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FLUX RECOVERY FOR CUT FINITE ELEMENT METHOD AND ITS
APPLICATION IN A POSTERIORI ERROR ESTIMATION

Daniela Capatina1 and Cuiyu He2,3,*

Abstract. In this article, we aim to recover locally conservative and 𝐻(div) conforming fluxes for the
linear Cut Finite Element Solution with Nitsche’s method for Poisson problems with Dirichlet bound-
ary condition. The computation of the conservative flux in the Raviart–Thomas space is completely
local and does not require to solve any mixed problem. The 𝐿2-norm of the difference between the
numerical flux and the recovered flux can then be used as a posteriori error estimator in the adap-
tive mesh refinement procedure. Theoretically we also prove the global reliability and local efficiency.
The theoretical results are verified in the numerical results. Moreover, in the numerical results we also
observe optimal convergence rate for the flux error.
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1. Introduction

Cut finite element method (CutFEM) may be regarded as a fictitious domain method. The finite element
fictitious domain method was introduced in [28] as an approach to simplify the meshing problem and then
further improved in [5, 8, 14, 30, 31]. The challenges for such methods are typically that if the mesh is cut in
an unfavorable way the system can be ill-conditioned and accuracy can be lost. Several approaches have been
proposed to handle this problem, all based on the idea of extending the stability of the solution in the bulk up
to the boundary. In [31], boundary fluxes are evaluated using the gradient extended from internal elements. In
[4,13,32,33], agglomeration of adjacent elements is used. Finally, in [12,15], the weakly consistent ghost penalty
term was proposed that serves purpose.

The purpose of this paper is to design and analyze a locally conservative flux in the Raviart–Thomas space
of order 0 and 1 for the linear CutFEM. We will base our discussion on the approximation of Poisson’s problem
[15] in two dimensions. In addition, the CutFEM uses Nitsche’s method [37] to impose Dirichlet boundary
conditions and a ghost penalty term [12] to enhance stability in the boundary zone.

One important application for the flux recovery is that the 𝐿2-norm of the difference between the numerical
flux and the recovered flux can be used in the a posteriori error estimation. The main motivation for studying
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the a posteriori error estimation is the application of adaptive mesh refinement (AMR) procedure. It is well
known that AMR is extremely useful for problems with singularities, discontinuities, sharp derivatives etc.. And
it has been extensively studied in the last several decades, see e.g., [3, 40]. In [17], a residual based a posterior
error estimator for the CutFEM method was studied. One drawback of residual based error estimation is that
its reliability constants are unknown and usually not polynomial-robust and problem dependent. On the other
hand, it is well known that the difference between the numerical flux and a locally conservative (equilibrate)
flux automatically yields an upper bound for the true energy error with a reliability constant being exactly 1.

Thanks to the sharp reliability, equilibrate flux recovery has been extensively studied for various finite element
methods on fitted meshes in the last decade. It is well known that for discontinuous Galerkin methods, a locally
element-wise equilibrate flux can be easily obtained thanks to the fact that the test functions are completely
local [1,6,7,11,25]. For nonconforming finite element methods of odd order, a local element-wise construction can
be also easily obtained by taking advantage of the nonconforming local basis functions [20,35]. For second order
nonconforming finite element method, an explicit construction is designed in [34]. However, for nonconforming
methods of general even orders and conforming finite element methods, local element-wise (explicit) flux recovery
is not straightforward and usually local problems on star patches need to be solved [2,7,24]. In [38], a conservative
flux is obtained by adding a piecewise constant correction through minimizing a weighted global 𝐿2-norm.

We note that the method introduced in [7] is designed applicable to various finite element methods, and
furthermore, designed in a framework that fully takes advantages of the local basis functions for each method.
For conforming finite elements on fitted meshes, this method only requires solving local problems that do not
involve any hybrid mixed problem which are required e.g., in [10,18,24].

In this work, we use a similar approach for CutFEM and we recover a flux which belongs to the classical
Raviart–Thomas space of order 0 or 1 on the regular mesh. The auxiliary mixed formulation and the local
computation of its dual solution are therefore similar to [7], because the multiplier is still defined on the regular
unfitted mesh. Regarding the conservative numerical flux, its local construction is also similar for the interior
elements not cut by the boundary, although it needs extra treatment for the ghost penalty term.

However, the classical construction is no longer valid for the cut elements due to the fact that the domain cuts
the background mesh in an arbitrary fashion and to the presence of non-standard integral terms in the variational
formulation. In particular, two points require special attention. The first one concerns the distribution of the
irregular integral terms in the weak formulation to the degrees of freedom of the recovered flux. The second one
concerns the local conservation property, since the data only lies on the cut part whereas the flux is defined on
the whole element. To achieve the local conservation, we introduce an appropriate linear extension of the data
to the whole element and we prove local conservation on the whole element, with respect to the extended data.
Note that this extension is only used as a theoretical tool and is not needed in the numerical simulation.

As usual, we employ the difference between the recovered flux and the numerical flux, i.e., the gradient of
the CutFEM solution, as the a posteriori error estimator. Theoretically, we prove that the obtained a posteriori
error estimator is globally reliable and locally efficient. Furthermore, we show that the constants involved in
the a posteriori error analysis are independent of both the mesh size and the mesh-domain intersection. To
achieve this, besides using the classical techniques, the key component in the reliability is the bound of the
oscillation term which involves the extension previously introduced. Meanwhile, the local efficiency is obtained
thanks to the local distribution of the regular and irregular terms to the degrees of freedom of the recovered
flux. Furthermore, we also prove and use a uniform bound of the local multiplier, which is an improved local
inf-sup condition comparing to the global version.

Contrary to the classical approach, we consider the domain with non-polygonal boundary. In order to achieve
the same accuracy as the classical fitted method, boundary geometry and boundary data for CutFEM need to
be approximated to similar accuracy. It is therefore important in this context to derive error estimators that
are able to integrate both the discretization error of the method and the discretization error of the geometry. In
this work, we approximate the physical geometry by a piecewise affine polygonal domain. In [17], a boundary
correction error was separated that particularly estimates the geometry approximation error. The computation
of this term, however, is not trivial and requires the construction of a sub mesh. Nevertheless, numerical results
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have shown that such error is not necessary to compute since the boundary approximation error can already
be captured by the residual based error estimator in [17]. In this paper, we also discard such term and the
numerical results also confirm that our error estimator is able to catch both the boundary approximation errors
and the discretization error due to the numerical method.

Although we herein restrict the discussion to the case of piecewise affine approximation spaces from [15],
we believe that the ideas introduced can be extended for instance to the high order case discussed in [16] as
regards the CutFEM method, and in [7] as regards the flux reconstruction in two dimensions. The extension to
three dimensions is feasible but requires quite technical modifications in the local construction of the auxiliary
solution for the mixed problem, both at the theoretical and the computational level. We consider the three
dimensional case as future work. For other works treating a posteriori error estimation and cut cell techniques
we refer to [26], where a finite volume method was considered, and [22,39] where cut cell methods were applied.

This paper is organized as follows. In Section 2, the model problem and the CutFEM are introduced. In
Section 3, we design the local conservative flux by introducing an auxiliary mixed method and establish its
well-posedness. In Section 4, we apply the conservative flux in the a posteriori error estimation and establish
its reliability and efficiency. Finally, we show the results of several numerical experiments in Section 5.

2. Model problem and the cut finite element method

2.1. The continuous problem

Let Ω be a domain in R𝑑 (𝑑 = 2) with Lipschitz continuous, piecewise smooth boundary 𝜕Ω with exterior
unit normal 𝑛. We consider the problem: find 𝑢 : Ω → R such that

−∆𝑢 = 𝑓 in Ω,

𝑢 = 𝑔 on 𝜕Ω,
(2.1)

where 𝑓 ∈ 𝐿2(Ω) and 𝑔 ∈ 𝐻1/2(𝜕Ω). For the sake of simplicity, we only consider the model problem of Laplacian
operator with Dirichlet boundary conditions. However, the technique could be generalized to other boundary
conditions and more complex elliptic operators.

Define the spaces

𝐻1
𝑔 (Ω) =

{︀
𝑣 ∈ 𝐻1(Ω) : 𝑣 = 𝑔 on 𝜕Ω

}︀
and 𝐻1

0 (Ω) =
{︀
𝑣 ∈ 𝐻1(Ω) : 𝑣 = 0 on 𝜕Ω

}︀
.

Then the weak formulation for this problem renders to find 𝑢 ∈ 𝐻1
𝑔 (Ω) such that

𝑎(𝑢, 𝑣) = (𝑓, 𝑣)Ω, ∀ 𝑣 ∈ 𝐻1
0 (Ω),

where 𝑎(𝑢, 𝑣) = (∇𝑢,∇𝑣)Ω. It follows from the Lax–Milgram lemma that there exists a unique solution 𝑢 ∈
𝐻1

𝑔 (Ω) to this problem.

2.2. The mesh, discrete domain, and finite element spaces

Assume that 𝜕Ω is composed of a finite number of smooth surfaces Γ𝑖, such that 𝜕Ω = ∪
𝑖
Γ̄𝑖. We let 𝜌 be the

signed distance function such that

𝜌(𝑥)

⎧⎪⎨⎪⎩
< 0 if 𝑥 ∈ Ω,

= 0 if 𝑥 ∈ 𝜕Ω,

> 0 if 𝑥 ∈ Ω̄𝑐,

where Ω̄𝑐 is the complement of the closure of Ω. We define 𝑈𝛿(𝜕Ω), 𝛿 > 0, be the tubular neighborhood {𝑥 ∈
R𝑑 : |𝜌(𝑥)| < 𝛿} of 𝜕Ω. Choose Ω0 ⊂ R𝑑 be the background domain (see e.g., the square outline of the entire
mesh in Fig. 1) such that it is polygonal, Ω ⊂ Ω0 and 𝑈𝛿0(𝜕Ω) ⊂ Ω0 where 𝛿0 is chosen small enough to control
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Figure 1. An example for the background mesh 𝒯0,ℎ, 𝜕Ω and 𝜕Ωℎ. Ω0 is the entire square
domain.

the distance between the computational and physical domain. Let 𝒯0,ℎ be a partition of Ω0 into shape regular
triangles (see e.g., the mesh in Fig. 1). Note that this setting allows meshes with local refinements.

Given a subset 𝜔 of Ω0, let 𝒯ℎ(𝜔) be the sub-mesh defined by

𝒯ℎ(𝜔) = {𝐾 ∈ 𝒯0,ℎ : 𝐾 ∩ 𝜔 ̸= ∅}, (2.2)

i.e., the sub-mesh consisting of elements that have non-zero intersection with 𝜔, and let

△ℎ(𝜔) =
⋃︁

𝐾∈𝒯ℎ(𝜔)

𝐾, (2.3)

which is the union of all elements in 𝒯ℎ(𝜔).
For each 𝒯0,ℎ, let Ωℎ (see e.g., Fig. 1) be a polygonal domain approximating Ω. We assume that 𝜕Ωℎ ⊂

𝑈𝛿0(𝜕Ω), i.e., 𝜕Ωℎ is within the distance of 𝛿0 to 𝜕Ω. Moreover, we also require that the maximum distance
between the two domains is small enough so that Ωℎ is a sufficiently good approximation to Ω. More details
will be given later.

Let the active mesh be defined by
𝒯ℎ := 𝒯ℎ(Ωℎ) (2.4)

i.e., the sub-mesh consisting of elements that intersect Ωℎ, and let

△ℎ := △ℎ(Ωℎ). (2.5)

Since 𝜕Ωℎ cut the active mesh 𝒯ℎ in an arbitrary fashion, we denote by 𝒯 𝑏
ℎ the set of elements that are “cut”

by 𝜕Ωℎ, i.e.,
𝒯 𝑏

ℎ = {𝐾 ∈ 𝒯0,ℎ : 𝐾 ∩ 𝜕Ωℎ ̸= ∅} ⊂ 𝒯ℎ.

We further assume that Ωℎ is constructed in such a way that for each 𝐾 ∈ 𝒯 𝑏
ℎ , the intersection 𝐾 ∩ 𝜕Ωℎ is

a subset of a 𝑑 − 1 dimensional hyperplane, i.e., a line segment in two dimensions. Under the assumptions on
𝜕Ω, and if we also assume that ℎ is sufficiently small, then for any element 𝐾 ∈ 𝒯 𝑏

ℎ there exists an element
𝐾 ′ ∈ 𝒯ℎ ∖ 𝒯 𝑏

ℎ such that dist(𝐾, 𝐾 ′) = 𝑂(ℎ𝐾) where 𝑂(·) denotes the Landau big-𝑂.
Also we denote by ℰ the set of all facets of 𝒯ℎ, and by ℰ𝐼 and ℰ𝜕 the set of all interior and boundary facets

with respect to 𝒯ℎ, respectively. It is obvious that ℰ𝐼 ∪ ℰ𝜕 = ℰ . For each 𝐹 ∈ ℰ denote by 𝑛𝐹 an unit vector
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normal to 𝐹 and by ℎ𝐹 (or |𝐹 |) the diameter of 𝐹 . If 𝐹 ∈ ℰ𝜕 , then 𝑛𝐹 is the outward unit normal vector. For
each 𝐾 ∈ 𝒯ℎ denote by ℎ𝐾 the diameter of 𝐾 and by ℰ𝐾 the set of all facets of 𝐾.

