ω)

+ ⟨𝑃𝑊2𝑢, 𝑃𝑊2𝑢
′⟩𝐻(curl,tr𝜈×;Ω), 𝑢, 𝑢′ ∈ 𝐻(curl, tr𝜈×; Ω)

(3.5)

is equivalent to ‖ · ‖𝐻(curl,tr𝜈×;Ω).

Proof. Step 1. Let 𝑃𝑊2 be the 𝐻(curl, tr𝜈×; Ω)-orthogonal projection onto 𝑊2. Hence 𝑃𝑊2 ∈
𝐿
(︀
𝐻(curl, tr𝜈×; Ω)

)︀
is a projection with range 𝑊2 and kernel

𝑊
⊥𝐻(curl,tr𝜈×;Ω)

2 = 𝐻(curl, div0, tr𝜈×; Ω) ⊃ 𝑉,𝑊1.

Step 2a. Let 𝑢 ∈ 𝐻(curl, tr𝜈×; Ω). Note that due to div(𝑢 − 𝑃𝑊2𝑢) = 0 and (2.7) it holds tr𝜈·(𝑢 − 𝑃𝑊2𝑢) ∈
𝐿2(𝜕Ω) and ⟨tr𝜈·(𝑢− 𝑃𝑊2𝑢), 1⟩𝐿2(𝜕Ω) = 0. Let 𝑤* ∈ 𝐻1

* (Ω) be the unique solution to

−∆𝑤* = 0 in Ω, 𝜈 · ∇𝑤* = tr𝜈·(𝑢− 𝑃𝑊2𝑢) at 𝜕Ω.

Let 𝑃𝑊1𝑢 := ∇𝑤*. By construction of 𝑃𝑊1 and due to (2.7) it holds ran 𝑃𝑊1 ⊂ 𝑊1 and 𝑃𝑊1 ∈
𝐿
(︀
𝐻(curl, tr𝜈×; Ω)

)︀
. Let 𝑢 ∈ 𝑊1. Then 𝑃𝑊2𝑢 = 0 and hence 𝑃𝑊1𝑢 = 𝑢. Thus 𝑃𝑊1 is a projection and

ran 𝑃𝑊1 = 𝑊1.
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Step 2b. If 𝑢 ∈ 𝑊2 then 𝑢− 𝑃𝑊2𝑢 = 0, further tr𝜈·(𝑢− 𝑃𝑊2𝑢) = 0 and thus 𝑃𝑊1𝑢 = 0. Hence 𝑊2 ⊂ ker 𝑃𝑊1 .
If 𝑢 ∈ 𝑉 then 𝑃𝑊2𝑢 = 0, further tr𝜈·(𝑢− 𝑃𝑊2𝑢) = tr𝜈· 𝑢 = 0 and thus 𝑃𝑊1𝑢 = 0. Hence 𝑉 ⊂ ker 𝑃𝑊1 .

Step 3. Let 𝑢 ∈ 𝐻(curl, tr𝜈×; Ω) and 𝑃𝑉 𝑢 := 𝑢− 𝑃𝑊1𝑢− 𝑃𝑊2𝑢. It follow 𝑃𝑉 ∈ 𝐿
(︀
𝐻(curl, tr𝜈×; Ω)

)︀
, 𝑃𝑉 𝑢 ∈ 𝑉

and 𝑃𝑉 𝑃𝑉 𝑢 = 𝑃𝑉 𝑢, i.e. 𝑃𝑉 is a bounded projection. If 𝑢 ∈ 𝑉 then 𝑃𝑊1𝑢 = 𝑃𝑊2𝑢 = 0 and thus 𝑃𝑉 𝑢 = 𝑢.
Hence ran 𝑃𝑉 = 𝑉 . It follows further 𝑊1, 𝑊2 ⊂ ker 𝑃𝑉 .

Step 4. By means of the triangle inequality and a Young inequality it holds

‖𝑢‖2𝐻(curl,tr𝜈×;Ω) = ‖𝑃𝑉 𝑢 + 𝑃𝑊1𝑢 + 𝑃𝑊2𝑢‖2𝐻(curl,tr𝜈×;Ω)

≤ 3
(︁
‖𝑃𝑉 𝑢‖2𝐻(curl,tr𝜈×;Ω) + ‖𝑃𝑊1𝑢‖2𝐻(curl,tr𝜈×;Ω) + ‖𝑃𝑊2𝑢‖2𝐻(curl,tr𝜈×;Ω)

)︁
= 3‖𝑢‖2𝑋 .

On the other hand due to the boundedness of the projections

‖𝑢‖2𝑋 = ‖𝑃𝑉 𝑢‖2𝐻(curl,tr𝜈×;Ω) + ‖𝑃𝑊1𝑢‖2𝐻(curl,tr𝜈×;Ω) + ‖𝑃𝑊2𝑢‖2𝐻(curl,tr𝜈×;Ω)

≤
(︁
‖𝑃𝑉 ‖2𝐿(𝐻(curl,tr𝜈×;Ω)) + ‖𝑃𝑊1‖2𝐿(𝐻(curl,tr𝜈×;Ω))

+ ‖𝑃𝑊2‖2𝐿(𝐻(curl,tr𝜈×;Ω))

)︁
‖𝑢‖2𝐻(curl,tr𝜈×;Ω).

�

Let us look at 𝐴(𝜆) in light of this substructure of 𝐻(curl, tr𝜈×; Ω). To this end we consider the space

𝑋 := 𝐻(curl, tr𝜈×; Ω), ⟨·, ·⟩𝑋 as defined in (3.5). (3.6)

It follows that 𝑃𝑉 , 𝑃𝑊1 and 𝑃𝑊1 are even orthogonal projections in 𝑋. Let further 𝐴𝑋(·), 𝐴𝑐, 𝐴𝜖, 𝐴𝑙2 , 𝐴tr ∈ 𝐿(𝑋)
be defined through

⟨𝐴𝑋(𝜆)𝑢, 𝑢′⟩𝑋 := ⟨𝐴(𝜆)𝑢, 𝑢′⟩𝐻(curl,tr𝜈×;Ω) for all 𝑢, 𝑢′ ∈ 𝑋, 𝜆 ∈ C (3.7a)

⟨𝐴𝑐𝑢, 𝑢′⟩𝑋 := ⟨𝜇−1 curl 𝑢, curl 𝑢′⟩L2(Ω) for all 𝑢, 𝑢′ ∈ 𝑋, (3.7b)
⟨𝐴𝜖𝑢, 𝑢′⟩𝑋 := ⟨𝜖𝑢, 𝑢′⟩L2(Ω) for all 𝑢, 𝑢′ ∈ 𝑋, (3.7c)
⟨𝐴𝑙2𝑢, 𝑢′⟩𝑋 := ⟨𝑢, 𝑢′⟩L2(Ω) for all 𝑢, 𝑢′ ∈ 𝑋, (3.7d)
⟨𝐴tr𝑢, 𝑢′⟩𝑋 := ⟨tr𝜈× 𝑢, tr𝜈× 𝑢′⟩L2

𝑡 (𝜕Ω) for all 𝑢, 𝑢′ ∈ 𝑋. (3.7e)

We deduce from the definitions of 𝑉,𝑊1 and 𝑊2 that

𝐴𝑋(𝜆) = (𝑃𝑉 + 𝑃𝑊1 + 𝑃𝑊2)(𝐴𝑐 − 𝜔2𝐴𝜖 − 𝜆𝐴tr)(𝑃𝑉 + 𝑃𝑊1 + 𝑃𝑊2)
= 𝑃𝑉 𝐴𝑐𝑃𝑉 − 𝜔2(𝑃𝑉 + 𝑃𝑊1 + 𝑃𝑊2)𝐴𝜖(𝑃𝑉 + 𝑃𝑊1 + 𝑃𝑊2)
− 𝜆(𝑃𝑉 + 𝑃𝑊1)𝐴tr(𝑃𝑉 + 𝑃𝑊1)

= PVAcPV − 𝜔2PW2A𝜖PW2 − 𝜆PW1AtrPW1

− 𝜔2(𝑃𝑉 𝐴𝜖𝑃𝑉 + 𝑃𝑊1𝐴𝜖𝑃𝑊1)
− 𝜆

(︀
𝑃𝑉 𝐴tr𝑃𝑉 + 𝑃𝑉 𝐴tr𝑃𝑊1 + 𝑃𝑊1𝐴tr𝑃𝑉 ).

