A HYBRID-DG METHOD FOR SINGULARLY PERTURBED CONVECTION-DIFFUSION EQUATIONS ON PIPE NETWORKS

HERBERT EGGER1,2 AND NORA PHILIPPI2,*

Abstract. We study the numerical approximation of singularly perturbed convection-diffusion problems on one-dimensional pipe networks. In the vanishing diffusion limit, the number and type of boundary conditions change at network junctions, which gives rise to singular layers at the outflow boundaries of the pipes. A hybrid discontinuous Galerkin method is proposed, which provides a natural upwind mechanism for the convection-dominated case. Moreover, the method provides a viable approximation for the limiting pure transport problem. A detailed analysis of the singularities of the solution and the discretization error is presented, and an adaptive strategy is proposed, leading to order optimal error estimates that hold uniformly in the singular perturbation limit. The theoretical results are confirmed by numerical tests.

Mathematics Subject Classification. 35B25, 35B40, 35K20, 35R02, 65N30, 76R99.

Received September 9, 2022. Accepted May 16, 2023.

1. Introduction

We are interested in the numerical solution of convection-diffusion processes on one-dimensional pipe networks. Such problems describe, e.g., the contaminant transport in water supply networks and systems of 1D-cracks [20, 23], or the distribution of energy in district heating networks [17]. Related nonlinear problems have been studied in the context of traffic flow modeling; see [14] for an introduction.

Problem setting and asymptotic analysis. On every single pipe of the network, the transport of matter is described by the convection-diffusion problem

\begin{align}
\partial_t u^\varepsilon + b \partial_x u^\varepsilon &= \varepsilon \partial_{xx} u^\varepsilon, \quad x \in (0, \ell), \ t > 0, \\
 u^\varepsilon &= \bar{g}, \quad x \in \{0, \ell\}, \ t > 0.
\end{align}

Here, u^ε denotes the quantity of interest, e.g., the concentration of the contaminant, $b > 0$ is the flow velocity, $\varepsilon > 0$ is the diffusion coefficient, and \bar{g} is suitable boundary data. In the vanishing diffusion limit $\varepsilon \to 0$, the boundary condition at $x = \ell$ becomes obsolete. This leads to a boundary layer for $0 < \varepsilon \ll 1$ accompanied by
a blow-up of the derivatives of the solution, which can be expressed by
\[\|u^\varepsilon\|_{L^\infty(0,t_{\max};H^1(0,\ell))} \approx C/\sqrt{\varepsilon}. \]
(3)

In contrast to that, the solution \(u^0 \) of the transport problem, which arises in the limit \(\varepsilon = 0 \), may be perfectly smooth within the pipe, although violating the boundary condition at \(x = \ell \). Maximum principles allow us to verify that both, \(u^\varepsilon \) and \(u^0 \), are bounded uniformly, and under appropriate assumptions, one can further show that
\[\|u^\varepsilon - u^0\|_{L^\infty(0,t_{\max};L^2(0,\ell))} \leq C\sqrt{\varepsilon} \]
(4)

with a uniform constant \(C \); see e.g., [27]. This asymptotic estimate suggests that the transport solution \(u^0 \) may serve as a good approximation for \(u^\varepsilon \) for small \(0 < \varepsilon \ll 1 \).

Extension to networks. Additional coupling conditions are required to model the flow through junctions of more than two pipes and to determine the values \(\hat{g} \) in (2) at internal junctions. The number and type of these conditions may change in the singular limit \(\varepsilon \to 0 \), which gives rise to additional interior layers. As elaborated in [11], the blow-up of the solution and the asymptotic estimates for a single pipe, however, carry over almost verbatim to the network setting. We refer to [16] for results concerning a general class of coupling conditions and to [2] for related investigations concerning optimal control. Vanishing diffusion limits for scalar conservation laws in traffic networks are studied in [5].

Numerical approximation. The discretization of singularly perturbed convection-diffusion problems is well studied in the literature; see [27] for a comprehensive survey. A key ingredient for the robust approximation is the use of layer-adapted meshes. Finite element approximations on Shishkin-type meshes were investigated in [6,9,25,26]; also see [28] for the analysis of higher-order schemes and [30,33] for the investigation of discontinuous Galerkin methods on various layer-adapted meshes. In this paper, we consider the spatial approximation by a hybrid discontinuous Galerkin (dG) method; see [4,7] for background material. Related methods for problems on multi-dimensional domains were investigated in [12,13,22] and by Chen et al. [3] in the context of optimal control.

Main contributions. The proposed hybrid-dG method not only provides an upwind mechanism for handling the convection-dominated regime but, more importantly, allows a natural treatment of the coupling conditions at pipe junctions. In the singular limit \(\varepsilon = 0 \), the method then reduces to the hybrid-dG scheme for pure transport on networks, which has been analyzed in [10]. By the extension of previous results, we will establish uniform error estimates, which for a single pipe and approximations of order \(k \) take the form
\[\|u^\varepsilon - \tilde{u}_h^\varepsilon\|_{L^\infty(0,T;L^2(0,\ell))} \leq C \max(h^{k+1}, \min(\sqrt{\varepsilon}, h^k)). \]
(5)

The constant \(C \) here only depends on the regularity of the boundary data but is independent of \(\varepsilon \) and \(h \). The approximation \(\tilde{u}_h^\varepsilon \) will be chosen adaptively as
\[\tilde{u}_h^\varepsilon = \begin{cases} u_h^\varepsilon, & \varepsilon \geq h^{2k}, \\ u_h^0, & \varepsilon < h^{2k}, \end{cases} \]

where \(u_h^\varepsilon \) is the hybrid-dG approximation for the convection-diffusion problem on a layer-adapted mesh \(T_h^\varepsilon \) of Gartland-type [15], while \(u_h^0 \) is the hybrid-dG approximation [10] for the pure transport problem on a uniform mesh \(T_h^0 \). Following [15,26], the mesh \(T_h^\varepsilon \) is chosen uniformly in the interval \((0,x^*(\varepsilon)) \) away from the layer, and geometrically refined within the layer \((x^*(\varepsilon), \ell) \). As transition point, we will choose
\[x^*(\varepsilon) \approx \varepsilon \log(1/\varepsilon) \lesssim \varepsilon \log(1/h); \]
(6)

the second inequality only holds due to the condition \(\varepsilon \geq h^{2k} \). Using this observation, one can show that the number of elements in \(T_h^\varepsilon \) is of optimal order, i.e., \(N \approx h^{-1} \). At the same time, the choice of the transition point
The region is very small, and hence a good approximation can be found already by the hybrid-dG method for the diffusion problem is close enough to the corresponding transport solution which is smooth. Moreover, the layer within the layer in order to guarantee discrete stability for small but not negligible diffusion. Our results cover the case of a single pipe as well as finite networks of pipes of a rather general topology, in particular, including cycles. Different regimes, i.e., transport- or diffusion-dominated, for different pipes can be handled naturally. Similar uniform convergence estimates also hold for fully discrete schemes obtained after time discretization by appropriate time-stepping schemes, which will be demonstrated in numerical tests.

Outline. In Section 2, we introduce our notation and main assumptions, state the convection-diffusion and pure transport problems on networks, and then summarize some important properties of their solutions. The hybrid-dG method is proposed in Section 3, and we state a preliminary error estimate. Section 4 contains technical results are included in the appendix. In order to illustrate our theoretical results, we give numerical tests in Section 5. The presentation closes with a short summary and remarks concerning possible extensions of our results.

2. Problem statement

Let us start by introducing the relevant notation and then give a complete definition of the problems under consideration. After that, we state the main assumptions for our analysis and summarize the basic properties of solutions to the continuous problems.