On the boundary 𝜕Ωℎ, let 𝑛ℎ be the outer normal to 𝜕Ωℎ. For each Ωℎ, we assume that, for 𝛿0 small
enough, there exist a vector function 𝜈ℎ : 𝜕Ωℎ → R𝑑, |𝜈ℎ| = 1, and 𝜚ℎ : 𝜕Ωℎ → R, such that the function,
𝑝ℎ(𝑥, 𝜍) := 𝑥 + 𝜍𝜈ℎ(𝑥), is well defined and satisfies 𝑝ℎ(𝑥, 𝜚ℎ(𝑥)) ∈ 𝜕Ω for all 𝑥 ∈ 𝜕Ωℎ. Here 𝜚ℎ is the distance
from the approximate to the physical boundary in the direction 𝜈ℎ. The mapping 𝑝ℎ allows us to impose the
boundary data defined on the physical boundary on the approximate boundary. The existence of the vector-
valued function 𝜈ℎ is known to hold on Lipschitz domains, see Grisvard [29]. We further assume that

𝑝ℎ(𝑥, 𝜍) ∈ 𝑈𝛿0(𝜕Ω), ∀𝑥 ∈ 𝜕Ωℎ, 0 ≤ 𝜍 ≤ 𝜚ℎ(𝑥).

For convenience, we will drop the second argument, 𝜍, of 𝑝ℎ below whenever it takes the value 𝜚ℎ(𝑥) and then
𝑝ℎ denotes the map 𝑝ℎ : 𝜕Ωℎ → 𝜕Ω. Moreover, we assume that the following assumption is satisfied

‖𝜚ℎ‖𝐿∞(𝜕Ωℎ∩𝐾) ≤ 𝑂(ℎ𝐾) ∀𝐾 ∈ 𝒯 𝑏
ℎ . (2.6)

The above assumption immediately implies that 𝜕Ωℎ ∩𝐾 is within the distance of 𝑂(ℎ𝐾) of 𝜕Ω, i.e.,

‖𝜚‖𝐿∞(𝜕Ωℎ∩𝐾) ≤ 𝑂(ℎ𝐾) ∀𝐾 ∈ 𝒯 𝑏
ℎ . (2.7)

This assumption is necessary for the constant in the a posteriori error estimates to be independent of the
geometry/mesh configuration see [17]. It is however not enough to guarantee the optimal a priori error estimates,
which requires ‖𝜚‖𝐿∞(𝜕Ωℎ∩𝐾) ≤ 𝑂(ℎ2

𝐾), and ‖𝑛 ∘ 𝑝ℎ − 𝑛ℎ‖𝐿∞(𝜕Ωℎ∩𝐾) ≤ 𝑂(ℎ𝐾), see [16]. We note that based
on our construction of Ωℎ, it is guaranteed that ‖𝜚‖𝐿∞(𝜕Ωℎ∩𝐾) ≤ 𝑂(ℎ2

𝐾). It is also noted that in theory we
can assume neither Ωℎ ⊂ Ω nor Ω ⊂ Ωℎ. However, for simplicity, we assume Ω ⊂ Ωℎ. This will help skip the
analysis for the a posteriori error estimation on the part of data approximation error of 𝑓 , i.e., ℎ𝐾‖𝑓‖(Ω∖Ωℎ)∩𝐾 .
Such error will be discarded in the algorithm eventually due to computational difficulty on irregular curved
domain. Doing this, however, will not affect the performance of adaptive mesh refinement since the discarded
term is locally of equal order (when ‖𝜚‖𝐿∞(𝜕Ωℎ∩𝐾) ≤ 𝑂(ℎ𝐾)) or higher order (when ‖𝜚‖𝐿∞(𝜕Ωℎ∩𝐾) ≤ 𝑂(ℎ2

𝐾))
comparing to the local error indicator.

2.3. The cut finite element method

In this subsection we recall the CutFEM introduced in [15]. We begin with some necessary notation. For any
𝐹 ∈ ℰ𝐼 , let 𝐾+

𝐹 and 𝐾−
𝐹 be those two elements sharing 𝐹 as a common facet such that the outer normal of 𝐾+

𝐹

coincides with 𝑛𝐹 . For any discontinuous function 𝑣, define the jump of 𝑣 across the facet 𝐹 by

[[𝑣]]|𝐹 := 𝑣+
𝐹 − 𝑣−𝐹 and 𝑣±𝐹 (𝑥) = lim

𝑠→0+
𝑣(𝑥∓ 𝑠𝑛𝐹 ).

The set of facets associated with cut elements is defined by

ℰ𝑔 :=
{︀
𝐹 ∈ ℰ𝐼 :

(︀
𝐾+

𝐹 ∪𝐾−
𝐹

)︀
∩ 𝜕Ωℎ ̸= ∅

}︀
.

The index 𝑔 above refers to the ghost penalization, defined on every 𝐹 ∈ ℰ𝑔.
For each 𝐾 ∈ 𝒯ℎ, we define a sign function s𝐾 defined on ℰ𝐾 such that

s𝐾(𝐹 ) =

{︃
1 if 𝑛𝐹 = 𝑛𝐾 |𝐹 ,

−1 if 𝑛𝐹 = −𝑛𝐾 |𝐹 .

The conforming linear finite element space is then defined as

CGℎ :=
{︀
𝑣 ∈ 𝐻1(△ℎ) : 𝑣|𝐾 ∈ P1(𝐾) ∀𝐾 ∈ 𝒯ℎ

}︀
. (2.8)
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We also define the following forms:

𝑎0(𝑤, 𝑣) := (∇𝑤,∇𝑣)Ωℎ
− ⟨𝜕𝑛ℎ

𝑤, 𝑣⟩𝜕Ωℎ
− ⟨𝑤, 𝜕𝑛ℎ

𝑣⟩𝜕Ωℎ
+
∑︁

𝐾∈𝒯 𝑏
ℎ

𝛽

ℎ𝐾
⟨𝑤, 𝑣⟩Γ𝐾

,

𝑗ℎ(𝑤, 𝑣) := 𝛾
∑︁

𝐹∈ℰ𝑔

ℎ𝐹 ⟨[[𝜕𝑛𝐹
𝑤]], [[𝜕𝑛𝐹

𝑣]]⟩𝐹 ,

𝑎ℎ(𝑤, 𝑣) := 𝑎0(𝑤, 𝑣) + 𝑗ℎ(𝑤, 𝑣),

𝑙ℎ(𝑣) := (𝑓, 𝑣)Ωℎ
− ⟨𝑔ℎ, 𝜕𝑛ℎ

𝑣⟩𝜕Ωℎ
+
∑︁

𝐾∈𝒯 𝑏
ℎ

𝛽

ℎ𝐾
⟨𝑔ℎ, 𝑣⟩Γ𝐾

,

(2.9)

where Γ𝐾 = 𝐾 ∩ 𝜕Ωℎ, 𝜕𝑛ℎ
:= 𝑛ℎ · ∇, 𝛾 and 𝛽 are positive constants, 𝑔ℎ is an approximation of 𝑔 defined

on 𝜕Ωℎ. A natural choice is that 𝑔ℎ(𝑥) = 𝑔 ∘ 𝑝ℎ. Note that we only assumed that Ω ⊂ Ωℎ. In Ωℎ ∖ Ω where
𝑓 is not originally defined, 𝑓 |Ωℎ∖Ω is defined to be an appropriate extension. For instance, if 𝑓 |Ω is piecewise
polynomial, it seems natural to extend it to Ωℎ by means of the same polynomials, but one could also employ
the zero extension. More details about the extension can be found in [16]. We also note that in the special case
when 𝜕Ωℎ coincides with the mesh boundary, (2.9) is the classical Nitsche’s method. The analysis in this paper
remains applicable to this case.

Remark 2.1. The stabilizing term 𝑗ℎ(𝑤, 𝑣), which is the so-called ghost penalty term, is introduced to extend
the coercivity of 𝑎ℎ(·, ·) to all of △ℎ, see [12, 36]. Thanks to this property, one may prove that the condition
number of the linear system is uniformly bounded regardless of the arbitrary boundary-mesh intersection.

Remark 2.2. In order to guarantee the coercivity of the bilinear form 𝑎ℎ(·, ·) in (2.9), 𝛽 has to be chosen large
enough. Note that both 𝛽 and 𝛾 are chosen independently of the mesh and of the boundary-mesh intersection
[15].

The finite element method is then to find 𝑢ℎ ∈ CGℎ such that

𝑎ℎ(𝑢ℎ, 𝑣) = 𝑙ℎ(𝑣) ∀ 𝑣 ∈ CGℎ (2.10)

where 𝑎ℎ and 𝑙ℎ are defined in (2.9).
For 𝑣 ∈ 𝐻1(△ℎ), define its continuous and discrete energy norms respectively by

|||𝑣|||2 := ‖∇𝑣‖2Ω + ‖𝜕𝑛𝑣‖2𝐻−1/2(𝜕Ω) + ‖ℎ− 1
2 𝑣‖2𝜕Ω (2.11)

and

|||𝑣|||2ℎ := ‖∇𝑣‖2Ωℎ
+
∑︁

𝐾∈𝒯 𝑏
ℎ

ℎ𝐾‖𝜕𝑛ℎ
𝑣‖2Γ𝐾

+
∑︁

𝐾∈𝒯 𝑏
ℎ

ℎ−1
𝐾 ‖𝑣‖2Γ𝐾

+ 𝑗ℎ(𝑣, 𝑣). (2.12)

In (2.11), ℎ denotes the piecewise constant mesh size function. From [12], we have for 𝛽 sufficiently large the
following coercivity result,

𝑎ℎ(𝑣, 𝑣) ≥ 𝐶|||𝑣|||2ℎ ∀𝑣 ∈ CGℎ, (2.13)

which, together with the uniform ||| · |||ℎ-continuity of 𝑎ℎ(·, ·) on CGℎ, implies that (2.10) has a unique solution.
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2.4. Some important inequalities

Below we list the well known trace and inverse inequalities ([21], Sect. 1.4.3),

‖𝑣‖𝜕𝐾 . ℎ
−1/2
𝐾 ‖𝑣‖𝐾 + ℎ

1/2
𝐾 ‖∇𝑣‖𝐾 ∀ 𝑣 ∈ 𝐻1(𝐾), ∀𝐾 ∈ 𝒯ℎ, (2.14)

ℎ
− 1

2
𝐾 ‖𝑣ℎ‖𝜕𝐾 + ‖∇𝑣ℎ‖𝐾 . ℎ−1

𝐾 ‖𝑣ℎ‖𝐾 ∀ 𝑣ℎ ∈ P1(𝐾), ∀𝐾 ∈ 𝒯ℎ. (2.15)

The following irregular trace inequality can be found in [30]

‖𝑣ℎ‖Γ𝐾
. ℎ

−1/2
𝐾 ‖𝑣ℎ‖𝐾 + ℎ

1/2
𝐾 ‖∇𝑣ℎ‖𝐾 ∀ 𝑣ℎ ∈ P1(𝐾), ∀𝐾 ∈ 𝒯 𝑏

ℎ , (2.16)

where the hidden constant is independent of the boundary-mesh intersection. Here and below we use the notation
. to denote less or equal up to a generic constant that is independent of the mesh-geometry configuration.

In the following lemma, we also provide a Poincaré-type inequality for the boundary elements.

Lemma 2.3. Let 𝑣 ∈ 𝐻1
0 (Ω). Then for any 𝐾 such that 𝐾∩𝜕Ω ̸= ∅ or 𝐾∩𝜕Ωℎ ̸= ∅, there exists a local convex

neighborhood 𝒮𝐾 of 𝐾 such that 𝑣 vanishes on a non-empty subset of 𝜕𝑆𝐾 and

‖𝑣‖𝐾 . ℎ𝐾‖∇𝑣‖𝒮𝐾
, (2.17)

where we defined 𝑣 outside Ω using the trivial extension 𝑣|Ω0∖Ω = 0.

The proof of the lemma can be found in [17].

3. Mixed formulation

In this section, we introduce an auxiliary mixed formulation for the cut finite element method. The aim is
not to solve the global mixed problem. Instead, our goal is to establish the connections between the mixed
and CutFEM formulation, and, with the help of those connections, to locally recover a conservative flux in the
𝐻(div) space. The idea generates from [7] in which classical finite element methods with fitted meshes were
studied.

Define the discontinuous finite element space on △ℎ by

DGℎ :=
{︀
𝑣 ∈ 𝐿2(△ℎ) : 𝑣|𝐾 ∈ P1(𝐾) ∀𝐾 ∈ 𝒯ℎ

}︀
. (3.1)

Also define the average operator:

{𝑤} =

{︃
0.5
(︀
𝑤+

𝐹 + 𝑤−𝐹
)︀
, 𝐹 ∈ ℰ𝐼 ,

𝑤, 𝐹 ∈ ℰ𝜕 .