(3.8)

If we identify 𝑋 ∼ 𝑉 ×𝑊1 ×𝑊2 and 𝑋 ∋ 𝑢 ∼ (𝑣, 𝑤1, 𝑤2) ∈ 𝑉 ×𝑊1 ×𝑊2, we can identify 𝐴𝑋(𝜆) with the
block operator⎛⎝PVAc|V − 𝑃𝑉 (𝜔2𝐴𝜖 + 𝜆𝐴tr)|𝑉 −𝑃𝑉 (𝜔2𝐴𝜖 + 𝜆𝐴tr)|𝑊1 −𝜔2𝑃𝑉 𝐴𝜖|𝑊2

−𝑃𝑊1(𝜔2𝐴𝜖 + 𝜆𝐴tr)|𝑉 −𝜔2𝑃𝑊1𝐴𝜖|𝑊1−𝜆PW1Atr|W1 −𝜔2𝑃𝑊1𝐴𝜖|𝑊2

−𝜔2𝑃𝑊2𝐴𝜖|𝑉 −𝜔2𝑃𝑊2𝐴𝜖|𝑊1 −𝜔2PW2A𝜖|W2

⎞⎠ . (3.9)
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We highlighted with color and boldface in (3.8) and (3.9) the operators which are not compact. This leads us
to define a test function operator function in the following way. Let

𝑇 (𝜆) := 𝑃𝑉 − 𝜆
−1

𝑃𝑊1 − 𝜔−2𝑃𝑊2 , 𝜆 ∈ C ∖ {0}. (3.10)

Obviously 𝑇 (𝜆) ∈ 𝐿(𝑋) is bijective with 𝑇 (𝜆)−1 = 𝑃𝑉 − 𝜆𝑃𝑊1 − 𝜔2𝑃𝑊2 for 𝜆 ∈ C ∖ {0}.

Theorem 3.2. Let 𝜖 satisfy Assumption 2.1, 𝜇 satisfy Assumption 2.2 and Ω satisfy Assumption 2.3. Thence
𝐴𝑋(·) : C ∖ {0} → 𝐿(𝑋) is weakly 𝑇 (·)-coercive.

Proof. Let 𝜆 ∈ C ∖ {0}. Let

𝐴1 := 𝑃𝑉 𝐴𝑐𝑃𝑉 + 𝑃𝑉 𝐴𝑙2𝑃𝑉 + 𝑃𝑉 𝐴tr𝑃𝑉

− 𝜆𝑃𝑊1𝐴𝑙2𝑃𝑊1 − 𝜆𝑃𝑊1𝐴tr𝑃𝑊1 − 𝜔2𝑃𝑊2𝐴𝜖𝑃𝑊2

and

𝐴2 := − 𝜔2
(︀
𝑃𝑉 𝐴𝜖𝑃𝑉 + 𝑃𝑊1𝐴𝜖𝑃𝑊1 + 𝑃𝑉 𝐴𝜖𝑃𝑊1 + 𝑃𝑊1𝐴𝜖𝑃𝑉

+ 𝑃𝑉 𝐴𝜖𝑃𝑊2 + 𝑃𝑊2𝐴𝜖𝑃𝑉 + 𝑃𝑊1𝐴𝜖𝑃𝑊2 + 𝑃𝑊2𝐴𝜖𝑃𝑊1

)︀
− 𝑃𝑉 𝐴𝑙2𝑃𝑉 − (1 + 𝜆)𝑃𝑉 𝐴tr𝑃𝑉

+ 𝜆𝑃𝑊1𝐴𝑙2𝑃𝑊1 − 𝜆(𝑃𝑉 𝐴tr𝑃𝑊1 + 𝑃𝑊1𝐴tr𝑃𝑉

)︀
.

so that 𝐴𝑋(𝜆) = 𝐴1 + 𝐴2. Operator 𝐴2 is compact due to (2.8) and (2.9) and hence so is 𝑇 *𝐴2. It is straight
forward to see

ℜ(⟨𝐴1𝑢, 𝑇 (𝜆)𝑢⟩𝑋) ≥ min(1, 𝑐𝜖, 𝑐𝜇)‖𝑢‖2𝑋 ,

i.e. 𝑇 (𝜆)*𝐴1 is coercive. �

We remark that the naming of the (sub)spaces as 𝑋, 𝑉, 𝑊1, 𝑊2 follows Buffa [7] while the naming of the “test
function operator” as 𝑇 (𝜆) follows e.g. Bonnet-Ben Dhia, Ciarlet and Zwölf [6].

Corollary 3.3. Let Assumptions 2.1–2.4 hold true. Then 𝐴𝑋(𝜆) is bijective for all 𝜆 ∈ C with ℑ(𝜆) < 0.
Hence the spectrum of 𝐴𝑋(·) in C ∖ {0} consists of an at most countable set of eigenvalues with finite algebraic
multiplicity which has no accumulation point in C ∖ {0}.

Proof. Let 𝜆 ∈ C with ℑ(𝜆) < 0 and 𝑢 ∈ 𝑋 be so that 𝐴𝑋(𝜆)𝑢 = 0. It follows

0 = −ℑ(⟨𝐴𝑋(𝜆)𝑢, 𝑢)⟩𝑋) ≥ −ℑ(𝜆)‖ tr𝜈× 𝑢‖2L2
𝑡 (𝜕Ω)

and together with Assumption 2.4 it follows further 𝑢 = 0, i.e. 𝐴𝑋(𝜆) is injective. From Theorem 3.2 we know
that 𝐴𝑋(𝜆) is Fredholm with index zero for all 𝜆 ∈ C ∖ {0} and hence 𝐴𝑋(𝜆) is bijective, if ℑ(𝜆) < 0.

Further 𝐴𝑋(·) is holomorphic since it is even an affine function. The resolvent set of 𝐴𝑋(·) : C ∖ {0} → 𝐿(𝑋)
is non-empty. The result on the spectrum in C ∖ {0} is a classical result on holomorphic Fredholm operator
functions, see e.g. Proposition A.8.4 of [20]. �

Corollary 3.4. Let 𝜖 satisfy Assumptions 2.1. Then 𝐴𝑋(0) is not Fredholm.

Proof. We construct a singular sequence (𝑤1,𝑛 ∈ 𝑊1)𝑛∈N for 𝐴(0), i.e. ‖𝑤1,𝑛‖𝑋 = 1 for each 𝑛 ∈ N, (𝑤1,𝑛)𝑛∈N
admits no converging subsequence and lim𝑛∈N 𝐴(0)𝑤1,𝑛 = 0.

To this end let (𝑓𝑛 ∈ 𝐿2(𝜕Ω)∖{0})𝑛∈N be a sequence with ⟨𝑓𝑛, 1⟩𝐿2(𝜕Ω) = 0 for each 𝑛 ∈ N and which admits
no converging subsequence in 𝐿2(𝜕Ω), but which converges to 𝑓 ∈ 𝐻−1/2(𝜕Ω) ∖ 𝐿2(𝜕Ω) in 𝐻−1/2(𝜕Ω) so that
‖𝑓𝑛‖𝐿2(𝜕Ω) → +∞ as 𝑛 → +∞. Let 𝑤̃1,𝑛 ∈ 𝐻1

* (Ω) be the solution to

−∆𝑤̃1,𝑛 = 0 in Ω,

𝜈 · ∇𝑤̃1,𝑛 = 𝑓𝑛 at 𝜕Ω.
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The volume part of the norm ‖∇𝑤̃1,𝑛‖L2(Ω) can be uniformly bounded by

sup
𝑛∈N

‖𝑓𝑛‖𝐻−1/2(𝜕Ω).

Due to (2.7) we know that there exists 𝐶 > 0 independent of ∇𝑤̃1,𝑛 so that

‖𝑓𝑛‖𝐿2(𝜕Ω) = ‖ tr𝜈·∇𝑤̃1,𝑛‖𝐿2(𝜕Ω) ≤ 𝐶
(︁
‖∇𝑤̃1,𝑛‖L2(Ω) + ‖ tr𝜈×∇𝑤̃1,𝑛‖L2

𝑡 (𝜕Ω)

)︁
.

It follows ‖ tr𝜈×∇𝑤̃1,𝑛‖L2
𝑡 (𝜕Ω) → +∞ as 𝑛 → +∞. Hence

‖𝐴𝑋(0)∇𝑤̃1,𝑛‖𝑋 ≤
√

3‖𝜖‖(𝐿∞(Ω))3×3‖∇𝑤̃1,𝑛‖L2(Ω).

