
ESAIM: M2AN 55 (2021) 1669–1697 ESAIM: Mathematical Modelling and Numerical Analysis
https://doi.org/10.1051/m2an/2021037 www.esaim-m2an.org

EXISTENCE OF TRAVELING WAVE SOLUTIONS FOR THE DIFFUSION
POISSON COUPLED MODEL: A COMPUTER-ASSISTED PROOF

Maxime Breden1, Claire Chainais-Hillairet2 and Antoine Zurek3,*

Abstract. The Diffusion Poisson Coupled Model describes the evolution of a dense oxide layer ap-
pearing at the surface of carbon steel canisters in contact with a claystone formation. This model is
a one dimensional free boundary problem involving drift-diffusion equations on the density of species
(electrons, ferric cations and oxygen vacancies), coupled with a Poisson equation on the electrostatic
potential and with moving boundary equations, which describe the evolution of the position of each
unknown interfaces of the spatial domain. Numerical simulations suggest the existence of traveling wave
solutions for this model. These solutions are defined by stationary profiles on a fixed size domain with
interfaces moving both at the same velocity. In this paper, we present and apply a computer-assisted
method in order to prove the existence of these traveling wave solutions. We also establish a precise
and certified description of the solutions.
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1. Introduction

The Diffusion Poisson Coupled Model (DPCM) describes the corrosion processes that arise at the surface of
carbon steel canisters which are in contact with a claystone formation. It has been proposed by Bataillon et al.
in [4] and is part of a general study of the long-term safety of the geological repository of nuclear wastes.

The model focuses on the development of a dense oxide layer in the region of contact between the metal and
the claystone. From a mathematical point of view, this model is a free boundary problem composed by a system
of drift-diffusion equations for the transport of charge carriers (electrons, ferric cations and oxygen vacancies)
and a Poisson equation for the electric potential. The boundary conditions are prescribed by the electrochemical
reactions and the potential drops at the boundaries with the claystone and with the metal; they are of Fourier
type. The system also includes moving boundary equations. It will be introduced in detail in Section 2.

Up to now, no existence result has been established for the DPCM. Some finite volume methods have been
proposed in [5], which led to the development of the code CALIPSO; they are justified by a stability analysis and
by the study of their numerical performance. Numerical experiments with real-life data are presented in [4, 5];
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they show the efficiency of the developed methods and the relevance of the model. These numerical experiments
have also highlighted the long-time behavior of the model: after a transient period, a kind of stationary regime is
reached. It can be seen as a traveling wave solution: the size of the domain where the equations of the system are
defined stays constant, both interfaces are moving with the same velocity while the densities of charge carriers
and the electric potential have stationary profiles. The traveling wave solutions can be defined as solutions of a
stationary DPCM, which will be also detailed in Section 2.

In [10], the existence of traveling waves solutions for the DPCM has been investigated. An existence result is
established for a simplified model, where the electroneutrality in the oxide layer is assumed, so that the electric
field is constant. Numerical methods for the computation of the traveling waves solutions are also proposed in
[10] and numerical analysis of the simplified model is done.

The main novelty of the current paper is to prove the existence of traveling waves solution for the general
DPCM, and to obtain a precise and certified description of the solutions (including the width of the oxide layer,
and the value of the corrosion velocity). In order to do so, we use a computer-assisted argument, which allows us
to validate a posteriori a numerically computed approximate solution. More precisely, we construct a fixed-point
map which is based on a numerical solution, and use a combination of analytic estimates and interval arithmetic
computations to prove that this map is contracting in an explicit neighborhood of the numerical solution. This
yields both the existence of a true solution and guaranteed error bounds. For a broader overview of these
computer-assisted arguments, we refer the reader to the surveys [13,14,18,22] and the books [16,21]. Our work
follows in particular the techniques introduced in [15,19] for computer-assisted proofs using Chebyshev series.

The outline of the paper is the following. In Section 2, we present the evolutive DPCM and the associate
stationary model which defines the traveling waves. The main result of the paper is given in this section
and settled in Theorem 2.1. For the stationary model, we develop a spectral method for the computation of
numerical solutions. This method is based on the expansion of the different unknowns into Chebyshev series.
It leads to a nonlinear systems of equations which is solved by a Newton method. The numerical method is
introduced in Section 3. Then, the aim is to certify the existence of a strong solution to the stationary DPCM
in the neighborhood of a numerical solution. The tools needed for the proof are presented in Section 4. Finally,
numerical experiments are given in Section 5. All the numerical results are computed by the spectral method and
the existence of an exact solution in the neighborhood is certified. Appendix A is devoted to the presentation
of the test case used in Section 5: values of the numerous physical parameters and definition of the associated
scaled parameters.

2. Presentation of the DPCM

2.1. The evolutive DPCM

The DPCM introduced in [4] describes the evolution of a dense oxide layer at the surface of carbon steel
canisters in contact with a claystone formation under anaerobic conditions. As the size of the oxide layer is
very thin compared to the waste overpack size, it is a one-dimensional model. The unknowns are the density
of charge carriers – 𝐶 for the oxygen vacancies, 𝑁 for the electrons and 𝑃 for the ferric cations –, the electric
potential 𝜓 and the position of the interfaces of the oxide layer: 𝑋0 and 𝑋1. In this model 𝑋0 denotes the
interface between the oxide layer and the claystone formation (outer interface) and 𝑋1 denotes the interface
between the oxide layer and the carbon steel canisters (inner interface).

In this paper, we restrict our attention to the dimensionless model. The scaling process has been partly
described in Section 5 of [9]. It will be detailed in Appendix A. When it is possible, we will use the generic
notation 𝑈 for the carrier densities: 𝑈 can be either 𝐶, 𝑁 or 𝑃 . For instance, we denote by 𝑧𝑈 the charge of
each associated species: 𝑧𝑈 = 2,−1, 3 for 𝑈 = 𝐶,𝑁, 𝑃 . We also denote by 𝐽𝑈 the current density and 𝐷𝑈 the
mobility or diffusion coefficient for the corresponding species. As the time scale chosen for the scaling is the
characteristic time scale of the ferric cations, the scaled quantities 𝜀𝑈 = 𝐷𝑃 /𝐷𝑈 appear in the scaled system.
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The equations for the carrier densities 𝐶, 𝑁 , 𝑃 , as well as the boundary conditions, have the same form. For
𝑈 = 𝐶, 𝑁 or 𝑃 , they are:

𝜀𝑈𝜕𝑡𝑈 + 𝜕𝑥𝐽𝑈 = 0, 𝐽𝑈 = −𝜕𝑥𝑈 − 𝑧𝑈 𝑈 𝜕𝑥𝜓 in (𝑋0(𝑡), 𝑋1(𝑡)), ∀𝑡 > 0, (2.1a)
− 𝐽𝑈 + 𝜀𝑈 𝑋

′
0(𝑡)𝑈 = 𝑟0𝑈 (𝑈(𝑋0(𝑡)), 𝜓(𝑋0(𝑡))), on 𝑥 = 𝑋0(𝑡), ∀𝑡 > 0, (2.1b)

𝐽𝑈 − 𝜀𝑈 𝑋
′
1(𝑡)𝑈 = 𝑟1𝑈 (𝑈(𝑋1(𝑡)), 𝜓(𝑋1(𝑡)), 𝑉 ), on 𝑥 = 𝑋1(𝑡), ∀𝑡 > 0, (2.1c)

The functions 𝑟0𝑈 and 𝑟1𝑈 are prescribed by the kinetics of the electrochemical reactions at the interfaces. They
can be written in the following generic form:

𝑟0𝑈 (𝑠, 𝑥) = 𝛽0
𝑈 (𝑥)𝑠− 𝛾0

𝑈 (𝑥),
𝑟1𝑈 (𝑠, 𝑥, 𝑉 ) = 𝛽1

𝑈 (𝑉 − 𝑥)𝑠− 𝛾1
𝑈 (𝑉 − 𝑥),

where the functions 𝛽0
𝑈 , 𝛽1

𝑈 , 𝛾0
𝑈 and 𝛾1

𝑈 are smooth and positive functions. We will specify their definitions in
Appendix A.

The electric potential satisfies the following Poisson equation:

−𝜆2 𝜕2
𝑥𝑥𝜓 = 𝑧𝐶𝐶 + 𝑧𝑁𝑁 + 𝑧𝑃𝑃 + 𝜌hl, in (𝑋0(𝑡), 𝑋1(𝑡)), (2.2a)

𝜓 − 𝛼0𝜕𝑥𝜓 = Δ𝜓𝑝𝑧𝑐0 , 𝑥 = 𝑋0(𝑡), (2.2b)
𝜓 + 𝛼1𝜕𝑥𝜓 = 𝑉 −Δ𝜓𝑝𝑧𝑐1 , 𝑥 = 𝑋1(𝑡), (2.2c)

and the moving boundary equations are:

𝑋 ′
0(𝑡) = 𝑣0

𝑑(𝑡) +𝑋 ′
1(𝑡) (1−Π) , ∀𝑡 > 0, (2.3a)

𝑋 ′
1(𝑡) = − 𝜅

𝜀𝐶
(𝐽𝐶(𝑋1(𝑡))− 𝜀𝐶 𝐶 𝑋

′
1(𝑡)) , ∀𝑡 > 0. (2.3b)

Let us comment on the different parameters arising in the last equations:

– 𝑉 is the dimensionless applied potential between the metal and the claystone, see Figure 1 of [4].
– 𝜌hl is the net charge density of the ionic species in the host lattice.
– As the inner and outer interfacial structures behave like a capacitor, there are intrinsic voltage drops through

these interfaces, called voltages of zero charge and denoted by Δ𝜓𝑝𝑧𝑐0 and Δ𝜓𝑝𝑧𝑐1 .
– 𝜆2, 𝛼0 and 𝛼1 are positive dimensionless parameters coming from the scaling.
– 𝑣0

𝑑(𝑡) is the dissolution speed of the layer, given by

𝑣0
𝑑(𝑡) = 𝑘0

𝑑 𝑒
𝜌hl𝑎

0
𝑑 𝜓(𝑋0(𝑡)). (2.4)

– Π and 𝜅 are positive dimensionless parameters.

They all will be introduced in Appendix A.
In the system (2.1)–(2.3), 𝑉 is a given dimensionless applied potential. Let us already mention that it

is deduced from a physical value 𝑉𝑎 (expressed in Volts and evaluated relatively to the electrode reference
NHE) thanks to the scaling detailed in Appendix A. The system (2.1)–(2.3), where 𝑉 is given, is called the
“potentiostatic case”. In this case, one output quantity of interest is the total current of electrons at the inner
interface defined by

𝐽tot = −3
(︂

1
4𝜀𝐶

(𝐽𝐶(𝑋1(𝑡))− 𝜀𝐶𝐶𝑋
′
1(𝑡)) + 𝐽𝑃 (𝑋1(𝑡))− 𝜀𝑃𝑃𝑋

′
1(𝑡)

)︂
+

1
𝜀𝑁

(𝐽𝑁 (𝑋1(𝑡))− 𝜀𝑁𝑁𝑋
′
1(𝑡)) . (2.5)

Then, it is also interesting to search 𝑉 = 𝑉 (𝑡) such that the electron charge balance at the inner interface is
fixed to a given constant 𝐽 , which means

𝐽tot = 𝐽. (2.6)
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The system (2.1)–(2.3) with the additional unknown function of time 𝑉 and the additional equation (2.6) is
referred as the “galvanostatic case”. If 𝐽 = 0, we speak of free corrosion and 𝑉 is called “free corrosion potential”.

Finally, the system is supplemented with some initial conditions:

𝑃 (𝑥, 0) = 𝑃 0(𝑥), 𝑁(0, 𝑥) = 𝑁0(𝑥), 𝐶(0, 𝑥) = 𝐶0(𝑥), ∀𝑥 ∈ (𝑋0(0), 𝑋0(1)),
𝑋0(0) = 0, 𝑋1(0) = 1.

2.2. Reformulation of the evolutive DPCM on a fixed domain

In the one dimensional framework, it is always possible to define a change of variables that transform a system
of partial differential equations written on a moving domain into a new system of partial differential equations
defined on a fixed domain. It has been already done for the evolutive DPCM in [5], so that the numerical
methods for the DPCM are defined on a fixed domain, with a fixed mesh. The same change of variables is used
in [10] and in both cases the system is rewritten in [0, 1]× [0,∞).

As we plan to expand the unknowns into Chebyshev series in order to use a spectral numerical method for
the pseudo-stationary DPCM, we rewrite now the system of equations (2.1)–(2.3) in [−1, 1]× [0,∞). Therefore,
we use the following change of variable:⋃︁

𝑡∈[0,∞)

[𝑋0(𝑡), 𝑋1(𝑡)]× {𝑡} → [−1, 1]× [0,∞),

(𝑥, 𝑡) ↦→
(︂
𝜉(𝑥, 𝑡) = 2

𝑥−𝑋0(𝑡)
𝑋1(𝑡)−𝑋0(𝑡)

− 1, 𝑡
)︂
.

It allows us to associate to every function 𝑤 (𝑤 = 𝐶,𝑁, 𝑃 or 𝜓) defined on ∪𝑡∈R+ [𝑋0(𝑡), 𝑋1(𝑡)]×{𝑡} a function
𝑤 defined on [−1, 1]× [0,∞) by the relation

𝑤(𝑥, 𝑡) = 𝑤(𝜉(𝑥, 𝑡), 𝑡).

We also define the size of the domain by

𝐿(𝑡) = 𝑋1(𝑡)−𝑋0(𝑡).

Therefore, we obtain

𝜕𝑥𝑤(𝑥, 𝑡) =
2

𝐿(𝑡)
𝜕𝜉𝑤(𝜉(𝑥, 𝑡), 𝑡), 𝜕2

𝑥𝑥𝑤(𝑥, 𝑡) =
4

𝐿(𝑡)2
𝜕2
𝜉𝜉𝑤(𝜉(𝑥, 𝑡), 𝑡).