We also denote by 𝒩 the set of all vertices in 𝒯ℎ, and by 𝒩𝐼 and 𝒩𝜕 the sets of all interior and boundary
vertices on 𝒯ℎ. Obviously, we have 𝒩𝐼 ∩𝒩𝜕 = 𝒩 . For each 𝑁 ∈ 𝒩 , define 𝒯𝑁 and ℰ𝑁 be the sets of all elements
and all facets sharing 𝑁 as a vertex, respectively. For each 𝑁 ∈ 𝒩 , we define a signed function s𝑁 on ℰ𝑁

such that s𝑁 (𝐹 ) = 1 if 𝑛𝐹 is oriented counter-clockwise in 𝒯𝑁 , otherwise s𝑁 (𝐹 ) = −1. We further define the
following space:

𝑀ℎ =

{︃
𝜇 ∈ 𝐿2(ℰ𝐼) : 𝜇|𝐹 ∈ P1(𝐹 ) ∀𝐹 ∈ ℰ𝐼 ,

∑︁
𝐹∈ℰ𝑁

s𝑁 (𝐹 )ℎ𝐹 𝜇|𝐹 (𝑁) = 0 ∀𝑁 ∈ 𝒩𝐼

}︃
.

Here P1(𝐹 ) is the space of linear functions defined on 𝐹 ∈ ℰ . For the sake of brevity, we use the following
notations for piecewise integration,
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∫︁
𝒯ℎ

=
∑︁

𝐾∈𝒯ℎ

∫︁
𝐾

,

∫︁
ℰ̃

=
∑︁
𝐹∈ℰ̃

∫︁
𝐹

,

where ℰ̃ is a subset of ℰ . We now define semi-norms and norms on the discrete spaces defined above:

|𝑣|1,ℎ =
(︂∫︁

𝒯ℎ

|∇𝑣|2
)︂1/2

, ∀ 𝑣 ∈ DGℎ,

|||𝑣|||ℎ,* =

⎛⎝|𝑣|21,ℎ +
∑︁

𝐾∈𝒯 𝑏
ℎ

(︀
ℎ𝐾‖𝜕𝑛ℎ

𝑣‖2Γ𝐾
+ ℎ−1

𝐾 ‖𝑣‖2Γ𝐾

)︀
+
∫︁
ℰ𝐼

ℎ−1
𝐹 [[𝑣]]2 d𝑠

⎞⎠1/2

, ∀𝑣 ∈ DGℎ,

‖𝜇‖𝑀ℎ
=
(︂∫︁

ℰ𝐼

ℎ𝐹 𝜇2 d𝑠

)︂1/2

, ∀𝜇 ∈ 𝑀ℎ. (3.2)

The auxiliary mixed formulation is defined as follows: find (𝑢ℎ, 𝜃ℎ) ∈ DGℎ ×𝑀ℎ such that

𝑎̃ℎ(𝑢ℎ, 𝑤ℎ) + 𝑏(𝜃ℎ, 𝑤ℎ) = 𝑙ℎ(𝑤ℎ), ∀𝑤ℎ ∈ DGℎ,

𝑏(𝜇ℎ, 𝑢ℎ) = 0, ∀𝜇ℎ ∈ 𝑀ℎ. (3.3)

where

𝑎̃ℎ(𝑣, 𝑤) = 𝑎ℎ(𝑣, 𝑤)− ⟨{𝜕𝑛𝐹
𝑣}, [[𝑤]]⟩ℰ𝐼∩Ωℎ

− ⟨{𝜕𝑛𝐹
𝑤}, [[𝑣]]⟩ℰ𝐼∩Ωℎ

,

𝑏(𝜇, 𝑣) =
∑︁

𝐹∈ℰ𝐼

ℎ𝐹

2

∑︁
𝑁∈𝒩∩𝐹

𝜇𝐹 (𝑁)[[𝑣]](𝑁) ≈
∫︁
ℰ𝐼

𝜇[[𝑣]] d𝑠,
(3.4)

where 𝜇𝐹 = 𝜇|𝐹 and 𝒩 ∩𝐹 is the set of vertices of 𝐹 . It is easy to check that the discrete kernel of 𝑏(·) coincides
exactly with the CutFEM space, i.e.,

ker(𝑏) := {𝑤ℎ : 𝑏(𝜇ℎ, 𝑤ℎ) = 0 ∀𝜇ℎ ∈ 𝑀ℎ} = CGℎ.

Indeed, any function 𝑤ℎ in CGℎ satisfies [[𝑤ℎ]]|𝐹 = 0 for any 𝐹 ∈ ℰ𝐼 , and hence belongs to ker(𝑏). Reciprocally,
for any 𝑤ℎ in ker(𝑏), we can choose 𝜇ℎ ∈ 𝑀ℎ defined by (𝜇ℎ)𝐹 = ℎ−1

𝐹 [[𝑤ℎ]]|𝐹 for any 𝐹 ∈ ℰ𝐼 , which yields
[[𝑤ℎ]]|𝐹 = 0 and hence, 𝑤ℎ ∈ CGℎ. It is then obvious to see that the solution 𝑢ℎ for (2.10) coincides with the
solution for (3.3) if it is well defined.

3.1. Well-posedness of the mixed finite element approximation

Lemma 3.1 (Continuity). We have the following continuity results for the bilinear forms:

𝑏(𝜇, 𝑣) . ‖𝜇‖𝑀ℎ
|||𝑣|||ℎ,*, ∀𝜇 ∈ 𝑀ℎ,∀𝑣 ∈ DGℎ,

𝑎̃ℎ(𝑣, 𝑤) . |||𝑣|||ℎ,*|||𝑤|||ℎ,*, ∀𝑣, 𝑤 ∈ DGℎ.

Proof. The proof here is similar to that in [7]. The difference for the unfitted CutFEM is the norms introduced
in (3.2) which vary from the classical fitted case. For self-completeness, we sketch a proof here.

The proof of the first assertion is trivial by Cauchy–Schwartz and the definitions of the norms:

𝑏(𝜇, 𝑣) .
∑︁

𝐹∈ℰ𝐼

‖ℎ1/2
𝐹 𝜇‖𝐹 ‖ℎ−1/2

𝐹 [[𝑣]]‖𝐹 ≤ ‖𝜇‖𝑀ℎ
|||𝑣|||ℎ,*.
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As regards the second one, we first note that 𝑗ℎ(𝑣, 𝑣) .
∫︀
𝒯ℎ
|∇𝑣|2 for any 𝑣 ∈ DGℎ, so we clearly have that

||| · |||ℎ . ||| · |||ℎ,* on DGℎ, hence the continuity of 𝑎ℎ(·, ·). The remaining terms of 𝑎̃ℎ(·, ·) are bounded as follows:

|⟨{𝜕𝑛𝐹
𝑣}, [[𝑤]]⟩ℰ𝐼∩Ωℎ

| ≤

(︃∑︁
𝐹∈ℰ𝐼

ℎ𝐹 ‖{𝜕𝑛𝐹
𝑣}‖2𝐹

)︃1/2(︃∑︁
𝐹∈ℰ𝐼

ℎ−1
𝐹 ‖[[𝑤]]‖2𝐹

)︃1/2

.

(︂∫︁
𝒯ℎ

|∇𝑣|2
)︂1/2(︂∫︁

ℰ𝐼

ℎ−1
𝐹 [[𝑤]]2

)︂1/2

∀𝑣, 𝑤 ∈ DGℎ,

which ensures the continuity of 𝑎̃ℎ(·, ·). �

Lemma 3.2 (inf-sup condition). We also have the inf-sup result for the bilinear form:

inf
𝜇∈𝑀ℎ

sup
𝑣∈DGℎ

𝑏(𝜇, 𝑣)
|||𝑣|||ℎ,*‖𝜇‖𝑀ℎ

≥ 𝐶, (3.5)

where the constant is independent of the mesh size and domain-mesh intersection.

Proof. We prove by construction. To define a linear function 𝑣 ∈ DGℎ, it suffices to define 𝑣𝐾(𝑁) := 𝑣|𝐾(𝑁)
for all 𝐾 ∈ 𝒯ℎ and for all 𝑁 ∈ 𝒩𝐾 . For each 𝑁 ∈ 𝒩𝐼 , we let {𝐾𝑖}𝑛𝑁

𝑖=1 be the clockwise oriented elements in 𝒯𝑁

where 𝑛𝑁 ≥ 1 is the number of elements in 𝒯𝑁 . We also let 𝐹𝑖 = 𝐾𝑖−1 ∩𝐾𝑖, 𝑖 = 1, · · · , 𝑛𝑁 (𝐾0 = 𝐾𝑛𝑁
). We let

𝑣𝐾1(𝑁) = 0. The rest are defined such that

𝑣𝐾𝑖
(𝑁)− 𝑣𝐾𝑖−1(𝑁) = ℎ𝐹𝑖

s𝑁 (𝐹𝑖)𝜇𝐹𝑖
(𝑁), 𝑖 = 2, · · · , 𝑛𝑁 . (3.6)

It is easy to check that (3.6) is compatible. Moreover, it is easy to check that

[[𝑣]]|𝐹𝑖
(𝑁) = ℎ𝐹𝑖

𝜇𝐹𝑖
(𝑁), 𝑖 = 1, · · · , 𝑛𝑁 . (3.7)

For 𝑁 ∈ 𝒩𝜕 such that ℰ𝑁 ∩ ℰ𝐼 ̸= ∅, we define 𝑣𝐾𝑖
, 𝑖 = 1, · · · , 𝑛𝑁 in the same way (where we assume that 𝐾1

has a boundary facet). Note that there are only 𝑛𝑁 − 1 interior facets in this case. And we also have

[[𝑣]]|𝐹𝑖
(𝑁) = ℎ𝐹𝑖

𝜇𝐹𝑖
(𝑁), 𝑖 = 2, · · · , 𝑛𝑁 . (3.8)

Finally, for 𝑁 ∈ 𝒩𝜕 such that ℰ𝑁 ∩ ℰ𝐼 = ∅, we simply put 𝑣𝐾(𝑁) = 0. Combining (3.7) and (3.8) gives that

[[𝑣]]|𝐹 = ℎ𝐹 𝜇𝐹 ∀𝐹 ∈ ℰ𝐼 . (3.9)

We then have that

𝑏(𝜇, 𝑣) =
∑︁

𝐹∈ℰ𝐼

∑︁
𝑁∈𝒩∩𝐹

ℎ2
𝐹

2
𝜇𝐹 (𝑁)2 & ‖𝜇‖2𝑀ℎ

. (3.10)

The last inequality follows from the equivalence of norms in a finite dimensional space. Immediately from (3.8),
we also have the following bound:

𝑛𝑁∑︁
𝑖=1

𝑣𝐾𝑖(𝑁)2 .
∑︁

𝐹∈ℰ𝑁∩ℰ𝐼

ℎ2
𝐹 𝜇𝐹 (𝑁)2. (3.11)

By a direct computation, (3.11), and norm equivalence in a finite dimensional space, we have∑︁
𝐾∈𝒯ℎ

‖∇𝑣‖2𝐾 .
∑︁

𝐾∈𝒯ℎ

ℎ𝐾

∑︁
𝑁∈𝒩𝐾

𝑣𝐾(𝑁)2 =
∑︁

𝑁∈𝒩

∑︁
𝐾∈𝒯𝑁

ℎ𝐾𝑣𝐾(𝑁)2

.
∑︁

𝑁∈𝒩

∑︁
𝐹∈ℰ𝑁∩ℰ𝐼

ℎ2
𝐹 𝜇𝐹 (𝑁)2 . ‖𝜇‖2𝑀ℎ

.
(3.12)
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Immediately, we also have, by using (2.16) for the last estimate,∫︁
ℰ𝐼

ℎ−1
𝐹 [[𝑣]]2 d𝑠 =

∫︁
ℰ𝐼

ℎ𝐹 𝜇2
𝐹 d𝑠 = ‖𝜇‖2𝑀ℎ

,∑︁
𝐾∈𝒯 𝑏

ℎ

∫︁
Γ𝐾

ℎ−1
𝐾 𝑣2 d𝑠 .

∑︁
𝐾∈𝒯 𝑏

ℎ

ℎ𝐾

∑︁
𝑁∈𝒩𝐾

𝑣𝐾(𝑁)2 . ‖𝜇‖2𝑀ℎ
.

(3.13)

We also have, thanks to (2.16),

ℎ𝐾‖𝜕𝑛ℎ
𝑣‖2Γ𝐾

d𝑠 . ‖∇𝑣‖2𝐾 , ∀𝐾 ∈ 𝒯 𝑏
ℎ . (3.14)

Note that the involved constants do not depend on the interface-mesh intersection. Combing (3.12)–(3.14) yields

|||𝑣|||ℎ,* . ‖𝜇‖𝑀ℎ
. (3.15)

Equation (3.5) is then the direct consequence of (3.10) and (3.15). This completes the proof of the lemma. �

By (2.13), we also have the uniform coercivity of 𝑎̃ℎ(·, ·) on ker(𝑏) = CGℎ with respect to the norm ||| · |||ℎ.

