A VIRTUAL ELEMENT METHOD FOR OVERCOMING LOCKING PHENOMENA IN BIOT’S CONSOLIDATION MODEL

XIN LIU¹ AND ZHANGXIN CHEN²,*

Abstract. A novel algorithm for the three-field formulation of Biot’s consolidation model based on mixed and divergence-free nonconforming virtual element methods is developed and analyzed. By establishing a discrete counterpart of Korn’s inequality, we ensure the well-posedness of this algorithm without special constraints in the context of nonconforming methods. In addition, we also derive a unified error estimate for this fully discrete algorithm no matter whether the specific storage coefficient vanishes or not. Moreover, this algorithm has several features, including supporting general polygonal meshes and arbitrary space approximation orders, and without Poisson’s locking and pressure oscillations. Numerical experiments are presented to validate the performance of this algorithm.

Mathematics Subject Classification. 65N12, 65N15, 65N30, 74F10, 76S05.

Received October 31, 2022. Accepted August 31, 2023.

1. Introduction

Biot’s consolidation model [1–3], as a description of the mechanical behavior of fluid-saturated porous media, is of great significance in a variety of science and engineering fields, including soil consolidation, geological carbon sequestration, petroleum production, perfusion of bones and soft living tissues [4–12]. In this paper, we restrict our study to the fully saturated incompressible poroelastic flow under small deformations; that is, the deformation of the porous media is governed by homogeneous and isotropic linear elasticity, whereas the motion of the fluid in the media is described by mass conservation and Darcy’s law:

\[-\text{div} \sigma + \alpha \nabla p = f \quad \text{in} \quad \Omega \times [0, T],\]

\[\partial_t (\rho_0 p + \alpha \text{div} u) + \text{div} q = g \quad \text{in} \quad \Omega \times [0, T],\]

\[\kappa^{-1} q + \nabla p = 0 \quad \text{in} \quad \Omega \times [0, T],\]

(1.1a, 1.1b, 1.1c)

with simple homogeneous boundary conditions and appropriate initial conditions:

\[u = 0 \quad \text{on} \quad \Gamma_{u,D} \times [0, T], \quad (\sigma - \alpha p I) \cdot n = 0 \quad \text{on} \quad \Gamma_{u,N} \times [0, T],\]

(1.1d)

Keywords and phrases. Virtual element method, Biot’s consolidation model, unified error estimate, Poisson locking and pressure oscillation, general polygonal meshes.

¹ School of Mathematics and Statistics, Northwestern Polytechnical University, Xi’an 710129, P.R. China.
² Department of Chemical and Petroleum Engineering, Schulich School of Engineering, University of Calgary, 2500 University Drive N.W., Calgary, Alberta T2N 1N4, Canada.
*Corresponding author: zhachen@ucalgary.ca

© The authors. Published by EDP Sciences, SMAI 2023

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
\[\begin{align*}
 p &= 0 \quad \text{on } \Gamma_{PD} \times [0, T], \\
 \mathbf{u}(\cdot, 0) &= \mathbf{u}^0 \quad \text{in } \Omega, \\
 \mathbf{q} \cdot \mathbf{n} &= 0 \quad \text{on } \Gamma_{pN} \times [0, T], \\
 p(\cdot, 0) &= p^0 \quad \text{in } \Omega,
\end{align*} \tag{1.1e, 1.1f} \]

where \(\mathbf{u}, \mathbf{q} \) and \(p \) are the unknown displacement, fluid velocity and pressure, respectively, \(f \) is the body force on the solid, \(g \) is a fluid source/sink term, the Cauchy stress tensor is given by

\[\sigma = 2\mu \varepsilon(\mathbf{u}) + \lambda(\text{div } \mathbf{u}) \mathbf{I} \]