Let 𝑤1,𝑛 := ∇𝑤̃1,𝑛/‖∇𝑤̃1,𝑛‖𝑋 . It follows ‖𝑤1,𝑛‖𝑋 = 1 and 𝐴𝑋(0)𝑤1,𝑛 → 0 as 𝑛 → +∞. The existence
of a converging subsequence of (𝑤1,𝑛 ∈ 𝑊1)𝑛∈N would imply that (𝑓𝑛 ∈ 𝐿2(𝜕Ω))𝑛∈N admits a converging
subsequence, which is a contradiction. Hence (𝑤1,𝑛)𝑛∈N is indeed a singular sequence for 𝐴𝑋(0). �

4. Compatible approximation of the Steklov eigenvalue problem

In this section we discuss Galerkin approximations of (3.2). In addition to the basic Assumption 4.1 we
embrace in Assumption 4.2 the existence of uniformly bounded commuting projections like in [2]. Since we work
with the space 𝐻(curl, tr𝜈×; Ω) rather than 𝐻(curl; Ω), our assumption concerns an additional projection on
L2

𝑡 (𝜕Ω) compared to [2]. We report in Corollary 4.5 that for Galerkin approximations which satisfy these two
assumptions, we can construct a sequence of operator functions 𝑇𝑛(·) : C∖{0} → 𝐿(𝑋𝑛) which converges to 𝑇 (·)
in discrete norm (2.1) at each 𝜆 ∈ C ∖ {0}. The proof is based on Lemmas 4.3 and 4.4 and applies techniques as
outlined in [2]. Consequently we report in Theorem 4.6 that the abstract framework of [17] (which is based on
the exhaustive works of Karma [18,19]) is applicable. However, the existence and possible construction of such
projection operators remain open questions!

Consider the following basic assumption.

Assumption 4.1. Let (𝑋𝑛)𝑛∈N be so that 𝑋𝑛 ⊂ 𝑋 and dim 𝑋𝑛 < ∞ for each 𝑛 ∈ N, and

lim
𝑛∈N

inf
𝑢′∈𝑋𝑛

‖𝑢− 𝑢′‖𝑋 = 0 for each 𝑢 ∈ 𝑋. (4.1)

Consider the following additional assumption.

Assumption 4.2. There exists (𝜋𝑋
𝑛 )𝑛∈N so that

𝜋𝑋
𝑛 ∈ 𝐿

(︀
L2(Ω)

)︀
is a projector with 𝑋𝑛 = ran 𝜋𝑋

𝑛 , (4.2a)

sup
𝑛∈N

‖𝜋𝑋
𝑛 ‖𝐿(L2(Ω)) < +∞. (4.2b)

Let 𝑌 := L2(Ω) and 𝑍 := L2
𝑡 (𝜕Ω). There exist sequences (𝑌𝑛, 𝑍𝑛, 𝜋𝑌

𝑛 , 𝜋𝑍
𝑛 , )𝑛∈N so that for each 𝐻 ∈ {𝑌,𝑍} it

holds

𝐻𝑛 ⊂ 𝐻, lim
𝑛∈N

inf
𝑢′∈𝐻𝑛

‖𝑢− 𝑢′‖𝐻 = 0, (4.3a)

𝜋𝐻
𝑛 ∈ 𝐿(𝐻) is a projector with 𝐻𝑛 ⊂ ran 𝜋𝐻

𝑛 , (4.3b)

sup
𝑛∈N

‖𝜋𝐻
𝑛 ‖𝐿(𝐻) < +∞. (4.3c)

Denote 𝐸 ∈ 𝐿
(︀
𝑋,L2(Ω)

)︀
the embedding operator and set

𝜋𝑛 := 𝜋𝑋
𝑛 𝐸. (4.4)
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Further let
curl ∘𝜋𝑛𝑢 = 𝜋𝑌

𝑛 ∘ curl 𝑢 and tr𝜈× ∘𝜋𝑛𝑢 = 𝜋𝑍
𝑛 ∘ tr𝜈× 𝑢 (4.5)

for each 𝑢 ∈ 𝑋.

Lemma 4.3. Let Assumptions 4.1 and 4.2 hold true. Then the projections 𝜋𝑋
𝑛 , 𝜋𝑌

𝑛 and 𝜋𝑍
𝑛 converge point-wise

to the identity in L2(Ω),L2(Ω) and L2
𝑡 (𝜕Ω) respectively.

Proof. We proceed as in [2]. Let 𝑢 ∈ L2(Ω) and 𝑢𝑛 ∈ 𝑋𝑛. Since 𝜋𝑋
𝑛 is a projector it follows

‖(1− 𝜋𝑋
𝑛 )𝑢‖L2(Ω) = ‖(1− 𝜋𝑋

𝑛 )(𝑢− 𝑢𝑛)‖L2(Ω)

≤
(︂

1 + sup
𝑛∈N

‖𝜋𝑋
𝑛 ‖𝐿(L2(Ω))

)︂
‖𝑢− 𝑢𝑛‖L2(Ω)

and hence

‖(1− 𝜋𝑋
𝑛 )𝑢‖L2(Ω) ≤

(︂
1 + sup

𝑛∈N
‖𝜋𝑋

𝑛 ‖𝐿(L2(Ω))

)︂
inf

𝑢𝑛∈𝑋𝑛

‖𝑢− 𝑢𝑛‖L2(Ω).

Since 𝑋 is densely embedded in L2(Ω) and due to Assumption 4.1 the claim follows for 𝜋𝑋
𝑛 . The claims for 𝜋𝑌

𝑛

and 𝜋𝑍
𝑛 follow like-wise. �

Lemma 4.4. Let Assumptions 2.1, 2.3, 4.1 and 4.2 hold true. Then

lim
𝑛∈N

inf
𝑢∈𝑋𝑛∖{0}

‖(1− 𝜋𝑛)𝑃𝑉 𝑢‖𝑋/‖𝑢‖𝑋 = 0, (4.6a)

lim
𝑛∈N

inf
𝑢∈𝑋𝑛∖{0}

‖(1− 𝜋𝑛)𝑃𝑊1𝑢‖𝑋/‖𝑢‖𝑋 = 0, (4.6b)

lim
𝑛∈N

inf
𝑢∈𝑋𝑛∖{0}

‖(1− 𝜋𝑛)𝑃𝑊2𝑢‖𝑋/‖𝑢‖𝑋 = 0. (4.6c)

Proof. We proceed as in [2]. Let 𝑢𝑛 ∈ 𝑋𝑛. Due to curl 𝑃𝑊2𝑢𝑛 = 0, tr𝜈× 𝑃𝑊2𝑢𝑛 = 0 and Assumption 4.2 it hold

curl 𝜋𝑛𝑃𝑊2𝑢𝑛 = 𝜋𝑌
𝑛 curl 𝑃𝑊2𝑢𝑛 = 0

and
tr𝜈× 𝜋𝑛𝑃𝑊2𝑢𝑛 = 𝜋𝑍

𝑛 tr𝜈× 𝑃𝑊2𝑢𝑛 = 0.

Hence

‖(1− 𝜋𝑛)𝑃𝑊2𝑢𝑛‖𝑋 = ‖(1− 𝜋𝑛)𝑃𝑊2𝑢𝑛‖L2(Ω) = ‖(1− 𝜋𝑛)(1− 𝑃𝑊2)𝑢𝑛‖L2(Ω)

≤ ‖(1− 𝜋𝑋
𝑛 )𝐸(1− 𝑃𝑊2)‖𝐿(𝑋,L2(Ω))‖𝑢𝑛‖𝑋 .

Since 𝐸|ran(1−𝑃𝑊2 ) = 𝐸|𝐻(curl,div0,tr𝜈×;Ω) is compact due to (2.8) and 1− 𝜋𝑋
𝑛 tends point-wise to zero it follows

lim𝑛∈N ‖(1− 𝜋𝑋
𝑛 )𝐸(1− 𝑃𝑊2)‖𝐿(𝑋,L2(Ω)) = 0.