Lemma 3.3. The mixed formulation (3.3) is well posed. Moreover, the solution 𝑢ℎ in (3.3) coincides with the
CutFEM solution of (2.10).

Proof. The proof is standard and follows from the Babuska–Brezzi theorem. We sketch the proof of the existence
and uniqueness of the solution for the convenience of the readers. It is enough to show the uniqueness of the
solution of the linear square system. We prove by contradiction. Assume both (𝑢1

ℎ, 𝜃1
ℎ) and (𝑢2

ℎ, 𝜃2
ℎ) are solutions

to (3.3). From the second equation in (3.3), we have that (𝑢1
ℎ − 𝑢2

ℎ) ∈ CGℎ. Then we have

𝑎ℎ(𝑢1
ℎ − 𝑢2

ℎ, 𝑤ℎ) = 0 ∀𝑤ℎ ∈ CGℎ.

By (2.13), we have (𝑢1
ℎ − 𝑢2

ℎ) ≡ 0. Then we have 𝑏(𝜃1
ℎ − 𝜃2

ℎ, 𝑤ℎ) = 0 for all 𝑤ℎ ∈ DGℎ. Finally by the inf-sup
condition (3.5), we obtain 𝜃1

ℎ − 𝜃2
ℎ ≡ 0. Since the solution for (3.3) is unique, then the solution 𝑢ℎ in (3.3) must

coincide with the CutFEM solution of (2.10). This completes the proof of the lemma. �

3.2. Local construction of 𝜃ℎ

In this subsection, we aim to compute the solution 𝜃ℎ to (3.3) based on the solution 𝑢ℎ of (2.10) through
solving local problems, following [7]. Firstly note that

𝑏(𝜃ℎ, 𝑤) = 𝑟(𝑤) := 𝑙ℎ(𝑤)− 𝑎̃ℎ(𝑢ℎ, 𝑤) ∀𝑤 ∈ DGℎ. (3.16)

Note that 𝑟(𝑤) = 0 for any 𝑤 ∈ CGℎ.
Let 𝑁 ∈ 𝒩 such that ℰ𝑁 ∩ ℰ𝐼 ̸= ∅. We define 𝜃𝑁 ∈ 𝑀ℎ on ℰ𝑁 ∩ ℰ𝐼 such that, for each 𝐾 ∈ 𝒯𝑁 ,

𝑏(𝜃𝑁 , 𝜆𝑁𝜒𝐾) = 𝑟(𝜆𝑁𝜒𝐾)
𝑏(𝜃𝑁 , 𝜆𝑀𝜒𝐾) = 0 if 𝑀 ∈ 𝒩𝐾 and 𝑀 ̸= 𝑁, (3.17)

where 𝜆𝑀 denotes the barycentric basis function corresponding to the vertex 𝑀 . On ℰ𝐼 ∖ ℰ𝑁 , we impose that
𝜃𝑁 is null.

Recall from the definition of 𝑀ℎ that the condition 𝜃𝑁 ∈ 𝑀ℎ means that 𝜃𝑁 has to satisfy a constraint at
any interior node. The last equation of (3.17) gives that 𝜃𝑁 |𝐹 (𝑀) = 0 for all 𝐹 ∈ ℰ𝑁 and 𝑀 ∈ 𝐹, 𝑀 ̸= 𝑁 , so
the constraint is obviously satisfied at the node 𝑀 , for 𝑀 ∈ 𝒩𝐼 . Hence, 𝜃𝑁 only has to satisfy the constraint
equation at the node 𝑁 , for 𝑁 ∈ 𝒩𝐼 .
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Also note that
∑︀

𝐾⊂𝒯𝑁
𝑟(𝜆𝑁𝜒𝐾) = 𝑟(𝜆𝑁 ) = 0. It is then easy to check that the system introduced by (3.17)

is compatible.
In the next two lemmas, Lemmas 3.4 and 3.5, we prove the well-posedness of the local system for 𝜃𝑁 and

its equivalence to the global solution 𝜃ℎ. The proofs are similar to [7], we sketch them here for the sake of
completeness.

Lemma 3.4. For any 𝑁 ∈ 𝒩 , the system (3.17) has a unique solution 𝜃𝑁 in 𝑀ℎ.

Proof. We first assume that 𝑁 ∈ 𝒩𝐼 . Because of the compatibility condition, the system (3.17) a one-dimensional
kernel. Indeed, let Ψ𝑁 defined on any 𝐹 ∈ ℰ𝑁 by Ψ𝑁 |𝐹 ∈ P1(𝐹 ) and{︃

Ψ𝑁 |𝐹 (𝑁) = ℎ−1
𝐹 s𝑁 (𝐹 ),

Ψ𝑁 |𝐹 (𝑀) = 0, ∀𝑀 ∈ 𝐹, 𝑀 ̸= 𝑁,

whereas on 𝐹 ∈ ℰ𝐼 ∖ ℰ𝑁 , we set Ψ𝑁 |𝐹 ≡ 0. It is then easy to check that for all 𝐾 ∈ 𝒯𝑁 ,

𝑏(Ψ𝑁 , 𝜆𝑁𝜒𝐾) = 0,

𝑏(Ψ𝑁 , 𝜆𝑀𝜒𝐾) = 0 if 𝑀 ∈ 𝒩𝐾 and 𝑀 ̸= 𝑁.
(3.18)

Thus span{Ψ𝑁} is the kernel of the system (3.17). However, it is obvious that Ψ𝑁 does not satisfy the constraint
equation

∑︀
𝐹∈ℰ𝑁

s𝑁 (𝐹 )ℎ𝐹 𝜇|𝐹 (𝑁) = 0 for 𝑁 ∈ 𝒩𝐼 . Thus (3.17) has a unique solution 𝜃𝑁 ∈ 𝑀ℎ under the
constraint for 𝑁 ∈ 𝒩𝐼 . For 𝑁 ∈ 𝒩𝜕 , note that there are 𝑛𝑁 −1 interior facets. The solution is then unique since
there are 𝑛𝑁 − 1 unknowns with 𝑛𝑁 − 1 independent equations. This completes the proof of the lemma. �

Lemma 3.5. Let 𝜃𝑁 be defined in (3.17) and 𝜃ℎ be the solution of (3.3). Then we have that

𝜃ℎ =
∑︁

𝑁∈𝒩
𝜃𝑁 . (3.19)

Proof. From (3.16), it suffices to prove that∑︁
𝑁∈𝒩

𝑏(𝜃𝑁 , 𝜆𝑀𝜒𝐾) = 𝑟(𝜆𝑀𝜒𝐾), ∀𝑀 ∈ 𝒩 , ∀𝐾 ∈ 𝒯𝑀 . (3.20)

By (3.17), we have that∑︁
𝑁∈𝒩

𝑏(𝜃𝑁 , 𝜆𝑀𝜒𝐾) =
∑︁

𝑁∈𝒩𝐾

𝑏(𝜃𝑁 , 𝜆𝑀𝜒𝐾) = 𝑏(𝜃𝑀 , 𝜆𝑀𝜒𝐾) = 𝑟(𝜆𝑀𝜒𝐾). (3.21)

This completes the proof of the lemma. �

3.3. Computation of 𝜃𝑁 for 𝑁 ∈ 𝒩
For each 𝑁 ∈ 𝒩 , recall that we let {𝐾𝑖,𝑁}𝑛𝑁

𝑖=1 be the clockwise oriented elements in 𝒯𝑁 and 𝑛𝑁 ≥ 1 is
the number of elements in 𝒯𝑁 . When 𝑁 ∈ 𝒩𝐼 , we let 𝐹𝑖 = 𝐾𝑖−1,𝑁 ∩𝐾𝑖,𝑁 , 𝑖 = 1, · · · , 𝑛𝑁 (𝐾0 = 𝐾𝑛𝑁

). When
𝑁 ∈ 𝒩𝜕 , note that there are 𝑛𝑁 − 1 interior facets in ℰ𝑁 . Also let 𝑀𝑖 denotes the other vertices of 𝐹𝑖.

We firstly deal with the case 𝑁 ∈ 𝒩𝐼 . From the second equation in (3.17), it is easy to see that 𝜃𝑁 (𝑀𝑖) = 0
for 𝑖 = 1, · · · , 𝑛𝑁 . We then let

𝜃𝑖,𝑁 := 𝜃𝑁 |𝐹𝑖
(𝑁), 𝑟𝑖,𝑁 := 𝑟(𝜆𝑁𝜒𝐾𝑖

), 𝑎𝑖,𝑁 := s𝑁 (𝐹𝑖)ℎ𝐹𝑖
.

From the first equation in (3.17), a straight computation gives that

𝑎𝑖,𝑁𝜃𝑖,𝑁 − 𝑎𝑖+1𝜃𝑖+1,𝑁 = 2𝑟𝑖,𝑁 , 𝑖 = 1, · · · , 𝑛𝑁 − 1. (3.22)
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Note that we only used 𝑛𝑁 − 1 equations since the last one is linearly dependent. The constraint provides the
last equation if 𝑁 ∈ 𝒩𝐼 :

𝑛𝑁∑︁
𝑖=1

𝑎𝑖,𝑁𝜃𝑖,𝑁 = 0. (3.23)

Combining (3.22) and (3.23) yields a 𝑛𝑁 × 𝑛𝑁 non-singular local system. It is helpful to denote the unknowns
by 𝜃𝑖,𝑁 := 𝑎𝑖,𝑁𝜃𝑖,𝑁 , such that the matrix of the previous local system has constant coefficients and depends
only on 𝑛𝑁 .

If 𝑁 ∈ 𝒩𝜕 , note that 𝜃𝑁 |𝐹 (𝑁) = 0 for 𝐹 ∈ ℰ𝜕 , i.e., 𝜃0,𝑁 = 𝜃𝑛𝑁 ,𝑁 = 0. Hence we can explicitly compute 𝜃𝑖,𝑁

for 𝑖 = 1, · · · , 𝑛𝑁 − 1. Thus no local 𝑛𝑁 × 𝑛𝑁 problem is required to solve for boundary elements.
By a simple calculation, we also have the following estimate:

𝑛𝑁∑︁
𝑖=1

𝜃2
𝑖,𝑁 .

𝑛𝑁∑︁
𝑖=1

𝑟2
𝑖,𝑁 ⇐⇒

⃦⃦⃦{︁
𝜃𝑁

}︁⃦⃦⃦
. ‖{𝑟𝑁}‖, (3.24)

where {𝑟𝑁} and
{︁

𝜃𝑁

}︁
are the vectors in R𝑛𝑁 formed by (𝑟𝑖,𝑁 )𝑖 and (𝜃𝑖,𝑁 )𝑖, respectively. Here ‖ · ‖ denotes the

Euclidean 2-norm.
We also obtain the following estimate for {𝑟𝑁} which will be used later. From the definition of 𝑟𝑖,𝑁 , integration

by parts, (2.16), [[𝑢ℎ]]|ℰ𝐼
= 0 and direct computations on norms of 𝜆𝑁𝜒𝐾𝑖 , we have

𝑟𝑖,𝑁 = 𝑟(𝜆𝑁𝜒𝐾𝑖)
= (𝑓, 𝜆𝑁𝜒𝐾𝑖

)Ωℎ
− (∇𝑢ℎ,∇(𝜆𝑁𝜒𝐾𝑖

))Ωℎ
− ⟨𝑔ℎ − 𝑢ℎ, 𝜕𝑛ℎ

(𝜆𝑁𝜒𝐾𝑖
)⟩𝜕Ωℎ

+ ⟨𝜆𝑁𝜒𝐾𝑖
, 𝜕𝑛ℎ

𝑢ℎ⟩𝜕Ωℎ
+ ⟨{𝜕𝑛𝐹

𝑢ℎ}, [[𝜆𝑁𝜒𝐾𝑖
]]⟩ℰ𝐼∩Ωℎ

+
∑︁

𝐾∈𝒯 𝑏
ℎ

𝛽ℎ−1
𝐾 ⟨𝑔ℎ − 𝑢ℎ, 𝜆𝑁𝜒𝐾𝑖

⟩Γ𝐾
− 𝛾

∑︁
𝐹∈ℰ𝑔

ℎ𝐹 ⟨[[𝜕𝑛𝐹
(𝜆𝑁𝜒𝐾𝑖

)]], [[𝜕𝑛𝐹
𝑢ℎ]]⟩𝐹

= (𝑓, 𝜆𝑁𝜒𝐾𝑖)𝐾𝑖∩Ωℎ
− ⟨𝑔ℎ − 𝑢ℎ, 𝜕𝑛ℎ

(𝜆𝑁𝜒𝐾𝑖)⟩Γ𝐾𝑖
+ 𝛽ℎ−1

𝐾𝑖
⟨𝑔ℎ − 𝑢ℎ, 𝜆𝑁𝜒𝐾𝑖⟩Γ𝐾𝑖

−
∑︁

𝐹∈ℰ𝐼∩ℰ𝐾𝑖

⟨[[𝜕𝑛𝐹
𝑢ℎ]], {𝜆𝑁𝜒𝐾𝑖

}⟩𝐹∩Ωℎ

− 𝛾
∑︁

𝐹∈ℰ𝑔∩ℰ𝐾𝑖

ℎ𝐹 ⟨[[𝜕𝑛𝐹
(𝜆𝑁𝜒𝐾𝑖

)]], [[𝜕𝑛𝐹
𝑢ℎ]]⟩𝐹

. ℎ𝐾𝑖
‖𝑓‖𝐾𝑖∩Ωℎ

+ ℎ
−1/2
𝐾𝑖

‖𝑔ℎ − 𝑢ℎ‖Γ𝐾𝑖
+

∑︁
𝐹∈ℰ𝐼∩ℰ𝐾𝑖

ℎ
1/2
𝐹 ‖[[𝜕𝑛𝐹

𝑢ℎ]]‖𝐹 . (3.25)

Immediately, we also have for any node 𝑁 that⃦⃦⃦{︁
𝜃𝑁

}︁⃦⃦⃦
. ‖{𝑟𝑁}‖ .