We do not give here the details of the computation as they are classical and similar to those done in [5].
Moreover, we forget the bars and we come back to the notation 𝑥 instead of 𝜉 in the reformulated system. The
equations on the carrier densities 𝑈 = 𝐶,𝑁, 𝑃 then write:

𝜀𝑈𝐿(𝑡)𝜕𝑡(𝐿(𝑡)𝑈) + 𝜕𝑥𝐽𝑈 = 0, in (−1, 1), ∀𝑡 > 0, (2.7)
with 𝐽𝑈 = −4𝜕𝑥𝑈 − 4𝑧𝑈 𝑈 𝜕𝑥𝜓 − 𝜀𝑈𝐿(𝑡) (2𝑋 ′

0(𝑡) + (𝑥+ 1)𝐿′(𝑡))𝑈,

and are supplemented with the Fourier boundary conditions:

−𝐽𝑈 (−1, 𝑡) = 2𝐿(𝑡)𝑟0𝑈 (𝑈(−1, 𝑡), 𝜓(−1, 𝑡)), ∀𝑡 > 0, (2.8a)
𝐽𝑈 (1, 𝑡) = 2𝐿(𝑡)𝑟1𝑈 (𝑈(1, 𝑡), 𝜓(1, 𝑡), 𝑉 ), ∀𝑡 > 0. (2.8b)

The electric potential satisfies the following Poisson equation

− 4𝜆2

𝐿(𝑡)2
𝜕2
𝑥𝑥𝜓 = 𝑧𝐶𝐶 + 𝑧𝑁𝑁 + 𝑧𝑃𝑃 + 𝜌hl, in (−1, 1), (2.9a)
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𝜓(−1, 𝑡)− 2𝛼0

𝐿(𝑡)
𝜕𝑥𝜓(−1, 𝑡) = Δ𝜓𝑝𝑧𝑐0 , (2.9b)

𝜓(1, 𝑡) +
2𝛼1

𝐿(𝑡)
𝜕𝑥𝜓(1, 𝑡) = 𝑉 −Δ𝜓𝑝𝑧𝑐1 . (2.9c)

The moving boundary equations are written as:

𝑋 ′
0(𝑡) = 𝑣0

𝑑(𝑡) +𝑋 ′
1(𝑡) (1−Π) , ∀𝑡 > 0, (2.10a)

𝑋 ′
1(𝑡) = − 𝜅

𝜀𝐶
𝑟1𝐶(𝐶(1, 𝑡), 𝜓(1, 𝑡), 𝑉 ), ∀𝑡 > 0. (2.10b)

Finally, in the galvanostatic case, the relation (2.6) rewrites as

−3
(︂

1
4𝜀𝐶

𝐽𝐶(1, 𝑡) + 𝐽𝑃 (1, 𝑡)
)︂

+
1
𝜀𝑁

𝐽𝑁 (1, 𝑡) = 2𝐿(𝑡)𝐽. (2.11)

2.3. The stationary DPCM

Numerical experiments show the existence of traveling wave solutions for the DPCM (2.1)–(2.3), see [4].
These solutions do not depend on time and are defined in a fixed size domain, whose boundaries are moving at
the same velocity. Therefore, they are solutions to the stationary form of the equations of the DPCM. Moreover,
we set 𝐿(𝑡) = ℓ the constant size of the domain and 𝑋 ′

0(𝑡) = 𝑋 ′
1(𝑡) = 𝛿 the constant velocity of the interfaces.

The equations for the charge carrier densities 𝑈 = 𝐶,𝑁, 𝑃 then write as:

𝜕𝑥𝐽𝑈 = 0, 𝐽𝑈 = −4𝜕𝑥𝑈 − 4𝑧𝑈 𝑈 𝜕𝑥𝜓 − 2𝜀𝑈𝛿ℓ𝑈 in (−1, 1), (2.12a)
−𝐽𝑈 (−1) = 2ℓ𝑟0𝑈 (𝑈(−1), 𝜓(−1)), (2.12b)

𝐽𝑈 (1) = 2ℓ𝑟1𝑈 (𝑈(1), 𝜓(1), 𝑉 ). (2.12c)

The equations for the electric potential write as:

−4𝜆2

ℓ2
𝜕2
𝑥𝑥𝜓 = 𝑧𝐶𝐶 + 𝑧𝑁𝑁 + 𝑧𝑃𝑃 + 𝜌hl, in (−1, 1), (2.13a)

𝜓(−1)− 2𝛼0

ℓ
𝜕𝑥𝜓(−1) = Δ𝜓𝑝𝑧𝑐0 , (2.13b)

𝜓(1) +
2𝛼1

ℓ
𝜕𝑥𝜓(1) = 𝑉 −Δ𝜓𝑝𝑧𝑐1 . (2.13c)

Finally, from the moving boundary equations (2.10), we deduce the following equations on the size ℓ and the
velocity 𝛿:

𝛿 =
1
Π
𝑘0
𝑑 𝑒

𝜌hl 𝑎
0
𝑑𝜓(−1), (2.14a)

ℓ = −𝜅𝐽𝐶(1)
2𝛿𝜀𝐶

· (2.14b)

Moreover, in the galvanostatic case, the additional equation (2.11) becomes

−3
(︂

1
4𝜀𝐶

𝐽𝐶(1) + 𝐽𝑃 (1)
)︂

+
1
𝜀𝑁

𝐽𝑁 (1) = 2ℓ𝐽. (2.15)

We stress that the width ℓ of the oxide layer and the velocity of its interfaces 𝛿 are not input parameters,
but part of the unknowns of the system, and that we have to solve for them. In this paper, we focus only on the
potentiostatic case (2.12)–(2.14) to simplify the presentation, but the approach that we introduce could also
handle the galvanostatic case. We both prove the existence of solutions of (2.12)–(2.14), and get quantitative,
certified information about these solutions. These results will be presented in more details in Section 5.2, but
Theorem 2.1 exhibits our main result for a given set of data.
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Figure 1. An approximate pseudo-stationary steady state (𝜓,𝐶, �̄� , 𝑃 ) for pH = 8.5 and
𝑉𝑎 = 0.5 Volts.

Theorem 2.1. Let pH = 8.5, 𝑉𝑎 = 0.5 Volts, and take all the other parameters of the model as in Appendix A.
There exist analytic functions 𝜓,𝐶,𝑁, 𝑃 : [−1, 1] → R and 𝛿, ℓ > 0 such that (𝜓,𝐶,𝑁, 𝑃, 𝛿, ℓ) is a solution
of (2.12)–(2.14). Besides, this solution satisfies

sup
[−1,1]

|𝜓 − 𝜓| ≤ 1.3× 10−9,

sup
[−1,1]

|𝐶 − 𝐶| ≤ 1.1× 10−10, sup
[−1,1]

|𝑁 − �̄� | ≤ 4.9× 10−10, sup
[−1,1]

|𝑃 − 𝑃 | ≤ 1.4× 10−10,

where 𝜓, 𝐶, �̄� and 𝑃 are explicitly known functions (in fact polynomials) represented in Figure 1, and 𝛿 and ℓ
fulfill

𝛿 ∈ [33.49472560, 33.49472564], ℓ ∈ [1.7033525352, 1.7033525356].

We emphasize that the parameter values pH = 8.5 and 𝑉𝑎 = 0.5 Volts play no particular role in our proof.
We get similar results for different values of pH and 𝑉𝑎 in Section 5.2. There, we also give the corresponding
values of 𝛿 and ℓ in physical units (remember that all the quantities in (2.12)–(2.14) were nondimensionalized).

3. Expansion into Chebyshev series and computation of a numerical solution

A numerical scheme, based on finite volumes, was introduced in [10] in order to obtain approximate solutions
of the stationary DPCM. Here, we adopt a different strategy, which is more easily compatible with computer-
assisted proofs. The solutions (both approximate and rigorous) of (2.12)–(2.14) will be built as Chebyshev series.
We start by recalling some basics facts about Chebyshev series, and we then introduce the numerical method
we use for the computation of an approximate solution to (2.12)–(2.14). The extension to the galvanostatic case
is straightforward: we simply need to incorporate the additional unknown 𝑉 and the additional equation (2.15),
so we do not discuss it more in this paper.

3.1. Basics about Chebyshev series

We recall here a few results and notations about Chebyshev polynomials and series that are going to be
useful in this work. For a more detailed exposition, further references and proofs, we refer to [20].
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Let 𝑇𝑘 be the Chebyshev polynomials of the first kind defined by

𝑇𝑘(cos(𝜃)) = cos(𝑘𝜃), ∀𝜃 ∈ R, ∀𝑘 ∈ N.

They satisfy

𝑇𝑘(1) = 1, 𝑇𝑘(−1) = (−1)𝑘, ∀𝑘 ∈ N. (3.1)

Every Lipschitz continuous function 𝑢 : [−1, 1] → R admits a unique convergent Chebyshev expansion defined
as

𝑢(𝑥) = 𝑢0 + 2
∞∑︁
𝑘=1

𝑢𝑘 𝑇𝑘(𝑥) =
∑︁
𝑘∈Z

𝑢𝑘 𝑇𝑘(𝑥), ∀𝑥 ∈ [−1, 1], (3.2)

with the conventions

𝑢−𝑘 = 𝑢𝑘 and 𝑇−𝑘 = 𝑇𝑘, ∀𝑘 ∈ N.

Moreover, for every function 𝑢 : [−1, 1] → R which admits a Chebyshev convergent expansion given by (3.2),
the following integration formula holds for all 𝑥 ∈ (−1, 1):∫︁ 𝑥

−1

∑︁
𝑘∈Z

𝑢𝑘𝑇𝑘(𝑠) d𝑠 =

(︃
𝑢0 −

𝑢1

2
− 2

∞∑︁
𝑘=2

(−1)𝑘𝑢𝑘
𝑘2 − 1

)︃
𝑇0(𝑥) +

∑︁
𝑘∈Z∖{0}

𝑢𝑘−1 − 𝑢𝑘+1

2𝑘
𝑇𝑘(𝑥). (3.3)

Proposition 3.1 gives the relation between the coefficients of the Chebyshev series of a given function 𝑢 and
the coefficients of the Chebyshev series of its derivative 𝑣 = 𝑢′.

Proposition 3.1. Let 𝑢, 𝑣 : [−1, 1] → R be 𝐶1 functions such that

𝑢 = 𝑢0 + 2
∞∑︁
𝑘=1

𝑢𝑘𝑇𝑘 and 𝑣 = 𝑣0 + 2
∞∑︁
𝑘=1

𝑣𝑘𝑇𝑘.

Let us assume that 𝑢′(𝑥) = 𝑣(𝑥), for all 𝑥 ∈ (−1, 1). Then, the Chebyschev coefficients of 𝑢 and 𝑣 satisfy

𝑢𝑘 +
1
2𝑘

(𝑣𝑘+1 − 𝑣𝑘−1) = 0, 𝑘 ≥ 1. (3.4)

Proof. As 𝑢′(𝑥) = 𝑣(𝑥), for all 𝑥 ∈ (−1, 1), we deduce that

𝑢(𝑥) = 𝑢(−1) +
∫︁ 𝑥

−1

𝑣(𝑠) d𝑠, ∀𝑥 ∈ [−1, 1],

so that ∑︁
𝑘∈Z

𝑢𝑘𝑇𝑘(𝑥) = 𝑢(−1) +
∫︁ 𝑥

−1

∑︁
𝑘∈Z

𝑣𝑘𝑇𝑘(𝑠) d𝑠.

Using formula (3.3) and identifying the coefficients of the Chebyshev expansions yields (3.4). �

Remark 3.2. For a given 𝑣, the solution 𝑢 of 𝑢′ = 𝑣 is obviously only defined up to a constant, which is why
we have no equation for 𝑢0 in the above proposition. When we write the unknown of the DPCM as Chebyshev
series, the boundary conditions provide the lacking equations, see (3.12) and (3.13).
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3.2. Functional analytic framework

In the sequel, we will need some functional analysis framework for the Chebyshev series. We will denote by
𝑢 any sequence (𝑢𝑘)𝑘∈N in RN and throughout this note we will identify a function 𝑢 : [−1, 1] → R, at least
Lipschitz continuous, with the sequence 𝑢 = (𝑢𝑘)𝑘∈N of its Chebyshev coefficients.

Definition 3.3. Let 𝜈 > 1. We define the sequence 𝜉(𝜈) by

𝜉𝑘(𝜈) =
{︂

1 for 𝑘 = 0,
2𝜈𝑘 for 𝑘 ≥ 1.

For any sequence 𝑢 ∈ RN we define the 𝜈-norm of 𝑢 as

‖𝑢‖𝜈 =
∑︁
𝑘∈N

|𝑢𝑘| 𝜉𝑘(𝜈) = |𝑢0|+ 2
∑︁
𝑘≥1

|𝑢𝑘|𝜈𝑘. (3.5)

We also introduce the following Banach space

ℓ1𝜈 = {𝑢 ∈ RN : ‖𝑢‖𝜈 <∞}.

Definition 3.4. Let 𝑢, 𝑣 : [−1, 1] → R be Lipschitz continuous functions identified to 𝑢 and 𝑣. Then, the
expansion into Chebyshev series of the product 𝑢𝑣 is given by:

𝑢𝑣 = 𝑐0 + 2
∞∑︁
𝑘=1

𝑐𝑘𝑇𝑘, with 𝑐𝑘 = (𝑢 * 𝑣)𝑘 =
∑︁

𝑘1+𝑘2=𝑘
𝑘1,𝑘2∈Z

𝑢|𝑘1|𝑣|𝑘2|, ∀𝑘 ≥ 0. (3.6)

Let us notice that for every 𝑢, 𝑣 ∈ ℓ1𝜈 we define 𝑢 * 𝑣 thanks to (3.6). This definition of a convolution product
on ℓ1𝜈 induces a natural Banach algebra structure on ℓ1𝜈 , as stated in Lemma 3.5.

Lemma 3.5. The space (ℓ1𝜈 , *) is a Banach algebra with

‖𝑢 * 𝑣‖𝜈 ≤ ‖𝑢‖𝜈 ‖𝑣‖𝜈 , ∀𝑢,𝑣 ∈ ℓ1𝜈 .

Proof. This follows from Definition 3.4 and the triangle inequality. �

Definition 3.6. We define the operator 𝒮 : 𝑢 ∈ RN ↦→ 𝒮𝑢 ∈ RN such that

(𝒮𝑢)𝑘 =
{︂

0, for 𝑘 = 0,
𝑢𝑘+1 − 𝑢𝑘−1, for any 𝑘 ≥ 1. (3.7)

Moreover, on the space RN we define a 𝜈-seminorm | · |𝜈 as

|𝑢|𝜈 =
∑︁
𝑘∈N

|(𝒮𝑢)𝑘|
(︀
𝜈𝑘 + 𝜈−𝑘

)︀
=
∑︁
𝑘≥1

|𝑢𝑘+1 − 𝑢𝑘−1|
(︀
𝜈𝑘 + 𝜈−𝑘

)︀
. (3.8)

If 𝜈 ≥ 1 then 𝜈−𝑘 ≤ 𝜈𝑘 for all 𝑘 ≥ 1 and, for all 𝑢 ∈ ℓ1𝜈 , we have |𝑢|𝜈 ≤ ||𝒮𝑢||𝜈 .

3.3. Reformulation of the stationary DPCM using Chebyshev series

The system (2.12)–(2.14) represents second order differential equations for the densities 𝑈 = 𝐶,𝑁, 𝑃 and the
electric potential 𝜓. However, considering the currents 𝐽𝑈 for 𝑈 = 𝐶,𝑁, 𝑃 and the electric field 𝐸 = 𝜕𝑥𝜓 as
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additional unknowns, it can be rewritten as a system of first order differential equations. More precisely, the
inner equations (2.12a) and (2.13a) rewrite as:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

𝜕𝑥𝜓 = 𝐸,

𝜕𝑥𝐸 = ℓ2

4𝜆2 (−𝑧𝐶𝐶 − 𝑧𝑁𝑁 − 𝑧𝑃𝑃 − 𝜌hl) ,
𝜕𝑥𝐽𝑈 = 0, for 𝑈 = 𝐶,𝑁, 𝑃,

𝜕𝑥𝑈 = − 1
4𝐽𝑈 − 𝑧𝑈𝑈𝐸 − 𝜀𝑈

2 𝛿ℓ𝑈, for 𝑈 = 𝐶,𝑁, 𝑃,

(3.9)

while the boundary conditions and the equations for the velocity 𝛿 and the thickness ℓ lead to:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝐽𝑈 (−1) + 2ℓ𝑟0𝑈 ((𝑈(−1), 𝜓(−1)) = 0, for 𝑈 = 𝐶,𝑁, 𝑃,

−𝐽𝑈 (1) + 2ℓ𝑟1𝑈 ((𝑈(1), 𝜓(1), 𝑉 ) = 0, for 𝑈 = 𝐶,𝑁, 𝑃,

𝜓(−1)− 2𝛼0
ℓ 𝐸(−1)−Δ𝜓𝑝𝑧𝑐0 = 0,

𝜓(1) + 2𝛼1
ℓ 𝐸(1)− 𝑉 + Δ𝜓𝑝𝑧𝑐1 = 0,

𝛿 − 1
Π 𝑘

0
𝑑 exp

(︀
𝜌hl 𝑎

0
𝑑𝜓(−1)

)︀
= 0,

ℓ+ 𝜅𝐽𝐶(1)
2𝛿𝜀𝐶

= 0.