with the Lamé constants \(\lambda \) and \(\mu \), the symmetric gradient operator \(\varepsilon(\mathbf{u}) = (\nabla \mathbf{u} + \nabla^T \mathbf{u})/2 \), and the identity matrix \(\mathbf{I} \in \mathbb{R}^{2 \times 2} \). \(c_0 \geq 0 \) and \(\alpha \) are, respectively, the constrained specific storage coefficient and the Biot-Willis constant (close to one and related to the compressibility of the solid and fluid constituents), and \(\kappa \) is the permeability of a porous medium which is assumed isotropic and satisfies \(0 < \kappa_1 \leq \kappa(\mathbf{x}) \leq \kappa_2 < \infty \) for all \(\mathbf{x} \in \Omega \). Also, we consider \(\Omega \) to be a bounded domain in \(\mathbb{R}^2 \) with boundary \(\partial \Omega = \Gamma_{uD} \cup \Gamma_{uN} = \Gamma_{PD} \cup \Gamma_{pN} \) and the outward unit normal \(\mathbf{n} \). In addition, we point out that the use of the three-field poroelastic model can avoid the postprocessing of the physically meaningful fluid velocity, and allow the application of physically meaningful boundary conditions at interfaces when considering the coupling between the fluid and poroelastic structures [13].

Then, the weak formulation of the three-field problem (1.1) can be introduced as follows: Find \((\mathbf{u}, \mathbf{q}, p) \in \mathbf{H}^1_{uD}(\Omega) \times \mathbf{H}_{pN}(\text{div}; \Omega) \times L^2(\Omega) \) for any time \(t \in (0, T] \) such that

\[\begin{align*}
 a(\mathbf{u}, \mathbf{v}) - \alpha(p, \text{div } \mathbf{v}) &= (f, \mathbf{v}) \quad \forall \mathbf{v} \in \mathbf{H}^1_{uD}(\Omega), \tag{1.2a} \\
 c_0(p, w) + \alpha(\text{div } \mathbf{u}, w) + (\text{div } \mathbf{q}, w) &= (g, w) \quad \forall w \in L^2(\Omega), \tag{1.2b} \\
 \tilde{a}(\mathbf{q}, \mathbf{z}) - (p, \text{div } \mathbf{z}) &= 0 \quad \forall \mathbf{z} \in \mathbf{H}_{pN}(\text{div}; \Omega), \tag{1.2c}
\end{align*} \]

where the considered function spaces are

\[\begin{align*}
 \mathbf{H}^1_{uD}(\Omega) := \{ \mathbf{v} \in [H^1(\Omega)]^2 : \mathbf{v}|_{\Gamma_{uD}} = 0 \}, \\
 \mathbf{H}_{pN}(\text{div}; \Omega) := \{ \mathbf{z} \in \mathbf{H}(\text{div}; \Omega) : \mathbf{z} \cdot \mathbf{n}|_{\Gamma_{pN}} = 0 \},
\end{align*} \]

and the bilinear forms \(a : \mathbf{H}^1_{uD}(\Omega) \times \mathbf{H}^1_{uD}(\Omega) \to \mathbb{R} \) and \(\tilde{a} : \mathbf{H}_{pN}(\text{div}; \Omega) \times \mathbf{H}_{pN}(\text{div}; \Omega) \to \mathbb{R} \) are defined as

\[a(\mathbf{u}, \mathbf{v}) = 2\mu(\varepsilon(\mathbf{u}), \varepsilon(\mathbf{v})) + \lambda(\text{div } \mathbf{u}, \text{div } \mathbf{v}), \quad \tilde{a}(\mathbf{q}, \mathbf{z}) = (\kappa^{-1} \mathbf{q}, \mathbf{z}). \]

Results on the existence and uniqueness of a solution to the three-field Biot’s consolidation model (1.2) were shown by Lipnikov in Theorem 2.1 of [14].

There is an extensive body of literature on numerical methods for Biot’s consolidation model, e.g., the finite difference [15–17], finite volume [18], and finite element [19–24] methods. However, as a common method, the standard Galerkin finite element method produces an oscillatory numerical behavior of pressure when the constrained specific storage coefficient is null (i.e., \(c_0 = 0 \)), the permeability \(\kappa \) of a porous medium is very low, and a large time step is used [25]. In general, this numerical instability can be attributed to the violation of an inf-sup condition [26] and the lack of the monotonicity of a discrete scheme [27]. At the same time, because the displacement in a linear poroelasticity problem tends to a divergence-free state as \(\lambda \to \infty \) like in linear elasticity, continuous linear/bilinear finite elements on a triangular/rectangular mesh produce a poor approximation to the displacement, i.e., Poisson-locking, as \(\lambda \to \infty \) [26]. Therefore, to overcome these two modes of locking phenomena (i.e., Poisson locking and pressure oscillation), some researchers combined a mixed finite element method for the flow variables and a nonconforming [28, 29]/discontinuous [30, 31]/weak [32] Galerkin method for displacement, possibly with some stabilization techniques [33–35]. Some other strategies can also be found in [36–40].