2.1. Notation

Following [10, 21], the network topology is described by a finite, directed, and connected graph \(\mathcal{G} = (\mathcal{V}, \mathcal{E}) \), with vertices \(\mathcal{V} = \{v_1, \ldots, v_n\} \) and edges \(\mathcal{E} = \{e_1, \ldots, e_m\} \subset \mathcal{V} \times \mathcal{V} \). We write \(\mathcal{E}(v) = \{e \in \mathcal{E} : e = (v, \cdot) \text{ or } e = (\cdot, v)\} \) for the set of edges incident to a vertex \(v \in \mathcal{V} \), and \(\mathcal{V}_\partial = \{v \in \mathcal{V} : |\mathcal{E}(v)| = 1\} \), \(\mathcal{V}_0 = \mathcal{V} \setminus \mathcal{V}_\partial \) for the sets of boundary and internal vertices. As usual, \(|S| \) describes the cardinality of a finite set \(S \). For any edge \(e = (v^\text{in}, v^\text{out}) \), we define two values

\[
\nu_e(v^\text{in}) := -1 \quad \text{and} \quad \nu_e(v^\text{out}) := 1
\]

indicating the start and end point of the edge, and we set \(\nu_e(v) := 0 \) for \(v \in \mathcal{V} \setminus \{v^\text{in}, v^\text{out}\} \). We write \(\mathcal{E}^\text{in}(v) := \{e \in \mathcal{E} : \nu_e(v) > 0\} \) and \(\mathcal{E}^\text{out}(v) := \{e \in \mathcal{E} : \nu_e(v) < 0\} \) for the sets of edges pointing into and out of the vertex \(v \in \mathcal{V} \), respectively. Furthermore, we split \(\mathcal{V}_\partial \) into a set of boundary vertices \(\mathcal{V}_\partial^\text{in} := \{v \in \mathcal{V}_\partial : \nu_e(v) < 0 \text{ for } e \in \mathcal{E}(v)\} \), from which edges leave into the network, and the complement \(\mathcal{V}_\partial^\text{out} := \{v \in \mathcal{V}_\partial : \nu_e(v) > 0 \text{ for } e \in \mathcal{E}(v)\} \), in which edges terminate; see Figure 1 for an illustration. To any edge \(e \in \mathcal{E} \), we associate a length \(\ell_e \), and identify \(e \simeq (0, \ell_e) \) with an interval. By \(L^2(e) = L^2(0, \ell_e) \) and

\[
L^2(\mathcal{E}) = L^2(e_1) \times \cdots \times L^2(e_m) = \{u : u_e \in L^2(e) \text{ for all } e \in \mathcal{E}\},
\]

we designate the spaces of square-integrable functions on a pipe \(e \) and the network \(\mathcal{E} \), respectively, and we write \(u_e = u_e|_e \) for the restriction of \(u \) to the edge \(e \). The norm and scalar product for the space \(L^2(\mathcal{E}) \) are given by

\[
\|u\|_{L^2(\mathcal{E})}^2 = \sum_{e \in \mathcal{E}} \|u_e\|_{L^2(e)}^2 \quad \text{and} \quad (u, w)_{L^2(\mathcal{E})} = \sum_{e \in \mathcal{E}} (u_e, w_e)_{L^2(e)}.
\]

We further define the broken Sobolev spaces

\[
H^k_{p,w}(\mathcal{E}) = \{u \in L^2(\mathcal{E}) : u_e \in H^k(e) \text{ for all } e \in \mathcal{E}\}, \quad k \geq 0.
\]
Note that $H_{pw}^0(\mathcal{E}) = L^2(\mathcal{E})$ and for $k \geq 1$ the functions $u \in H_{pw}^k(\mathcal{E})$ are continuous along edges $e \in \mathcal{E}$, but may be discontinuous across junctions $v \in \mathcal{V}_0$. The sub-space of functions that are continuous also across junctions is denoted by $H^1(\mathcal{E})$. Any $u \in H^1(\mathcal{E})$ has unique values $u(v)$ for every $v \in \mathcal{V}$, and we write $\ell_2(\mathcal{V})$ for the space of possible vertex values.

2.2. Convection-diffusion problem

We are now in the position to introduce the parabolic problem for $\varepsilon > 0$. Along the pipes of the network, we assume

$$\partial_t u^\varepsilon(x,t) + b_e \partial_x u^\varepsilon(x,t) = \varepsilon \partial_{xx} u^\varepsilon(x,t), \quad x \in e, \ e \in \mathcal{E}, \ t > 0.$$

Like on a single pipe, we enforce Dirichlet conditions at the boundary vertices, i.e.,

$$u^\varepsilon(v, t) = \hat{g}_v(t), \quad v \in \mathcal{V}_\partial, \ t > 0.$$

At the interior vertices $v \in \mathcal{V}_0$, on the other hand, we require the coupling conditions

$$u^\varepsilon(v, t) = \hat{u}_v^\varepsilon(t), \quad v \in \mathcal{V}_0, \ e \in \mathcal{E}(v), \ t > 0,$$

which encode continuity of the density u^ε and conservation of mass across network junctions. The conditions (9) and (10) make up $|\mathcal{E}(v)| + 1$ coupling conditions at each interior vertex $v \in \mathcal{V}_0$, corresponding to the number of all incident edges and the additional unknown vertex value \hat{u}_v^ε, which is called hybrid variable in the following.

2.3. Limiting transport problem

In the vanishing diffusion limit $\varepsilon = 0$, the flow on the pipes is described by the hyperbolic transport equation

$$\partial_t u^0_e(x,t) + b_e \partial_x u^0_e(x,t) = 0, \quad x \in e, \ e \in \mathcal{E}, \ t > 0.$$

We can now prescribe Dirichlet data only at the inflow boundary vertices, i.e.,

$$u^0_e(v, t) = \hat{g}_v(t), \quad v = \mathcal{V}^\text{in}_\partial, \ t > 0.$$

Note that $H_{pw}^0(\mathcal{E}) = L^2(\mathcal{E})$ and for $k \geq 1$ the functions $u \in H_{pw}^k(\mathcal{E})$ are continuous along edges $e \in \mathcal{E}$, but may be discontinuous across junctions $v \in \mathcal{V}_0$. The sub-space of functions that are continuous also across junctions is denoted by $H^1(\mathcal{E})$. Any $u \in H^1(\mathcal{E})$ has unique values $u(v)$ for every $v \in \mathcal{V}$, and we write $\ell_2(\mathcal{V})$ for the space of possible vertex values.
The coupling across network junctions is further described by
\[u^\varepsilon_0(v, t) = \hat{u}^\varepsilon_0(t), \quad v \in \mathcal{V}_0, \ e \in \mathcal{E}^{\text{out}}(v), \ t > 0, \]
\[\sum_{e \in \mathcal{E}^{\text{in}}(v)} b_e \hat{u}^\varepsilon_0(t)n_e(v) = \sum_{e \in \mathcal{E}^{\text{out}}(v)} b_e u^\varepsilon_0(v, t)n_e(v), \quad v \in \mathcal{V}_0 \cup \mathcal{V}^{\text{out}}, \ t > 0. \]
Condition (13) fixes the densities at the inflow vertices of the pipes \(e \in \mathcal{E}^{\text{out}}(v) \) to the vertex value \(\hat{u}^\varepsilon_0 \), which is determined by the mixing rule (14) as a convex combination of the values \(u^\varepsilon_0(v) \) coming from the edges \(e \in \mathcal{E}^{\text{in}}(v) \) pointing into the vertex \(v \). In summary, this makes up \(|\mathcal{E}^{\text{out}}(v)| + 1 \) coupling conditions which determine the values \(u^\varepsilon_0(v) \) for the edges \(e \in \mathcal{E}^{\text{out}}(v) \) originating from \(v \) and the vertex value \(\hat{u}^\varepsilon_0 \). Let us emphasize that the number and type of coupling conditions are different from the parabolic case \(\varepsilon > 0 \) above, leading to additional interior layers for vanishing diffusion \(\varepsilon \to 0 \); see [11] and below.

2.4. Basic assumption and preliminary results

For the rest of the presentation, we make use of the following assumptions on the problem data.

Assumption 1. Let \(0 < \varepsilon \leq 1 \) and \(0 < b \leq b_e \leq \bar{b} \) for all \(e \in \mathcal{E} \) as well as
\[\sum_{e \in \mathcal{E}} b_e n_e(v) = 0, \quad v \in \mathcal{V}_0. \]
Furthermore, the boundary data in (8) and (12) shall satisfy \(\hat{g} \in C^{m+2}(0, t_{\max}; \ell^2(\mathcal{V}_0)) \) for some time horizon \(t_{\max} > 0 \), with \(\partial_x^n \hat{g}(0) = 0 \) for \(0 \leq n \leq m \) and some \(m \geq 0 \).