(3.10)

Assume that the system (3.9) and (3.10) admits a smooth solution (𝜓,𝐸, (𝑈, 𝐽𝑈 )𝑈=𝐶,𝑁,𝑃 , 𝛿, ℓ), so that 𝜓, 𝐸,
𝑈 and 𝐽𝑈 for 𝑈 = 𝐶,𝑁, 𝑃 can be expanded into Chebyshev series:

𝜓 = 𝜓0 + 2
∞∑︁
𝑘=1

𝜓𝑘𝑇𝑘, 𝐸 = 𝐸0 + 2
∞∑︁
𝑘=1

𝐸𝑘𝑇𝑘,

𝑈 = 𝑈0 + 2
∞∑︁
𝑘=1

𝑈𝑘𝑇𝑘, 𝐽𝑈 = 𝐽𝑈,0 + 2
∞∑︁
𝑘=1

𝐽𝑈,𝑘𝑇𝑘, for 𝑈 = 𝐶,𝑁, 𝑃.

(3.11)

We identify each function 𝜓, 𝐸, 𝑈 and 𝐽𝑈 with the sequence of its coefficients in the Chebyshev series: 𝜓, 𝐸,
𝑈 and 𝐽𝑈 . As the net charge density of the host lattice 𝜌hl is a given constant, we can introduce the sequence
𝜌hl ∈ RN defined by 𝜌hl = (𝜌hl, 0, . . .). Then, plugging the series expansions (3.11) into (3.9) and using the
relation (3.6) and Proposition 3.1, we obtain the following infinite dimensional set of algebraic equations⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

𝜓𝑘 + 1
2𝑘 (𝒮𝐸)𝑘 = 0, ∀𝑘 ≥ 1,

𝐸𝑘 + 1
2𝑘

ℓ2

4𝜆2 (𝒮 (−𝑧𝐶𝐶 − 𝑧𝑁𝑁 − 𝑧𝑃𝑃 − 𝜌hl))𝑘 = 0, ∀𝑘 ≥ 1,
𝐽𝑈,𝑘 = 0, for 𝑈 = 𝐶,𝑁, 𝑃, ∀𝑘 ≥ 1,

𝑈𝑘 + 1
2𝑘

(︀
𝒮
(︀
− 1

4𝐽𝑈 − 𝑧𝑈𝑈 *𝐸 − 𝜀𝑈

2 𝛿ℓ𝑈
)︀)︀
𝑘

= 0, for 𝑈 = 𝐶,𝑁, 𝑃, ∀𝑘 ≥ 1.

(3.12)

It is supplemented by the following relations, obtained by plugging the series expansions (3.11) into (3.10) and
applying (3.1):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝐽𝑈,0 + 2ℓ𝑟0𝑈
(︀
𝑈0 + 2

∑︀∞
𝑘=1(−1)𝑘𝑈𝑘, 𝜓0 + 2

∑︀∞
𝑘=1(−1)𝑘𝜓𝑘

)︀
= 0, for 𝑈 = 𝐶,𝑁, 𝑃,

−𝐽𝑈,0 + 2ℓ𝑟1𝑈 (𝑈0 + 2
∑︀∞
𝑘=1 𝑈𝑘, 𝜓0 + 2

∑︀∞
𝑘=1 𝜓𝑘, 𝑉 ) = 0, for 𝑈 = 𝐶,𝑁, 𝑃,

𝜓0 + 2
∑︀∞
𝑘=1(−1)𝑘𝜓𝑘 − 2𝛼0

ℓ

(︀
𝐸0 + 2

∑︀∞
𝑘=1(−1)𝑘𝐸𝑘

)︀
−Δ𝜓𝑝𝑧𝑐0 = 0,

𝜓0 + 2
∑︀∞
𝑘=1 𝜓𝑘 + 2𝛼1

ℓ (𝐸0 + 2
∑︀∞
𝑘=1𝐸𝑘)− 𝑉 + Δ𝜓𝑝𝑧𝑐1 = 0,

𝛿 − 1
Π 𝑘

0
𝑑 exp

(︀
𝜌hl 𝑎

0
𝑑

(︀
𝜓0 + 2

∑︀∞
𝑘=1(−1)𝑘𝜓𝑘

)︀)︀
= 0,

ℓ+ 𝜅𝐽𝐶,0
2𝛿𝜀𝐶

= 0.

(3.13)

Let us notice that since 𝐽𝑈,𝑘 = 0 for all 𝑘 ≥ 1 and 𝑈 = 𝐶,𝑁, 𝑃 , the Chebyshev expansion of the function 𝐽𝑈 is
given only by the first mode 𝐽𝑈,0, i.e., 𝐽𝑈 = (𝐽𝑈,0, 0, . . .). For better readability we will forget the subscript 0
and write 𝐽𝑈 . Moreover, in the sequel we will identify the real number 𝐽𝑈 with its natural injection in RN given
by the sequence 𝐽𝑈 = (𝐽𝑈 , 0, . . .). We will also identify 𝛿 and ℓ with their natural injection in RN.
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3.4. The formulation 𝐹 (𝑋) = 0

We now rewrite the infinite system of nonlinear equations (3.12) and (3.13) in the form 𝐹 (𝑋) = 0 where the
unknown is

𝑋 = (𝜓,𝐸,𝐶,𝑁 ,𝑃 , 𝐽𝐶 , 𝐽𝑁 , 𝐽𝑃 , 𝛿, ℓ) ∈
(︀
RN)︀5 × R3 × (R ∖ {0})2 ,

and the function 𝐹 is defined by

𝐹 =
(︁
𝐹 (𝜓), 𝐹 (𝐸), 𝐹 (𝐶), 𝐹 (𝑁), 𝐹 (𝑃 ), 𝐹 (𝐽𝐶), 𝐹 (𝐽𝑁 ), 𝐹 (𝐽𝑃 ), 𝐹 (𝛿), 𝐹 (ℓ)

)︁
,

with⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝐹
(𝜓)
0 (𝑋) = 𝜓0 + 2

∑︀∞
𝑘=1(−1)𝑘𝜓𝑘 − 2𝛼0

ℓ

(︀
𝐸0 + 2

∑︀∞
𝑘=1(−1)𝑘𝐸𝑘

)︀
−Δ𝜓𝑝𝑧𝑐0 ,

𝐹
(𝜓)
𝑘 (𝑋) = 𝜓𝑘 + 1

2𝑘 (𝒮𝐸)𝑘, 𝑘 ≥ 1,

𝐹
(𝐸)
0 (𝑋) = 𝜓0 + 2

∑︀∞
𝑘=1 𝜓𝑘 + 2𝛼1

ℓ (𝐸0 + 2
∑︀∞
𝑘=1𝐸𝑘)− 𝑉 + Δ𝜓𝑝𝑧𝑐1 ,

𝐹
(𝐸)
𝑘 (𝑋) = 𝐸𝑘 + 1

2𝑘
ℓ2

4𝜆2 (𝒮 (−𝑧𝐶𝐶 − 𝑧𝑁𝑁 − 𝑧𝑃𝑃 − 𝜌hl))𝑘 , 𝑘 ≥ 1,

𝐹
(𝑈)
0 (𝑋) = 𝐽𝑈 + 2ℓ𝑟0𝑈

(︀
𝑈0 + 2

∑︀∞
𝑘=1(−1)𝑘𝑈𝑘, 𝜓0 + 2

∑︀∞
𝑘=1(−1)𝑘𝜓𝑘

)︀
, for 𝑈 = 𝐶,𝑁, 𝑃,

𝐹
(𝑈)
𝑘 (𝑋) = 𝑈𝑘 + 1

2𝑘

(︀
𝒮
(︀
− 1

4𝐽𝑈 − 𝑧𝑈𝑈 *𝐸 − 𝜀𝑈

2 𝛿ℓ𝑈
)︀)︀
𝑘
, 𝑘 ≥ 1, for 𝑈 = 𝐶,𝑁, 𝑃,

𝐹 (𝐽𝑈 )(𝑋) = −𝐽𝑈 + 2ℓ𝑟1𝑈 (𝑈0 + 2
∑︀∞
𝑘=1 𝑈𝑘, 𝜓0 + 2

∑︀∞
𝑘=1 𝜓𝑘, 𝑉 ) , for 𝑈 = 𝐶,𝑁, 𝑃,

𝐹 (𝛿)(𝑋) = 𝛿 − 1
Π 𝑘

0
𝑑 exp

(︀
𝜌hl 𝑎

0
𝑑

(︀
𝜓0 + 2

∑︀∞
𝑘=1(−1)𝑘𝜓𝑘

)︀)︀
,

𝐹 (ℓ)(𝑋) = ℓ+ 𝜅𝐽𝐶

2𝛿𝜀𝐶
,

(3.14)
where we recall that 𝜌hl denotes the sequence given by 𝜌hl = (𝜌hl, 0, . . .).

We have rewritten the initial system of differential equations (2.12)–(2.14) as an infinite system of nonlinear
equations of the form 𝐹 (𝑋) = 0. It remains now to prove that the existence of a solution 𝑋 to the system
𝐹 (𝑋) = 0 yields the existence of a smooth solution to the initial system (2.12)–(2.14). To this end we introduce
an appropriate function space 𝒳𝜈 and in the sequel we will consider that the function 𝐹 given by (3.14) acts
only on this space.

Let us first introduce Ipot and I1pot the following index sets:

Ipot = {𝜓,𝐸,𝐶,𝑁, 𝑃, 𝐽𝐶 , 𝐽𝑁 , 𝐽𝑃 , 𝛿, ℓ}, (3.15)

and

I1pot = {𝜓,𝐸,𝐶,𝑁, 𝑃} ⊂ Ipot. (3.16)

Definition 3.7. Let 𝜈 > 1 and 𝜂 ∈ (0,∞)10 be given. We define

𝒳𝜈 =

⎧⎨⎩𝑢 ∈ (︀RN)︀5 × R3 × (R ∖ {0})2 :
∑︁
𝑖∈I1pot

𝜂𝑖||𝑢𝑖||𝜈 +
∑︁

𝑖∈Ipot∖I1pot

𝜂𝑖|𝑢𝑖| <∞

⎫⎬⎭ .

Moreover for 𝑢 ∈
(︀
RN)︀5 × R3 × (R ∖ {0})2 we define

||𝑢||𝒳𝜈 ,𝜂 =
∑︁
𝑖∈I1pot

𝜂𝑖||𝑢𝑖||𝜈 +
∑︁

𝑖∈Ipot∖I1pot

𝜂𝑖|𝑢𝑖|. (3.17)

Remark 3.8. The norm || · ||𝒳𝜈 ,𝜂 depends on several parameters: 𝜈 ∈ (1,+∞) and 𝜂 ∈ (0,+∞)10, which must
be carefully chosen in practice. We refer to Section 5.1 for a more in-depth discussion.
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In the sequel, we will denote every 𝑋 ∈ 𝒳𝜈 as

𝑋 = (𝜓,𝐸,𝐶,𝑁 ,𝑃 , 𝐽𝐶 , 𝐽𝑁 , 𝐽𝑃 , 𝛿, ℓ),

and we will consider that 𝐹 acts on the space (𝒳𝜈 , || · ||𝒳𝜈 ,𝜂). Then, Lemma 3.9 summarizes and justifies in a
precise statement all the formal computations and substitutions made previously.

Lemma 3.9. Let 𝜈 > 1 and 𝜂 ∈ (0,∞)10. Assume that there exists

𝑋 = (𝜓,𝐸,𝐶,𝑁 ,𝑃 , 𝐽𝐶 , 𝐽𝑁 , 𝐽𝑃 , 𝛿, ℓ) ∈ 𝒳𝜈 ,

such that 𝐹 (𝑋) = 0 and consider as in (3.11) the functions 𝜓, 𝐸, 𝑈 and 𝐽𝑈 for 𝑈 = 𝐶,𝑁, 𝑃 . Then 𝜓, 𝐸, 𝑈
and 𝐽𝑈 for 𝑈 = 𝐶,𝑁, 𝑃 are smooth functions which, together with ℓ and 𝛿, solve (2.12)–(2.14).

Proof. First notice that since 𝑋 ∈ 𝒳𝜈 with 𝜈 > 1, the Chebyshev coefficients are decaying geometrically fast
to 0, and thus the functions 𝜓, 𝐸, 𝑈 and 𝐽𝑈 for 𝑈 = 𝐶,𝑁, 𝑃 are well defined and smooth (in fact analytic),
see Section 8 of [20]. Then, having 𝐹 (𝑋) = 0 means exactly that the sequences 𝜓 = (𝜓𝑘)𝑘≥0, 𝐸 = (𝐸𝑘)𝑘≥0,
𝑈 = (𝑈𝑘)𝑘≥0, 𝐽𝑈 for 𝑈 = 𝐶,𝑁, 𝑃 , 𝛿 and ℓ solve (3.12) and (3.13), which in turn implies that the functions 𝜓,
𝐸, 𝑈 and 𝐽𝑈 for 𝑈 = 𝐶,𝑁, 𝑃 , 𝛿 and ℓ solve (3.9) and (3.10). All the derivatives needed in (3.9) and (3.10) are
legitimate thanks to the geometrical decay of the coefficients. �

3.5. Computation of a numerical solution

From the infinite system of equations 𝐹 (𝑋) = 0, where 𝐹 is given by (3.14), we can easily deduce a finite
nonlinear system of equations, just by truncating the Chebyshev modes of order 𝐾 ≥ 1 and higher, for a given
𝐾. The unknowns of this new system are (𝜓𝑘, 𝐸𝑘, 𝐶𝑘, 𝑁𝑘, 𝑃𝑘)0≤𝑘≤𝐾−1, 𝐽𝐶 , 𝐽𝑁 , 𝐽𝑃 , ℓ, 𝛿 and the size of the system
is 5𝐾 + 5.

Let us denote by 𝜋𝐾 : ℓ1𝜈 → R𝐾 the finite dimensional projection obtained by truncating the Chebyshev
modes of order 𝐾 ≥ 1 and higher, i.e. 𝜋𝐾(𝑢) = (𝑢0, . . . , 𝑢𝐾−1) for 𝑢 ∈ ℓ1𝜈 . Then, we extend the definition of
𝜋𝐾 to 𝜋𝐾 : 𝒳𝜈 → R5𝐾 × R5 by

𝜋𝐾(𝑋) = (𝜋𝐾(𝜓), 𝜋𝐾(𝐸), 𝜋𝐾(𝐶), 𝜋𝐾(𝑁), 𝜋𝐾(𝑃 ), 𝐽𝐶 , 𝐽𝑁 , 𝐽𝑃 , 𝛿, ℓ) .

We also denote by 𝚤𝐾 the natural injection from R5𝐾+5 to 𝒳𝜈 . We may now define

𝐹 [𝐾] = (𝜋𝐾 ∘ 𝐹 ∘ 𝚤𝐾).