On the other hand, considering the complex geometric characteristics of practical poroelastic problems (especially with faults and heterogeneities) and the difficulty of the compatibility of an interface mesh when Biot’s
model is coupled with other models, we are interested in developing numerical methods that allow more general meshes. The virtual element method (VEM) introduced in [41], as a new technique for the discretization of partial differential equations, not only avoids explicit expressions of basis functions (which helps to build high-order methods without complex integration), but also handles more general mesh partitions, including nonconvex, very distorted and curved-edge elements, and elements with hanging nodes. In addition, the study of its numerical implementation, including how to calculate the H^1- and L^2-projections and achieve the computability of discrete bilinear forms, can be found in [42]. Also, by combing the ideas of the VEM with other numerical methods, the H^a-conforming VEM [43], the nonconforming VEM [44], and $H(div)/H(curl)$-VEM [45,46] were proposed. Then, these VEMs have been applied to an increasing number of problems, such as two-and three-dimensional elasticity [47–49], incompressible fluids [50, 51], plate bending [52, 53], discrete fracture networks [54,55], and Cahn-Hilliard problems [56,57].

In this work, we propose a novel space discretization method (standard choices are made for the time discretization) for problem (1.1) where the mixed [46] and divergence-free nonconforming [58] virtual element approximations for the pressure, fluid velocity and displacement are used, which is different from the mixed and conforming methods studied in [59]. Our method ensures the stability (expressed by a discrete counterpart of Korn’s inequality) without adding a jump penalty term required for the nonconforming finite element method [28,29], when designing the linear elasticity operator. Moreover, this method is shown to be free of both Poisson locking as $\lambda \to \infty$ and pressure oscillation in the case of $c_0 = 0$, a low permeability, and a large time step size. Furthermore, it inherits the features of the VEM, which allows to use general polygonal meshes (including meshes with hanging nodes) and to increase the space approximation in order to accelerate convergence. Finally, we also obtain a unified optimal error estimate for this fully discrete method when $\gamma_0 > 0$ and $c_0 = 0$.

The rest of this paper is organized as follows: In Section 2, we introduce some discrete settings and formulate the proposed method. In Section 3, we carry out the stability and convergence analyses for this method. In Section 4, numerical tests are presented to validate the theory. Finally, we conclude in Section 5.

2. Construction of the discrete scheme

In this section, we first give some preliminaries, then introduce the definitions of the divergence-free nonconforming and mixed virtual element two-dimensional spaces, and finally design the discrete counterparts of the elasticity and Darcy operators to form a fully discrete virtual element scheme.

2.1. Preliminaries

Let T_h be a decomposition of Ω into polygonal elements K with the maximum element size $h = \max_{K \in T_h} \text{diam}(K)$. All edges in T_h are collected in the set $\mathcal{E}_h = \mathcal{E}_h^i \cup \mathcal{E}_h^b$ with \mathcal{E}_h^i and \mathcal{E}_h^b being the sets of interior and boundary edges in mesh T_h. N_T and $N_\mathcal{E}$ are introduced as the total numbers of elements and edges in T_h. The mesh partition T_h is assumed to be shape-regular in the following sense:

Assumption (A0) ([41,44]). We assume that for every h, decomposition T_h is made of a finite number of simple polygons. There exists a positive real number γ such that the following properties hold: (i) for every element K, the distance between any two vertices in K is $\geq \gamma \text{diam}(K)$; (ii) every element K is star-shaped with respect to a ball of radius $\geq \gamma \text{diam}(K)$.

For later use, we use notation \mathbf{n}_e for the unit normal vector of edge $e \in \mathcal{E}_h$ with a fixed orientation and the corresponding anticlockwise tangential vector can be defined as \mathbf{t}_e, while $\mathbf{n}_K/\mathbf{t}_K$ can be defined as the exterior unit normal/anticlockwise tangential vector of element K. Also, for an interface e shared by $K^+, K^- \in T_h$ with the unit normal vector \mathbf{n}_e pointing from K^+ to K^-, if χ_{K^\pm} represents the trace of a function on e taken from the element K^\pm, we can define the jump operator of a scalar/vector function w by $[w] := w|_{K^+} - w|_{K^-}$; similarly, for a boundary edge e shared by $\partial \Omega$ and $K \in T_h$, we have $[w] := w|_{K^+}$. Moreover, we also consider a uniform partition of the time interval $[0,T]$, i.e., the time step is $\tau = T/N$ with the time layer $N \in \mathbb{N}^*$, and set $\chi^n := \chi(t^n)$ with a discrete time $t^n = n\tau$ for all $0 \leq n \leq N$.