The assumptions on \(b \) characterize a steady background flow which, for ease of notation, is aligned with the orientation of the edges. Condition (15) together with the coupling conditions ensures the conservation of mass at interior vertices. The boundary data are consistent with trivial initial conditions \(u^\varepsilon(0) = 0 \), and hence the occurrence of initial layers is avoided. For later reference, we summarize some basic results about the solvability and regularity of solutions for our two model problems.

Lemma 2. Let Assumption 1 hold. Then for any \(\varepsilon > 0 \), the convection–diffusion problem (7)–(10) has a unique solution \((u^\varepsilon, \hat{u}^\varepsilon) \) with initial value \(u^\varepsilon(0) = 0 \), and
\[u^\varepsilon \in C^{m+1}(L^2(\mathcal{E})) \cap C^0(H^{2m+2}_{pw}(\mathcal{E}) \cap H^1(\mathcal{E})), \quad \hat{u}^\varepsilon \in C^m(\ell^2(\mathcal{V}_0)), \]
and the derivatives of \(u^\varepsilon \) are bounded by
\[|\partial^i t^j x u^\varepsilon(x, t)| \leq C \left(1 + \varepsilon^{-j} e^{-b_e(x-\varepsilon)/\varepsilon} \right) \]
for all \(x \in [0, \ell_e] \), \(e \in \mathcal{E}, 0 \leq t \leq t_{\max} \) and \(n \leq m, j \leq 2(m-n) + 1 \). Furthermore, also the transport problem (11)–(14) has a unique solution with initial value \(u^\varepsilon(0) = 0 \), and
\[u^\circ \in C^{m+1}(L^2(\mathcal{E})) \cap C^0(H^{m+1}_{pw}(\mathcal{E})), \quad \hat{u}^\circ \in C^m(\ell^2(\mathcal{V}_0)), \]
and the asymptotic estimate
\[\|u^\varepsilon - u^\circ\|_{L^\infty(0, t_{\max}; L^2(\mathcal{E}))} \leq C' \sqrt{\varepsilon} \]
holds true. The constants \(C, C' \) only depend on the bounds in Assumption 1. Here \(C^m(X) = C^m([0; t_{\max}]; X) \) is the space of smooth functions on \([0, t_{\max}]\) with values in \(X \), and \(t_{\max} > 0 \) the chosen time horizon.

Existence, uniqueness, and regularity of the solutions follow readily by semi-group theory; see [11, 21] and [8, 10] for details. The asymptotic estimate (19) was proven in [11]. The bounds for the derivatives can be established with similar arguments as in [19, 24, 31]. For the convenience of the reader, a detailed proof of (17) for the problem on networks is presented in Appendix A.1.
3. The hybrid discontinuous Galerkin method

We now turn to the discretization of the problems introduced in the previous section. In our analysis, we will only consider the semi-discretization in space. In combination with appropriate time-stepping schemes, all results also carry over to fully discrete approximations. Corresponding remarks and numerical tests will be presented in Section 5.

3.1. Mesh and approximation spaces

We split every edge $e \simeq (0, \ell_e)$ into appropriate sub-intervals. The global mesh is then given by

$$T_h = \{ T_e^i = (x_e^{i-1}, x_e^i) : i = 1, \ldots, M_e, \ e \in \mathcal{E} \},$$

with $0 = x_e^0 < x_e^1 < \ldots < x_e^{M_e} = \ell_e$ denoting the mesh points on the edge e. We write $h_e^i = x_e^i - x_e^{i-1}$ and $h = \max_{e,i} h_e^i$ for the local and global mesh size, and also use h_T for the size of an element $T \in \mathcal{T}_h$ below. The extremal points x_e^0 and $x_e^{M_e}$ on every edge are identified with vertices $v \in \mathcal{V}$ of the graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$, and we denote by

$$X_h = \{ x_e^i : 0 < i < M_e, \ e \in \mathcal{E} \}$$

the remaining mesh points in the interior of the edges. Note that the mesh (T_h, X_h) could also be interpreted as a refinement $\mathcal{G}_h = (\mathcal{V} \cup X_h, T_h)$ of the original graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$. In accordance with the notation of Section 2, we define broken Sobolev spaces

$$H^k_{pw}(T_h) = \{ w \in L^2(\mathcal{E}) : w|_T \in H^k(T) \text{ for all } T \in \mathcal{T}_h \}.$$

For the approximation of solutions to our two model problems, we consider the spaces

$$W_h = \{ w_h \in L^2(\mathcal{E}) : w_h|_T \in P_k(T) \text{ for all } T \in \mathcal{T}_h \},$$

consisting of all piecewise polynomials of degree $\leq k$ over the mesh T_h. In addition, we will make use of the space of hybrid variables

$$\hat{W}_h = \{ \hat{w}_h \in \ell_2(\mathcal{V} \cup X_h) : \hat{w}_h(v) = 0 \ \forall \ v \in \mathcal{V}_0 \}$$

to represent the vertex values at the interior mesh points and vertices. Let us note that in comparison to the continuous problem (7)–(10) where hybrid variables only exist at interior vertices $v \in \mathcal{V}_0$, we now also introduce hybrid variables at all interior mesh points $x_e^i \in X_h$ as well as at boundary vertices $v \in \mathcal{V}_0$. An illustration is given in Figure 2. For the convenience of notation, let us introduce the grid-dependent scalar products

$$(u, w)_{T_h} = \sum_{T \in \mathcal{T}_h} (u, w)_{L^2(T)}, \quad \langle u, w \rangle_{\partial T_h} = \sum_{T \in \mathcal{T}_h} u(x_e^{i-1})w(x_e^{i-1}) + u(x_e^i)w(x_e^i),$$

as well as the associated norms $\| w \|^2_{T_h} = (w, w)_{T_h}$ and $| w |^2_{\partial T_h} = \langle w, w \rangle_{\partial T_h}$.

3.2. The hybrid-dG method

For the numerical approximation of solutions to the convection–diffusion problem on networks (7)–(10), as well as the limiting transport problem (11)–(14), we consider the following discretization scheme.

Problem 3. Let W_h and \hat{W}_h be defined as above with polynomial degree $k \geq 1$ fixed. Find $u_h^\varepsilon \in C^1([0, t_{max}] ; W_h)$ with $u_h^\varepsilon(0) = 0$ and $\varepsilon u_h^\varepsilon \in C^0([0, t_{max}] ; \hat{W}_h)$, such that

$$\left(\partial_t u_h^\varepsilon(t), w_h \right)_{T_h} + b_h(u_h^\varepsilon(t), \varepsilon u_h^\varepsilon(t); w_h, \hat{w}_h) + \varepsilon d_h(u_h^\varepsilon(t), \varepsilon u_h^\varepsilon(t); w_h, \hat{w}_h) = \ell_h^\varepsilon(t; w_h) \tag{20}$$
adapted grids. This will allow us to establish error estimates that are uniform in the asymptotic parameter \(\varepsilon \). Lemma 2, leading to degenerate bounds on the right-hand side of (24).

Remark 5. The above scheme falls into the class of hybridizable dG methods introduced in [4]. By formally setting \(\varepsilon = 0 \), we obtain a consistent approximation for the limiting transport problem (11)–(14), which was analyzed in [10]. The bound (24) holds verbatim for \(\varepsilon = 0 \) and yields order optimal estimates \(\| u^\varepsilon - u_h^\varepsilon \|_{L^\infty(0,T;L^2(\mathcal{E}))} \leq Ch^{k+1} \) for the approximation of the limiting transport problem on uniform meshes. On such meshes, however, we do not expect convergence for \(\varepsilon \to 0 \) due to the blow-up of the derivatives of \(u^\varepsilon \), see Lemma 2, leading to degenerate bounds on the right-hand side of (24).

4. THE MAIN RESULT

In order to deal with the singularities of the solution \(u^\varepsilon \) for \(\varepsilon \to 0 \), we consider approximations on layer-adapted grids. This will allow us to establish error estimates that are uniform in the asymptotic parameter \(\varepsilon \).
Problem 3 on the layer-adapted mesh $\mathcal{T}(\varepsilon)$, where Assumption 1 holds, and let Theorem 6.