We can compute an approximate solution,𝑋 ∈ R5𝐾+5 to 𝐹 = 0 by solving numerically the finite dimensional
problem 𝐹 [𝐾] = 0. We refer again to Section 5.1 for more details on the resolution of this finite dimensional
problem. In the sequel, we use the same notation to denote 𝑋 ∈ R5𝐾+5 an approximate solution to 𝐹 [𝐾] = 0
and its injection into 𝒳𝜈 .

4. Towards a computer-assisted proof of the existence of solutions

4.1. Presentation of the general strategy

We present in this section the strategy that will be used in order to prove the existence of a solution to (2.12)–
(2.14). In Section 3, we have reformulated the problem as a zero finding problem 𝐹 (𝑋) = 0 for a suitable operator
𝐹 defined on the space 𝒳𝜈 . We are now going to introduce a Newton-like operator 𝑇 (see (4.6)) whose fixed
points are in one-to-one correspondence with the zeros of 𝐹 . The existence and enclosure of the solution then
follow by the contraction mapping theorem, once the operator 𝑇 is proven to be a contraction on some complete
set. The following theorem, very reminiscent of the Newton–Kantorovich theorem, provides us with an efficient
way of finding an explicit neighborhood of the numerical solution 𝑋 on which the operator is a contraction.
Many similar versions of this theorem have been used in the last decades in computer-assisted proofs (see
e.g. [1, 11,16,27] and the references therein).
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Theorem 4.1. Let (𝒳 , || · ||𝒳 ), (𝒴, || · ||𝒴) be Banach spaces and 𝐹 : 𝒳 → 𝒴 a 𝐶2 function. Let 𝐴 : 𝒴 → 𝒳
and 𝐴† : 𝒳 → 𝒴 be linear operators, with 𝐴 injective. Let 𝑟* > 0, 𝑋 ∈ 𝒳 and assume that there exist positive
constants 𝑌 , 𝑍0, 𝑍1 and 𝑍2 such that ⃦⃦

𝐴𝐹
(︀
𝑋
)︀⃦⃦
𝒳 ≤ 𝑌, (4.1)⃒⃒⃒⃒⃒⃒

𝐼 −𝐴𝐴†
⃒⃒⃒⃒⃒⃒
𝒳 ≤ 𝑍0, (4.2)⃒⃒⃒⃒⃒⃒

𝐴(𝐷𝐹
(︀
𝑋
)︀
−𝐴†)

⃒⃒⃒⃒⃒⃒
𝒳 ≤ 𝑍1, (4.3)⃒⃒⃒⃒⃒⃒

𝐴𝐷2𝐹 (𝑋)
⃒⃒⃒⃒⃒⃒
𝒳 ≤ 𝑍2, ∀

⃦⃦
𝑋 −𝑋

⃦⃦
𝒳 ≤ 𝑟*, (4.4)

where for any 𝑘-linear (𝑘 ≥ 1) operator defined on 𝒳 we denote by ||| · |||𝒳 its operator norm. Define the radii
polynomial 𝑃 as

𝑃 (𝑟) =
𝑍2

2
𝑟2 − (1− (𝑍1 + 𝑍0))𝑟 + 𝑌. (4.5)

Assume that there exists 𝑟 > 0 such that 𝑃 (𝑟) < 0 and let 𝑟 and 𝑟 denote the two nonnegative roots of 𝑃 , with
𝑟 < 𝑟. Then, provided 𝑟 < 𝑟*, the operator 𝑇 : 𝒳 → 𝒳 defined as

𝑇 = 𝐼 −𝐴𝐹, (4.6)

has a unique fixed point in 𝐵𝒳 (𝑋, 𝑟) the closed ball of 𝒳 , centered at 𝑋 and of radius 𝑟 for all 𝑟 in [𝑟min, 𝑟max)
where

𝑟min = 𝑟 and 𝑟max = min
(︂
𝑟 + 𝑟

2
, 𝑟*
)︂
.

Moreover since we assume that 𝐴 is an injective operator, then 𝐹 has a unique zero in 𝐵𝒳 (𝑋, 𝑟) for all
𝑟 ∈ [𝑟min, 𝑟max).

The proof simply consists in checking that 𝑇 is a contraction on 𝐵𝒳 (𝑋, 𝑟) for all 𝑟 ∈ [𝑟min, 𝑟max). We refer
to the above-mentioned references for a detailed proof.

Remark 4.2. Let us make a few comments about Theorem 4.1.

– Since 𝑃 is simply a quadratic polynomial, the existence of an 𝑟 > 0 such that 𝑃 (𝑟) < 0 is equivalent to
having

𝑍1 + 𝑍0 < 1 and 2𝑍2𝑌 < (1− (𝑍1 + 𝑍0))2, (4.7)

and so these two conditions are sufficient conditions for 𝑇 to map 𝐵𝒳 (𝑋, 𝑟) into itself. The restriction
𝑟 < 𝑟+𝑟

2 is then enough to ensures that 𝑇 is contracting on this ball. All of this is only valid as long as 𝑟 ≤ 𝑟*

because of (4.4) (in practice, it is convenient to only have to control 𝐷2𝐹 in a small neighborhood of 𝑋).
– We are going to take for 𝐴 an approximate inverse of 𝐷𝐹

(︀
𝑋
)︀
, and for 𝐴† an approximation of 𝐷𝐹

(︀
𝑋
)︀

itself

(which will in fact be used to construct 𝐴). If we could take 𝐴 =
(︀
𝐷𝐹

(︀
𝑋
)︀)︀−1

we would get 𝐷𝑇
(︀
𝑋
)︀

= 0,

i.e. a very strong contraction near 𝑋. However, getting explicit estimates on
(︀
𝐷𝐹

(︀
𝑋
)︀)︀−1

can be very hard,
which is why we introduce these approximations instead. The condition 𝑍0 +𝑍1 < 1 tells us how good these
approximations have to be.

– Finally, if this condition 𝑍0 +𝑍1 < 1 is satisfied, we only have to get good enough numerical approximation
𝑋, or more precisely a small enough residual error 𝑌 , for the second condition 2𝑍2𝑌 < (1− (𝑍1 + 𝑍0))2 to
hold.

– In the sequel, we derive formulas for 𝑌 , 𝑍0, 𝑍1 and 𝑍2 satisfying (4.1)–(4.4), which are explicit but cannot
easily be evaluated by hand, since they depend on numerical data (and in particular on 𝑋). Therefore, we
evaluate them with a computer, but using interval arithmetic (in our case with Intlab [17]) to ensure that
the rounding errors are controlled.
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Theorem 4.1 is the cornerstone of our computer-assisted proof. In Section 3.4, we have already introduced
the function 𝐹 defined on the space (𝒳𝜈 , ‖ · ‖𝒳𝜈,𝜂

) such that the solutions of 𝐹 = 0 correspond to the solutions
of (2.12)–(2.14). Moreover in Section 3.5, we have defined 𝑋 ∈ R5𝐾 × R5 (identified with its injection in 𝒳𝜈)
as an approximate solution of the finite dimensional problem 𝐹 [𝐾] = 0.

Remark 4.3. Because 𝛿 and ℓ are not allowed to be equal to 0 in 𝒳𝜈 (𝐹 (𝑋) is not defined if 𝛿 or ℓ is equal
to 0), (𝒳𝜈 , || · ||𝒳𝜈,𝜂

) is not quite a Banach space. Nonetheless, any closed ball in 𝒳𝜈 which does not intersect
the hyperplanes 𝛿 = 0 and ℓ = 0 is still a complete metric space, which is all we need to apply the contraction
mapping theorem, so the conclusions of Theorem 4.1 are still valid, for all 𝑟 such that |𝛿| < 𝑟 and |ℓ̄| < 𝑟.

In order to use Newton–Kantorovich argument to prove Theorem 2.1, it remains:

– to define the linear operators 𝐴 and 𝐴†,
– to define and compute the bounds 𝑌 , 𝑍𝑖 satisfying (4.1)–(4.4),
– to check that 𝑃 (𝑟) given in (4.5) is negative for some 𝑟 > 0.

In what follows, we detail each of these steps.

4.2. Definition of the operators 𝐴 and 𝐴†

Recalling that we want 𝐴† to be an approximation of 𝐷𝐹
(︀
𝑋
)︀
, we define for every 𝑋 ∈ 𝒳𝜈 the operator 𝐴†

as {︃
𝐴†𝜋𝐾(𝑋) = 𝐷𝐹 [𝐾]

(︀
𝑋
)︀
𝜋𝐾(𝑋),

𝐴†𝑋𝑘 = 𝑋𝑘 = (𝜓,𝐸,𝐶,𝑁 ,𝑃 )𝑘, ∀𝑘 ≥ 𝐾,
(4.8)

where 𝜋𝐾 denotes the finite dimensional projection introduced in Section 3.5.
Then, we consider the operator 𝐴 as an approximate inverse of 𝐴†. To do so, we define 𝐴[𝐾] as a numerically

computed inverse of 𝐷𝐹 [𝐾]
(︀
𝑋
)︀
, and we define for every 𝑋 ∈ 𝒳𝜈 the operator 𝐴 as{︃
𝐴𝜋𝐾(𝑋) = 𝐴[𝐾] 𝜋𝐾(𝑋),
𝐴𝑋𝑘 = 𝑋𝑘 = (𝜓,𝐸,𝐶,𝑁 ,𝑃 )𝑘, ∀𝑘 ≥ 𝐾.

(4.9)

4.3. Operator norms

In order to compute the bounds 𝑍0, 𝑍1 and 𝑍2 in Theorem 4.1 we need to introduce some operator norms.
First, let us consider a linear operator 𝐵 : ℓ1𝜈 → ℓ1𝜈 . We denote by |||𝐵|||𝜈 the operator norm of 𝐵, i.e.

|||𝐵|||𝜈 = sup
‖𝑢‖𝜈=1

‖𝐵𝑢‖𝜈 . (4.10)

It will be convenient to think of 𝐵 as an “infinite dimensional matrix”, written in the canonical Schauder basis
of ℓ1. That is, 𝐵 is characterized by the coefficients (𝐵𝑘,𝑛)𝑘,𝑛∈N such that, for all 𝑢 ∈ ℓ1𝜈 and all 𝑘 ∈ N,

(𝐵𝑢)𝑘 =
∑︁
𝑛∈N

𝐵𝑘,𝑛𝑢𝑛.

Similarly to the well know formula for matrix norms, we can express the operator norm of 𝐵 in terms of these
coefficients.

Lemma 4.4. Let 𝐵 : ℓ1𝜈 → ℓ1𝜈 be a linear operator. Then

|||𝐵|||𝜈 = sup
𝑛≥0

1
𝜉𝑛(𝜈)

∑︁
𝑘∈N

⃒⃒
𝐵𝑘,𝑛

⃒⃒
𝜉𝑘(𝜈), (4.11)

where (𝐵𝑘,𝑛)𝑘,𝑛≥0 is the matrix representation of the operator 𝐵.
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In particular, we deduce that if the matrix 𝐵 has a finite number of non zero coefficients, then |||𝐵|||𝜈 can
be evaluated on a computer (and using interval arithmetic we can get a rigorous upper bound of this norm).
It will be convenient to introduce the notation 𝐵·,𝑛 = (𝐵𝑘,𝑛)𝑘≥0 for every 𝑛 ≥ 0. Notice that we can then
rewrite (4.11) as

|||𝐵|||𝜈 = sup
𝑛≥0

1
𝜉𝑛(𝜈)

∑︁
𝑘∈N

⃒⃒
𝐵𝑘,𝑛

⃒⃒
𝜉𝑘(𝜈) = sup

𝑛≥0

1
𝜉𝑛(𝜈)

‖𝐵·,𝑛‖𝜈 . (4.12)

Now, let 𝐵 : 𝒳𝜈 → 𝒳𝜈 be a linear operator and let us consider the following block-representation of 𝐵

𝐵 =
(︁
𝐵(𝑖,𝑗)

)︁
𝑖,𝑗∈Ipot

,

where the set Ipot is given by (3.15). Due to the definition of 𝒳𝜈 , we note that for instance 𝐵(𝐽𝑈 ,𝐽𝑈 ) : R → R,
𝐵(𝜓,𝐽𝑈 ) : ℓ1𝜈 → ℓ1𝜈 for 𝑈 = 𝐶,𝑁, 𝑃 and 𝐵(𝜓,𝛿) : R → ℓ1𝜈 . However, post-composing some blocks of 𝐵 by 𝚤1, the
natural injection from R to ℓ1𝜈 , we can see each of these blocks as some linear operators from ℓ1𝜈 or R to ℓ1𝜈 .
Moreover, this slight modification does not change the value of the operator norm of the blocks. For instance,
for 𝑈 = 𝐶,𝑁, 𝑃 we have |𝐵(𝐽𝑈 ,𝐽𝑈 )| =

⃒⃒⃒⃒⃒⃒
𝚤1 ∘𝐵(𝐽𝑈 ,𝐽𝑈 )

⃒⃒⃒⃒⃒⃒
𝜈

and we omit to write the composition by 𝚤1 in the
sequel.

Now, still considering 𝐵 : 𝒳𝜈 → 𝒳𝜈 , we slightly abuse the notation by applying the ℓ1𝜈 operator norm
component wise to 𝐵, i.e. we define

|||𝐵|||𝜈 =
(︁⃒⃒⃒⃒⃒⃒⃒⃒⃒

𝐵(𝑖,𝑗)
⃒⃒⃒⃒⃒⃒⃒⃒⃒
𝜈

)︁
𝑖,𝑗∈Ipot

,

where for each block 𝐵(𝑖,𝑗) =
(︁
𝐵

(𝑖,𝑗)
𝑘,𝑛

)︁
𝑘,𝑛≥0

for 𝑖, 𝑗 ∈ Ipot, we use formula (4.12) to evaluate its operator norm.

Let us now introduce for 𝜂 ∈ (0,∞)10 the following weighted operator norm

⃒⃒
|||𝐵|||𝜈

⃒⃒
𝜂

= max
𝑗∈Ipot

1
𝜂𝑗

∑︁
𝑖∈Ipot

𝜂𝑖

⃒⃒⃒⃒⃒⃒⃒⃒⃒
𝐵(𝑖,𝑗)

⃒⃒⃒⃒⃒⃒⃒⃒⃒
𝜈

= max
𝑗∈Ipot

1
𝜂𝑗

∑︁
𝑖∈Ipot

𝜂𝑖 sup
𝑛≥0

1
𝜉𝑛(𝜈)

∑︁
𝑘∈N

⃒⃒⃒
𝐵

(𝑖,𝑗)
𝑘,𝑛

⃒⃒⃒
𝜉𝑘(𝜈).