∑︁
𝐹∈∩ℰ𝑁∩ℰ𝐼

ℎ
1/2
𝐹 ‖[[𝜕𝑛𝐹

𝑢ℎ]]‖𝐹 +
∑︁

𝐾∈𝒯𝑁

(︁
ℎ𝐾‖𝑓‖𝐾∩Ωℎ

+ ℎ
−1/2
𝐾 ‖𝑔ℎ − 𝑢ℎ‖Γ𝐾

)︁
. (3.26)

3.4. Flux reconstruction

In this subsection, we locally recover a flux for each element 𝐾 ∈ 𝒯ℎ. The element-wise construction is
completely explicit and based on the computation of 𝑢ℎ and 𝜃ℎ. We note that for the interior elements, its local
flux recovery remains almost the same as in the fitted FEM, although it needs extra treatment for the ghost
penalty term. For cut elements, the typical method used for the fitted cases is no longer directly applicable due
to non-standard terms in the variational formulation. Therefore, new techniques need to be carefully designed
to avoid artificial error and, therefore, to obtain the desired properties, i.e., global reliability, local efficiency
and local conservation (see (3.27) for the detailed construction).
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Denote the 𝐻(div;△ℎ) conforming Raviart–Thomas (RT) space of order 1 with respect to 𝒯ℎ by

RTℎ =
{︀
𝜏 ∈ 𝐻(div;△ℎ) : 𝜏 |𝐾 ∈ RT1(𝐾), ∀𝐾 ∈ 𝒯ℎ

}︀
,

where RT1(𝐾) = P1(𝐾)𝑑 + 𝑥 P1(𝐾).
On a triangular element 𝐾 ∈ 𝒯ℎ, a vector-valued function 𝜏 in RT1(𝐾) is characterized by the following

degrees of freedom (see [9], Prop. 2.3.4): ∫︁
𝐾

𝜏 · 𝜁 d𝑥, ∀ 𝜁 ∈ P0(𝐾)𝑑,

and ∫︁
𝐹

(𝜏 · 𝑛𝐹 ) 𝑤 d𝑠, ∀𝑤 ∈ P1(𝐹 ) and ∀𝐹 ∈ ℰ𝐾 .

For each element 𝐾 ∈ 𝒯ℎ, we define 𝜎𝐾 ∈ RT1(𝐾) such that for all 𝜁 ∈ P0(𝐾)𝑑 and for all 𝐹 ∈ ℰ𝐾 and
𝑤 ∈ P1(𝐹 ) it satisfies:

(𝜎𝐾 , 𝜁)𝐾 = (∇𝑢ℎ, 𝜁)𝐾 + 𝛾
∑︁

𝐹∈ℰ𝑔∩ℰ𝐾

ℎ𝐹 ⟨[[𝜕𝑛𝐹
𝑢ℎ]], [[𝜁 · 𝑛𝐹 ]]⟩𝐹 + ⟨𝑔ℎ − 𝑢ℎ, 𝜁 · 𝑛ℎ⟩Γ𝐾

,

⟨𝜎𝐾 · 𝑛𝐹 , 𝑤⟩𝐹 = ⟨{𝜕𝑛𝐹
𝑢ℎ}, 𝑤⟩𝐹 − 𝑏𝐹 (𝜃ℎ, 𝑤) if 𝐹 ∈ ℰ𝐼 ,

⟨𝜎𝐾 · 𝑛𝐹 , 𝑤⟩𝐹 = ⟨𝜕𝑛𝐹
𝑢ℎ, 𝑤⟩𝐹 if 𝐹 ∈ ℰ𝜕 ∖ Γ𝐾 ,

⟨𝜎𝐾 · 𝑛𝐹 , 𝑤⟩𝐹 = ⟨𝜕𝑛𝐹
𝑢ℎ, 𝑤⟩𝐹 +

𝛽

ℎ𝐾
⟨𝑔ℎ − 𝑢ℎ, 𝑤⟩Γ𝐾

if 𝐹 = Γ𝐾 , (3.27)

where

𝑏𝐹 (𝜃ℎ, 𝑤) =
ℎ𝐹

2

∑︁
𝑁∈𝒩∩𝐹

𝜃ℎ|𝐹 (𝑁)𝑤(𝑁).

Remark 3.6. One can also reconstruct the flux in the Raviart–Thomas space of order 0 similarly to (3.27).
Note that there are now no interior degrees of freedom thus the first equation in (3.27) is not needed, whereas
the edge degrees of freedom are tested with 𝑤 ∈ P0(𝐹 ).

Remark 3.7. Note that if 𝐹 = Γ𝐾 ∈ ℰ𝐾 , we then have that

𝜎𝐾 · 𝑛𝐹 = 𝜕𝑛𝐹
𝑢ℎ +

𝛽

ℎ𝐾
(𝑔ℎ − 𝑢ℎ).

Remark 3.8. The extension of the present flux reconstruction to the three dimensional case is possible but
much more technical. The main difficulty is related to the ordering of the cells around a given node, which
is a key tool in the definition of the space 𝑀ℎ, in the proof of the discrete inf-sup condition and in the local
computation of the multiplier. Although the ordering of the cells remains feasible in three dimensions, it is far
from being as natural as in two dimensions and leads to a more complicated definition of 𝑀ℎ and implicitly, to
more complicated local systems.

We then define the global recovered flux by

𝜎ℎ =
∑︁

𝐾∈𝒯ℎ

𝜎𝐾 . (3.28)



2772 D. CAPATINA AND C. HE

Recall that on a cut element 𝐾 ∈ 𝒯 𝑏
ℎ , 𝑓 is only defined on 𝐾 ∩ Ωℎ. We next introduce an extension of 𝑓 to

the whole cut element 𝐾. For each 𝐾 ∈ 𝒯 𝑏
ℎ and 𝐾 ̸⊂ Ωℎ, we extend 𝑓 to 𝐾 ∩Ω𝑐

ℎ such that 𝑓 |𝐾∩Ω𝑐
ℎ

is linear and
also satisfies that for all 𝑤 ∈ P1(𝐾),

(𝑓, 𝑤)𝐾∩Ω𝑐
ℎ

= 𝛽ℎ−1
𝐾 ⟨𝑔ℎ − 𝑢ℎ, 𝑤⟩Γ𝐾

+
∑︁

𝐹∈ℰ𝐾∩ℰ𝐼

1
2
⟨s𝐾(𝐹 )[[𝜕𝑛𝐹

𝑢ℎ]], [[𝑤]]⟩𝐹∩Ω𝑐
ℎ
. (3.29)

Note that if the right-hand side is 0, this represents a zero extension. It is important to note that, contrarily to
the extension of 𝑓 from Ω to Ωℎ which is used in order to obtain the discrete solution, the new extension from
Ωℎ to 𝒯ℎ is only a theoretical tool necessary to carry out the analysis. We do not compute it in the numerical
simulation.

Let Π1 be the 𝐿2 projection operator onto the space DGℎ defined on 𝒯ℎ.

Lemma 3.9. Let 𝜎ℎ be defined in (3.28). Then we have that 𝜎ℎ ∈ RTℎ and

−∇ · 𝜎ℎ = Π1(𝑓) ∀𝐾 ∈ 𝒯ℎ. (3.30)

Proof. By its definition, it is easy to see that 𝜎ℎ ∈ RTℎ. Firstly, we note that for all 𝑤 ∈ DGℎ we have

𝑏(𝜃ℎ, 𝑤) = 𝑙ℎ(𝑤)− 𝑎̃ℎ(𝑢ℎ, 𝑤)
= (𝑓, 𝑤)Ωℎ

− (∇𝑢ℎ,∇𝑤)Ωℎ
− ⟨𝑔ℎ − 𝑢ℎ, 𝜕𝑛ℎ

𝑤⟩𝜕Ωℎ
+ ⟨𝑤, 𝜕𝑛ℎ

𝑢ℎ⟩𝜕Ωℎ

+
∑︁

𝐾∈𝒯 𝑏
ℎ

𝛽

ℎ𝐾
⟨𝑔ℎ − 𝑢ℎ, 𝑤⟩Γ𝐾

− 𝛾
∑︁

𝐹∈ℰ𝑔

ℎ𝐹 ⟨[[𝜕𝑛𝐹
𝑤]], [[𝜕𝑛𝐹

𝑢ℎ]]⟩𝐹

+ ⟨{𝜕𝑛𝐹
𝑢ℎ}, [[𝑤]]⟩ℰ𝐼∩Ωℎ

(3.31)

since [[𝑢ℎ]] = 0. To prove (3.30), we first consider the case of 𝐾 ∈ 𝒯 𝑖𝑛𝑡
ℎ , i.e., 𝐾 ⊂ Ωℎ, 𝐾 ∩ 𝜕Ωℎ = ∅. Let

𝑤 ∈ DGℎ such that 𝑤|𝐾 ∈ P1(𝐾) and 𝑤 vanishes elsewhere. By integration by parts, (3.27), the fact that
𝑏(𝜃ℎ, 𝑤) =

∑︀
𝐹∈ℰ𝐾

𝑏𝐹 (𝜃ℎ, [[𝑤]]), and (3.31), we have

(∇ · 𝜎ℎ, 𝑤)𝐾 = − (𝜎ℎ,∇𝑤)𝐾 + ⟨𝜎ℎ · 𝑛𝐾 , 𝑤⟩ℰ𝐾
= −(𝜎ℎ,∇𝑤)𝐾 + ⟨𝜎ℎ · 𝑛𝐹 , [[𝑤]]⟩ℰ𝐾

= − (∇𝑢ℎ,∇𝑤)𝐾 − 𝛾
∑︁

𝐹∈ℰ𝑔∩ℰ𝐾

ℎ𝐹 ⟨[[𝜕𝑛𝐹
𝑢ℎ]], [[𝜕𝑛𝐹

𝑤]]⟩𝐹

+ ⟨{𝜕𝑛𝐹
𝑢ℎ}, [[𝑤]]⟩ℰ𝐾

− 𝑏(𝜃ℎ, 𝑤) = −(𝑓, 𝑤)𝐾 , (3.32)

which yields (3.30) for all interior elements.
We note that the proof for the interior elements is almost the same as that in [7] only with the difference of

handling the ghost penalty term. However, for the boundary elements, classical techniques no longer work due
to irregular integration terms.

Now consider the second case when 𝐾 ∈ 𝒯 𝑏
ℎ . Again, let 𝑤 ∈ DGℎ such that 𝑤|𝐾 ∈ P1(𝐾) and 𝑤 vanishes

elsewhere. From (3.31) we now have

𝑏(𝜃ℎ, 𝑤) = (𝑓, 𝑤)𝐾∩Ωℎ
− (∇𝑢ℎ,∇𝑤)𝐾∩Ωℎ

− ⟨𝑔ℎ − 𝑢ℎ, 𝜕𝑛ℎ
𝑤⟩Γ𝐾

+ ⟨𝑤, 𝜕𝑛ℎ
𝑢ℎ⟩Γ𝐾

+ 𝛽ℎ−1
𝐾 ⟨𝑔ℎ − 𝑢ℎ, 𝑤⟩Γ𝐾

− 𝛾
∑︁

𝐹∈ℰ𝑔∩ℰ𝐾

ℎ𝐹 ⟨[[𝜕𝑛𝐹
𝑤]], [[𝜕𝑛𝐹

𝑢ℎ]]⟩𝐹

+ ⟨{𝜕𝑛𝐹
𝑢ℎ}, [[𝑤]]⟩ℰ𝐼∩ℰ𝐾∩Ωℎ

. (3.33)