4.2. Uniform error estimate

Let $\varepsilon < h$ be a constant. Moreover, the number of elements in $\mathcal{T}(\varepsilon)$ that depend on the bounds in Assumption 1, but not on ε or h.

4.1. Construction of the adaptive grids

When $\varepsilon < h^{2k}$ we will use a quasi-uniform grid $\mathcal{T}_h = \mathcal{T}_h^0$ with mesh size $h_T \approx h$ for all elements $T \in \mathcal{T}_h$. For $\varepsilon \geq h^{2k}$ we construct a layer-adapted grid $\mathcal{T}_h^\varepsilon$ as follows: For every edge $e \in \mathcal{E}$ we define a transition point

$$x_e^* := \ell_e - \frac{k+1}{b_e} \varepsilon \log(1/\varepsilon).$$

On the intervals $[0, x_e^*)$ we consider the mesh-points inherited from the uniform mesh \mathcal{T}_h^0, augmented by the transition point $x_e^* =: x_e^{M_e^*}$. The corresponding elements are collected in the set $\mathcal{T}_h^{\varepsilon_1}$. By construction, we have $h_T \lesssim h$ for $T \in \mathcal{T}_h^{\varepsilon_1}$ and $|\mathcal{T}_h^{\varepsilon_1}| = M_e^* \leq Ch^{-1}$. In the layer region $(x_e^*, \ell_e]$, the mesh points are defined recursively by

$$h_e^i = \varepsilon h e^{b_e((\ell_e - x_e^*)/\varepsilon^{k+1})}, \quad x_{e}^{i+1} = x_{e}^i - h_{e}^i, \quad i \leq M_e,$$

with $x_{e}^{M_e} = \ell_e$ denoting the outflow vertex of the edge $e \simeq (0, \ell_e)$. The index M_e is chosen such that $x_{e}^{M_e+1}$ is the last point in this sequence which is strictly larger than the transition point x_e^*; see Figure 3.

The elements in the layer region, generated by the points x_i^e with $M_e^* \leq i \leq M_e$, are collected in the set $\mathcal{T}_h^{\varepsilon_2}$. Using a slight modification of the arguments in [15, 28] and the condition $\varepsilon \geq h^{2k}$, one can show that $|\mathcal{T}_h^{\varepsilon_2}| \leq C h^{-1}$ with C independent of h and ε; see Section 4.3 below. The complete layer-adapted mesh $\mathcal{T}_h^\varepsilon = \mathcal{T}_h^{\varepsilon_1} \cup \mathcal{T}_h^{\varepsilon_2}$ is then simply obtained by accumulation.

4.2. Uniform error estimate

We can now fully describe our adaptive approximation scheme and state the main result of this paper.

Theorem 6. Let Assumption 1 hold, and let $(u^\varepsilon, \tilde{u}^\varepsilon)$ be the unique solution of the convection-diffusion problem (7)-(10) with initial value $u^\varepsilon(0) = 0$. Further, define

$$\tilde{u}_h^\varepsilon := \begin{cases} u_h^0, & \text{if } \varepsilon < h^{2k}, \\ u_h^\varepsilon, & \text{if } \varepsilon \geq h^{2k}, \end{cases}$$

where $(u_h^0, \tilde{u}_h^\varepsilon)$ is the solution of Problem 3 with $\varepsilon = 0$ on the mesh $\mathcal{T}_h = \mathcal{T}_h^0$, while $(u_h^\varepsilon, \tilde{u}_h^\varepsilon)$ is the solution of Problem 3 on the layer-adapted mesh $\mathcal{T}_h = \mathcal{T}_h^\varepsilon$. Then

$$\|u^\varepsilon - \tilde{u}_h^\varepsilon\|_{L^\infty((0, t_{\max}); L^2(\mathcal{L}))} \leq C \max(h^{k+1}, \min(\sqrt{\varepsilon}, h^k)).$$

Moreover, the number of elements in $\mathcal{T}_h^\varepsilon$ can be bounded by $C' h^{-1}$. The constants C, C' in these estimates only depend on the bounds in Assumption 1, but not on ε or h.

Figure 3. Quasi-uniform mesh \mathcal{T}_h^0 for a single pipe (top) and corresponding adaptive mesh $\mathcal{T}_h^\varepsilon = \mathcal{T}_h^{\varepsilon_1} \cup \mathcal{T}_h^{\varepsilon_2}$ (bottom). The layer region (x_e^*, ℓ_e) is depicted in cyan.
Remark 7. Since the number of elements \(N = |T_h^\varepsilon| \approx C'h^{-1} \), we immediately obtain corresponding bounds
\[
\|u^\varepsilon - \tilde{u}_h^\varepsilon\|_{L^\infty(0,t_{\max};L^2(\mathcal{E}))} \leq C'' \max(N^{-k-1}, \min(\sqrt{\varepsilon}, N^{-k})).
\]

A quick look into the error analysis reveals, that one can derive corresponding bounds for the error \(\|u^\varepsilon - \tilde{u}_h^\varepsilon\|_{\varepsilon,h} \) in the mesh- and parameter dependent dG-norm; see [7, 28, 32]. By formally setting \(\varepsilon = 0 \), we obtain the error estimate for the hybrid-dG approximation of the pure transport problem on a quasi-uniform grid, which was established in [10].

4.3. Proof of Theorem 6

The two cases which are exploited in the construction of the adaptive approximation scheme are treated separately in the following. Note that all constants appearing here and in subsequent proofs only depend on the bounds in Assumption 1, but not on \(\varepsilon \) or \(h \).

Case 1: \(\varepsilon < h^{2k} \). By construction, we have \(\tilde{u}_h^\varepsilon = u_h^0 \), where \(u_h^0 \) denotes the hybrid-dG approximation of the transport problem. Using the triangle inequality, we obtain
\[
\|u^\varepsilon - \tilde{u}_h^\varepsilon\|_{L^\infty(0,t_{\max};L^2(\mathcal{E}))} = \|u^\varepsilon - u_h^0\|_{L^\infty(0,t_{\max};L^2(\mathcal{E}))} \\
\leq \|u^\varepsilon - u_\varepsilon\|_{L^\infty(0,t_{\max};L^2(\mathcal{E}))} + \|u_\varepsilon - u_h^0\|_{L^\infty(0,t_{\max};L^2(\mathcal{E}))} \\
\leq c\sqrt{\varepsilon} + c'h^{k+1} \leq C_{\max}(\sqrt{\varepsilon}, h^{k+1}),
\]

with \((u_\varepsilon, \tilde{u}_\varepsilon) \) being the solution of (11)–(14). Here, we employed the asymptotic estimate (19) for the continuous solution as well as the error estimate for the hybrid-dG approximation of the limiting transport problem; see [10]. This already yields the bound (27) for the case \(\varepsilon < h^{2k} \). The assertion about the number of elements is clear since the mesh \(T_h = T_h^0 \) is quasi-uniform.

Case 2: \(\varepsilon \geq h^{2k} \). From Lemma 4, we already know that
\[
\|u^\varepsilon(t) - u_h^0(t)\|_{L^2(\mathcal{E})} \leq c \sum_{T \in T_h^\varepsilon} (\varepsilon h_T^{2k} + h_T^{2k+2}) \|u^\varepsilon\|_{H^1(0,t_{\max};H^{k+1}(T))}^2.
\]

Using the bounds (17), the choice of the transition point \(x^*_\varepsilon \), and noting that \(h_T \approx h \) is uniform for elements \(T \in T_h \), we find that
\[
\sum_{T \in T_h^\varepsilon} (\varepsilon h_T^{2k} + h_T^{2k+2}) \|u^\varepsilon\|_{H^1(0,t_{\max};H^{k+1}(T))}^2 \leq c' (\varepsilon h^{2k} + h^{2k+2}) \leq 2c' h^{2k}.
\]