We recall that the practical choice of 𝜂 will be discussed in Section 5.1. If all the blocks of 𝐵 have a finite
number of non zero coefficients, then the quantity

⃒⃒
|||𝐵|||𝒳𝜈

⃒⃒
𝜂

can be evaluated on a computer (and rigorously
upper-bounded using interval arithmetic). Moreover, we notice that

|||𝐵|||𝒳𝜈 ,𝜂 = max
𝑗∈Ipot

1
𝜂𝑗

⃒⃒⃒⃒⃒⃒⃒⃒⃒
𝐵(·,𝑗)

⃒⃒⃒⃒⃒⃒⃒⃒⃒
𝒳𝜈 ,𝜂

= max
𝑗∈Ipot

1
𝜂𝑗

sup
𝑛≥0

1
𝜉𝑛(𝜈)

∑︁
𝑖∈Ipot

∑︁
𝑘∈N

⃒⃒⃒
𝐵

(𝑖,𝑗)
𝑘,𝑛

⃒⃒⃒
𝜉𝑘(𝜈) 𝜂𝑖

≤ max
𝑗∈Ipot

1
𝜂𝑗

∑︁
𝑖∈Ipot

𝜂𝑖 sup
𝑛≥0

1
𝜉𝑛(𝜈)

∑︁
𝑘∈N

⃒⃒⃒
𝐵

(𝑖,𝑗)
𝑘,𝑛

⃒⃒⃒
𝜉𝑘(𝜈),

that is

|||𝐵|||𝒳𝜈 ,𝜂 ≤
⃒⃒
|||𝐵|||𝜈

⃒⃒
𝜂
. (4.13)

Therefore, as soon as we can rigorously compute
⃒⃒
|||𝐵|||𝜈

⃒⃒
𝜂
, we get a computable and rigorous upper bound for

|||𝐵|||𝒳𝜈 ,𝜂.
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4.4. Definition of the bounds 𝑌 and 𝑍𝑖
In this section, for 𝐾 ≥ 1 fixed we derive some computable bounds 𝑌 , 𝑍0, 𝑍1 and 𝑍2 satisfying the assump-

tions (4.1)–(4.4) of Theorem 4.1. We assume that 𝑋 ∈ R5𝐾+5 is given (in practice we should choose it so that
𝐹 [𝐾]

(︀
𝑋
)︀

= (𝜋𝐾 ∘𝐹 ∘ 𝚤𝐾)
(︀
𝑋
)︀
≈ 0). In the sequel we identify 𝑋 with its injection in 𝒳𝜈 , with 𝑋𝑘 = (0, 0, 0, 0, 0)

for all 𝑘 ≥ 𝐾.

4.4.1. The bound 𝑌

We simply define 𝑌 as

𝑌 =
⃦⃦
𝐴𝐹

(︀
𝑋
)︀⃦⃦
𝒳𝜈 ,𝜂

.

Since the vector 𝑋 has a finite number of non zero coefficients, i.e. 𝑋𝑘 = (0, 0, 0, 0, 0) for every 𝑘 ≥ 𝐾, we have

𝐹
(𝜓)
𝑘

(︀
𝑋
)︀

= 0, ∀𝑘 ≥ 𝐾 + 1,

𝐹
(𝐸)
𝑘

(︀
𝑋
)︀

= 0, ∀𝑘 ≥ 𝐾 + 1,

𝐹
(𝑈)
𝑘

(︀
𝑋
)︀

= 0, ∀𝑘 ≥ 2𝐾, for 𝑈 = 𝐶,𝑁, 𝑃,

which implies that 𝐹
(︀
𝑋
)︀

has a finite number of non zero coefficients. Moreover, since 𝐴 acts only diagonally
on the tail of the elements of 𝐹

(︀
𝑋
)︀
, 𝐴𝐹

(︀
𝑋
)︀

also has a finite number of v non zero coefficients. Thus, the
bound 𝑌 can be evaluated on a computer (using interval arithmetic).

4.4.2. The bound 𝑍0

Using the notations and definitions introduced in Section 4.3 we obtain the following result:

Proposition 4.5. Let 𝜈 > 1 and 𝜂 ∈ (0,∞)10. Consider 𝐴† and 𝐴 defined in (4.8) and (4.9), the index set
Ipot given by (3.15) and the linear operator 𝐵 = 𝐼 −𝐴𝐴†. Then

𝑍0 = ||||𝐵|||𝜈 |𝜂 (4.14)

= max
𝑗∈Ipot

1
𝜂𝑗

∑︁
𝑖∈Ipot

𝜂𝑖 sup
𝑛≥0

1
𝜉𝑛(𝜈)

∑︁
𝑘∈N

⃒⃒⃒
𝐵

(𝑖,𝑗)
𝑘,𝑛

⃒⃒⃒
𝜉𝑘(𝜈). (4.15)

satisfies ⃒⃒⃒⃒⃒⃒
(𝐼 −𝐴𝐴†)

⃒⃒⃒⃒⃒⃒
𝒳𝜈 ,𝜂

≤ 𝑍0. (4.16)

We point out that, by construction of 𝐴† and 𝐴, each block 𝐵(𝑖,𝑗) for 𝑖, 𝑗 ∈ Ipot has only a finite number of
non zero coefficients (recall that the “tail” parts of 𝐴† and 𝐴 act as the identity), and hence the ℓ1𝜈 operator
norms

⃒⃒⃒⃒⃒⃒
𝐵(𝑖,𝑗)

⃒⃒⃒⃒⃒⃒
𝜈

can all be evaluated on a computer (using interval arithmetic).

Proof. The proof of the result follows directly from (4.13). �

4.4.3. The bound 𝑍1

We now explain how to define a constant 𝑍1 such that⃒⃒⃒⃒⃒⃒
𝐴(𝐷𝐹

(︀
𝑋
)︀
−𝐴†)

⃒⃒⃒⃒⃒⃒
𝒳𝜈 ,𝜂

≤ 𝑍1. (4.17)

First, we consider the linear operator 𝐺 = 𝐴(𝐷𝐹
(︀
𝑋
)︀
− 𝐴†) and we denote 𝐺(𝑖,𝑗) for 𝑖, 𝑗 ∈ Ipot (recall

definition (3.15) of Ipot) the block-representation of 𝐺. Then, applying (4.13) we have

|||𝐺|||𝒳𝜈 ,𝜂 ≤ ||||𝐺|||𝜈 |𝜂 = max
𝑗∈Ipot

1
𝜂𝑗

∑︁
𝑖∈Ipot

⃒⃒⃒⃒⃒⃒⃒⃒⃒
𝐺(𝑖,𝑗)

⃒⃒⃒⃒⃒⃒⃒⃒⃒
𝜈
𝜂𝑖.
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We are going to bound the ℓ1𝜈 operator norm of each 𝐺(𝑖,𝑗) independently, using the following splitting:

⃒⃒⃒⃒⃒⃒⃒⃒⃒
𝐺(𝑖,𝑗)

⃒⃒⃒⃒⃒⃒⃒⃒⃒
𝜈

= max

[︃
max

0≤𝑙≤2𝐾−1

1
𝜉𝑙(𝜈)

∑︁
𝑘∈N

⃒⃒⃒
𝐺

(𝑖,𝑗)
𝑘,𝑙

⃒⃒⃒
𝜉𝑘(𝜈), sup

𝑙≥2𝐾

1
𝜉𝑙(𝜈)

∑︁
𝑘∈N

⃒⃒⃒
𝐺

(𝑖,𝑗)
𝑘,𝑙

⃒⃒⃒
𝜉𝑘(𝜈)

]︃
. (4.18)

Then, we define for all 𝑖, 𝑗 ∈ Ipot

Γ(𝑖,𝑗)
finite = max

0≤𝑙≤2𝐾−1

1
𝜉𝑙(𝜈)

∑︁
𝑘∈N

⃒⃒⃒
𝐺

(𝑖,𝑗)
𝑘,𝑙

⃒⃒⃒
𝜉𝑘(𝜈), 𝑖, 𝑗 ∈ Ipot, (4.19)

where Γ(𝑖,𝑗)
finite reduces to

Γ(𝑖,𝑗)
finite =

∑︁
𝑘∈N

⃒⃒⃒
𝐺

(𝑖,𝑗)
𝑘,0

⃒⃒⃒
𝜉𝑘(𝜈),

in the case where the block 𝐺(𝑖,𝑗) admits only one column. Let us notice, due to the structure of 𝐷𝐹
(︀
𝑋
)︀
,

𝐴† and 𝐴, that 𝐺(𝑖,𝑗)
·,𝑙 has a finite number of non zero coefficients, for 0 ≤ 𝑙 ≤ 2𝐾 − 1, and in particular the

constant Γ(𝑖,𝑗)
finite can be evaluated on a computer (using interval arithmetic). Moreover, following the splitting

used in (4.18), we are also going to introduce some constants Γ(𝑖,𝑗)
tail for 𝑖, 𝑗 ∈ I1pot = {𝜓,𝐸,𝐶,𝑁, 𝑃}, such that

sup
𝑙≥2𝐾

1
𝜉𝑙(𝜈)

∑︁
𝑘∈N

⃒⃒⃒
𝐺

(𝑖,𝑗)
𝑘,𝑙

⃒⃒⃒
𝜉𝑘(𝜈) ≤ Γ(𝑖,𝑗)

tail . (4.20)

We set those constants to zero if the block 𝐺(𝑖,𝑗) admits only one column.
Introducing Γ(𝑖,𝑗) = max

(︁
Γ(𝑖,𝑗)

finite,Γ
(𝑖,𝑗)
tail

)︁
, we end up with

|||𝐺|||𝒳𝜈 ,𝜂 ≤ max
𝑗∈Ipot

1
𝜂𝑗

∑︁
𝑖∈Ipot

Γ(𝑖,𝑗) 𝜂𝑖.

Finally, we can define the constant 𝑍1 as

𝑍1 = max
𝑗∈Ipot

1
𝜂𝑗

∑︁
𝑖∈Ipot

Γ(𝑖,𝑗) 𝜂𝑖,

which implies that 𝑍1 satisfies (4.17). The following result summarizes this approach and gives a precise definition
of the constants Γ(𝑖,𝑗)

tail for 𝑖, 𝑗 ∈ Ipot.

Proposition 4.6. Let 𝜈 > 1, 𝜂 ∈ (0,∞)10 and 𝑋 ∈ R5𝐾+5 (identified with its injection in 𝒳𝜈). Consider 𝐹 ,
𝐴† and 𝐴 defined by (3.14), (4.8) and (4.9). Define 𝐺 = 𝐴(𝐷𝐹

(︀
𝑋
)︀
−𝐴†) and

Γ(𝑖,𝑗)
finite = max

0≤𝑙≤2𝐾−1

1
𝜉𝑙(𝜈)

∑︁
𝑘∈N

⃒⃒⃒
𝐺

(𝑖,𝑗)
𝑘,𝑙

⃒⃒⃒
𝜉𝑘(𝜈), ∀𝑖, 𝑗 ∈ Ipot,

with

Γ(𝑖,𝑗)
finite =

∑︁
𝑘∈N

⃒⃒⃒
𝐺

(𝑖,𝑗)
𝑘,0

⃒⃒⃒
𝜉𝑘(𝜈),
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Table 1. Definition of the constants Γ(𝑖,𝑗)
tail,2 for 𝑖, 𝑗 ∈ I1pot in the potentiostatic case, where | · |𝜈

is given by (3.8) and 𝑒 = (1, 0, 0, . . .).

(𝑖, 𝑗) 𝜓 𝐸 𝐶 𝑁 𝑃

𝜓 0 1
2

[︁
𝜈−1

2𝐾−1
+ 𝜈

2𝐾+1

]︁
0 0 0

𝐸 0 0 |𝑧𝐶 |ℓ̄2
8𝜆2

[︁
𝜈−1

2𝐾−1
+ 𝜈

2𝐾+1

]︁
|𝑧𝑁 |ℓ̄2
8𝜆2

[︁
𝜈−1

2𝐾−1
+ 𝜈

2𝐾+1

]︁
|𝑧𝑃 |ℓ̄2
8𝜆2

[︁
𝜈−1

2𝐾−1
+ 𝜈

2𝐾+1

]︁

𝐶 0
|𝑧𝐶 | |𝐶|𝜈

2𝐾

|−𝑧𝐶𝐸−𝜀𝐶𝛿 ℓ𝑒/2|
𝜈

2𝐾
0 0

𝑁 0
|𝑧𝑁 | |𝑁|𝜈

2𝐾
0

|−𝑧𝑁𝐸−𝜀𝑁 𝛿 ℓ𝑒/2|
𝜈

2𝐾
0

𝑃 0
|𝑧𝑃 | |𝑃 |𝜈

2𝐾
0 0

|−𝑧𝑃𝐸−𝜀𝑃 𝛿 ℓ𝑒/2|
𝜈

2𝐾

if the block 𝐺(𝑖,𝑗) admits only one column. Moreover, let us introduce

Γ(𝑖,𝑗)
tail = Γ(𝑖,𝑗)

tail,1 + Γ(𝑖,𝑗)
tail,2, ∀𝑖, 𝑗 ∈ Ipot,

where

Γ(𝑖,𝑗)
tail,1 =

𝜒I1pot
(𝑗)

𝜉2𝐾(𝜈)
max
𝑙=1,2

⎡⎣𝐾−1∑︁
𝑘=0

⃒⃒⃒⃒
⃒⃒ ∑︁
𝑚∈Ipot

𝐴
(𝑖,𝑚)
𝑘,0 𝐷𝐹

(︀
𝑋
)︀(𝑚,𝑗)
0,𝑙

⃒⃒⃒⃒
⃒⃒ 𝜉𝑘(𝜈)

⎤⎦ , (4.21)

with I1pot ⊂ Ipot defined in (3.16) and 𝜒I1pot
the characteristic function of I1pot. Moreover, the values of Γ(𝑖,𝑗)

tail,2 are

given in Table 1 for 𝑖, 𝑗 ∈ I1pot and Γ(𝑖,𝑗)
tail,2 = 0 in all other cases. Finally, introducing

Γ(𝑖,𝑗) = max
(︁
Γ(𝑖,𝑗)

finite,Γ
(𝑖,𝑗)
tail

)︁
, ∀𝑖, 𝑗 ∈ Ipot,

and

𝑍1 = max
𝑗∈Ipot

1
𝜂𝑗

∑︁
𝑖∈Ipot

Γ(𝑖,𝑗) 𝜂𝑖, (4.22)

we have ⃒⃒⃒⃒⃒⃒
𝐴(𝐷𝐹

(︀
𝑋
)︀
−𝐴†)

⃒⃒⃒⃒⃒⃒
𝒳𝜈 ,𝜂

≤ 𝑍1.

Proof. Let 𝑙 ≥ 2𝐾 > 1 be fixed. First, by construction of 𝐴†,
(︀
𝐷𝐹

(︀
𝑋
)︀
−𝐴†

)︀(𝑚,𝑗)
𝑝,𝑙

= 0 for every 𝑝 ≥ 0 if
𝑗 ∈ Ipot ∖ I1pot = {𝐽𝐶 , 𝐽𝑁 , 𝐽𝑃 , 𝛿, ℓ}. Therefore

1
𝜉𝑙(𝜈)

∑︁
𝑘∈N

⃒⃒⃒
𝐺

(𝑖,𝑗)
𝑘,𝑙

⃒⃒⃒
𝜉𝑘(𝜈) =

𝜒I1pot
(𝑗)

𝜉𝑙(𝜈)

∑︁
𝑘∈N

⃒⃒⃒⃒
⃒⃒ ∑︁
𝑚∈Ipot

∑︁
𝑝≥0

𝐴
(𝑖,𝑚)
𝑘,𝑝 (𝐷𝐹

(︀
𝑋
)︀
−𝐴†)(𝑚,𝑗)𝑝,𝑙 𝜉𝑘(𝜈)

⃒⃒⃒⃒
⃒⃒ ,
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where we recall that I1pot = {𝜓,𝐸,𝐶,𝑁, 𝑃} ⊂ Ipot and 𝜒I1pot
denotes the characteristic function of I1pot. Using

the definition of 𝐷𝐹
(︀
𝑋
)︀

and 𝐴† we obtain (𝐷𝐹
(︀
𝑋
)︀
−𝐴†)(𝑚,𝑗)𝑝,𝑙 = 0 for any 0 < 𝑝 < 2𝑙−𝐾 and any 𝑚, 𝑗 ∈ Ipot.