Applying integration by parts on 𝐾 ∩ Ω𝑐
ℎ gives

⟨𝑤, 𝜕𝑛ℎ
𝑢ℎ⟩Γ𝐾

= − (∇𝑢ℎ,∇𝑤)𝐾∩Ω𝑐
ℎ

+ ⟨𝜕𝑛𝐾
𝑢ℎ, 𝑤⟩𝜕(𝐾∩Ω𝑐

ℎ)∖Γ𝐾
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= − (∇𝑢ℎ,∇𝑤)𝐾∩Ω𝑐
ℎ

+ ⟨𝜕𝑛𝐹
𝑢ℎ, [[𝑤]]⟩ℰ𝐼∩ℰ𝐾∩Ω𝑐

ℎ
+ ⟨𝜕𝑛𝐾

𝑢ℎ, 𝑤⟩ℰ𝐾∩ℰ𝜕
(3.34)

which, combining with the following equation,

⟨𝜕𝑛𝐹
𝑢ℎ, [[𝑤]]⟩ℰ𝐼∩ℰ𝐾∩Ω𝑐

ℎ
= ⟨{𝜕𝑛𝐹

𝑢ℎ}, [[𝑤]]⟩ℰ𝐼∩ℰ𝐾∩Ω𝑐
ℎ

+
1
2
⟨s𝐾(𝐹 )[[𝜕𝑛𝐹

𝑢ℎ]], [[𝑤]]⟩ℰ𝐼∩ℰ𝐾∩Ω𝑐
ℎ
,

implies

⟨𝑤, 𝜕𝑛ℎ
𝑢ℎ⟩Γ𝐾

=− (∇𝑢ℎ,∇𝑤)𝐾∩Ω𝑐
ℎ

+ ⟨{𝜕𝑛𝐹
𝑢ℎ}, [[𝑤]]⟩ℰ𝐼∩ℰ𝐾∩Ω𝑐

ℎ

+
1
2
⟨s𝐾(𝐹 )[[𝜕𝑛𝐹

𝑢ℎ]], [[𝑤]]⟩ℰ𝐼∩ℰ𝐾∩Ω𝑐
ℎ

+ ⟨𝜕𝑛𝐾
𝑢ℎ, 𝑤⟩ℰ𝐾∩ℰ𝜕

.
(3.35)

Note that the previous relation also holds in the case Γ𝐾 = ℰ𝐾 ∩ ℰ𝜕 .
Combining all above with the definitions in (3.29) and (3.27) gives

𝑏(𝜃ℎ, 𝑤) = (𝑓, 𝑤)𝐾 − (∇𝑢ℎ,∇𝑤)𝐾 − ⟨𝑔ℎ − 𝑢ℎ, 𝜕𝑛ℎ
𝑤⟩Γ𝐾

− 𝛾
∑︁

𝐹∈ℰ𝑔∩ℰ𝐾

ℎ𝐹 ⟨[[𝜕𝑛𝐹
𝑤]], [[𝜕𝑛𝐹

𝑢ℎ]]⟩𝐹 + ⟨{𝜕𝑛𝐹
𝑢ℎ}, [[𝑤]]⟩ℰ𝐾

= (𝑓, 𝑤)𝐾 − (𝜎ℎ,∇𝑤)𝐾 + ⟨{𝜕𝑛𝐹
𝑢ℎ}, [[𝑤]]⟩ℰ𝐾

. (3.36)

Again, we have 𝑏(𝜃ℎ, 𝑤) =
∑︀

𝐹∈ℰ𝐾
𝑏𝐹 (𝜃ℎ, [[𝑤]]). By using (3.27), the previous equality gives

0 = (𝑓, 𝑤)𝐾 − (𝜎ℎ,∇𝑤)𝐾 + ⟨𝜎ℎ · 𝑛𝐹 , [[𝑤]]⟩ℰ𝐾
(3.37)

so we obtain (3.30) thanks to the integration by parts formula. This completes the proof of the lemma. �

Remark 3.10. For the cut elements, it is not obvious to construct a flux that is both locally conservative
in the cut part 𝐾 ∩ Ωℎ and, at the same time, maintains continuous normal flux. The technique of applying
integration by parts in (3.35), together with the extension (3.29) of 𝑓 , renders the problem to be a more regular
problem and completes partial elements to full elements. In each cut element 𝐾, we thus proved that −∇ · 𝜎ℎ

equals Π1(𝑓)|𝐾 and not 𝑓|𝐾∩Ωℎ
.

4. Application in the a posteriori error estimation

For the sake of simplicity, we assume in this section that 𝑓 |𝐾 ∈ P1(𝐾) on any 𝐾 ∈ 𝒯ℎ ∖ 𝒯 𝑏
ℎ . In the adaptive

procedure, we define the following local error indicators

𝜂𝐾,1 = ‖𝜎ℎ −∇𝑢ℎ‖𝐾 , 𝜂𝐾,2 = ‖𝜎ℎ −∇𝑢ℎ‖𝐾∩Ωℎ
∀𝐾 ∈ 𝒯ℎ (4.1)

and the corresponding estimators:

𝜂1 =
√︃∑︁

𝐾∈𝒯ℎ

𝜂2
𝐾,1, 𝜂2 =

√︃∑︁
𝐾∈𝒯ℎ

𝜂2
𝐾,2 . (4.2)

4.1. Reliability

Let 𝑒 ∈ 𝐻1(Ω) be the lifting such that 𝑒 = 𝑒 := 𝑢− 𝑢ℎ on 𝜕Ω and

‖𝑒‖𝐻1(Ω) = ‖𝑒‖𝐻1/2(𝜕Ω).
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Lemma 4.1. Let 𝜎ℎ be given by (3.28) and 𝑢ℎ be the CutFEM solution in (2.10). We have the following
estimate:

‖∇(𝑢− 𝑢ℎ)‖Ω ≤ ‖𝜎ℎ −∇𝑢ℎ‖Ω + 2‖∇𝑒‖Ω + 𝐶𝜖,

where the constant 𝐶 is independent of the mesh size and mesh-domain intersection, and

𝜖 =
√︃ ∑︁

𝐾∈𝒯 𝑏
ℎ

ℎ2
𝐾‖𝑓 −Π1(𝑓)‖2𝐾∩Ω. (4.3)

Remark 4.2. Thanks to the assumption that Ω ⊂ Ωℎ, we have that

‖𝜎ℎ −∇𝑢ℎ‖Ω ≤ ‖𝜎ℎ −∇𝑢ℎ‖Ωℎ
≤ ‖𝜎ℎ −∇𝑢ℎ‖△ℎ

.

Therefore both 𝜂1 and 𝜂2 could serve as the error estimator in the AMR procedure.

Proof. By triangle inequality, we firstly have the following bound:

‖∇𝑒‖Ω ≤ ‖∇(𝑒− 𝑒)‖Ω + ‖∇𝑒‖Ω

= sup
𝑣∈𝐻1

0 (Ω)

(∇(𝑒− 𝑒),∇𝑣)
‖∇𝑣‖Ω

+ ‖∇𝑒‖Ω

≤ sup
𝑣∈𝐻1

0 (Ω)

(∇𝑒,∇𝑣)
‖∇𝑣‖Ω

+ 2‖∇𝑒‖Ω. (4.4)

To bound (∇𝑒,∇𝑣)Ω we have

|(∇𝑒,∇𝑣)Ω| = |(∇𝑢− 𝜎ℎ,∇𝑣)Ω + (𝜎ℎ −∇𝑢ℎ,∇𝑣)Ω|

≤
∑︁

𝐾∈𝒯 𝑏
ℎ

|(𝑓 −Π1(𝑓), 𝑣)𝐾∩Ω|+ |(𝜎ℎ −∇𝑢ℎ,∇𝑣)Ω|

.
∑︁

𝐾∈𝒯 𝑏
ℎ

‖𝑓 −Π1(𝑓)‖𝐾∩Ω‖𝑣‖𝐾 + ‖𝜎ℎ −∇𝑢ℎ‖Ω‖∇𝑣‖Ω

≤ 𝐶𝜖‖∇𝑣‖Ω + ‖𝜎ℎ −∇𝑢ℎ‖Ω‖∇𝑣‖Ω (4.5)

where we used (2.17) for the last inequality. This completes the lemma’s proof. �

Lemma 4.3. Let 𝜖 be defined in (4.3). We have the following estimate:

𝜖2 .
∑︁

𝐾∈𝒯 𝑏
ℎ

(︃
ℎ2

𝐾‖𝑓‖2𝐾∩Ωℎ
+ℎ−2

𝐾 |Γ𝐾 |‖𝑔ℎ − 𝑢ℎ‖2Γ𝐾
+

∑︁
𝐹∈ℰ𝐼∩ℰ𝐾

|𝐹 ∩ Ω𝑐
ℎ|‖[[𝜕𝑛𝐹

𝑢ℎ]]‖2𝐹∩Ω𝑐
ℎ

)︃
. (4.6)

Proof. Let any 𝐾 ∈ 𝒯 𝑏
ℎ . We write that

‖𝑓 −Π1(𝑓)‖𝐾∩Ω ≤ ‖𝑓 −Π1(𝑓)‖𝐾∩Ωℎ
≤ ‖𝑓‖𝐾∩Ωℎ

+ ‖Π1(𝑓)‖𝐾 (4.7)

and we next note that
‖Π1(𝑓)‖𝐾 . |𝐾|−1/2

∫︁
𝐾

|𝑓 |. (4.8)

Indeed, denoting by (𝑎𝑖)1≤𝑖≤3 the values taken by Π1(𝑓) at the vertices of 𝐾 and by 𝜆𝑖 the corresponding nodal
basis functions on 𝐾, we have using that 0 ≤ 𝜆𝑖 ≤ 1,

|𝐾|
3∑︁

𝑖=1

𝑎2
𝑖 ≃ ‖Π1(𝑓)‖2𝐾 =

∫︁
𝐾

𝑓

(︃
3∑︁

𝑖=1

𝑎𝑖𝜆𝑖

)︃
.
∫︁

𝐾

|𝑓 |

(︃
3∑︁

𝑖=1

|𝑎𝑖|

)︃
. |𝐾|−1/2‖Π1(𝑓)‖𝐾

∫︁
𝐾

|𝑓 |,
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which yields (4.8). Furthermore, we have:

|𝐾|1/2‖Π1(𝑓)‖𝐾 .
∫︁

𝐾

|𝑓 | . |𝐾 ∩ Ωℎ|1/2‖𝑓‖𝐾∩Ωℎ
+ |𝐾 ∩ Ω𝑐

ℎ|1/2‖𝑓‖𝐾∩Ω𝑐
ℎ
,

which together with (4.7) leads to:

ℎ𝐾‖𝑓 −Π1(𝑓)‖𝐾∩Ω ≤ ℎ𝐾‖𝑓‖𝐾∩Ωℎ
+ |𝐾 ∩ Ω𝑐

ℎ|1/2‖𝑓‖𝐾∩Ω𝑐
ℎ
. (4.9)

By the definition of 𝑓 in (3.29), 𝑓 |Ω𝑐
ℎ

can be bounded as follows using Cauchy–Schwarz inequality:

|(𝑓, 𝑤)𝐾∩Ω𝑐
ℎ
| . 𝛽ℎ−1

𝐾 ‖𝑔ℎ − 𝑢ℎ‖Γ𝐾
‖𝑤‖Γ𝐾

+
∑︁

𝐹∈ℰ𝐼∩ℰ𝐾

‖[[𝜕𝑛𝐹
𝑢ℎ]]‖𝐹∩Ω𝑐

ℎ
‖𝑤‖𝐹∩Ω𝑐

ℎ

.

(︃
𝛽ℎ−1

𝐾

|Γ𝐾 |1/2

|𝐾 ∩ Ω𝑐
ℎ|1/2

‖𝑔ℎ − 𝑢ℎ‖Γ𝐾
+

∑︁
𝐹∈ℰ𝐼∩ℰ𝐾

|𝐹 ∩ Ω𝑐
ℎ|1/2

|𝐾 ∩ Ω𝑐
ℎ|1/2

‖[[𝜕𝑛𝐹
𝑢ℎ]]‖𝐹∩Ω𝑐

ℎ

)︃
‖𝑤‖𝐾∩Ω𝑐

ℎ
,

for any 𝑤 ∈ P1(𝐾 ∩ Ω𝑐
ℎ). It follows that

|𝐾 ∩ Ω𝑐
ℎ|1/2‖𝑓‖𝐾∩Ω𝑐

ℎ
. 𝛽ℎ−1

𝐾 |Γ𝐾 |1/2‖𝑔ℎ − 𝑢ℎ‖Γ𝐾
+
∑︁

𝐹∈ℰ𝐼∩ℰ𝐾

|𝐹 ∩ Ω𝑐
ℎ|1/2‖[[𝜕𝑛𝐹

𝑢ℎ]]‖𝐹∩Ω𝑐
ℎ
. (4.10)

From (4.9) and (4.10), we obtain the desired bound (4.6) for 𝜖. �

Remark 4.4. From the above estimate, we observe that 𝜖 can be bounded by the residual based error estimator
given in [17]. Moreover, the constants are uniformly bounded and independent of the domain-mesh intersection.
We further note that 𝜖 can be further bounded by 𝜂 with an additional higher order oscillation term,

osc1 =
√︁

ℎ2
𝐾‖𝑓 −Π0,𝐾∩Ωℎ

𝑓‖2𝐾∩Ωℎ
+ ℎ−2

𝐾 |Γ𝐾 |‖𝑔ℎ − 𝑢ℎ −Π0,Γ𝐾
(𝑔ℎ − 𝑢ℎ)‖2Γ𝐾

. (4.11)

Indeed, we could prove by equivalence of norms on finite dimensional space. Firstly note that 𝜂 = 0 implies
𝜎ℎ = ∇𝑢ℎ. Therefore, based on the properties of 𝜎ℎ, we have that [[∇𝑢ℎ ·𝑛𝐹 ]] = 0 for all 𝐹 ∈ ℰ𝐼 and that 𝑓 ≡ 0
in 𝒯ℎ ∖ 𝒯 𝑏

ℎ . Moreover, from the first equation in (3.27), we immediately have Π0,Γ𝐾
(𝑔ℎ − 𝑢ℎ) = 0 on Γ𝐾 for

𝐾 ∈ 𝒯 𝑏
ℎ . From the second equation in (3.27), we have 𝜃ℎ = 0 and thus, from (3.16), {𝑟𝑁} = 0 for each 𝑁 ∈ 𝒩𝐼 .