In the layer-adapted part \(T_h^{\varepsilon,2} \) of the mesh, the local mesh sizes \(h^i_\varepsilon \) are determined recursively by (26), and the bounds (17) allow us to estimate
\[
\sum_{T_i \in T_h^{\varepsilon,2}} (\varepsilon (h^i_\varepsilon)^{2k} + (h^i_\varepsilon)^{2k+2}) \|u^\varepsilon\|_{H^1(0,t_{\max};H^{k+1}(T^i_\varepsilon))}^2 \\
\leq c' \sum_{T_i \in T_h^{\varepsilon,2}} (\varepsilon (h^i_\varepsilon)^{2k} + (h^i_\varepsilon)^{2k+2}) \int_{x^i_\varepsilon}^{x^i_{e^{-1}}} \varepsilon^{-2k-2} e^{-2b_\varepsilon(x-x^i_\varepsilon)/\varepsilon} \, dx =: (i) + (ii).
\]

Using the choice \(h^i_\varepsilon = \varepsilon h^{b_\varepsilon(x-x^i_\varepsilon)/\varepsilon(k+1)} \) in (26), the first term can be estimated by
\[
(i) \leq c' \sum_{T_e^h \in \mathcal{T}_h^{\varepsilon, 2}} \varepsilon^{-1} h^{2k} \int_{x_e^k}^{x_e} e^{2kb(x_e-x)/(k+1)} e^{-2b(x_e-x)/\varepsilon} \, dx
\]
\[
= c' \sum_{e \in \mathcal{E}} \varepsilon^{-1} h^{2k} \int_{x_e^k}^{x_e^*} e^{-2b(x_e-x)/\varepsilon(k+1)} \, dx \leq c'' h^{2k},
\]

since the pipe network is finite. Similarly, we obtain for the second term
\[
(ii) \leq c' h^{2k+2} \sum_{T_e^h \in \mathcal{T}_h^{\varepsilon, 2}} h^i \leq c' h^{2k+2} \sum_{e \in \mathcal{E}} (\ell_e - x_e^*) \leq c'' h^{2k+2}.
\]

Adding the two estimates for \(\mathcal{T}_h^{\varepsilon, 1}\) and \(\mathcal{T}_h^{\varepsilon, 2}\) yields the bound (27) for \(\varepsilon \geq h^{2k}\).

It remains to verify the bound on the number of elements: The graded mesh \(\mathcal{T}_h^{\varepsilon, 2}\) is of Gartland-type, and using the arguments employed in [15], p. 645 and [28], p. 8, one can see that the number of elements in \(\mathcal{T}_h^{\varepsilon, 2}\) intersecting the intervals \((x_e^S, \ell_e)\), with \(x_e^S = \ell_e - 2b\frac{1}{h^{\varepsilon}} \varepsilon \log(1/h)\) denoting the Shishkin transition point, is bounded by \(c'h^{-1}\). By assumption, we further have \(\varepsilon \geq h^{2k}\), and therefore \(|\ell_e - x_e^*| \leq 2k|\ell - x_e^S|\). Since the mesh gets coarser when moving away from the layer, we conclude that \(|\mathcal{T}_h^{\varepsilon, 2}| \leq C'h^{-1}\) with \(C' \leq 2kc'\). By a refined analysis, this estimate could even be further improved, i.e., the number of elements intersecting the region \((x_e^*, x_e^S)\) is bounded by \(c'\log(1/h)\), which would yield \(C' \leq c' + c'\log(1/h)h^{-1}\). This completes the proof. □

5. Numerical tests

In order to illustrate the flexibility and performance of the proposed hybrid-dG scheme, we now present some numerical results. We first discuss in detail the convergence behavior for a problem on a single pipe, and then briefly discuss a test problem on a pipe network.

5.1. Single pipe

We consider a single pipe \(e = (v_1, v_2) \simeq (0, 1)\) of length \(\ell = 1\). The flow velocity is chosen as \(b = 1\), and the boundary conditions are described by
\[
\hat{g}_{v_1}(t) = \frac{1}{t_{max}} t^3, \quad \hat{g}_{v_2} = 0.
\]
The simulations are performed for time \(t \leq t_{max} = 3\), and the initial conditions are given by \(u^e(0) = 0\). This choice of the problem data satisfies Assumption 1 with \(m = 2\), which suffices to guarantee optimal convergence rates for polynomial order \(k \leq 2\).

Discretization and error estimation. For our numerical tests, we utilize the proposed hybrid-dG method with piecewise quadratic finite elements, and we set \(\alpha = 1\) for the stabilization parameter. The convergence rates of Theorem 6 apply with \(k = 2\). For the time integration, we use the Radau IIA Runge–Kutta method with 3 stages and a uniform time step \(\tau\). This scheme can be interpreted as a discontinuous Galerkin method with second-order polynomials, and the time-discretization errors can be shown to be of order \(O(\tau^3)\); see [1, 32]. We choose \(\tau = h/2\), such that the effect of the time discretization can be considered negligible. To estimate the discretization errors, we compute a reference solution \(u^e_{\text{ref}}\) on a mesh \(\mathcal{T}_h^{\text{ref}}\), which is obtained by two uniform refinements of the computational mesh \(\mathcal{T}_h\) used in our analysis. In addition, the time step \(\tau^{\text{ref}} = \tau/4\) is reduced accordingly. The actual discretization error is then estimated by
\[
||u^e - \tilde{u}^e_h||_{\text{ref}} := \max_{n=0,\ldots,N^{\text{ref}}} \| (u^e_{\text{ref}}(t^n) - (I_{\text{ref}} \tilde{u}^e_h)(t^n)) \|_{L^1(\mathcal{E})},
\]
where I_{ref} denotes the interpolation operator onto the reference mesh and N_{ref} is the number of time steps used for the computation of the reference solution.

Results. In the left plot of Figure 4, we display the numerical errors $\|u^\varepsilon - \tilde{u}_h^\varepsilon\|_{\text{ref}}$ obtained by the hybrid-dG method on the graded mesh T_h^ε for different values of $\varepsilon > 0$. This is the relevant error in the diffusive regime $\varepsilon \geq h^{2k}$. In accordance with Theorem 6, we observe second-order convergence. On coarse meshes and for small ε, the diffusive terms can be considered as a perturbation of the pure transport problem, which explains the increase in the convergence rate for the test with $\varepsilon = 10^{-5}$. In our tests, the number of elements $|T_h^\varepsilon, 2h|$ in the boundary layer (x^*, ℓ) is approximately $3 \cdot h^{-1}$, and only few elements lie in the layer (x^*, x^2) outside the Shishkin point; see Section 4.3. In the right part of Figure 4, we plot the errors $\|u^\varepsilon - u_\circ^\varepsilon\|_{\text{ref}}$, which are relevant when $\varepsilon < h^{2k}$. From the proof of Theorem 6, one can see that $\|u^\varepsilon - u_\circ^\varepsilon\|_{\text{ref}} \leq c\sqrt{\varepsilon} + c' h^{k+1}$. This leads to a saturation when $c\sqrt{\varepsilon} \approx c' h^{k+1}$, i.e., $\sqrt{\varepsilon}$ becomes the dominating term in the error estimate. However, the saturation is already occurring a bit earlier on a coarser mesh, since the dominating effect of $\sqrt{\varepsilon}$ starts to show up. In summary, the numerical results are in perfect agreement with the theoretical predictions.

5.2. A pipe network

As a second test problem, we consider a pipe network consisting of 11 edges and 11 vertices, with 3 entries, 2 exits and 1 loop; see Figure 5 for a sketch. For ease of presentation, we set $\ell_e = 1$ for the length of all edges. The volume flow rates are given by

$$ b_{e_1} = b_{e_2} = b_{e_3} = b_{e_8} = b_{e_9} = 2, \quad b_{e_3} = b_{e_8} = b_{e_{10}} = b_{e_{11}} = 1, \quad b_{e_4} = b_{e_7} = 3. $$

By this choice, condition (15) is satisfied. As boundary conditions we choose

$$ \dot{g}_{v_1}(t) = \frac{2}{t_{\text{max}}} t^3, \quad \dot{g}_{v_3}(t) = \dot{g}_{v_{10}}(t) = 0, \quad \dot{g}_{v_4}(t) = \frac{3}{2t_{\text{max}}^4} t^4, \quad \dot{g}_{v_{11}}(t) = \frac{5}{2t_{\text{max}}^4} t^3. $$

The time horizon is set to $t_{\text{max}} = 6$, and the initial conditions are again $u^\varepsilon(0) = u^\circ(0) = 0$. Like in the previous test, Assumption 1 is satisfied with the smoothness parameter $m = 2$.