We compute

curl 𝜋𝑛𝑃𝑉 𝑢𝑛 = 𝜋𝑌
𝑛 curl 𝑃𝑉 𝑢𝑛 = 𝜋𝑌

𝑛 curl(𝑃𝑉 + 𝑃𝑊1 + 𝑃𝑊2)𝑢𝑛

= 𝜋𝑌
𝑛 curl 𝑢𝑛 = curl 𝑢𝑛 = curl(𝑃𝑉 + 𝑃𝑊1 + 𝑃𝑊2)𝑢𝑛 = curl 𝑃𝑉 𝑢𝑛

and hence
‖(1− 𝜋𝑛)𝑃𝑉 𝑢𝑛‖2𝑋 = ‖(1− 𝜋𝑛)𝑃𝑉 𝑢𝑛‖2L2(Ω) + ‖ tr𝜈×(1− 𝜋𝑛)𝑃𝑉 𝑢𝑛‖2L2

𝑡 (𝜕Ω).

We estimate the first term

‖(1− 𝜋𝑛)𝑃𝑉 𝑢𝑛‖L2(Ω) ≤ ‖(1− 𝜋𝑋
𝑛 )𝐸𝑃𝑉 ‖𝐿(𝑋,L2(Ω))‖𝑢𝑛‖𝑋 .
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As previously we obtain lim𝑛∈N ‖(1− 𝜋𝑋
𝑛 )𝐸𝑃𝑉 ‖𝐿(𝑋,L2(Ω)) = 0. We estimate the second term

‖ tr𝜈×(1− 𝜋𝑛)𝑃𝑉 𝑢𝑛‖L2
𝑡 (𝜕Ω) = ‖(1− 𝜋𝑍

𝑛 ) tr𝜈× 𝑃𝑉 𝑢𝑛‖L2
𝑡 (𝜕Ω)

≤ ‖(1− 𝜋𝑍
𝑛 ) tr𝜈× 𝑃𝑉 ‖𝐿(𝑋,L2

𝑡 (𝜕Ω))‖𝑢𝑛‖𝑋 .

Due to (2.9) tr𝜈× |𝑉 is compact, (1− 𝜋𝑍
𝑛 ) tends point-wise to zero and hence

lim
𝑛∈N

‖(1− 𝜋𝑍
𝑛 ) tr𝜈× 𝑃𝑉 ‖𝐿(𝑋,L2

𝑡 (𝜕Ω)) = 0.

The claim for 𝑃𝑊1 follows from 𝑃𝑊1 = 1− 𝑃𝑉 − 𝑃𝑊2 . �

Corollary 4.5. Let Assumptions 2.1, 2.3, 4.1 and 4.2 hold true. Let 𝑇𝑛(𝜆) ∈ 𝐿(𝑋𝑛) be defined as 𝑇𝑛(𝜆) :=
𝜋𝑛𝑇 (𝜆)|𝑋𝑛

for each 𝜆 ∈ C ∖ {0}. Then

lim
𝑛∈N

‖𝑇 (𝜆)− 𝑇𝑛(𝜆)‖𝑛 = 0 (4.7)

for each 𝜆 ∈ C ∖ {0}.

Proof. Follows from the definition of 𝑇 (𝜆), the triangle inequality and Lemma 4.4. �

Theorem 4.6. Let Assumptions 2.1–2.4 hold true. Let 𝑋, 𝐴𝑋(·) and 𝑇 (·) be as defined in (3.6), (3.7a)
and (3.10) respectively. Let Assumptions 4.1 and 4.2 hold true. Then 𝐴𝑋(·) : C ∖ {0} → 𝐿(𝑋) is a holomorphic
weakly 𝑇 (·)-coercive operator function with non-empty resolvent set and the sequence of Galerkin approximations(︀
𝑃𝑛𝐴𝑋(·)|𝑋𝑛

: C ∖ {0} → 𝐿(𝑋𝑛)
)︀
𝑛∈N is 𝑇 (·)-compatible.

Thus Corollary 2.8 of [17] is applicable and the convergence statements (i)–(vii) formulated in Subsection 2.1
hold.

Proof. Follows from Theorem 3.2, Corollaries 3.3 and 4.5. �

The consequence of Theorem 4.6 is that if we approximate Eigenvalue Problem (3.2) with finite element
methods which satisfy Assumptions 4.1 and 4.2, then we obtain asymptotically reliable approximations. However,
the second commutation in (4.5) is of no concern in the literature on the design and analysis of common 𝐻(curl)-
finite element spaces (e.g. [2]). Thus it is unclear if those spaces satisfy Assumption 4.2 as welcome byproduct
and produce converging methods. Further numerical studies are necessary to determine if this is the case or
not. If common 𝐻(curl)-finite element methods fail, then our previous presented analysis may raise ideas for
the construction of new suitable elements.

On the other hand, if common 𝐻(curl)-finite element methods work, then it is likely that Assumption 4.2 is
satisfied.

If the existence of such commuting projection operators would be proven, then this would complete our
presented convergence analysis. However, the construction and analysis of commuting projection operators is
an intricate topic of its own: We recall that the natural interpolation operators commute with the projection
operators. Though, the interpolation operators are only well-defined for smooth enough functions. It is possible
to couple the interpolation with suitable smoothing operators to achieve well-defined and bounded commuting
projection operators (see e.g. [15]). If we consider the natural interpolation operators again, we note that they
already fulfill the second commutation in (4.5). Hence the construction of suitable smoothing operators (which
also respect the second commutation in (4.5)) would yield the desired result.

We emphasize that these commuting projection operators are a theoretical tool to conduct the analysis and
are not required for the actual implementation of the finite element method.

For the former reasons the presented result is a bit unsatisfactory and further research is necessary. However,
in the next two sections we deal with a modified eigenvalue problem for which we can report more rigorous
results.
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5. Weak 𝑇 (·)-coercivity of the modified Steklov operator function

First we introduce the modified electromagnetic Steklov eigenvalue problem proposed in [12] as holomorphic
operator function eigenvalue problem. We proceed as in Section 3.

In Theorem 5.1 we report an apt decomposition of the respective Hilbert space into subspaces. In contrast to
Section 3 we only require two subspaces instead of three. Next we introduce in (5.10) an operator 𝑇 as an apt
sign change on the subspaces. In Theorem 5.2 we report the weak 𝑇 -coercivity of the modified Steklov operator
function. In Corollary 5.4 we deduce convenient properties of the spectrum in C. In contrast to 𝐴𝑋(·) the
operator function 𝐴𝑋̃(·) is Fredholm also at the origin 𝜆 = 0. Further, we require Assumption 5.3 to guarantee
the discreteness of the spectrum, whereas the less restrictive Assumption 2.4 was necessary in Section 3. We
report in a companion article [16] the existence and behavior of eigenvalues for purely real, symmetric 𝜇 and 𝜖,
i.e. in the selfadjoint case.

In Subsection 5.1 we introduce a reformulation of the eigenvalue problem by means of an auxiliary variable.
This formulation avoids the explicit appearance of the operator 𝑆. We prove respective properties of the eigen-
value problem and its approximation. Our results in this section are similar to those of Section 3 from [12].
However, we apply a different technique: [12] reformulates the eigenvalue problem to a problem which is solely
posed on the boundary. Instead we keep the natural volumetric setting, which is of importance to conduct an
approximation analysis (see Sect. 6).

The modified electromagnetic Steklov eigenvalue problem is to

find (𝜆, 𝑢) ∈ C×𝐻(curl; Ω) ∖ {0} so that 𝐴(𝜆)𝑢 = 0, (5.1)

whereby 𝐴(𝜆) ∈ 𝐿
(︀
𝐻(curl; Ω)

)︀
is defined through

⟨𝐴(𝜆)𝑢, 𝑢′⟩𝐻(curl;Ω) := ⟨𝜇−1 curl 𝑢, curl 𝑢′⟩L2(Ω) − 𝜔2⟨𝜖𝑢, 𝑢′⟩L2(Ω)

− 𝜆⟨𝑆𝑢, 𝑆𝑢′⟩L2
𝑡 (𝜕Ω) for all 𝑢, 𝑢′ ∈ 𝐻(curl; Ω), 𝜆 ∈ C

(5.2)

and 𝑆 is as defined in (2.13). We note again that the sign of 𝜆 herein is reversed compared to [12]. Also, we
employ tr𝜈× 𝑢 opposed to 𝑢𝜈 = tr𝜈× 𝑢×𝜈 in [12] and hence we employ through 𝑆 a map onto gradient functions
opposed to a map onto curl functions as in [12]. As in Section 3 we introduce apt subspaces of 𝐻(curl; Ω):

𝑉 := 𝐻(curl, div0, tr0𝜈·; Ω), (5.3a)