Finally, the second equation in (3.25) implies Π0,𝐾∩Ωℎ
𝑓 = 0 on 𝐾 ∈ 𝒯 𝑏

ℎ . Eventually, we have that 𝜂 + osc1 = 0
implies 𝜖 = 0, and, therefore, 𝜖 . 𝜂 + osc1. However, the constant here might depend on the mesh-domain
intersection. In the numerical computation, we discard the term 2‖∇𝑒‖Ω +𝐶𝜖. ‖∇𝑒‖Ω is the so-called boundary
correction error which we have thoroughly discussed in [17]. It was shown that adding such error does not affect
the overall convergence rate as well as the final meshes when the mesh is fine enough.

Theorem 4.5 (Reliability). Let 𝜎ℎ be given by (3.28) and 𝑢ℎ be the CutFEM solution in (2.10). We have the
following estimate:

‖∇(𝑢− 𝑢ℎ)‖Ω ≤ ‖𝜎ℎ −∇𝑢ℎ‖Ω + 2‖∇𝑒‖Ω + 𝐶𝜖 (4.12)

where the constant 𝐶 is independent of the mesh size and mesh-domain intersection and

𝜖2 =
∑︁

𝐾∈𝒯 𝑏
ℎ

(︃
ℎ2

𝐾‖𝑓‖2𝐾∩Ωℎ
+ℎ−2

𝐾 |Γ𝐾 |‖𝑔ℎ − 𝑢ℎ‖2Γ𝐾
+

∑︁
𝐹∈ℰ𝐼∩ℰ𝐾

|𝐹 ∩ Ω𝑐
ℎ|‖[[𝜕𝑛𝐹

𝑢ℎ]]‖2𝐹∩Ω𝑐
ℎ

)︃
. (4.13)

Proof. Equation (4.12) is a direct consequence of Lemmas 4.1 and 4.3. �
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4.2. Efficiency

Lemma 4.6. Let 𝐾 be a given element in 𝒯ℎ. Then the following local efficiency result holds:

‖𝜎ℎ −∇𝑢ℎ‖𝐾∩Ωℎ
≤ ‖𝜎ℎ −∇𝑢ℎ‖𝐾 . ‖∇(𝑢− 𝑢ℎ)‖Δ̃𝐾

+
∑︁

𝑁∈𝒩𝐾

⎛⎝ ∑︁
𝐹∈ℰ𝑁∩ℰ𝑔

ℎ
1/2
𝐹 ‖[[𝜕𝑛𝐹

𝑢ℎ]]‖𝐹 +
∑︁

𝐾′∈𝒯𝑁∩𝒯 𝑏
ℎ

ℎ𝐾′‖𝑓‖𝐾′∩Ωℎ
+ ℎ

−1/2
𝐾′ ‖𝑔ℎ − 𝑢ℎ‖Γ𝐾′

⎞⎠,

(4.14)

where ∆̃𝐾 is a local neighborhood of 𝐾 that does not contain elements in 𝒯 𝑏
ℎ and the efficiency constant does

not depend on the mesh size nor the domain-mesh intersection.

Proof. By the degrees of freedom for RT1(𝐾) space, we have the following bound:

‖𝜎ℎ −∇𝑢ℎ‖𝐾 .
∑︁

𝐹∈ℰ𝐾

ℎ
1/2
𝐹 ‖(𝜎ℎ −∇𝑢ℎ) · 𝑛𝐹 ‖𝐹 + ‖Π0(𝜎ℎ −∇𝑢ℎ)‖𝐾 , (4.15)

where Π0 is the 𝐿2 projection onto the piecewise constant space on 𝒯ℎ. Let 𝐹 ∈ ℰ𝐾 and 𝑝 ∈ P1(𝐹 ) arbitrary,
then from (3.27) we have:

⟨(𝜎ℎ −∇𝑢ℎ) · 𝑛𝐹 , 𝑝⟩𝐹 = ⟨{𝜕𝑛𝐹
𝑢ℎ} − ∇𝑢ℎ · 𝑛𝐹 , 𝑝⟩𝐹 − 𝑏𝐹 (𝜃ℎ, 𝑝)

≤ ‖[[𝜕𝑛𝐹
𝑢ℎ]]‖𝐹 ‖𝑝‖𝐹 − 𝑏𝐹 (𝜃ℎ, 𝑝) if 𝐹 ∈ ℰ𝐼 ,

⟨(𝜎ℎ −∇𝑢ℎ) · 𝑛𝐹 , 𝑝⟩𝐹 = 0 if 𝐹 ∈ ℰ𝜕 ∖ Γ𝐾 ,

⟨(𝜎ℎ −∇𝑢ℎ) · 𝑛𝐹 , 𝑝⟩𝐹 =
𝛽

ℎ𝐾
⟨𝑔ℎ − 𝑢ℎ, 𝑝⟩Γ𝐾

if 𝐹 = Γ𝐾 . (4.16)

Then applying Cauchy–Schwartz inequality and (3.26) gives, for 𝐹 ∈ ℰ𝐼 ,

𝑏𝐹 (𝜃ℎ, 𝑝) =
∑︁

𝑁∈𝒩𝐹

𝑏𝐹 (𝜃𝑁 , 𝑝) . ℎ
−1/2
𝐹

(︃ ∑︁
𝑁∈𝒩𝐹

⃦⃦⃦{︁
𝜃𝑁

}︁⃦⃦⃦)︃
‖𝑝‖𝐹

.

⎛⎜⎜⎝ ∑︁
𝐹 ′∈

⋃︀
𝑁∈𝒩𝐹

ℰ𝑁∩ℰ𝐼

‖[[𝜕𝑛𝐹 ′𝑢ℎ]]‖𝐹 ′ +
∑︁

𝐾∈
⋃︀

𝑁∈𝒩𝐹

𝒯𝑁

(︁
ℎ

1/2
𝐾 ‖𝑓‖𝐾∩Ωℎ

+ ℎ−1
𝐾 ‖𝑔ℎ − 𝑢ℎ‖Γ𝐾

)︁⎞⎟⎟⎠‖𝑝‖𝐹 . (4.17)

Combining (4.16) and (4.17) gives, for any 𝐹 ∈ ℰ ,

‖(𝜎ℎ −∇𝑢ℎ) · 𝑛𝐹 ‖𝐹 ≤ sup
𝑝∈P1(𝐹 )

⟨(𝜎ℎ −∇𝑢ℎ) · 𝑛𝐹 , 𝑝⟩𝐹
‖𝑝‖𝐹

.
∑︁

𝐹 ′∈
⋃︀

𝑁∈𝒩𝐹

ℰ𝑁∩ℰ𝐼

‖[[𝜕𝑛𝐹 ′𝑢ℎ]]‖𝐹 ′ +
∑︁

𝐾∈
⋃︀

𝑁∈𝒩𝐹

𝒯𝑁

(︁
ℎ

1/2
𝐾 ‖𝑓‖𝐾∩Ωℎ

+ ℎ−1
𝐾 ‖𝑔ℎ − 𝑢ℎ‖Γ𝐾

)︁
. (4.18)

By the definition of 𝜎ℎ in (3.27) and Cauchy–Schwartz inequality, we also have

‖Π0(𝜎ℎ −∇𝑢ℎ)‖𝐾 = sup
𝑝∈P1(𝐾)

(𝜎ℎ −∇𝑢ℎ,∇𝑝)𝐾

‖∇𝑝‖𝐾

.
∑︁

𝐹∈ℰ𝑔∩ℰ𝐾

ℎ
1/2
𝐹 ‖[[𝜕𝑛𝐹

𝑢ℎ]]‖𝐹 + ℎ
−1/2
𝐾 ‖𝑔ℎ − 𝑢ℎ‖Γ𝐾

. (4.19)
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Combining (4.15), (4.18) and (4.19) , we have

‖𝜎ℎ −∇𝑢ℎ‖𝐾 .
∑︁

𝑁∈𝒩𝐾

(︃ ∑︁
𝐹∈ℰ𝑁∩ℰ𝐼

ℎ
1/2
𝐹 ‖[[𝜕𝑛𝐹

𝑢ℎ]]‖𝐹 +
∑︁

𝐾′∈𝒯𝑁

ℎ𝐾′‖𝑓‖𝐾′∩Ωℎ
+ ℎ

−1/2
𝐾′ ‖𝑔ℎ − 𝑢ℎ‖Γ𝐾′

)︃
. (4.20)

For regular facets and elements, there holds the following classical local efficiency results (see [19,40]):

ℎ
1/2
𝐹 ‖[[𝜕𝑛𝐹

𝑢ℎ]]‖𝐹 . ‖∇(𝑢− 𝑢ℎ)‖𝐾+
𝐹 ∪𝐾−

𝐹
+ ‖ℎ𝐾(𝑓 −Π1(𝑓))‖𝐾+

𝐹 ∪𝐾−
𝐹

∀𝐹 ∈ ℰ𝐼 ∖ ℰ𝑔,

ℎ𝐾‖𝑓‖𝐾 . ‖∇(𝑢− 𝑢ℎ)‖𝐾 + ℎ𝐾‖𝑓 −Π1(𝑓)‖𝐾 ∀𝐾 ∈ 𝒯ℎ ∖ 𝒯 𝑏
ℎ . (4.21)

Equation (4.14) is then a direct consequence of (4.20), (4.21) and of the hypothesis 𝑓 = Π1(𝑓) on any 𝐾 ∈ 𝒯ℎ∖𝒯 𝑏
ℎ .

This completes the proof of the lemma. �

The following lemma, which follows from Theorem 4.5 in [17], gives the efficiency result for the irregular error
terms. Define

osc(𝑓) =

⎛⎝ ∑︁
𝐾∈𝒯 𝑏

ℎ

ℎ2
𝐾

(︁
‖𝑓 − 𝑓𝐾‖2𝜔𝐾∩Ωℎ

+ ‖𝑓‖2(Ωℎ∖Ω)∩𝐾

)︁⎞⎠1/2

,

where 𝜔𝐾 is the union of all elements sharing a common vertex with 𝐾 and 𝑓𝐾 = argmin𝑐∈𝑅 ℎ𝐾‖𝑓 − 𝑐‖𝜔𝐾∩Ωℎ
.

Lemma 4.7. We have the best approximation result for the irregular terms

𝑗ℎ(𝑢ℎ, 𝑢ℎ) +
∑︁

𝐾∈𝒯 𝑏
ℎ

ℎ2
𝐾‖𝑓‖2𝐾∩Ωℎ

+
∑︁

𝐾∈𝒯 𝑏
ℎ

ℎ−1
𝐾 ‖𝑢ℎ − 𝑔ℎ‖2Γ𝐾

≤ 𝐶𝑒 inf
𝑣ℎ∈CGℎ

⎛⎝|||𝑢− 𝑣ℎ|||2 + 𝑗(𝑣ℎ, 𝑣ℎ) +
∑︁

𝐾∈𝒯 𝑏
ℎ

ℎ−1
𝐾 ‖𝑣ℎ − 𝑔ℎ‖2Γ𝐾

+ osc(𝑓)2

⎞⎠, (4.22)

where the constant 𝐶𝑒 does not depend on the mesh size nor the domain-mesh intersection and osc(𝑓) can be
regarded as a higher order oscillation term.

Thanks to the previous result, we can easily deduce an error bound for the flux error ‖𝜎 − 𝜎ℎ‖Ω, where
𝜎 = ∇𝑢.

Theorem 4.8 (Efficiency). Assume 𝑢 ∈ 𝐻2(Ω). Then one has:

‖𝜎 − 𝜎ℎ‖Ω . |𝑢− 𝑢ℎ|1,Ω + ℎ|𝑢|2,Ω

+ 𝐶𝑒 inf
𝑣ℎ∈CGℎ

⎛⎝|||𝑢− 𝑣ℎ|||2 + 𝑗(𝑣ℎ, 𝑣ℎ) +
∑︁

𝐾∈𝒯 𝑏
ℎ

ℎ−1
𝐾 ‖𝑣ℎ − 𝑔ℎ‖2Γ𝐾

+ osc(𝑓)2

⎞⎠. (4.23)

Proof. We have, using that Ω ⊂ Ωℎ, that

‖𝜎 − 𝜎ℎ‖Ω ≤ ‖∇𝑢−∇𝑢ℎ‖Ω + ‖𝜎ℎ −∇𝑢ℎ‖Ωℎ
.