Results. At the vertices v_3, v_8, and v_9, which have two in-going and one out-going pipe, we expect discontinuities in the concentration field in the transport limit $\varepsilon = 0$, and corresponding internal layers for the
Figure 5. Topology of the GasLib-11 network, taken from [29].

Figure 6. Solution to the convection-diffusion problem for $\varepsilon = 0.05$ (red, dashed) and the limiting transport problem for $\varepsilon = 0$ (blue, solid). Discontinuities appearing for the transport limit are smoothed out for $\varepsilon > 0$ by diffusion, leading to boundary layers at the outflow boundaries and internal junctions. Away from the layers, the solutions to the two different problems can hardly be distinguished.

convection–diffusion problem with $\varepsilon > 0$. Furthermore, we expect boundary layers at the outflow vertices v_4 and v_7; compare with the plot in Figure 6. Using the same discretization strategy and test setup as explained for the case of a single pipe, we repeated the convergence tests and observed exactly the same convergence behavior as depicted in Figure 4 for the case of a single pipe. Since no additional insight is obtained from these results, we omit their presentation here.
6. Discussion

In this paper, we studied the numerical approximation of singularly perturbed parabolic convection-diffusion problems on one-dimensional pipe networks by a hybrid discontinuous Galerkin method. A key feature of this method is the correct handling of the coupling conditions at network junctions and boundary conditions at network boundaries, whose number and type changes in the vanishing diffusion limit \(\varepsilon \to 0 \). To avoid possible instabilities resulting from the boundary and internal layers, geometrically adapted meshes of Gartland-type were employed in the layer regions.

In the transport regime, i.e., when \(\varepsilon < h^{2k} \), we proposed to use the numerical approximation of the pure transport problem. This allowed us to choose the transition point for the layer adapted mesh as \(x^*(\varepsilon) \approx \ell - \varepsilon \log(1/\varepsilon) \), while still guaranteeing a quasi-optimal number \(N \approx h^{-1} \) of elements. Moreover, this choice allowed us to resort to standard localized discretization error estimates for dG methods. The numerical results demonstrate the validity and sharpness of our estimates.

For lowest order approximations with \(k = 1 \), we observed convergence of order \(O(h^{k+1}) \) even in the diffusion-dominated regime. While the use of hybrid variables in our discretization method is particularly useful for the automatic handling of the coupling conditions at network junctions, alternative discretization strategies, e.g., standard dG schemes, upwind finite differences, or SUPG-Galerkin methods, may be used for the approximation along the pipes. The main steps of our analysis should carry over to such schemes almost verbatim. Also, the additional consideration of time discretization seems possible without major complications. A theoretical investigation of these topics is left for future research.

Appendix A.

For completeness of the presentation, we now give the proofs for some auxiliary results, which were used in our error analysis and follow by standard arguments.

A.1. Proof of the bounds (17) in Lemma 2

Let \(u^\varepsilon \) be the solution of (7)–(10) with initial value \(u^\varepsilon(0) = 0 \). We want to show that

\[
|\partial_t^n \partial_x^j u^\varepsilon(x, t)| \leq C \left(1 + \varepsilon^{-\frac{j}{2}} \log(1/\varepsilon)^{\frac{j}{2}}\right)
\]

for all \(n \leq m, j \leq 2(m - n) + 1 \); recall that \(m \) is the regularity index of Assumption 1. For establishing these bounds, we will use the following weak maximum principle for convection-diffusion problems on networks; see Lemma 7 of [11].

Lemma A.1. Let \(u \in C^1([0, t_{\text{max}}]; L^2(\mathcal{E})) \cap C^0([0, t_{\text{max}}]; H^1(\mathcal{E}) \cap H^2_{\text{pw}}(\mathcal{E})) \) satisfy

\[
\partial_t u_c + b_c \partial_x u_c - \varepsilon \partial_{xx} u_c \geq 0, \quad \forall e \in \mathcal{E},
\]

\[
\sum_{e \in \mathcal{E}(v)} \varepsilon \partial_x u_c(v)n_c(v) = 0, \quad \forall v \in \mathcal{V}_0,
\]

\[
u(v) \geq 0, \quad \forall v \in \mathcal{V}_{\partial},
\]

for all \(0 < t < t_{\text{max}} \) with initial conditions

\[
u(0) \geq 0, \quad \forall e \in \mathcal{E}.
\]

Then, the function \(u \) is non-negative, i.e., \(u \geq 0 \) on \(\mathcal{E} \) for all \(t \in [0, t_{\text{max}}] \).
The above estimates can now be established by induction over \(j \) and \(n \). For \(j, n = 0 \) the claim follows directly from Lemma A.1 with the usual comparison arguments: We define \(w_e(x, t) := \max_t \vert \hat{g}(t) \vert + u^e(x, t) \), which satisfies all conditions of Lemma A.1, and therefore is non-negative. This implies that \(|u^e| \) can be bounded by the maximum norm of the boundary data \(\hat{g} \). By linearity and time-invariance of the equations, \(\partial_t^n u^e, \partial_t^n \hat{u}^e \) again solves (7)–(10), but with boundary data \(\partial_t^n \hat{g} \); further note that \(\partial_t^n \hat{u}^e(0) = 0 \) for \(n \leq m \). With the same reasoning as above we thus obtain the bounds for \(|\partial_t^n u^e|, n \leq m \).

Induction over \(j \): Assume that (A.1) holds for all \(0 \leq i \leq j - 1 \) and all \(n \leq m \). In a first step, we verify that \(\partial_t^n \partial_x^j u^e(\ell_e) \leq c \varepsilon^{-j} \) for all \(e \in E \). By the mean value theorem, we know that there exists \(y \in (\ell_e - \varepsilon, \ell_e) \), such that

\[
\partial_t^n \partial_x^j u^e(y) = \frac{1}{\varepsilon} \left(\partial_t^n \partial_x^j u^e(\ell_e) - \partial_t^n \partial_x^j u^e(\ell_e - \varepsilon) \right) \leq c \varepsilon^{-j},
\]

where we used the induction hypothesis in the last step. Using (7), we further see that

\[
\partial_t \left(\partial_t^n \partial_x^j u^e \right) = -b_e \partial_x \left(\partial_t^n \partial_x^j u^e \right) + \varepsilon \partial_{xx} \left(\partial_t^n \partial_x^j u^e \right).
\]

By the fundamental theorem of calculus and the induction hypothesis, we conclude that

\[
\partial_t^n \partial_x^j u^e(\ell_e) = \partial_t^n \partial_x^j u^e(y) + \int_{\ell_e}^{\ell_e} \partial_x \partial_t^n \partial_x^{j-1} u^e(x) \, dx
\]

\[
= \partial_t^n \partial_x^j u^e(y) + \int_{\ell_e}^{\ell_e} \frac{1}{\varepsilon} \left(\partial_t^{n+1} \partial_x^{j-1} u^e(x) + b_e \partial_t^n \partial_x^j u^e(x) \right) \, dx
\]

\[
\leq c \varepsilon^{-j} + \max_{x \in [y, \ell_e]} \left(\partial_t^{n+1} \partial_x^{j-1} u^e(x) \right) \leq c' \varepsilon^{-j}.
\]

(A.3)

Let us now fix an arbitrary \(t \in [0, t_{\text{max}}] \) and set \(w(x) := \partial_t^n \partial_x^j u^e(x, t) \). Then by (A.2), the function \(w \) solves the ordinary differential equation

\[
b_e w(x) - \varepsilon w'(x) = \eta(x) := -\partial_t^{n+1} \partial_x^{j-1} u^e(x, t)
\]

(A.4)

with terminal value \(w(\ell_e) = \partial_t^n \partial_x^j u^e(\ell_e, t) \). Using the induction hypothesis, the right hand side of this problem can be estimated by

\[
|\eta(x)| \leq c \left(1 + \varepsilon^{-j} e^{-b_e(\ell_e - x)/\varepsilon} \right).
\]

(A.5)