𝑊̃ := 𝐻(curl0; Ω) = ∇𝐻1(Ω). (5.3b)

Theorem 5.1. It holds
𝐻(curl; Ω) = 𝑉 ⊕⊥𝐻(curl;Ω) 𝑊̃ , (5.4)

i.e. the orthogonal projection operators 𝑃𝑉 , 𝑃𝑊̃ ∈ 𝐿
(︀
𝐻(curl; Ω)

)︀
satisfy ran 𝑃𝑉 = 𝑉 , ran 𝑃𝑊̃ = 𝑊̃ , 𝑊̃ = ker 𝑃𝑉 ,

𝑉 = ker 𝑃𝑊̃ , 𝑢 = 𝑃𝑉 𝑢 + 𝑃𝑊̃ 𝑢 for each 𝑢 ∈ 𝐻(curl; Ω) and

⟨𝑢, 𝑢′⟩𝑋̃ := ⟨𝑃𝑉 𝑢, 𝑃𝑉 𝑢′⟩𝐻(curl;Ω) + ⟨𝑃𝑊̃ 𝑢, 𝑃𝑊̃ 𝑢′⟩𝐻(curl;Ω) = ⟨𝑢, 𝑢′⟩𝐻(curl;Ω) (5.5)

for all 𝑢, 𝑢′ ∈ 𝐻(curl; Ω).

Proof. All properties are due to the orthogonal decomposition. �

We observe 𝑊̃ ⊂ ker 𝑆. We proceed further as in Section 3. Let

𝑋̃ := 𝐻(curl; Ω), ⟨·, ·⟩𝑋̃ as defined in (5.5). (5.6)
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Let further 𝐴𝑋̃(·), 𝐴𝑐, 𝐴𝜖, 𝐴𝑙2 , 𝐴tr ∈ 𝐿(𝑋̃) be defined through

⟨𝐴𝑋̃(𝜆)𝑢, 𝑢′⟩𝑋̃ := ⟨𝐴(𝜆)𝑢, 𝑢′⟩𝐻(curl;Ω) for all 𝑢, 𝑢′ ∈ 𝑋̃, 𝜆 ∈ C, (5.7a)

⟨𝐴𝑐𝑢, 𝑢′⟩𝑋̃ := ⟨𝜇−1 curl 𝑢, curl 𝑢′⟩L2(Ω) for all 𝑢, 𝑢′ ∈ 𝑋̃, (5.7b)

⟨𝐴𝜖𝑢, 𝑢′⟩𝑋̃ := ⟨𝜖𝑢, 𝑢′⟩L2(Ω) for all 𝑢, 𝑢′ ∈ 𝑋̃, (5.7c)

⟨𝐴𝑙2𝑢, 𝑢′⟩𝑋̃ := ⟨𝑢, 𝑢′⟩L2(Ω) for all 𝑢, 𝑢′ ∈ 𝑋̃, (5.7d)

⟨𝐴tr𝑢, 𝑢′⟩𝑋̃ := ⟨𝑆𝑢, 𝑆𝑢′⟩L2
𝑡 (𝜕Ω) for all 𝑢, 𝑢′ ∈ 𝑋̃. (5.7e)

From the definitions of 𝑉 , 𝑊̃ and 𝑊̃ ⊂ ker 𝑆 we deduce that

𝐴𝑋̃(𝜆) = (𝑃𝑉 + 𝑃𝑊̃ )
(︁
𝐴𝑐 − 𝜔2𝐴𝜖 − 𝜆𝐴tr

)︁
(𝑃𝑉 + 𝑃𝑊̃ )

= PṼÃcPṼ − 𝜔2𝑃𝑉 𝐴𝜖𝑃𝑉 − 𝜆𝑃𝑉 𝐴tr𝑃𝑉−𝜔2PW̃Ã𝜖PW̃

− 𝜔2
(︁
𝑃𝑊̃ 𝐴𝜖𝑃𝑉 + 𝑃𝑉 𝐴𝜖𝑃𝑊̃

)︁
.

(5.8)

If we identify 𝑋̃ ∼ 𝑉 × 𝑊̃ and 𝑋̃ ∋ 𝑢 ∼ (𝑣, 𝑤) ∈ 𝑉 × 𝑊̃ , we can identify 𝐴𝑋̃(𝜆) with the block operator(︂
PṼÃc|Ṽ − 𝑃𝑉 (𝜔2𝐴𝜖 + 𝜆𝐴tr)|𝑉 −𝜔2𝑃𝑉 𝐴𝜖|𝑊̃

−𝜔2𝑃𝑊̃ 𝐴𝜖|𝑉 −𝜔2PW̃Ã𝜖|W̃

)︂
. (5.9)

We highlighted with color and boldface in (5.8) and (5.9) the operators which are not compact. This leads us
to define a test function operator in the following way. Let

𝑇 := 𝑃𝑉 − 𝜔−2𝑃𝑊̃ . (5.10)

Obviously 𝑇 ∈ 𝐿(𝑋̃) is bijective with 𝑇−1 = 𝑃𝑉 − 𝜔2𝑃𝑊̃ .

Theorem 5.2. Let 𝜖 satisfy Assumption 2.1, 𝜇 satisfy Assumption 2.2 and Ω satisfy Assumption 2.3. Thence
𝐴𝑋̃(·) : C → 𝐿(𝑋̃) is weakly 𝑇 -coercive.

Proof. Let 𝜆 ∈ C. Set
𝐴1 := 𝑃𝑉 𝐴𝑐𝑃𝑉 + 𝑃𝑉 𝐴𝑙2𝑃𝑉 − 𝜔2𝑃𝑊̃ 𝐴𝜖𝑃𝑊̃

and
𝐴2 := −𝑃𝑉 𝐴𝑙2𝑃𝑉 − 𝜔2𝑃𝑉 𝐴𝜖𝑃𝑉 − 𝜆𝑃𝑉 𝐴tr𝑃𝑉 − 𝜔2(𝑃𝑊̃ 𝐴𝜖𝑃𝑉 + 𝑃𝑉 𝐴𝜖𝑃𝑊̃ ).

so that 𝐴𝑋̃(𝜆) = 𝐴1 + 𝐴2.
To see that 𝑃𝑉 𝐴tr𝑃𝑉 is a compact operator we recall 𝐴tr = 𝑆*𝑆 from (5.7e) and 𝑆𝑃𝑉 = 𝑃∇𝜕

tr𝜈× 𝑃𝑉 from
(2.14). It follows now by means of (2.9) that 𝑆𝑃𝑉 is compact and hence 𝑃𝑉 𝐴tr𝑃𝑉 is compact too. The remaining
terms of 𝐴2 are compact due to (2.8). Hence 𝑇 (𝜆)*𝐴2 is compact too. It is straight forward to see

ℜ(⟨𝐴1𝑢, 𝑇𝑢⟩𝑋̃) ≥ min(1, 𝑐𝜖, 𝑐𝜇)‖𝑢‖2
𝑋̃

,

i.e. 𝑇 *𝐴1 is coercive. �

As in [12] we impose an additional assumption.

Assumption 5.3. Let 𝐴𝑋̃(0) be injective.
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Assumption 5.3 is equivalent to the statement that 𝜔2 is not an eigenvalue to the Neumann eigenvalue
problem

curl 𝜇−1 curl 𝑢− 𝜔2𝜖𝑢 = 0 in Ω,

𝜈 × curl 𝑢 = 0 at 𝜕Ω.

Since it is known that the eigenvalues to this problem form only a discrete set, Assumption 5.3 is reasonable.

Corollary 5.4. Let Assumptions 2.1–2.3 and 5.3 hold true. Then 𝐴𝑋̃(𝜆) is bijective for all 𝜆 ∈ C with ℑ(𝜆) < 0
and 𝜆 = 0. The spectrum of 𝐴𝑋̃(·) in C consists of an at most countable set of eigenvalues with finite algebraic
multiplicity which have no accumulation point in C.