It is therefore sufficient to bound ‖𝜎ℎ −∇𝑢ℎ‖𝐾 for any 𝐾 ∈ 𝒯ℎ. For this purpose, we use (4.20). The triangle
inequality together with norm equivalence in a discrete space and standard interpolation results give, for any
𝐹 ∈ ℰ𝐼 ∖ ℰ𝑔, that:

ℎ
1/2
𝐹 ‖[[𝜕𝑛𝐹

(𝑢− 𝑢ℎ)]]‖𝐹 . ℎ
1/2
𝐹 ‖[[𝜕𝑛𝐹

(𝑢−𝑅ℎ𝑢)]]‖𝐹 + |𝑅ℎ𝑢− 𝑢ℎ|1,𝐾+
𝐹 ∪𝐾−

𝐹

. |𝑢− 𝑢ℎ|1,𝐾+
𝐹 ∪𝐾−

𝐹
+ |𝑢−𝑅ℎ𝑢|1,𝐾+

𝐹 ∪𝐾−
𝐹

+ ℎ|𝑢|2,𝐾+
𝐹 ∪𝐾−

𝐹

. |𝑢− 𝑢ℎ|1,𝐾+
𝐹 ∪𝐾−

𝐹
+ ℎ|𝑢|2,𝐾+

𝐹 ∪𝐾−
𝐹

,

(4.24)
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where 𝑅ℎ is the continuous, piecewise linear Lagrange interpolation operator. Together with (4.20), the second
estimate of (4.21) and (4.7), this gives (4.23) which completes the proof of the lemma. Note that in the proof,
we do not need the requirement that 𝑓 is piecewise linear. �

Remark 4.9. When Ω = Ωℎ, we refer to [15] for the a priori error estimate of ‖∇(𝑢− 𝑢ℎ)‖Ω . ℎ|𝑢|2,Ω. In the
case when Ω ̸= Ωℎ, the same order can be achieved but with some additional inconsistency error of higher order
regarding the geometry approximation, which can be bounded using similar techniques to [17].

5. Numerical results

In this section, we present several numerical examples to validate the performance of the a posteriori error
estimator in the adaptive mesh refinement procedure. The adaptive mesh refinement procedure is set as follows:

Solve → Estimate → Mark → Refine → Solve.

For the penalty parameters in the finite element method, we set 𝛽 = 10 and 𝛾 = 0.1. For the refinement strategy,
we use the Dörfler marking strategy [23] and the refinement rate is set to be ten percent. Regarding the domain
approximation, let 𝜌 be the level set function that satisfies 𝜌 = 0 on 𝜕Ω and negative (positive) inside (outside)
the domain Ω. Let 𝜌ℎ be the nodal interpolation of 𝜌 with respect to 𝒯0,ℎ. Then we define

𝜕Ωℎ = {𝑥 : 𝜌ℎ(𝑥) = 0}. (5.1)

We can easily check that (2.6) holds.
In the adaptive procedure, we compare the error estimators 𝜂1 and 𝜂2 defined in (4.2) with the residual based

error estimator (see [17]) defined as follows,

𝜂𝐾,res =

√︃
ℎ2

𝐾‖𝑓‖2𝐾∩Ωℎ
+ ℎ−1

𝐾 𝛽2‖𝑔ℎ − 𝑢ℎ‖2Γ𝐾
+

∑︁
𝐹∈ℰ𝐾∩ℰ𝐼

ℎ𝐹

2
‖[[𝜕𝑛𝐹

𝑢ℎ]]‖2𝐹 . (5.2)

The global residual based error estimator is then defined by

𝜂res =

(︃ ∑︁
𝐾∈𝒯ℎ

𝜂2
𝐾,res

)︃1/2

. (5.3)

Example 5.1. In this example, we test a problem with a strong interior peak. The exact solution has the
following representation:

𝑢(𝑥, 𝑦) = exp
(︁
−100

(︁
(𝑥− 0.5)2 + (𝑦 − 0.5)2

)︁)︁
.

This function has a strong peak at the point (0.5, 0.5).

Note that the boundary of the domain is regular, thus we have that 𝜂𝐾,1 = 𝜂𝐾,2. Moreover, the function
value is very smooth and almost vanishes on the boundary. The purpose of this example is to test the efficacy
of our adaptive algorithm for Nitsche’s method on a regular domain.

In the numerical scheme, 𝑔 and 𝑓 are approximated by their interpolations into the continuous piecewise
linear space. We firstly test the convergence of the method on uniform meshes. The results are plotted in
Figure 2e which show optimal convergence rates (order 1) for both the true error ‖∇(𝑢−𝑢ℎ)‖ and the flux error
‖∇𝑢− 𝜎ℎ‖.

In the adaptive mesh refinement (AMR) procedure, we start with a 5× 5 initial mesh. The marking percent
is set to be 25%, i.e., the ordered elements (from the one with largest error indicator) that account for the
first 25% of the total error estimator get refined. With the stopping criteria that the total number of degree
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Figure 2. Example 5.1. Final meshes and convergence of error estimators. (a) Mesh by 𝜂1,𝐾 .
(b) Mesh by 𝜂res,𝐾 . (c) Errors by 𝜂1,𝐾 . (d) Errors by 𝜂res. (e) On uniform meshes.

of freedoms (DOFs) be not greater than 5000, the final meshes generated by 𝜂1,𝐾 and 𝜂res,𝐾 are provided in
Figures 2a and 2b.

From Figures 2c and 2d, we observe optimal convergence rates for both estimators. However, the efficiency
index, which is defined by

𝜂

‖∇(𝑢− 𝑢ℎ)‖
, of 𝜂1 is more accurate with mean values 1.42 and 1.68 for Fig-

ures 2c and 2d, respectively, comparing to that of 𝜂res with mean values 5.75 and 5.10 for Figures 2c and 2d,
respectively.

Example 5.2. In this example, we test the Franke function [27] on the unit square domain,

𝑢(𝑥, 𝑦) =
3
4

exp
(︁
−(9𝑥− 2)2/4− (9𝑦 − 2)2/4

)︁
+

3
4

exp
(︁
−(9𝑥 + 1)2/49− (9𝑦 + 1)/10

)︁
+

1
2

exp
(︁
−(9𝑥− 7)2/4− (9𝑦 − 3)2/4

)︁
− 1

5
exp

(︁
−(9𝑥− 4)2 − (9𝑦 − 7)2

)︁
.

This function has two peaks at (2/9, 2/9) and (7/9, 1/3) and one sink at (4/9, 7/9). Since the boundary of
the domain is regular, the purpose of this example is again to test the efficacy of our algorithm for Nitsche’s
method on regular domain. However, the solution on the boundary is more volatile than in Example 5.1 and
our numerical results show that this boundary volatility potentially causes extra challenges for the efficiency of
Nitsche’s method that imposes the Dirichlet boundary condition weakly.

The optimal convergence results on uniform meshes for the errors ‖∇(𝑢− 𝑢ℎ)‖ and ‖𝜎 − 𝜎ℎ‖ are verified in
Figure 3e. With the same initial mesh and marking strategy as in Example 5.1, and with the stopping criteria
that the total number of DOFs be not greater than 7500, the final meshes generated using 𝜂1,𝐾 and 𝜂res,𝐾 are
provided respectively in Figures 3a and 3b. Both meshes are similar with DOFs centered around the peaks and
sinks. Since the solution is more volatile on some parts of the boundary, we also observe dense refinements on
some right and upper parts of the boundary. However, the mesh in Figure 3a puts relatively more DOFs on the
boundary comparing to Figure 3b on the boundary.
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Figure 3. Example 5.2. Final meshes and convergence of error estimators. (a) Mesh by 𝜂1,𝐾 .
(b) Mesh by 𝜂res,𝐾 . (c) Errors by 𝜂1. (d) Errors by 𝜂res. (e) On uniform meshes.

From Figures 3c and 3d, we observe optimal convergence for both the true error and the estimators in the
overall pattern, however, with occasional oscillations, for both cases. Such oscillation is uniquely caused by the
Nitsche method since it imposes the Dirichlet boundary condition weakly. Again, we observe that 𝜂1 is more
accurate than 𝜂res for most regular (non-oscillating) iterations. Nevertheless, it seems that 𝜂1 has a stronger
magnifying effect for the oscillation.

Example 5.3. In this example, we test our algorithm on an irregular domain. The level set of the problem has
a flower shape (see e.g., Fig. 4a) that has the following representation:

𝜌 = min(𝜌0, 𝜌1, · · · , 𝜌8)

with {︃
𝜌0(𝑥, 𝑦) = 𝑥2 + 𝑦2 − 𝑟2, 𝑟 = 2
𝜌𝑖(𝑥, 𝑦) = (𝑥− 𝑥𝑖)

2 + (𝑦 − 𝑦𝑖)
2 − 𝑟2

𝑖 , 𝑟𝑖 =
√

2𝑟(sin(𝜋/8) + cos(𝜋/8)) sin(𝜋/8)

for 𝑖 = 1, · · · , 8, and

𝑥𝑖 = 𝑟(cos(𝜋/8) + sin(𝜋/8)) cos(𝑖𝜋/4), 𝑦𝑖 = 𝑟(cos(𝜋/8) + sin(𝜋/8)) cos(𝑖𝜋/4).

The domain boundary is defined to be the zero level set, i.e., Ω = {𝑥 ∈ R2 : 𝜌(𝑥) ≤ 0}. The data are given such
that 𝑔 = 0 on 𝜕Ω and

𝑓(𝑥, 𝑦) =
{︂

10 if (𝑥− 𝑥1)2 + (𝑦 − 𝑦1)2 ≤ 𝑟2
1/2,

0 otherwise.

In the numerical scheme, we take 𝑔ℎ ≡ 0 and 𝑓 is approximated by its 𝐿2 projection into the discontinuous
piecewise constant space. We start with a 8× 8 crossed mesh on the rectangular domain (−4, 4)× (−4, 4). With
the stopping criteria that the total number of DOFs be not greater than 7000 and marking percent set to be
15%, the final meshes obtained by 𝜂1, 𝜂2 and 𝜂res are given in Figure 4a, 4b and 4c, respectively. We observe
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Figure 4. Example 5.3. Final meshes and convergence of error estimators. (a) Meshes by 𝜂1,𝐾 .
(b) Meshes by 𝜂2,𝐾 . (c) Meshes by 𝜂res,𝐾 . (d) Errors by 𝜂1,𝐾 . (e) Errors by 𝜂2,𝐾 . (f) Errors by
𝜂res,𝐾 .

similar meshes for the three cases and DOFs are centered around the heat source. From Figure 4c–4e, we observe
optimal convergence rate for all error estimators. In this example, 𝜂1 is very close to 𝜂2 since there are no dense
refinement on the boundary, and 𝜂res is relatively bigger.

Example 5.4. In this example, we consider the reentrant problem whose solution has the following polar
representation:

𝑢(𝑟, 𝜃) = 𝑟𝛼 sin(𝛼𝜃),

with 𝛼 = 𝜋/𝜔 and 𝜔 being the angle of the reentrant corner. In this example, we take 𝜔 = 3/2𝜋. The domain is
set to be Ω = ([−1, 1]2 ∖ [0, 1]× [−1, 0]) ∩𝐵(0.95), where 𝐵(0.95) is the ball with center (0, 0) and radius 0.95.
It is easy to check that 𝑓 = 0 in Ω.

In the numerical scheme, we extend 𝑓 outside of Ω by 0 and take 𝑔ℎ to be the conforming linear interpolation
of 𝑢 with respect to 𝒯ℎ. The optimal convergence results on uniform meshes for the errors ‖∇(𝑢 − 𝑢ℎ)‖ and
‖𝜎 − 𝜎ℎ‖ are verified in Figure 5e.

In the AMR procedure, we choose to use the initial mesh 10 × 10 on the regular domain (−1, 1) × (−1, 1).
With the marking percent set to be 10% and the stopping criteria set such that the maximal number of degrees
of freedom does not exceed 5000, the final meshes generated by 𝜂2,𝐾 and 𝜂res are given in Figures 5a and 5b. The
corresponding convergence rate of the estimators are presented in Figures 5c and 5d. We again observe optimal
convergence for both AMR procedures. This again indicates that the estimators work equivalently effective for
problems with reentrant singularity on the boundary. However, 𝜂2 is more accurate than 𝜂res. For Figure 5c,
the mean ratio for 𝜂res/‖∇(𝑢−𝑢ℎ)‖Ω is 4.1, whereas the mean ratio for 𝜂1/‖∇(𝑢−𝑢ℎ)‖Ω and 𝜂2/‖∇(𝑢−𝑢ℎ)‖Ω
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Figure 5. Example 5.4. Final meshes and convergence of error estimators. (a) Mesh by 𝜂2,𝐾 .
(b) Mesh by 𝜂res,𝐾 . (c) Errors by 𝜂2,𝐾 . (d) Errors by 𝜂res,𝐾 . (e) Errors on uniform meshes.

is 2.4 and 1.5, respectively. The corresponding ratios for Figure 5d are similar. We note that for this example,
using 𝜂1,𝐾 generates almost the same mesh as 𝜂2,𝐾 . However, 𝜂2 is more accurate than 𝜂1 in both cases.
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