In what follows, we use the standard notation for the Sobolev spaces and trace, div, rot, curl operators, and define the set of polynomials of degree less than or equal to \(\ell \) on a domain \(D \) by \(\mathbb{P}_\ell(D) \); especially, \(\mathbb{P}_{-1}(D) = \{ 0 \} \). Then, we introduce some useful operators:

- The local \(H^1 \)-projection \(\Pi_k^{V,K} : [H^1(K)]^2 \rightarrow [\mathbb{P}_k(K)]^2 \) on \(K \) is defined by

\[
\begin{align*}
\left\{ \begin{array}{ll}
\int_K \nabla \left(\Pi_k^{V,K} \mathbf{v} - \mathbf{v} \right) : \nabla \mathbf{m} \, dx = 0 & \forall \mathbf{m} \in [\mathbb{P}_k(K)]^2, \\
\int_{\partial K} \left(\Pi_k^{V,K} \mathbf{v} - \mathbf{v} \right) \cdot \mathbf{n} \, ds = 0 & \forall \mathbf{v} \in [H^1(K)]^2;
\end{array} \right.
\end{align*}
\]

(2.1)

- The local \(L^2 \)-projection \(\Pi_k^{0,K} : [L^2(K)]^2 \rightarrow [\mathbb{P}_k(K)]^2 \) on \(K \) is defined by

\[
\left(\Pi_k^{0,K} \mathbf{v}, \mathbf{m} \right)_K = (\mathbf{v}, \mathbf{m})_K \quad \forall \mathbf{m} \in [\mathbb{P}_k(K)]^2;
\]

(2.2)

- The composite operators \(\Pi_{k-1}^0 \circ \varepsilon \) and \(\Pi_{k-1}^0 \circ \text{div} \) are defined by

\[
\begin{align*}
\left(\Pi_{k-1}^0 \varepsilon(\mathbf{v}), \mathbf{m} \right)_K &= (\varepsilon(\mathbf{v}), \mathbf{m})_K \quad \forall \mathbf{m} \in [\mathbb{P}_{k-1}(K)]^{2 \times 2}, \\
\left(\Pi_{k-1}^0 \text{div} \mathbf{v}, m \right)_K &= (\text{div} \mathbf{v}, m)_K \quad \forall m \in \mathbb{P}_{k-1}(K).
\end{align*}
\]

(2.3)

Additionally, the \(H^1 \)- and \(L^2 \)-projections satisfy the following approximation properties \([41, 60]\): For every \(\mathbf{v} \in [H^{s+1}(K)]^2 \), there exists a positive constant \(C \), depending on the polynomial degree \(k \) and the mesh regularity constant \(\gamma \), such that

\[
\begin{align*}
\| \mathbf{v} - \Pi_k^{V,K} \mathbf{v} \|_{m,K} &\leq C h^{s+1-m} |\mathbf{v}|_{s+1,K} \quad m \in \mathbb{N}, \max(m-1, 0) \leq s \leq k, \\
\| \mathbf{v} - \Pi_k^{0,K} \mathbf{v} \|_{m,K} &\leq C h^{s+1-m} |\mathbf{v}|_{s+1,K} \quad m \in \mathbb{N}, m-1 \leq s \leq k.
\end{align*}
\]

(2.4)

Remark 2.1. The computability of these operators needs to be discussed based on the specific virtual element discrete spaces, which can be found in Section 2.2.