Expressing the solution of (A.4) via the variation-of-constants-formula, we find that

\[
w(x) = w(\ell_e) e^{-b_e(\ell_e - x)/\varepsilon} + \frac{1}{\varepsilon} \int_{\ell_e}^{x} e^{-b_e(\sigma-x)/\varepsilon} \eta(\sigma) \, d\sigma
\]

\[
\leq c' \varepsilon^{-j} e^{-b_e(\ell_e - x)/\varepsilon} + \frac{1}{\varepsilon} \int_{\ell_e}^{x} e^{-b_e(\sigma-x)/\varepsilon} \left(1 + \varepsilon^{-j} e^{-b_e(\ell_e - \sigma)/\varepsilon} \right) \, d\sigma
\]

\[
\leq c' \varepsilon^{-j} e^{-b_e(\ell_e - x)/\varepsilon} + c \varepsilon^{-j} e^{-b_e(\ell_e - x)/\varepsilon} (\ell - x) + \frac{c}{b_e} \left(1 - e^{-b_e(\ell_e - x)/\varepsilon} \right)
\]

\[
\leq c \left(1 + \varepsilon^{-j} e^{-b_e(\ell_e - x)/\varepsilon} \right).
\]

Here we employed (A.3) and (A.5) in the subsequent estimates. This yields the bounds (17) for index \(i = j \) and \(n \leq m \) and, by induction, concludes the proof of Lemma 2. \(\square \)
A.2. Basic properties of the hybrid-dG scheme

We now establish discrete stability, well-posedness, and consistency of the discretization scheme in Problem 3. We start with showing ellipticity of the governing bilinear forms.

Lemma A.2. Let \(b_h, d_h \) be as in (21) and (22). Then for all \(w_h \in W_h \) and \(\dot{w}_h \in \dot{W}_h \), we have

\[
b_h(w_h, \dot{w}_h; w_h, \dot{w}_h) = \frac{1}{2} \left| b^{1/2}(w_h - \dot{w}_h) \right|^2_{\partial T_h},
\]

\[
d_h(w_h, \dot{w}_h; w_h, \dot{w}_h) = \left\| \partial_x w_h^2 \right\|^2_{T_h} + \left(\frac{\alpha}{h_{\text{loc}}} \right)^{1/2} (w_h - \dot{w}_h)^2_{\partial T_h}
\]

with \(h_{\text{loc}} | T = h_T \) for \(T \in T_h \).

Proof. Let \(T = (x^{\text{in}}, x^{\text{out}}) \) be one of the elements of the mesh \(T_h \). Then, in accordance with the notation introduced in Section 2.1, we call \(x^{\text{in}} \) the inflow and \(x^{\text{out}} \) the outflow boundary of \(T \), and we denote by \(\partial T_h^{\text{in}} \) and \(\partial T_h^{\text{out}} \) the collections of all inflow and outflow boundaries of elements \(T \in T_h \). Equation (A.6) then follows from

\[
b_h(w_h, \dot{w}_h, w_h, \dot{w}_h) = -(b w_h, \partial_x w_h)_{T_h} + \langle nb w_h^{\text{up}}, w_h - \dot{w}_h \rangle_{\partial T_h}
\]

\[
= -\frac{1}{2} \langle nb w_h, w_h \rangle_{\partial T_h} + \langle nb w_h, w_h - \dot{w}_h \rangle_{\partial T_h^{\text{out}}} + \langle nb \dot{w}_h, w_h - \dot{w}_h \rangle_{\partial T_h^{\text{in}}}
\]

\[
= \frac{1}{2} \left| b^{1/2} w_h \right|^2_{\partial T_h} - \langle b w_h, \dot{w}_h \rangle_{\partial T_h} + \frac{1}{2} \left| b^{1/2} \dot{w}_h \right|^2_{\partial T_h} = \frac{1}{2} \left| b^{1/2} (w_h - \dot{w}_h) \right|^2_{\partial T_h}.
\]

Here we used that \(|b^{1/2} \dot{w}_h|_{\partial T_h^{\text{in}}} = |b^{1/2} \dot{w}_h|_{\partial T_h^{\text{out}}} \) due to the conservation condition (15) on the flow rates, and the fact that \(\dot{w}_h(v) = 0 \) for \(v \in V_{\partial} \). Equation (A.7), on the other hand, follows directly, since the second and third term in (22) cancel each other. \(\square \)

As a direct consequence, we obtain the well-posedness of the discretization scheme.

Lemma A.3. Let Assumption 1 hold. Then Problem 3 has a unique solution

\[(u_h^\varepsilon, \dot{u}_h^\varepsilon) \in C^1([0, t_{\text{max}}]; W_h) \times C^0([0, t_{\text{max}}]; \dot{W}_h).\]

Proof. From the previous lemma, we can deduce that the combined bilinear form \(b_h + \varepsilon d_h \) is elliptic on the discrete spaces \(W_h \times \dot{W}_h \). The hybrid variables \(\dot{u}_h^\varepsilon \) can therefore be eliminated from the discrete problem on the algebraic level, leading to an ordinary differential equation for \(u_h^\varepsilon \) alone. Existence of a unique solution and its regularity then follow by the Picard–Lindelöf theorem and elementary arguments. \(\square \)

As a next ingredient for our analysis, we verify consistency of the approximation scheme.

Lemma A.4. Let \((u^\varepsilon, \dot{u}^\varepsilon)\) be the solution of (7)–(10) with initial value \(u^\varepsilon(0) = 0 \). Further define \(\ddot{u}^\varepsilon(x) = u^\varepsilon(x) \) for \(x \in X_h \) and set \(\dot{u}^\varepsilon(v) = 0 \) for \(v \in V_{\partial} \). Then

\[
(\partial_t u^\varepsilon(t), w_h)_{T_h} + b_h(u^\varepsilon(t), \dot{u}^\varepsilon(t); w_h, \dot{w}_h) + \varepsilon d_h(u^\varepsilon(t), \dot{u}^\varepsilon(t); w_h, \dot{w}_h) = \ell_h^\varepsilon(t; w_h)
\]

for all \(w_h \in W_h \), \(\dot{w}_h \in \dot{W}_h \), and all \(0 \leq t \leq t_{\text{max}} \), i.e., the method is consistent.
Proof. Let us first test the bilinear form d_h with $w_h \in W_h$ and $\hat{w}_h \equiv 0$, which yields

$$d_h(u^\varepsilon, \hat{u}^\varepsilon; w_h, 0) = (\partial_x u^\varepsilon, \partial_x w_h)_{\mathcal{T}_h} - (n\partial_x u^\varepsilon, w_h)_{\partial \mathcal{T}_h} + (n(u^\varepsilon - \hat{u}^\varepsilon), \partial_x w_h)_{\partial \mathcal{T}_h} + \left(\frac{\alpha}{h_{\text{loc}}} (u^\varepsilon - \hat{u}^\varepsilon), w_h \right)_{\partial \mathcal{T}_h}$$

$$= - (\partial_{xx} u^\varepsilon, \partial_x w_h)_{\mathcal{T}_h} + (n u^\varepsilon, \partial_x w_h)_{\mathcal{V}_0} + \left(\frac{\alpha}{h_{\text{loc}}} u^\varepsilon, w_h \right)_{\mathcal{V}_0}.$$

Here we used integration-by-parts on every element for the first term, whose boundary contributions cancels the second term. Since $u^\varepsilon(x) = \hat{u}^\varepsilon(x)$ for all $x \in \mathcal{X}_h \cup \mathcal{V}_h$, the contributions of the third and fourth term vanish at internal mesh points; further note that $\hat{u}^\varepsilon(v) = 0$ on the network boundary $v \in \mathcal{V}_0$. In a similar manner, we observe that

$$b_h(u^\varepsilon, \hat{u}^\varepsilon; w_h, 0) = -(b u^\varepsilon, \partial_x w_h)_{\mathcal{T}_h} + (b n u^{up}, w_h)_{\partial \mathcal{T}_h} = (b \partial_x u^\varepsilon, w_h)_{\mathcal{T}_h}$$

for all $w_h \in W_h$, since $nb u^{up}(v) := \max(nb, 0) u^\varepsilon(v) + \min(nb, 0) \hat{u}^\varepsilon(v)$ implies the second term. Since u^ε across junctions and due to the fact that $\hat{u}^\varepsilon(v) = 0$ at \mathcal{V}_0. Using (7) and (8), we then see that

$$(\partial_t u^\varepsilon, w_h)_{\mathcal{T}_h} + b_h(u^\varepsilon, \hat{u}^\varepsilon, w_h, 0) + \varepsilon d_h(u^\varepsilon, \hat{u}^\varepsilon; w_h, 0) = \ell_h(w_h)$$

for all $w_h \in W_h$ and $0 \leq t \leq t_{\text{max}}$. The continuity and coupling conditions (9) and (10), on the other hand, imply validity of the variational identities for $\hat{w}_h \in W_h$ when testing with $w_h \equiv 0$. In summary, we thus obtain consistency of the method. □