Proof. Let 𝜆 ∈ C with ℑ(𝜆) < 0 and 𝑢 ∈ 𝑋 be so that 𝐴𝑋̃(𝜆)𝑢 = 0. It follows

0 = −ℑ(⟨𝐴𝑋̃(𝜆)𝑢, 𝑢)⟩𝑋̃) ≥ −ℑ(𝜆)‖𝑆𝑢‖2L2
𝑡 (𝜕Ω)

and hence 𝐴𝑋̃(0)𝑢 = 𝐴𝑋̃(𝜆)𝑢 = 0. Due to Assumption 5.3 it follows 𝑢 = 0, i.e. 𝐴𝑋̃(𝜆) is injective. From
Theorem 5.2 we know that 𝐴𝑋̃(𝜆) is Fredholm with index zero for all 𝜆 ∈ C and hence 𝐴𝑋̃(𝜆) is bijective, if
ℑ(𝜆) < 0 or 𝜆 = 0. For the remaining claim see the proof of Corollary 5.4. �

5.1. Auxiliary formulation

A Galerkin approximation to (5.1) doesn’t yield a computational method yet, because the term
⟨𝑆𝑢𝑛, 𝑆𝑢′𝑛⟩L2

𝑡 (𝜕Ω) needs to be evaluated. Therefore we proceed as in [12] and introduce an auxiliary variable. To
this end let

𝑍 := 𝐻1
* (𝜕Ω), ⟨·, ·⟩𝑍 := ⟨∇𝜕 ·,∇𝜕 ·⟩L2

𝑡 (𝜕Ω), (5.11)
˜̃𝑋 := 𝑋̃ × 𝑍, ⟨(𝑢, 𝑧), (𝑢′, 𝑧′)⟩ ˜̃𝑋

:= ⟨𝑢, 𝑢′⟩𝑋̃ + ⟨𝑧, 𝑧′⟩𝑍 (5.12)

for all (𝑢, 𝑧), (𝑢′, 𝑧′) ∈ ˜̃𝑋 and for 𝑙 ∈ {0, 1} let

⟨ ˜̃𝐴𝑙(𝜆)(𝑢, 𝑧), (𝑢′, 𝑧′)⟩ ˜̃𝑋
:= ⟨𝜇−1 curl 𝑢, curl 𝑢′⟩L2(Ω) − 𝜔2⟨𝜖𝑢, 𝑢′⟩L2(Ω)

+ 𝜆⟨𝑧, div𝜕 tr𝜈× 𝑢′⟩𝐻1(𝜕Ω)×𝐻−1(𝜕Ω)

+ 𝜆𝑙⟨div𝜕 tr𝜈× 𝑢, 𝑧′⟩𝐻−1(𝜕Ω)×𝐻1(𝜕Ω)

+ 𝜆𝑙⟨∇𝜕𝑧,∇𝜕𝑧′⟩L2
𝑡 (𝜕Ω)

(5.13)

for all (𝑢, 𝑧), (𝑢′, 𝑧′) ∈ ˜̃𝑋 and 𝜆 ∈ C. If the coefficients 𝜇, 𝜖 are real and symmetric, the choice 𝑙 = 1 preserves
the self adjointness of (5.13). This is of advantage, if one chooses to implement a discretization which is based
directly on (5.13). On the other hand if one aims to build the Schur-complement with respect to the second
component in a later discretization step, then the choice 𝑙 = 0 leads to no restriction on 𝜆. Let

Λ0 := C, Λ1 := C ∖ {0}. (5.14)

Lemma 5.5. If (𝜆, 𝑢) ∈ C × 𝑋̃ ∖ {0} so that 𝐴(𝜆)𝑢 = 0, then ˜̃𝐴𝑙(𝜆)(𝑢, 𝑧) = 0 with 𝑧 ∈ 𝑍 so that 𝑆𝑢 = ∇𝜕𝑧.
Vice-versa, if (𝜆, (𝑢, 𝑧)) ∈ Λ𝑙 × ˜̃𝑋 ∖ {0} so that ˜̃𝐴𝑙(𝜆)(𝑢, 𝑧) = 0, then 𝑆𝑢 = ∇𝜕𝑧 and 𝐴(𝜆)𝑢 = 0.

Proof. Let (𝜆, 𝑢) ∈ C× 𝑋̃ ∖ {0} so that 𝐴(𝜆)𝑢 = 0 and 𝑧 ∈ 𝑍 be so that ∇𝜕𝑧 = 𝑆𝑢. It follows

0 = ⟨𝜇−1 curl 𝑢, curl 𝑢′⟩L2(Ω) − 𝜔2⟨𝜖𝑢, 𝑢′⟩L2(Ω) − 𝜆⟨𝑆𝑢, 𝑆𝑢′⟩L2
𝑡 (𝜕Ω)

= ⟨𝜇−1 curl 𝑢, curl 𝑢′⟩L2(Ω) − 𝜔2⟨𝜖𝑢, 𝑢′⟩L2(Ω) − 𝜆⟨∇𝜕𝑧, 𝑆𝑢′⟩L2
𝑡 (𝜕Ω)

= ⟨𝜇−1 curl 𝑢, curl 𝑢′⟩L2(Ω) − 𝜔2⟨𝜖𝑢, 𝑢′⟩L2(Ω) + 𝜆⟨𝑧, div𝜕 𝑆𝑢′⟩𝐻1(𝜕Ω)×𝐻−1(𝜕Ω)

= ⟨𝜇−1 curl 𝑢, curl 𝑢′⟩L2(Ω) − 𝜔2⟨𝜖𝑢, 𝑢′⟩L2(Ω) + 𝜆⟨𝑧, div𝜕 tr𝜈× 𝑢′⟩𝐻1(𝜕Ω)×𝐻−1(𝜕Ω)
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for each 𝑢′ ∈ 𝑋̃. It follows further

0 = ⟨div𝜕 tr𝜈× 𝑢, 𝑧′⟩𝐻−1(𝜕Ω)×𝐻1(𝜕Ω) + ⟨∇𝜕𝑧,∇𝜕𝑧′⟩L2
𝑡 (𝜕Ω)

for each 𝑧′ ∈ 𝑍 from the definition of 𝑆 and 𝑧. The reverse direction follows like-wise. �

Let 𝐵 ∈ 𝐿(𝑍, 𝑋̃) so that

⟨𝐵𝑧, 𝑢⟩𝑋̃ := ⟨𝑧, div𝜕 tr𝜈× 𝑢⟩𝐻1(𝜕Ω)×𝐻−1(𝜕Ω) (5.15)

for all 𝑧 ∈ 𝑍, 𝑢 ∈ 𝑋̃. Then ˜̃𝐴𝑙(𝜆) admits the block representation

˜̃𝐴𝑙(𝜆) =
(︂

𝐴𝑐 − 𝜔2𝐴𝜖 𝜆𝐵
𝜆𝑙𝐵* 𝜆𝑙 I𝑍

)︂
. (5.16)

This leads us to define
˜̃𝑇 𝑙(𝜆) :=

(︁
𝑇

𝜆
−𝑙

I𝑍

)︁
, 𝜆 ∈ Λ𝑙. (5.17)

Theorem 5.6. Let 𝜖 satisfy Assumption 2.1, 𝜇 satisfy Assumption 2.2 and Ω satisfy Assumption 2.3. Thence
˜̃𝐴𝑙(·) : Λ𝑙 → 𝐿( ˜̃𝑋) is weakly ˜̃𝑇 𝑙(·)-coercive.

Proof. Let

𝐴1 :=
(︀
𝑃𝑉 (𝐴𝑐 + 𝐴𝑙2)𝑃𝑉 − 𝜔2𝑃𝑊̃ 𝐴𝜖𝑃𝑊̃ 𝜆𝑙 I𝑍

)︀
.

and

𝐴2 :=
(︀
−𝑃𝑉 (𝜔2𝐴𝜖 + 𝐴𝑙2)𝑃𝑉 − 𝜔2(𝑃𝑉 𝐴𝜖𝑃𝑊̃ + 𝑃𝑊̃ 𝐴𝜖𝑃𝑉 )𝜆𝐵𝜆𝑙𝐵*

)︀
.

so that ˜̃𝐴𝑙(𝜆) = 𝐴1 + 𝐴2. It follows

ℜ(⟨𝐴1(𝑢, 𝑧), ˜̃𝑇 𝑙(𝜆)(𝑢, 𝑧)⟩ ˜̃𝑋
) ≥ min(1, 𝑐𝜇, 𝑐𝜖)‖(𝑢, 𝑧)‖2˜̃𝑋

for each (𝑢, 𝑧) ∈ ˜̃𝑋, i.e. ˜̃𝑇 𝑙(𝜆)*𝐴1 is coercive. Let 𝜄 ∈ 𝐿
(︀
𝐻−1/2(𝜕Ω), 𝐻1/2(𝜕Ω)