2.2. Definitions of virtual element discrete spaces

We introduce the Raviart–Thomas-like virtual element space for the fluid velocity \([45]\):

\[
\mathbf{Z}_h = \{ \mathbf{z}_h \in H^1_{p,R}(\text{div}; \Omega) : (\mathbf{z}_h \cdot \mathbf{n})|_e \in \mathbb{P}_{k-1}(e) \} \quad \forall e \in \mathcal{E}_h, \\
(\text{div} \mathbf{z}_h)|_K \in \mathbb{P}_{k-1}(K), \quad (\text{rot} \mathbf{z}_h)|_K \in \mathbb{P}_{k-2}(K) \quad \forall K \in \mathcal{T}_h,
\]

and the piecewise polynomial function space for the pressure:

\[
W_h = \{ w_h \in L^2(\Omega) : w_h|_K \in \mathbb{P}_{k-1}(K) \quad \forall K \in \mathcal{T}_h \}.
\]

Obviously, the dimension of \(\mathbf{Z}_h \) is given by \(kN_e + \frac{(k+1)k}{2} - 1 + \frac{k(k-1)}{2}N_T \) and its corresponding unisolvent degrees of freedom are the following three types \([45]\):

\begin{itemize}
 \item [d1.] The moment \(\frac{1}{|e|} \int_e \mathbf{z}_h \cdot \mathbf{n}_e m \, ds \) for \(m \in \mathbb{P}_{k-1}(e) \) on each edge \(e \in \mathcal{E}_h \), where \(|e| \) represents the measure of edge \(e \);
 \item [d2.] The moment \(\frac{1}{|K|} \int_K \mathbf{z}_h \cdot \nabla m \, dx \) for \(m \in \mathbb{P}_{k-1}(K) \) in each element \(K \in \mathcal{T}_h \), where \(|K| \) represents the area of polygon \(K \);
 \item [d3.] The moment \(\frac{1}{|K|} \int_K \mathbf{z}_h \cdot \mathbf{g}_{k-1}^+ d x \) for \(\mathbf{g}_{k-1}^+ \in \mathcal{G}_{k-1}^+(K) := \left[\begin{array}{c} y \\ -x \end{array} \right] \mathbb{P}_{k-2}(K) \) in each element \(K \in \mathcal{T}_h \).
\end{itemize}
Let \(w_l \in W_h \) and \(z_l \in Z_h \) be the virtual element interpolants, i.e., for a given \(w \in L^2(\Omega) \) and \(z \in H_{p,N}(\text{div}; \Omega) \cap [L^s(\Omega)]^3 \) (for some \(s > 2 \)), they, respectively, hold
\[
\int_K (w - w_l) m \, dx = 0 \quad \forall K \in T_h, \forall m \in P_{k-1}(K)
\]
and
\[
\psi^l_i(z - z_l) = 0 \quad i = 1, 2, \ldots, \dim Z_h,
\]
where operator \(\psi^l_i \) is associated to the \(i \)-th degree of freedom of \(Z_h \). Additionally, it has been shown in (4.3) of [46] and Theorem 3.4 of [61] that, for every \(z \in [H^{\ell+1}(K)]^3, \text{div} \, z \in H^{\ell}(K) \) and \(w \in H^{\ell}(K) \) with \(0 \leq \ell \leq k \), we have
\[
\|w - w_l\|_{0,K} \leq Ch^\ell_k \|w\|_{\ell,K}, \quad \|\text{div} \, z - \text{div} \, z_l\|_{0,K} \leq C'h^\ell_k \|\text{div} \, z\|_{\ell,K},
\]
and when \(z_\pi \in [P_k(K)]^3 \) is an optimal local polynomial approximation, we obtain
\[
\|z - z_l\|_{0,K} \leq \|z - z_\pi\|_{0,K} \leq Ch^{\ell+1}_k \|z\|_{\ell+1,K},
\]
where constant \(C \) depends only on the polynomial degree \(k \) and the mesh regularity constant \(\gamma \). Furthermore, referring to Corollary 5.5 in [46], it follows that there exists a constant \(\tilde{\beta} > 0 \), independent of the mesh size \(h \), such that
\[
\sup_{z_h \in Z_h \setminus \{0\}} \frac{\|\text{div} \, z_h\|_{H(\text{div})}}{\|z_h\|_{H(\text{div})}} \geq \tilde{\beta} \|w_h\|_0 \quad \forall w_h \in W_h.
\]

Remark 2.2. To ensure the computability of operator \(\Pi^0_{k-1} \) defined in the local space \(Z_h|_K \), we need to realize \((z_h, m)_K\) for \(m \in [P_{k-1}(K)]^2 \) only by the degrees of freedom of \(Z_h|_K \), i.e.,
\[
(z_h, m)_K = (z_h, \nabla p_k)|_K + (z_h, g_{k-1}^\perp)|_K = -\langle \text{div} \, z_h, p_k \rangle_K + (z_h, n_k, p_k)_{\partial K} + (z_h, g_{k-1}^\perp)|_K,
\]
where, in the first equality, we use the fact that every polynomial \(m \in [P_{k-1}(K)]^2 \) can be uniquely divided into \(\nabla p_k \in \nabla P_k(K) \) and \(g_{k-1}^\perp \in G_{k-1}^\perp(K) \). For more details, the reader can refer to [42].