In particular, since we only consider here 𝑙 ≥ 2𝐾, (𝐷𝐹
(︀
𝑋
)︀
−𝐴†)(𝑚,𝑗)𝑝,𝑙 = 0 for any 0 < 𝑝 < 𝐾, which yields

1
𝜉𝑙(𝜈)

∑︁
𝑘∈N

⃒⃒⃒
𝐺

(𝑖,𝑗)
𝑘,𝑙

⃒⃒⃒
𝜉𝑘(𝜈) ≤

𝜒I1pot
(𝑗)

𝜉𝑙(𝜈)

∑︁
𝑘∈N

⃒⃒⃒⃒
⃒⃒ ∑︁
𝑚∈Ipot

𝐴
(𝑖,𝑚)
𝑘,0 (𝐷𝐹

(︀
𝑋
)︀
−𝐴†)(𝑚,𝑗)0,𝑙 𝜉𝑘(𝜈)

⃒⃒⃒⃒
⃒⃒

+
𝜒I1pot

(𝑗)

𝜉𝑙(𝜈)

∑︁
𝑘∈N

⃒⃒⃒⃒
⃒⃒ ∑︁
𝑚∈Ipot

∑︁
𝑝≥𝐾

𝐴
(𝑖,𝑚)
𝑘,𝑝 (𝐷𝐹

(︀
𝑋
)︀
−𝐴†)(𝑚,𝑗)𝑝,𝑙 𝜉𝑘(𝜈)

⃒⃒⃒⃒
⃒⃒ .

Besides, by construction of 𝐴, if 𝑖 ̸= 𝑚 then 𝐴
(𝑖,𝑚)
𝑘,𝑝 = 0 as soon as 𝑘 ≥ 𝐾 or 𝑝 ≥ 𝐾, and if 𝑖 = 𝑚 then

𝐴
(𝑖,𝑖)
𝑘,𝑝 = 𝜒I1pot

(𝑖)𝛿𝑘,𝑝 as soon as 𝑘 ≥ 𝐾 or 𝑝 ≥ 𝐾. Therefore, we get

1
𝜉𝑙(𝜈)

∑︁
𝑘∈N

⃒⃒⃒
𝐺

(𝑖,𝑗)
𝑘,𝑙

⃒⃒⃒
𝜉𝑘(𝜈) ≤

𝜒I1pot
(𝑗)

𝜉2𝐾(𝜈)

𝐾−1∑︁
𝑘=0

⃒⃒⃒⃒
⃒⃒ ∑︁
𝑚∈Ipot

𝐴
(𝑖,𝑚)
𝑘,0 (𝐷𝐹

(︀
𝑋
)︀
−𝐴†)(𝑚,𝑗)0,𝑙 𝜉𝑘(𝜈)

⃒⃒⃒⃒
⃒⃒

+
𝜒I1pot

(𝑗)

𝜉𝑙(𝜈)

∑︁
𝑘∈N

⃒⃒⃒⃒
⃒⃒ ∑︁
𝑚∈Ipot

∑︁
𝑝≥𝐾

𝐴
(𝑖,𝑚)
𝑘,𝑝 (𝐷𝐹

(︀
𝑋
)︀
−𝐴†)(𝑚,𝑗)𝑝,𝑙 𝜉𝑘(𝜈)

⃒⃒⃒⃒
⃒⃒

≤
𝜒I1pot

(𝑗)

𝜉2𝐾(𝜈)

𝐾−1∑︁
𝑘=0

⃒⃒⃒⃒
⃒⃒ ∑︁
𝑚∈Ipot

𝐴
(𝑖,𝑚)
𝑘,0 (𝐷𝐹

(︀
𝑋
)︀
−𝐴†)(𝑚,𝑗)0,𝑙 𝜉𝑘(𝜈)

⃒⃒⃒⃒
⃒⃒

+
𝜒I1pot×I1pot

(𝑖, 𝑗)

𝜉𝑙(𝜈)

⃒⃒⃒⃒
⃒⃒∑︁
𝑝≥𝐾

(𝐷𝐹
(︀
𝑋
)︀
−𝐴†)(𝑖,𝑗)𝑝,𝑙 𝜉𝑝(𝜈)

⃒⃒⃒⃒
⃒⃒ .

Moreover, still by construction of 𝐷𝐹
(︀
𝑋
)︀

and 𝐴†, we notice that (𝐷𝐹
(︀
𝑋
)︀
− 𝐴†)(𝑚,𝑗)0,𝑙 = 𝐷𝐹

(︀
𝑋
)︀(𝑚,𝑗)
0,𝑙

for all
𝑙 ≥ 2𝐾 and 𝑚 ∈ Ipot and 𝑗 ∈ I1pot, which implies

1
𝜉𝑙(𝜈)

∑︁
𝑘∈N

⃒⃒⃒
𝐺

(𝑖,𝑗)
𝑘,𝑙

⃒⃒⃒
𝜉𝑘(𝜈) ≤

𝜒I1pot
(𝑗)

𝜉2𝐾(𝜈)

𝐾−1∑︁
𝑘=0

⃒⃒⃒⃒
⃒⃒ ∑︁
𝑚∈Ipot

𝐴
(𝑖,𝑚)
𝑘,0 𝐷𝐹

(︀
𝑋
)︀(𝑚,𝑗)
0,𝑙

𝜉𝑘(𝜈)

⃒⃒⃒⃒
⃒⃒

+
𝜒I1pot×I1pot

(𝑖, 𝑗)

𝜉𝑙(𝜈)

⃒⃒⃒⃒
⃒⃒∑︁
𝑝≥𝐾

(𝐷𝐹
(︀
𝑋
)︀
−𝐴†)(𝑖,𝑗)𝑝,𝑙 𝜉𝑝(𝜈)

⃒⃒⃒⃒
⃒⃒ .

Let us now give the explicit value of the first term in the right hand side in the case where 𝑖 = 𝐶 and 𝑗 = 𝐸 for
instance. Then, we have

𝐾−1∑︁
𝑘=0

⃒⃒⃒⃒
⃒⃒ ∑︁
𝑚∈Ipot

𝐴
(𝑖,𝑚)
𝑘,0 𝐷𝐹

(︀
𝑋
)︀(𝑚,𝑗)
0,𝑙

𝜉𝑘(𝜈)

⃒⃒⃒⃒
⃒⃒ = 𝐾−1∑︁

𝑘=0

⃒⃒⃒⃒
(−1)𝑙+1 4𝛼0

ℓ
𝐴

(𝐶,𝜓)
𝑘,0 +

4𝛼1

ℓ
𝐴

(𝐶,𝐸)
𝑘,0

⃒⃒⃒⃒
𝜉𝑘(𝜈)

≤ max
𝑙=1,2

[︃
𝐾−1∑︁
𝑘=0

⃒⃒⃒⃒
(−1)𝑙+1 4𝛼0

ℓ
𝐴

(𝐶,𝜓)
𝑘,0 +

4𝛼1

ℓ
𝐴

(𝐶,𝐸)
𝑘,0

⃒⃒⃒⃒
𝜉𝑘(𝜈)

]︃
.
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Writing down the explicit value of the other terms, we observe, as in the former example, that this value only
depends on the parity of ℓ. Thus, we obtain

1
𝜉𝑙(𝜈)

∑︁
𝑘∈N

⃒⃒⃒
𝐺

(𝑖,𝑗)
𝑘,𝑙

⃒⃒⃒
𝜉𝑘(𝜈) ≤

𝜒I1pot
(𝑗)

𝜉2𝐾(𝜈)
max
𝑙=1,2

⎡⎣𝐾−1∑︁
𝑘=0

⃒⃒⃒⃒
⃒⃒ ∑︁
𝑚∈Ipot

𝐴
(𝑖,𝑚)
𝑘,0 𝐷𝐹

(︀
𝑋
)︀(𝑚,𝑗)
0,𝑙

⃒⃒⃒⃒
⃒⃒ 𝜉𝑘(𝜈)

⎤⎦
+
𝜒I1pot×I1pot

(𝑖, 𝑗)

𝜉𝑙(𝜈)

⃒⃒⃒⃒
⃒⃒∑︁
𝑝≥𝐾

(︀
𝐷𝐹

(︀
𝑋
)︀
−𝐴†

)︀(𝑖,𝑗)
𝑝,𝑙

𝜉𝑝(𝜈)

⃒⃒⃒⃒
⃒⃒ .

This yields definition (4.21) of Γ(𝑖,𝑗)
tail,1. Now, let us explain how we derive the bounds Γ(𝑖,𝑗)

tail,2 given in Table 1. To
this end we need to estimate the second term in the right hand side of the previous inequality. We consider first
the case 𝑖 = 𝜓 and 𝑗 = 𝐸. Then, we notice that

1
𝜉𝑙(𝜈)

⃒⃒⃒⃒
⃒⃒∑︁
𝑝≥𝐾

(︀
𝐷𝐹

(︀
𝑋
)︀
−𝐴†

)︀(𝜓,𝐸)

𝑝,𝑙
𝜉𝑝(𝜈)

⃒⃒⃒⃒
⃒⃒ = 1

𝜉𝑙(𝜈)

⃒⃒⃒⃒
⃒⃒∑︁
𝑝≥𝐾

𝜕𝐹
(𝜓)
𝑝

𝜕𝐸𝑙

(︀
𝑋
)︀
𝜉𝑝(𝜈)

⃒⃒⃒⃒
⃒⃒ .

Thus, remembering that we only consider here 𝑙 ≥ 2𝐾,

1
𝜉𝑙(𝜈)

⃒⃒⃒⃒
⃒⃒∑︁
𝑝≥𝐾

(︀
𝐷𝐹

(︀
𝑋
)︀
−𝐴†

)︀(𝜓,𝐸)

𝑝,𝑙
𝜉𝑝(𝜈)

⃒⃒⃒⃒
⃒⃒ = 1

𝜉𝑙(𝜈)

⃒⃒⃒⃒
𝜉𝑙−1(𝜈)
2(𝑙 − 1)

− 𝜉𝑙+1(𝜈)
2(𝑙 + 1)

⃒⃒⃒⃒

≤ 1
2

(︂
𝜈−1

2𝐾 − 1
+

𝜈

2𝐾 + 1

)︂
= Γ(𝜓,𝐸)

tail,2 .

Using similar arguments we obtain the different values of Γ(𝐸,𝑈)
tail,2 for 𝑈 = 𝐶,𝑁, 𝑃 . Let us then consider the case

𝑖 = 𝐶 and 𝑗 = 𝐸. We have

1
𝜉𝑙(𝜈)

⃒⃒⃒⃒
⃒⃒∑︁
𝑝≥𝐾

(︀
𝐷𝐹

(︀
𝑋
)︀
−𝐴†

)︀(𝐶,𝐸)

𝑝,𝑙
𝜉𝑝(𝜈)

⃒⃒⃒⃒
⃒⃒ = 1

𝜉𝑙(𝜈)

⃒⃒⃒⃒
⃒⃒∑︁
𝑝≥𝐾

𝜕𝐹
(𝐶)
𝑝

𝜕𝐸𝑙

(︀
𝑋
)︀
𝜉𝑝(𝜈)

⃒⃒⃒⃒
⃒⃒ ,

and a meticulous but rather straightforward analysis of the terms in 𝜕𝐹 (𝐶)
𝑝

𝜕𝐸𝑙
leads to

1
𝜉𝑙(𝜈)

⃒⃒⃒⃒
⃒⃒∑︁
𝑝≥𝐾

(︀
𝐷𝐹

(︀
𝑋
)︀
−𝐴†

)︀(𝐶,𝐸)

𝑝,𝑙
𝜉𝑝(𝜈)

⃒⃒⃒⃒
⃒⃒ = |𝑧𝐶 |

2𝜉𝑙(𝜈)

⃒⃒⃒⃒
⃒⃒∑︁
𝑝≥𝐾

[︃
−
𝐶 |𝑝+1−𝑙| + 𝐶 |𝑝+1+𝑙|

𝑝
+
𝐶 |𝑝−1−𝑙| + 𝐶 |𝑝−1+𝑙|

𝑝

]︃
𝜉𝑝(𝜈)

⃒⃒⃒⃒
⃒⃒ .

Then, we recall that 𝐶𝑘 = 0 for all 𝑘 ≥ 𝐾, which allows us to rewrite the above sum as follows

1
𝜉𝑙(𝜈)

⃒⃒⃒⃒
⃒⃒∑︁
𝑝≥𝐾

(︀
𝐷𝐹

(︀
𝑋
)︀
−𝐴†

)︀(𝐶,𝐸)

𝑝,𝑙
𝜉𝑝(𝜈)

⃒⃒⃒⃒
⃒⃒ ≤ |𝑧𝐶 |

2𝜉𝑙(𝜈)
1
𝐾

𝑙+𝐾∑︁
𝑝=𝑙−𝐾

⃒⃒
𝐶 |𝑝+1−𝑙| − 𝐶 |𝑝−1−𝑙|

⃒⃒
𝜉𝑝(𝜈)

=
|𝑧𝐶 |

2𝜉𝑙(𝜈)
1
𝐾

𝐾∑︁
𝑝=−𝐾

⃒⃒
𝐶 |𝑝+1| − 𝐶 |𝑝−1|

⃒⃒
𝜉𝑝+𝑙(𝜈)

≤ |𝑧𝐶 |
2𝐾

𝐾∑︁
𝑝=1

⃒⃒
(𝒮𝐶)𝑝

⃒⃒ (︀
𝜈𝑝 + 𝜈−𝑝

)︀
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≤
|𝑧𝐶 |

⃒⃒
𝐶
⃒⃒
𝜈

2𝐾
= Γ(𝐶,𝐸)

tail,2 .

Applying similar arguments we obtain the values Γ(𝑁,𝐸)
tail,2 and Γ(𝑃,𝐸)

tail,2 given in Table 1.

Finally, let us derive the bound Γ(𝑈,𝑈)
tail,2 for 𝑈 = 𝐶,𝑁, 𝑃 . To this aim, we notice that

1
𝜉𝑙(𝜈)

⃒⃒⃒⃒
⃒⃒∑︁
𝑝≥𝐾

(︀
𝐷𝐹

(︀
𝑋
)︀
−𝐴†

)︀(𝑈,𝑈)

𝑝,𝑙
𝜉𝑝(𝜈)

⃒⃒⃒⃒
⃒⃒ = 1

𝜉𝑙(𝜈)

⃒⃒⃒⃒
⃒⃒∑︁
𝑝≥𝐾

(︃
𝜕𝐹

(𝑈)
𝑝

𝜕𝑈𝑙

(︀
𝑋
)︀
− 1

)︃
𝜉𝑝(𝜈)

⃒⃒⃒⃒
⃒⃒ .