)︀
be the isomorphism so

that ⟨𝜑, 𝜑′⟩𝐻1/2(𝜕Ω)×𝐻−1/2(𝜕Ω) = ⟨𝜑, 𝜄𝜑′⟩𝐻1/2(𝜕Ω) for all 𝜑 ∈ 𝐻1/2(𝜕Ω) and 𝜑′ ∈ 𝐻−1/2(𝜕Ω). Let 𝐸 ∈
𝐿
(︀
𝐻1(𝜕Ω), 𝐻1/2(𝜕Ω)

)︀
be the embedding operator. Then

⟨𝐵𝑧, 𝑢⟩𝑋̃ = ⟨𝑧, div𝜕 tr𝜈× 𝑢⟩𝐻1(𝜕Ω)×𝐻−1(𝜕Ω)

= ⟨𝐸𝑧, div𝜕 tr𝜈× 𝑢⟩𝐻1/2(𝜕Ω)×𝐻−1/2(𝜕Ω)

= ⟨𝐸𝑧, 𝜄 div𝜕 tr𝜈× 𝑢⟩𝐻1/2(𝜕Ω)

= ⟨(𝜄 div𝜕 tr𝜈×)*𝐸𝑧, 𝑢⟩𝑋̃ ,

i.e. 𝐵 = (𝜄 div𝜕 tr𝜈×)*𝐸. Since 𝐸 is compact, so are 𝐵 and 𝐵*. The remaining terms of 𝐴2 are compact due to
(2.8). Hence ˜̃𝑇 𝑙(𝜆)*𝐴2 is compact too. �

Corollary 5.7. Let Assumptions 2.1–2.3 and 5.3 hold true. Then ˜̃𝐴𝑙(𝜆) is bijective for all 𝜆 ∈ C with ℑ(𝜆) < 0.

Proof. Follows from Theorem 5.6, Lemma 5.5 and Corollary 5.4. �
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6. Compatible approximation of the modified Steklov eigenvalue problem

In this section we discuss Galerkin approximations of ˜̃𝐴𝑙(·). We proceed as in Section 4. We embrace the basic
Assumptions 6.1, 6.2 and in Assumption 6.3 the existence of uniformly bounded commuting projections like
in [2]. We report in Corollary 6.6 that for Galerkin approximations which satisfy these three assumptions, we
can construct a sequence of operator functions ˜̃𝑇 𝑙

𝑛(𝜆) ∈ 𝐿( ˜̃𝑋𝑛) which converges to ˜̃𝑇 𝑙(𝜆) in discrete norm (2.1)
at each 𝜆 ∈ Λ𝑙. Consequently we report in Theorem 6.7 that the abstract framework of [17] is applicable. Finally,
we discuss some topics concerning the computational implementation.

The investigated computational method in this section is the one proposed in [12]. We amend the results of
[12] with a convergence analysis of their method.

Consider the following basic assumptions.

Assumption 6.1. Let (𝑋̃𝑛)𝑛∈N be so that 𝑋̃𝑛 ⊂ 𝑋̃, dim 𝑋̃𝑛 < ∞ for each 𝑛 ∈ N and

lim
𝑛∈N

inf
𝑢′∈𝑋̃𝑛

‖𝑢− 𝑢′‖𝑋̃ = 0 for each 𝑢 ∈ 𝑋̃. (6.1)

Assumption 6.2. Let (𝑍𝑛)𝑛∈N be so that 𝑍𝑛 ⊂ 𝑍, dim 𝑍𝑛 < ∞ for each 𝑛 ∈ N and

lim
𝑛∈N

inf
𝑧′∈𝑍𝑛

‖𝑧 − 𝑧′‖𝑍 = 0 for each 𝑧 ∈ 𝑍. (6.2)

Let
˜̃𝑋𝑛 := 𝑋̃𝑛 × 𝑍𝑛. (6.3)

Consider the following additional assumption.

Assumption 6.3. There exists (𝜋𝑋̃
𝑛 )𝑛∈N so that

𝜋𝑋̃
𝑛 ∈ 𝐿

(︀
L2(Ω)

)︀
is a projector with 𝑋̃𝑛 = ran 𝜋𝑋̃

𝑛 , (6.4a)

sup
𝑛∈N

‖𝜋𝑋̃
𝑛 ‖𝐿(L2(Ω)) < +∞. (6.4b)

Let 𝑌 := L2(Ω). There exist sequences (𝑌𝑛, 𝜋𝑌
𝑛 )𝑛∈N so that

𝑌𝑛 ⊂ 𝑌, lim
𝑛∈N

inf
𝑢′∈𝑌𝑛

‖𝑢− 𝑢′‖𝑌 = 0, (6.5a)

𝜋𝑌
𝑛 ∈ 𝐿(𝑌 ) is a projector with 𝑌𝑛 ⊂ ran 𝜋𝑌

𝑛 , (6.5b)

sup
𝑛∈N

‖𝜋𝑌
𝑛 ‖𝐿(𝑌 ) < +∞. (6.5c)

Denote 𝐸̃ ∈ 𝐿
(︀
𝑋̃,L2(Ω)

)︀
the embedding operator and set

𝜋̃𝑛 := 𝜋𝑋̃
𝑛 𝐸̃. (6.6)

Further let
curl ∘𝜋̃𝑛𝑢 = 𝜋𝑌

𝑛 ∘ curl 𝑢 (6.7)

for each 𝑢 ∈ 𝑋̃.

Lemma 6.4. Let Assumptions 6.1 and 6.3 hold true. Then the projections 𝜋𝑋̃
𝑛 and 𝜋𝑌

𝑛 converge point-wise to
the identity in L2(Ω).

Proof. Proceed as for Lemma 4.3. �
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Lemma 6.5. Let Assumptions 2.1, 2.3, 6.1 and 6.3 hold true. Then

lim
𝑛∈N

inf
𝑢∈𝑋̃𝑛∖{0}

‖(1− 𝜋̃𝑛)𝑃𝑉 𝑢‖𝑋̃/‖𝑢‖𝑋̃ = 0, (6.8a)

lim
𝑛∈N

inf
𝑢∈𝑋̃𝑛∖{0}

‖(1− 𝜋̃𝑛)𝑃𝑊̃ 𝑢‖𝑋̃/‖𝑢‖𝑋̃ = 0. (6.8b)

Proof. Proceed as for Lemma 4.4. �

Corollary 6.6. Let Assumptions 2.1, 2.3, 6.1, 6.2 and 6.3 hold true. Let 𝑇𝑛 ∈ 𝐿(𝑋̃𝑛) be defined as 𝑇𝑛 :=
𝜋̃𝑛𝑇 |𝑋̃𝑛

and ˜̃𝑇 𝑙
𝑛(𝜆) ∈ 𝐿( ˜̃𝑋𝑛) as

˜̃𝑇 𝑙
𝑛(𝜆) :=

(︃
𝑇𝑛

𝜆
−𝑙

I𝑍𝑛

)︃
. (6.9)

for 𝜆 ∈ Λ𝑙. Then
lim
𝑛∈N

‖ ˜̃𝑇 𝑙(𝜆)− ˜̃𝑇 𝑙
𝑛(𝜆)‖𝑛 = 0 (6.10)

at each 𝜆 ∈ Λ𝑙.

Proof. Proceed as for Corollary 4.5. �

Theorem 6.7. Let Assumptions 2.1–2.3 and 5.3 hold true. Let ˜̃𝑋, ˜̃𝐴𝑙(·), ˜̃𝑇 𝑙(·) and Λ𝑙 be as defined in (5.11),
(5.13), (5.17) and (5.14) respectively. Let Assumptions 6.1–6.3 hold true. Then ˜̃𝐴𝑙(·) : Λ𝑙 → 𝐿( ˜̃𝑋) is a holo-
morphic weakly ˜̃𝑇 𝑙(·)-coercive operator function with non-empty resolvent set and the sequence of Galerkin
approximations

(︀ ˜̃𝑃𝑛
˜̃𝐴𝑙(·)| ˜̃𝑋𝑛

: Λ𝑙 → 𝐿( ˜̃𝑋𝑛)
)︀
𝑛∈N is ˜̃𝑇 𝑙(·)-compatible.

Thus Corollary 2.8 of [17] is applicable and the convergence statements (i)–(vii) formulated in Subsection 2.1
hold.