A.3. Proof of Lemma 4

Based on consistency and discrete stability, we can now prove the local error estimate (24). Following ([32], Chap. 12), we define a projection operator $\pi_h : H^1_{pw}(\mathcal{E}) \to W_h$ by

$$\pi_h w^- (x^i_e) = w^- (x^i_e) \quad \text{for all } i = 1, \ldots, M_e, e \in \mathcal{E},$$

$$\int_T (w - \pi_h w)p \, dx = 0 \quad \text{for all } p \in P_{k-1}(T), \ T \in \mathcal{T}_h \quad (A.9)$$

with up- and downwind value of w at some point x denoted by

$$w^-(x) = \lim_{s \searrow 0} w(x + s), \quad w^+(x) = \lim_{s \nearrow 0} w(x + s).$$

The following properties of the projection π_h can be found in Appendix C of [18].

Lemma A.5. The operator $\pi_h : H^1_{pw}(\mathcal{T}_h) \to W_h$ is a well-defined projection. Moreover, for any element $T = (x^{in}, x^{out}) \in \mathcal{T}_h$ and $w \in H^{k+1}_{pw}(\mathcal{E})$, we have $\pi_h w(x^{out}) = w^-(x^{out})$ and

$$\|w - \pi_h w\|_{L^2(T)} \leq Ch^{k+1}_{T} \|w\|_{H^{k+1}(T)}, \quad (A.10)$$

$$\left| \partial_x w - \partial_x \pi_h w \right|_{L^2(T)} \leq Ch^{k}_{T} \|w\|_{H^{k+1}(T)}, \quad (A.11)$$

$$\left| w^+(x^{in}) - \pi_h w^+(x^{in}) \right| \leq Ch^{k+1/2}_{T} \|w\|_{H^{k+1}(T)}, \quad (A.12)$$

$$\left| \partial_x w - \partial_x \pi_h w \right|_{\partial T} \leq Ch^{k-1/2}_{T} \|w\|_{H^{k+1}(T)}. \quad (A.13)$$

By the triangle inequality, we can now split the discretization error

$$\|u^\varepsilon(t) - u^\varepsilon_h(t)\|_{L^2(\mathcal{E})} \leq \|\eta_h(t)\|_{L^2(\mathcal{E})} + \|e_h(t)\|_{L^2(\mathcal{E})}$$
into a projection error $\eta_h := u^\varepsilon - \pi_h u^\varepsilon$ and a discrete error component $e_h := u_h^\varepsilon - \pi_h u^\varepsilon$. Via the estimate of Lemma A.5 and the continuous embedding of $\mathcal{H}^1(0, t_{\text{max}}) \subset L^\infty(0, t_{\text{max}})$, we can bound the projection error by

$$
\|\eta_h\|_{L^\infty(0, t_{\text{max}}; L^2(\mathcal{E}))}^2 \leq c \sum_{T \in T_h} h_T^{k+1} \|u^\varepsilon\|_{H^1(0, t_{\text{max}}; \mathcal{H}^{k+1}(T))}.
$$

The remaining part of this section is now devoted to the estimation of the discrete error. We denote by $\bar{\eta}_h := u^\varepsilon - \pi_h u^\varepsilon$ and consequently $\bar{\eta}_h := u^\varepsilon - \pi_h u^\varepsilon = 0$. From the consistency of the scheme stated in Lemma A.4, one can deduce that

$$
\frac{1}{2} \frac{d}{dt} \|e_h\|^2 = (\partial_t e_h, e_h)_{T_h} = -b_h(e_h, \dot{e}_h; e_h) - \varepsilon d_h(\dot{e}_h, \dot{\eta}_h; e_h, \dot{\eta}_h) + (\partial_t \eta_h, e_h)_{T_h} + b_h(\eta_h, \dot{\eta}_h; e_h, \dot{\eta}_h) + \varepsilon d_h(\eta_h, \dot{\eta}_h; e_h, \dot{\eta}_h)
$$

= (i) + (ii) + (iii) + (iv) + (v).

With the properties of Lemma A.2, we see that

$$(i) + (ii) = -\varepsilon \|\partial_x e_h\|_{T_h}^2 - \varepsilon \left\| \frac{\alpha}{h_{\text{loc}}} \right\|_{\partial T_h}^{1/2} \left(e_h - \dot{e}_h \right)^2 - \frac{1}{2} b^{1/2} \left(e_h - \dot{e}_h \right)^2_{\partial T_h}.
$$

By Cauchy–Schwarz and Young inequalities, we further obtain

$$(iii) = (\partial_t u^\varepsilon - \partial_t \pi_h u^\varepsilon, e_h)_{T_h} \leq c \sum_{T \in T_h} h_T^{2k+2} \|\partial_t u^\varepsilon\|_{\mathcal{H}^{k+1}(T)}^2 + \frac{1}{2} \|e_h\|_{T_h}^2.
$$

Here, we used the fact that $\partial_t \pi_h u^\varepsilon = \pi_h \partial_t u^\varepsilon$ as well as the projection error estimate of Lemma A.5. For the fourth term we observe that

$$(iv) = -(b\eta_h, \partial_x e_h)_{T_h} + (nb \eta_h^{up}, e_h)_{\partial T_h} = 0,
$$

where the first term vanishes due to (A.9) and the second one due to (A.8) and the definition of $\bar{\pi}_h$, which together yield $\eta_h^{up} = 0$. Cauchy–Schwarz and Young’s inequality as well as a discrete trace inequality finally allow to estimate the last term by

$$(v) \leq \varepsilon \|\partial_x e_h\|_{T_h}^2 + \varepsilon \left\| \frac{\alpha}{h_{\text{loc}}} \right\|_{\partial T_h}^{1/2} \left(e_h - \dot{e}_h \right)^2_{\partial T_h} + \frac{\varepsilon}{2} \|\partial_x \eta_h\|_{T_h}^2
$$

$$
+ \frac{\varepsilon}{2} \left(\frac{h_{\text{loc}}}{\alpha} \right)^{1/2} \left(\partial_x \eta_h \right)^2_{\partial T_h} + \frac{\varepsilon}{2} \left(\alpha + C_{\text{up}}^2 \right) \left\| h_{\text{loc}}^{-1/2} (\eta_h - \dot{\eta}_h) \right\|_{\partial T_h}^2.
$$

Note that the first two terms cancel with the two last terms in the estimate of (i) + (ii). The remaining terms can again be bounded by the projection error estimates of Lemma A.5, which finally leads to

$$
\frac{1}{2} \frac{d}{dt} \|e_h\|_{T_h}^2 \leq c \sum_{T \in T_h} h_T^{2k+2} \|\partial_t u^\varepsilon\|_{\mathcal{H}^{k+1}(T)}^2 + c' \sum_{T \in T_h} \varepsilon h_T^{2k} \|u^\varepsilon\|_{\mathcal{H}^{k+1}(T)}^2 + \frac{1}{2} \|e_h\|_{T_h}^2.
$$

By application of Gronwall’s lemma, we thus obtain

$$
\|e_h\|_{L^\infty(0, t_{\text{max}}; L^2(\mathcal{E}))}^2 \leq c'' \sum_{T \in T_h} (\varepsilon h_T^{2k} + h_T^{2k+2}) \|u^\varepsilon\|_{H^1(0, t_{\text{max}}; \mathcal{H}^{k+1}(T))}^2,
$$

where we used that $e_h(0) = \pi_h u(0) - u_h(0) = 0$ by definition of the initial values. This already concludes the proof of Theorem 4. \qed
Acknowledgements. The authors are grateful for financial support from the German Research Foundation (DFG) via grant TRR 154, subproject C04, project-number 239904186.

REFERENCES