Then, a similar analysis that the one done to derive the bound Γ(𝐶,𝐸)
tail,2 leads to

1
𝜉𝑙(𝜈)

⃒⃒⃒⃒
⃒⃒∑︁
𝑝≥𝐾

(︀
𝐷𝐹

(︀
𝑋
)︀
−𝐴†

)︀(𝑈,𝑈)

𝑝,𝑙
𝜉𝑝(𝜈)

⃒⃒⃒⃒
⃒⃒

=
1

2𝜉𝑙(𝜈)

⃒⃒⃒⃒
⃒⃒− 𝑙+𝐾∑︁

𝑝=𝑙−𝐾

(︃
𝑧𝑈

[︃
𝐸|𝑝+1−𝑙| − 𝐸|𝑝−1−𝑙|

𝑝

]︃
+
𝜀𝑈 𝛿 ℓ

2

[︂
𝑒|𝑝+1−𝑙| − 𝑒|𝑝−1−𝑙|

𝑝

]︂)︃
𝜉𝑝(𝜈)

⃒⃒⃒⃒
⃒⃒ ,

where 𝑒 denotes the first element of the Schauder basis of ℓ1, i.e., 𝑒 = (1, 0, 0, . . .). Using 𝑙 ≥ 2𝐾 > 𝐾, shifting
the indices and applying the triangular inequality yields

1
𝜉𝑙(𝜈)

⃒⃒⃒⃒
⃒⃒∑︁
𝑝≥𝐾

(︀
𝐷𝐹

(︀
𝑋
)︀
−𝐴†

)︀(𝑈,𝑈)

𝑝,𝑙
𝜉𝑝(𝜈)

⃒⃒⃒⃒
⃒⃒ ≤ 1

2𝐾

𝐾∑︁
𝑝=1

⃒⃒⃒⃒
⃒
(︂
𝒮
(︂
𝑧𝑈𝐸 +

𝜀𝑈 𝛿 ℓ

2
𝑒

)︂)︂
𝑝

⃒⃒⃒⃒
⃒ (︀𝜈𝑝 + 𝜈−𝑝

)︀
.

Recalling the definition (3.8) of the seminorm | · |𝜈 , we get

1
𝜉𝑙(𝜈)

⃒⃒⃒⃒
⃒⃒∑︁
𝑝≥𝐾

(︀
𝐷𝐹

(︀
𝑋
)︀
−𝐴†

)︀(𝑈,𝑈)

𝑝,𝑙
𝜉𝑝(𝜈)

⃒⃒⃒⃒
⃒⃒ ≤ 1

2𝐾

⃒⃒⃒⃒
𝑧𝑈𝐸 +

𝜀𝑈 𝛿 ℓ 𝑒

2

⃒⃒⃒⃒
𝜈

= Γ(𝑈,𝑈)
tail,2 ,

which concludes the proof of Proposition 4.6. �

4.4.4. The bound 𝑍2

Proposition 4.7. Let 𝜈 > 1, 𝜂 ∈ (0,∞)10, 𝑟* > 0 and 𝑋 ∈ R5𝐾+5 (identified with its injection in 𝒳𝜈).
Consider 𝐹 , 𝐴† and 𝐴 defined by (3.14), (4.8) and (4.9) and the index set Ipot given by (3.15) and define

𝑍2 = max
𝑗1,𝑗2∈I2pot

∑︁
𝑖1∈Ipot

𝜂𝑖1
𝜂𝑗1 𝜂𝑗2

∑︁
𝑖2∈Ipot

⃒⃒⃒⃒⃒⃒⃒⃒⃒
𝐴(𝑖1,𝑖2)

⃒⃒⃒⃒⃒⃒⃒⃒⃒
𝜈

sup
‖𝑋−𝑋‖𝒳𝜈,𝜂

≤𝑟*

⃒⃒⃒⃒⃒⃒⃒⃒⃒
𝐷2

(𝑗1,𝑗2)
𝐹 (𝑖2)(𝑋)

⃒⃒⃒⃒⃒⃒⃒⃒⃒
𝜈
. (4.23)

Then, ⃒⃒⃒⃒⃒⃒
𝐴𝐷2𝐹 (𝑋)

⃒⃒⃒⃒⃒⃒
𝒳𝜈 ,𝜂

≤ 𝑍2, ∀
⃦⃦
𝑋 −𝑋

⃦⃦
𝒳𝜈,𝜂

≤ 𝑟*.

Proof. We first notice that 𝐴𝐷2𝐹 (𝑋) is a bilinear operator. Similarly to what we have done in Section 4.3 for
linear operator defined on 𝒳𝜈 , we use a block representation of bilinear operators defined on 𝒳𝜈 , this time with
3 indices:

𝐴𝐷2𝐹 (𝑋) =
(︁[︀
𝐴𝐷2𝐹 (𝑋)

]︀(𝑖,𝑗1,𝑗2))︁
𝑖,𝑗1,𝑗2∈Ipot

.
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Its operator norm, still denoted
⃒⃒⃒⃒⃒⃒
𝐴𝐷2𝐹 (𝑋)

⃒⃒⃒⃒⃒⃒
𝒳𝜈 ,𝜂

is defined by⃒⃒⃒⃒⃒⃒
𝐴𝐷2𝐹 (𝑋)

⃒⃒⃒⃒⃒⃒
𝒳𝜈 ,𝜂

= sup
‖𝑋𝑚‖𝒳𝜈 ,𝜂=1,

𝑚=1,2

⃒⃒⃒⃒⃒⃒
𝐴𝐷2𝐹 (𝑋) (𝑋1,𝑋2)

⃒⃒⃒⃒⃒⃒
𝒳𝜈 ,𝜂

,

and the following inequality holds⃒⃒⃒⃒⃒⃒
𝐴𝐷2𝐹 (𝑋)

⃒⃒⃒⃒⃒⃒
𝒳𝜈 ,𝜂

≤ max
𝑗1,𝑗2∈I2pot

1
𝜂𝑗1 𝜂𝑗2

∑︁
𝑖1∈Ipot

⃒⃒⃒⃒⃒⃒⃒⃒⃒[︀
𝐴𝐷2𝐹 (𝑋)

]︀(𝑖1,𝑗1,𝑗2) ⃒⃒⃒⃒⃒⃒⃒⃒⃒
𝜈
𝜂𝑖1 .

Then we notice that for 𝑖1, 𝑗1, 𝑗2 ∈ Ipot we have[︀
𝐴𝐷2𝐹 (𝑋)

]︀(𝑖1,𝑗1,𝑗2) =
∑︁

𝑖2∈Ipot

𝐴(𝑖1,𝑖2)𝐷2
(𝑗1,𝑗2)

𝐹 (𝑖2)(𝑋).

Applying the triangle inequality we obtain⃒⃒⃒⃒⃒⃒
𝐴𝐷2𝐹 (𝑋)

⃒⃒⃒⃒⃒⃒
𝒳𝜈 ,𝜂

≤ max
𝑗1,𝑗2∈I2pot

∑︁
𝑖1∈Ipot

𝜂𝑖1
𝜂𝑗1 𝜂𝑗2

∑︁
𝑖2∈Ipot

⃒⃒⃒⃒⃒⃒⃒⃒⃒
𝐴(𝑖1,𝑖2)𝐷2

(𝑗1,𝑗2)
𝐹 (𝑖2)(𝑋)

⃒⃒⃒⃒⃒⃒⃒⃒⃒
𝜈
.

Finally, we conclude the proof of Proposition 4.7 using the fact that the 𝜈-norm is a sub-multiplicative
norm. �

Let us notice that the computation of
⃒⃒⃒⃒⃒⃒
𝐴(𝑖1,𝑖2)

⃒⃒⃒⃒⃒⃒
𝜈

for 𝑖1, 𝑖2 ∈ Ipot requires to take into account the tail part
of 𝐴(𝑖1,𝑖2) for 𝑖1 = 𝑖2 ∈ {𝜓,𝐸, 𝑃,𝑁,𝐶} (recall that by construction the tail part of the other blocks have all
entries equal to zero). However, since it has a diagonal structure we can explicitly compute the operator norm
of these blocks (using interval arithmetic). For instance, using 𝐴(𝜓,𝜓)

𝑘,𝑗 = 𝛿𝑘𝑗 for 𝑗 ≥ 𝐾 and 𝑘 ∈ N, we have⃒⃒⃒⃒⃒⃒⃒⃒⃒
𝐴(𝜓,𝜓)

⃒⃒⃒⃒⃒⃒⃒⃒⃒
= sup

𝑗≥0

1
𝜉𝑗(𝜈)

∑︁
𝑘∈N

⃒⃒⃒
𝐴

(𝜓,𝜓)
𝑘,𝑗

⃒⃒⃒
𝜉𝑘(𝜈)

= max

[︃
sup

0≤𝑗≤𝐾−1

1
𝜉𝑗(𝜈)

𝐾−1∑︁
𝑘=0

⃒⃒⃒
𝐴

(𝜓,𝜓)
𝑘,𝑗

⃒⃒⃒
𝜉𝑘(𝜈), sup

𝑗≥𝐾

1
𝜉𝑗(𝜈)

∑︁
𝑘∈N

⃒⃒⃒
𝐴

(𝜓,𝜓)
𝑘,𝑗

⃒⃒⃒
𝜉𝑘(𝜈)

]︃

= max

[︃
sup

0≤𝑗≤𝐾−1

1
𝜉𝑗(𝜈)

𝐾−1∑︁
𝑘=0

⃒⃒⃒
𝐴

(𝜓,𝜓)
𝑘,𝑗

⃒⃒⃒
𝜉𝑘(𝜈), 1

]︃
.

Regarding the second derivative of 𝐹 , most of the terms that appear are actually 0, or very straightforward
to estimate, because the differential equations in the DPCM are merely quadratic in 𝐸, 𝐶, 𝑁 and 𝑃 . The only
slightly more involved terms are the ones coming from the boundary conditions and the equation for the velocity
𝛿 (i.e. 𝐹 (𝑈)

0 , 𝐹 (𝐽𝑈 ) and 𝐹 (𝛿) in (3.14)), which are highly nonlinear, but the corresponding second derivatives can
still be computed explicitly, and the supremum over the 𝑋 such that

⃦⃦
𝑋 −𝑋

⃦⃦
𝒳𝜈,𝜂

≤ 𝑟* is rigorously computed
using interval arithmetic (in practice 𝑟* is small).

5. Implementation, results and comments

5.1. Implementation details

The starting point of our theorem is an approximate solution 𝑋 to the stationary DPCM. As mentioned
previously, we obtain such an approximate solution by applying Newton’s method to the finite dimensional
projection 𝐹 [𝐾] of 𝐹 .
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Figure 2. We display here the evolution of the width ℓ of the oxide layer, of the corrosion speed
𝛿 and of the total current 𝐽tot (all rescaled back to physical units) in terms of the potential 𝑉𝑎
(expressed in Volts and evaluated relatively to the electrode reference NHE), for several values
of pH.

Of course, the initialization of Newton’s method has to be done carefully. In order to get a suitable initial
condition, we use a code from [10] which computes a solution of a simplified version of the stationary DPCM,
where the coupling between the electric potential and the charge carriers is removed in the Poisson equation,
i.e. with 0 in the r.h.s. of (2.13a). Starting from such an approximation, we use numerical continuation to
gradually put the coupling back, until we get an approximate solution of (2.12)–(2.14). This is not the only
option, and one could for instance integrate the time-dependent model for long enough, until we are close to
the pseudo-stationary state, since it seems to be globally attracting.

The only thing that remains to be discussed before we present the results of the computer-assisted proofs is
the important choice of the weights in the norm ‖ · ‖𝒳𝜈 ,𝜂 we use on the space 𝒳𝜈 . Actually, the crucial part for
this problem is the careful choice of 𝜂 ∈ (0,∞)10, while 𝜈 can be chosen a bit more carelessly. Indeed, 𝜈 must be
strictly larger than 1 because we need terms like (4.21) to be small, and not too large because we do not want
the various ‖ · ‖𝜈 norms appearing in the bounds to explode (this is related to the domain of analyticity of the
functions 𝜓, 𝑃 , 𝑁 and 𝐶), but we did not have to carefully select it in order for the proof to succeed: for all the
results presented below 𝜈 = 1.1 is good enough. On the other hand, a naive choice for 𝜂 like 𝜂 = (1, 1, . . . , 1)
never leads to a successful proof, because 𝑍1 ends up being way larger than 1 (remember (4.7)), so a deliberate
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Figure 3. A pseudo-stationary steady state for pH = 7 and 𝑉𝑎 = 0.3 Volts (top) and 𝑉𝑎 =
0.7 Volts (bottom).

choice of 𝜂 is needed. This is linked to the fact that the different components of 𝐹 can have rather different
orders of magnitude. The key point to notice is that most of the computations required for the proof, and in
particular the most expensive ones like inverting 𝐷𝐹 [𝐾](𝑋) to get 𝐴[𝐾] or computing Γ(𝑖,𝑗)

finite (see Prop. 4.6),
are independent of 𝜂. Therefore, considering 𝑌 , 𝑍0, 𝑍1 and 𝑍2 as function of 𝜂, where the dependency in 𝜂 is
explicit (see (4.14), (4.22) or (4.23)) it is cheap to numerically optimize for 𝜂 according to our needs. A possible
optimization criteria, which has been successfully used in the past [6] and amounts to the computation of a
Perron-Frobenius eigenvector, is to take 𝜂 such that 𝑍1 is minimal. However, for our current problem such a
choice often leads to 𝑍2 being too large, and thus to the second condition in (4.7) no longer being satisfied.
Therefore, we instead try to optimize for 𝜂 such that the two roots of 𝑃 (see (4.5)) are the furthest apart,
under the constraint that 𝑍0 +𝑍1 < 1. The optimization is done using an algorithm from Matlab’s optimization
toolbox. We emphasize that we do not actually care whether the 𝜂 we obtain is close to a global minimizer or
not, as long as it is good enough for the conditions (4.7) to be satisfied. A slightly different approach to optimize
the choice of the norm is discussed in [24].

5.2. Results

The set of parameters we use as test case is given in Appendix A. For three different values of pH, namely 7,
8.5 and 10, we numerically compute approximate solutions of (2.12)–(2.14) for 50 different values of the applied
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Figure 4. A pseudo-stationary steady state for pH = 10 and 𝑉𝑎 = 0.3 Volts (top) and 𝑉𝑎 =
0.7 Volts (bottom).

potential 𝑉𝑎 regularly spaced between 𝑉𝑎 = 0 Volts and 𝑉𝑎 = 0.7 Volts. All these solutions are then rigorously
validated using the procedure described in the paper, that is by evaluating the estimates derived in Section 4.4,
and checking that the assumptions of Theorem 4.1 are satisfied. In Figure 2, we show the validated values of
the width ℓ of the oxide layer, the velocity 𝛿 at which both interfaces move, and the total current 𝐽tot (recall
definition (2.11)), all scaled back to physical units. While we can (and did) compute and validate solutions up
to 𝑉𝑎 = 0Volts also when the pH is equal to 7 or 8.5, but the physical meaning of the obtained solutions is
unclear, since the width of the oxide layer becomes smaller than 1 nanometer, and this is why the curves are
truncated in these cases.

In Figures 3 and 4, we show some of the corresponding densities 𝜓, 𝐶, 𝑁 and 𝑃 (see also Fig. 1). Notice that,
while the qualitative behavior of the profiles does not change much with 𝑉𝑎, the interfaces get sharper when 𝑉𝑎
increases. We point out that our results match those obtained via the code CALIPSO [3].

The Matlab code used for this paper, including the implementation of all the bounds needed for the validation,
can be found at [8].

Remark 5.1. While the setup presented in this paper only allows for the validation of solutions for a given set
of parameters, we mention that a slight generalization of these techniques could be used to rigorously validate
curves of solutions, when for instance all but one parameter is fixed (say all but 𝑉𝑎), and 𝑉𝑎 is varying, see
e.g. [2, 7, 12,23,25,26].