Proof. Follows from Theorem 5.6, Corollaries 5.7 and 6.6. �

The consequence of Theorem 6.7 is that if we approximate Eigenvalue Problem (5.1) by means of common
𝐻(curl)-finite element spaces [2], then Assumption 6.3 is satisfied and we obtain asymptotically reliable approx-
imations. Again, we emphasize that the commuting projection operators are only a theoretical tool to conduct
the analysis and are not required for the actual implementation of the finite element method. Thus, different
than for the original eigenvalue problem our results for the modified eigenvalue problem are quite satisfactory.
In particular we can answer a specific question from [12]: If 𝑋̃𝑛 and 𝑍𝑛 are chosen as finite element spaces with
fixed polynomial degrees 𝑝𝑋̃ , 𝑝𝑍 and decreasing mesh width ℎ(𝑛), Theorem 6.7 tells that one should choose
𝑝𝑋̃ = 𝑝𝑍 to obtain asymptotically optimal convergence rates.

We move on and discuss further issues related to the computational implementation. We note that if 𝑋̃𝑛 ⊂
𝐻(curl, tr𝜈×; Ω), then the duality pairs in (5.13) can be evaluated as integrals:

⟨𝑧𝑛, div𝜕 tr𝜈× 𝑢𝑛⟩𝐻1(𝜕Ω)×𝐻−1(𝜕Ω) = −⟨∇𝜕𝑧𝑛, tr𝜈× 𝑢𝑛⟩L2
𝑡 (𝜕Ω).

Let further for 𝑢𝑛 ∈ 𝑋̃𝑛, 𝑧𝑛 be the solution to find 𝑧𝑛 ∈ 𝑍𝑛 so that

⟨∇𝜕𝑧𝑛,∇𝜕𝑧′𝑛⟩L2
𝑡 (𝜕Ω) = −⟨div𝜕 tr𝜈× 𝑢𝑛, 𝑧′𝑛⟩𝐻−1(𝜕Ω)×𝐻1(𝜕Ω) (6.11)

for all 𝑧′𝑛 ∈ 𝑍𝑛 and set
𝑆𝑛𝑢 := ∇𝜕𝑧𝑛. (6.12)

From the construction of 𝑆𝑛 it follows 𝑆𝑛 ∈ 𝐿
(︀
𝑋̃𝑛,L2

𝑡 (𝜕Ω)
)︀

and further

𝑆𝑛𝑢 = 𝑃𝑛
∇𝜕

tr𝜈× 𝑢𝑛 (6.13)
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for 𝑢𝑛 ∈ 𝐻(curl, tr𝜈×; Ω) with 𝑃𝑛
∇𝜕

being the L2
𝑡 (𝜕Ω)-orthogonal projection onto ∇𝑍𝑛. Let further 𝐴𝑛(𝜆) ∈

𝐿(𝑋̃𝑛) be defined by

⟨𝐴𝑛(𝜆)𝑢𝑛, 𝑢′𝑛⟩𝑋̃ := ⟨𝜇−1 curl 𝑢𝑛, curl 𝑢′𝑛⟩L2
𝑡 (𝜕Ω) − 𝜔2⟨𝜖𝑢𝑛, 𝑢′𝑛⟩L2

𝑡 (𝜕Ω)

− 𝜆⟨𝑆𝑛𝑢𝑛, 𝑆𝑛𝑢′𝑛⟩L2
𝑡 (𝜕Ω) for all 𝑢𝑛, 𝑢′𝑛 ∈ 𝑋̃𝑛, 𝜆 ∈ C,

(6.14)

i.e. 𝐴𝑛(𝜆) is the Schur-complement of ˜̃𝑃𝑛
˜̃𝐴0(𝜆)| ˜̃𝑋𝑛

with respect to 𝑧𝑛 ∈ 𝑍𝑛. Obviously 𝐴𝑛(·) is a Galerkin

approximation with variational crime 𝑆*𝑛𝑆𝑛 ̸= 𝑃𝑛𝑆*𝑆|𝑋̃𝑛
of 𝐴(·). The approximation properties of 𝐴𝑛(·) to

𝐴(·) are already provided by our previous analysis, i.e. our analysis technique avoided to discuss the variational
crime directly. If further 𝑋̃𝑛 ⊂ 𝐻(curl, tr𝜈×; Ω), then

⟨𝑆𝑛𝑢𝑛, 𝑆𝑛𝑢′𝑛⟩L2
𝑡 (𝜕Ω) = ⟨𝑃𝑛

∇𝜕
tr𝜈× 𝑢𝑛, 𝑃𝑛

∇𝜕
tr𝜈× 𝑢′𝑛⟩L2

𝑡 (𝜕Ω)

= ⟨𝑃𝑛
∇𝜕

tr𝜈× 𝑢𝑛, tr𝜈× 𝑢′𝑛⟩L2
𝑡 (𝜕Ω)

= ⟨𝑆𝑛𝑢𝑛, tr𝜈× 𝑢′𝑛⟩L2
𝑡 (𝜕Ω).

(6.15)

Let (𝑧𝑛)𝑁
𝑛=1 be a basis of 𝑍𝑛 and consider the matrix 𝑀 ∈ C𝑁×𝑁 with entries

𝑀𝑛,𝑚 := ⟨∇𝜕𝑧𝑛,∇𝜕𝑧𝑚⟩L2
𝑡 (𝜕Ω). (6.16)

To implement the operator 𝑆𝑛, the matrix 𝑀 needs to be inverted. However, due to 𝑍𝑛 ⊂ 𝑍 = 𝐻1
* (𝜕Ω) the

matrix 𝑀 is dense. To obtain a sparse matrix 𝑀 the following procedure was suggested in [12]. Let 𝛾 > 0
be small and K := span{1} be the space of constant functions. For 𝑢𝑛 ∈ 𝑋̃𝑛 let 𝑧𝑛 be the solution to find
𝑧𝑛 ∈ 𝑍𝑛 ⊕K ⊂ 𝐻1(𝜕Ω) so that

⟨∇𝜕𝑧𝑛,∇𝜕𝑧′𝑛⟩L2
𝑡 (𝜕Ω) + 𝛾⟨𝑧𝑛, 𝑧′𝑛⟩𝐿2(𝜕Ω) = −⟨div𝜕 tr𝜈× 𝑢𝑛, 𝑧′𝑛⟩𝐻−1(𝜕Ω)×𝐻1(𝜕Ω) (6.17)

for all 𝑧′𝑛 ∈ 𝑍𝑛 ⊕K ⊂ 𝐻1(𝜕Ω) and set
𝑆𝛾

𝑛𝑢𝑛 := ∇𝜕𝑧𝑛. (6.18)

We analyze this modification in two steps. First we consider the perturbation of the sesquilinear form
⟨∇𝜕 ·,∇𝜕 ·⟩L2

𝑡 (𝜕Ω) to ⟨∇𝜕 ·,∇𝜕 ·⟩L2
𝑡 (𝜕Ω) + 𝛾⟨·, ·⟩𝐿2(𝜕Ω) on the space 𝑍𝑛 ⊂ 𝐻1

* (𝜕Ω). The analysis of such a per-
turbation is straight forward and of magnitude 𝛾. Secondly we note that the solution 𝑧𝑛 ∈ 𝑍𝑛 ⊕ K ⊂ 𝐻1(𝜕Ω)
to (6.17) satisfies ⟨𝑧𝑛, 1⟩𝐿2(𝜕Ω) = 0, i.e. 𝑧𝑛 ∈ 𝑍𝑛. Thus a replacement of 𝑍𝑛 ⊂ 𝐻1

* (𝜕Ω) by 𝑍𝑛 ⊕ K ⊂ 𝐻1(𝜕Ω)
doesn’t change the respective solution to (6.17) and hence no additional error is produced.

7. Conclusion

The application of electromagnetic Steklov eigenvalues intended to serve as target signatures for nondestruc-
tive testing of materials was first considered in [12]. In [16] the relation between the modified and the original
electromagnetic Steklov eigenvalue problems and properties of the eigenvalue distributions were reported for
the selfadjoint cases.

In this article we conducted a rigorous approximation analysis for the modified version. For the original
version, we established the discreteness of the eigenvalues. We reported an abstract approximation analysis,
which requires the approximation spaces to satisfy Assumption 4.2. It remains an open question if convenient
𝐻(curl)-finite element spaces satisfy this property. Much more numerical testing on realistic geometries is needed
to see if (modified) Steklov eigenvalues can prevail as target signature for realistic applications.

This article also examplifies how the general framework [17] can be applied to analyze approximations of
linear eigenvalue problems without the introduction of a solution operator (which is the classical approach [3],
[5]).
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