EXISTENCE OF TRAVELING WAVE SOLUTIONS FOR THE DPCM 1693

Appendix A. About the test case: scaling, definition of the boundary
conditions and values of the parameters

A.1. Scaling leading to the Poisson equation (2.2)

The DPCM system in physical variables has been introduced in [4]. The original densities of electrons, Fe3+

cations and oxygen vacancies can be denoted 𝐶𝑒, 𝐶Fe and 𝐶ox. The associate current densities will be denoted
by 𝐽𝑒, 𝐽Fe and 𝐽ox. The last unknowns are the electric potential Φ and the position of the interfaces 𝑋0(𝑡) and
𝑋1(𝑡).

Table A.1 gives the universal constants involved in the model, while Table A.2 gives parameters describing

the oxide. Let us note that ΔΦ𝑝𝑧𝑐0 depends on the pH and on 𝛾 =
𝐹

RT
, where 𝐹 denotes the Faraday constant,

𝑅 denotes the universal gas constant and 𝑇 denotes the temperature.

The factor 𝛾 =
𝐹

RT
(in 𝑉 −1) is used for the scaling of the potentials Φ, ΔΦ𝑝𝑧𝑐0 , ΔΦ𝑝𝑧𝑐1 and 𝑉𝑎, leading to the

scaled quantities 𝜓, Δ𝜓𝑝𝑧𝑐0 , Δ𝜓𝑝𝑧𝑐1 and 𝑉 . The scale factor for the different densities is Ωox and the reference
length is set to 𝐿0 = 1nm. It is the scale factor for 𝑥, 𝑋0, 𝑋1. This scaling leads to the Poisson equation (2.2)
with the dimensionless parameters given in Table A.3.

A.2. Scaling leading to the drift-diffusion equations (2.1)

We give in Table A.4 the diffusion coefficients of the different species in the oxide. As the current densities
in the original variables have the generic form

𝐽𝑠 = −𝐷𝑠(𝜕𝑥𝐶𝑠 − 𝑧𝑠𝛾𝐶𝑠𝜕𝑥Φ) for 𝑠 = 𝑒,Fe, ox,

the scaling on the densities and the potential implies that

𝐽𝐶 =
𝐿0Ωox

𝐷𝐶
𝐽ox, 𝐽𝑁 =

𝐿0Ωox

𝐷𝑁
𝐽𝑒, 𝐽𝑃 =

𝐿0Ωox

𝐷𝑃
𝐽Fe.

For the time, we use the scaling relative to the characteristic time of the cations. It means that the scale
factor for the time is 𝐿2

0/𝐷𝑃 . This yields finally the convection-diffusion equations (2.1a) for the scaled densities
𝑈 = 𝐶,𝑁, 𝑃 .

Let us now focus on the boundary conditions for the densities in order to define the boundary functions
(𝑟0𝑈 , 𝑟

1
𝑈 ) for 𝑈 = 𝐶,𝑃,𝑁 involved in (2.8). These boundary conditions are prescribed by the kinetics of the

electrochemical reactions at the interfaces. At the interface oxide/solution, 𝑥 = 𝑋0, the electrochemical reactions
are the ferric release for the cations, the ferrous release and the proton reduction for the electrons and the oxygen
exchange for the oxygen vacancies. At the interface oxide/metal, 𝑥 = 𝑋1, they are the iron oxydation for the

Table A.1. Universal constants.

𝑅 (J ·K ·mol) 𝐹 (C ·mol−1) 𝑘B (J ·K−1) 𝜒0 (F ·m−2)

8.314 9.6485× 104 1.38× 10−23 8.854× 10−12

Table A.2. Parameters of the oxide.

𝑇 (K) Ωox (m3 ·mol−1) 𝜒 Γ0,Γ1 (F ·m−2) ΔΦ𝑝𝑧𝑐
0 (V) ΔΦ𝑝𝑧𝑐

1 (V)

298 4.474× 10−5 10 0.5, 1.0 0.190302 − ln(10)
pH

𝛾
−0.105302
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Table A.3. Dimensionless parameters involved in the Poisson equation.

𝜆2 𝜌hl 𝛼0 𝛼1

𝜒𝜒0RTΩox

𝐹 2𝐿2
0

−5
𝜒𝜒0

Γ0𝐿0

𝜒𝜒0

Γ1𝐿0

Table A.4. Diffusion coefficients of the species in the oxide, in m2 · s−1.

Oxygen vacancies: 𝐷𝐶 Electrons: 𝐷𝑁 Cations: 𝐷𝑃

10−20 10−6 10−23

cations, the electron exchange for the electrons and oxide host lattice growth for the oxygen vacancies. These
boundary conditions can be written in the generic form, for 𝑠 = 𝑒,Fe, ox,

−𝐽𝑠 (𝑋0) + 𝐶𝑠 (𝑋0)𝑋 ′
0 = 𝛽0

𝑠 (𝛾Φ (𝑋0))𝐶𝑠 (𝑋0)− 𝛾0
𝑠 (𝛾Φ (𝑋0)) ,

𝐽𝑠 (𝑋1) + 𝐶𝑠 (𝑋1)𝑋 ′
1 = 𝛽1

𝑠 (𝛾 (𝑉𝑎 − Φ (𝑋1)))𝐶𝑠 (𝑋1)− 𝛾1
𝑠 (𝛾 (𝑉𝑎 − Φ (𝑋1))) .

For the oxygen vacancies, we have:

𝛽0
ox(𝑥) =

(︁
𝑚0

ox10−𝑛ox pH𝑒−2𝑏0𝐶𝑥 + 𝑘0
ox𝑒

2𝑎0
𝐶𝑥
)︁ Ωox

4
, 𝛾0

ox(𝑥) = 𝑚0
ox10−𝑛ox pH𝑒−2𝑏0𝐶𝑥,

𝛽1
ox(𝑥) =

(︁
𝑚1

ox𝑒
−3𝑏1𝐶𝑥 + 𝑘1

ox𝑒
3𝑎1

𝐶𝑥
)︁ Ωox

4
, 𝛾1

ox(𝑥) = 4𝑘1
ox𝑒

3𝑏1𝐶𝑥.

The kinetics of the interface reactions for the cations are given by Butler–Volmer laws, which lead to:

𝛽0
Fe(𝑥) =

(︁
𝑚0

Fe𝑎Fe3+𝑒
−3𝑏0𝑃 𝑥 + 𝑘0

Fe𝑒
3𝑎0

𝑃 𝛾𝑥
)︁
, 𝛾0

Fe(𝑥) = 𝑚0
Fe𝑎Fe3+𝑒

−3𝑏0𝑃 𝑥𝐶𝑚Fe,

𝛽1
Fe(𝑥) =

(︁
𝑚1

Fe𝑒
−3𝑏1𝑃 𝑥 + 𝑘1

Fe𝑒
3𝑎1

𝑃 𝑥
)︁
, 𝛾1

Fe(𝑥) = 𝑘1
Fe𝑒

3𝑎1
𝑃 𝑥𝐶𝑚Fe.

Let us mention here that 𝑎Fe3+ is the activity of the ferric cations and 𝐶𝑚Fe is the maximum occupancy for
octahedral iron in cations in the oxide layer.

For the electrons, the kinetics of the interface reactions yields:

𝛽0
𝑒 (𝑥) = 𝑘0

𝑒10−𝑛𝑒 pH𝑒−𝑎
0
𝑁𝑥 + 𝑘0

𝑟𝑎Fe3+𝑒
−𝑏0𝑟𝑥,

𝛾0
𝑒 (𝑥) = 𝑚0

𝑒10−𝑛𝑒 pH𝑒−𝛾𝐸redox𝑒𝑏
0
𝑁𝑥 +𝑚0

𝑟𝑎Fe2+𝑒
𝑎0

𝑟𝑥,

𝛽1
𝑒 (𝑥) = 𝑚1

𝑒,

𝛾1
𝑒 (𝑥) = 𝑘1

𝑒(𝑘B𝑇𝑛DOS) log(1 + 𝑒−𝑥),

with 𝑎Fe2+ the activity of the ferrous cations, 𝐸redox the redox potential in the solution, 𝑛DOS the density of
state of electrons in the metal.

Applying the scaling, we obtain that the functions 𝛽0
𝑈 , 𝛽1

𝑈 , 𝛾0
𝑈 and 𝛾1

𝑈 are defined by

𝛽0
𝐶(𝑥) =

1
4

(︁
𝑚0
𝐶𝑒

−2𝑏0𝐶𝑥 + 𝑘0
𝐶𝑒

2𝑎0
𝐶𝑥
)︁
, 𝛽1

𝐶(𝑦) =
1
4

(︁
𝑚1
𝐶𝑒

−3𝑏1𝐶𝑦 + 𝑘1
𝐶𝑒

3𝑎1
𝐶𝑦
)︁
,

𝛾0
𝐶(𝑥) = 𝑚0

𝐶𝑒
−2𝑏0𝐶𝑥, 𝛾1

𝐶(𝑦) = 𝑘1
𝐶𝑒

3𝑎1
𝐶𝑦,

𝛽0
𝑁 (𝑥) = 𝑘0

𝑁𝑒
−𝑎0

𝑁𝑥 + 𝑝0
𝑁𝑒

−𝑏0𝑟𝑥, 𝛽1
𝑁 (𝑦) = 𝑚1

𝑁 ,
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Table A.5. Scaling of the kinetics coefficients.

𝑚0
𝐶 𝑘0

𝐶 𝑚1
𝐶 𝑘1

𝐶

𝐿0Ωox

𝐷𝐶
𝑚0

ox10−𝑛ox pH 𝐿0Ωox

𝐷𝐶
𝑘0
ox 4

𝐿0Ωox

𝐷𝐶
𝑚1

ox 4
𝐿0Ωox

𝐷𝐶
𝑘1
ox

𝑚0
𝑁 𝑘0

𝑁 𝑝0
𝑁 𝑛0

𝑁

𝐿0Ωox

𝐷𝑁
𝑚0

𝑒10−𝑛𝑒 pH𝑒−𝛾𝐸redox 𝐿0

𝐷𝑁
𝑘0

𝑒10−𝑛𝑒 pH 𝐿0

𝐷𝑁
𝑘0

𝑟𝑎Fe3+
𝐿0Ωox

𝐷𝑁
𝑚0

𝑟𝑎Fe2+

𝑚1
𝑁 𝑘1

𝑁 𝑁metal 𝑃𝑚

𝐿0

𝐷𝑁
𝑚1

𝑒
𝐿0

𝐷𝑁
𝑘1

𝑒 Ωox𝑘B𝑇𝑛DOS Ωox𝐶
𝑚
Fe

𝑚0
𝑃 𝑘0

𝑃 𝑚1
𝑃 𝑘1

𝑃

𝐿0

𝐷𝑃
𝑚0

Fe𝑎Fe3+
𝐿0

𝐷𝑃
𝑘0
Fe

𝐿0

𝐷𝑃
𝑚1

Fe
𝐿0

𝐷𝑃
𝑘1
Fe

Table A.6. Parameters involved in the moving boundary equations.

Π 𝜅 𝑘0
𝑑

Ωox

ΩFe

ΩFe

4Ωox

Ωox𝐿0

𝐷𝑃
𝑘0

𝑑10−𝑛𝑑 pH

𝛾0
𝑁 (𝑥) = 𝑚0

𝑁𝑒
𝑏0𝑁𝑥 + 𝑛0

𝑁𝑒
𝑎0

𝑟𝑥, 𝛾1
𝑁 (𝑦) = 𝑘1

𝑁𝑁metal log(1 + 𝑒−𝑦),

𝛽0
𝑃 (𝑥) = 𝑚0

𝑃 𝑒
−3𝑏0𝑃 𝑥 + 𝑘0

𝑃 𝑒
3𝑎0

𝑃 𝑥, 𝛽1
𝑃 (𝑦) = 𝑚1

𝑃 𝑒
−3𝑏1𝑃 𝑦 + 𝑘1

𝑃 𝑒
3𝑎1

𝑃 𝑦,

𝛾0
𝑃 (𝑥) = 𝑚0

𝑃𝑃
𝑚𝑒−3𝑏0𝑃 𝑥, 𝛾1

𝑃 (𝑦) = 𝑘1
𝑃𝑃

𝑚𝑒3𝑎
1
𝑃 𝑦,

with the scaled kinetics coefficients defined in Table A.5.

A.3. Scaling of the moving boundary equations

Let us now finish with the parameters involved in the moving boundary equations (2.10). The Pilling–
Bedworth ratio Π and the parameter 𝜅 depend on the molar volume of the metal ΩFe. The dissolution kinetics
contant 𝑘0

𝑑 involved in the dissolution speed 𝑣0
𝑑 is obtained after the scaling of the corresponding physical value

𝑘0
𝑑10−𝑛𝑑 pH. These parameters are presented in Table A.6.

A.4. Definition of the test case

All the numerical simulations have been done with the set of parameters already presented in Tables A.1,
A.2, A.4 and the last ones given now in Table A.7. These parameters values are the ones currently used in the
code CALIPSO [3]. The only parameters that we let vary for the moment are the pH (which influences the
parameters Δ𝜓𝑝𝑧𝑐0 , 𝑘0

𝑑, 𝑚
0
𝑁 , 𝑚0

𝐶 and 𝑘0
𝑁 appearing in the model) and the potential 𝑉𝑎 (which influences the

non-dimensional potential 𝑉 appearing in the model).

Acknowledgements. We thank C. Bataillon for helpful discussions about the parameters used in the DPCM, and for
providing us with some simulations done with the code CALIPSO that we could compare our results to. We also heartily
thank the two referees for their very careful reading of the manuscript and their constructive comments. M. Breden and
C. Chainais-Hillairet have been supported by the program NEEDS, via the project POCO. A. Zurek has been partially
supported by the Austrian Science Fund (FWF), grants P30000, P33010, F65, and W1245, and by the multilateral project
of the Austrian Agency for International Co-operation in Education and Research (OeAD), grant MULT 11/2020.
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Table A.7. Values of the parameters used for the numerical experiments.

𝑚0
ox (mol ·m2 · s−1) 𝑘0

ox (mol ·m2 · s−1) 𝑚1
ox (mol ·m2 · s−1) 𝑘1

ox (mol ·m2 · s−1)

2.71838× 101 10−2 2.73855× 10−8 6× 10−6

𝑚0
𝑒 (mol ·m2 · s−1) 𝑘0

𝑒 (m · s−1) 𝑘0
𝑟 (m · s−1) 𝑚0

𝑟 (mol ·m2 · s−1)

0 1.3× 10−5 2.54255× 106 10−4

𝑚1
𝑒 (m · s−1) 𝑘1

𝑒 (m · s−1) 𝑛DOS (mol · J ·m−3) 𝐶𝑚
Fe (mol ·m−3)

2.6804× 104 2.6804× 104 0.135× 1025 2.005

Ωox

𝑚0
Fe (m · s−1) 𝑘0

Fe (m · s−1) 𝑚1
Fe (m · s−1) 𝑘1

Fe (m · s−1)

1.32927 10−4 10−9 10−3

(𝑎Fe3+ , 𝑎Fe2+) (𝑎0,1
𝑈 , 𝑏0,1

𝑈 ), (𝑎0
𝑟, 𝑏

0
𝑟) 𝑘0

𝑑 (mol ·m2 · s−1), 𝑎0
𝑑 ΩFe (m3 ·mol−1)

(0, 0) (0.5, 0.5) 2.854× 10−9, 0.257 7.105× 10−6

𝐸redox (V) 𝑛ox 𝑛𝑒 𝑛𝑑

−0.3 2 1 0.5
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