Next, for any element \(K \in T_h \), the local discrete space for the displacement can be defined as [58]
\[
X_h|_K = \Theta(K) + \text{curl} S(K),
\]
where \(\Theta(K) \) is the local Brezzi–Douglas–Marini-like virtual element space defined by
\[
\Theta(K) = \{ \theta_h \in [H^1(K)]^2 : \theta_h \cdot n|_e \in P_{k-1}(e) \quad \forall e \in \partial K, \quad \text{div} \, \theta_h \in P_{k-1}(K), \quad \text{rot} \, \theta_h \in P_{k-1}(K) \}
\]
and \(S(K) \) is the local \(H^2 \)-virtual element space defined by
\[
S(K) = \{ \psi_h \in H^2(K) : \Delta^2 \psi_h \in P_{k-3}(K), \quad \psi_h|_e = 0, \quad \Delta \psi_h|_e \in P_{k-1}(e) \quad \forall e \in \partial K \}.
\]
Then, for \(H_{nD}(\text{div}; \Omega) = \{ v \in H(\text{div}; \Omega) : \text{div} \, v|_{\Gamma_{nD}} = 0 \} \), the global discrete space \(X_h \) is introduced as
\[
X_h = \left\{ v_h \in H_{nD}(\text{div}; \Omega) : v_h|_K \in X_h|_K \quad \forall K \in T_h, \quad \int_e [v_h \cdot t_e] \cdot m \, ds = 0 \quad \forall m \in P_{k-1}(e), e \in E_h \right\},
\]
equipped with the norm
\[
|v_h|_{1,h} := \left(\sum_{K \in T_h} \|\nabla v_h\|_{0,K}^2 \right)^{1/2}.
\]
Referring to [62], it is not difficult to see that the unisolvent degrees of freedom for \(X_h \) can be divided into the following four types:
D1. The moment \(\frac{1}{|e|} \int_{e} v_h \cdot n_e m \, ds \) for \(m \in \mathbb{P}_k(e) \) on each edge \(e \in \mathcal{E}_h \);

D2. The moment \(\frac{1}{|e|} \int_{e} v_h \cdot t_e m \, ds \) for \(m \in \mathbb{P}_{k-1}(e) \) on each edge \(e \in \mathcal{E}_h \);

D3. The moment \(\frac{1}{|K|} \int_{K} \text{div} v_h m \, ds \) for \(m \in \mathbb{P}_{k-1}(K)/\mathbb{R} \) in each element \(K \in \mathcal{T}_h \);

D4. The moment \(\frac{1}{|K|} \int_{K} v_h \cdot g_{k-2}^e \, ds \) for \(g_{k-2}^e \in \mathcal{G}_{k-2}(K) := \left[\frac{y}{x} \right] \mathbb{P}_{k-\beta}(K) \) in each element \(K \in \mathcal{T}_h \).

It is observed from (3.22) in [62] that \(\text{div}_h \mathbf{X}_h \subseteq W_h \) with \(\text{div}_h \) being the discrete version of the divergence operator \(\text{div} \) (i.e., \(\text{div}_h|_K = \text{div} \) for every \(K \in \mathcal{T}_h \)), which implies

\[
\text{div} v_I = \Pi^{0,K}_{k-1} \text{div} v \quad \forall v \in H^1_{aD}(\Omega),
\]

where the virtual element interpolant \(v_I \in \mathbf{X}_h \) satisfies

\[
g^v_i (v - v_I) = 0 \quad i = 1, 2, \ldots, \dim \mathbf{X}_h
\]

for operator \(g^v_i \) associated to the \(i \)-th degree of freedom of \(\mathbf{X}_h \). Then, referring to Lemmas 3.4 and 3.5 in [62], there exist \(v_I \in \mathbf{X}_{h|K} \) and \(v_\pi \in [\mathbb{P}_k(K)]^2 \) such that for every \(v \in [H^{s+1}(K)]^2 \) with \(0 \leq s \leq k \)

\[
\||v - v_\pi||_{0,K} + h_K ||v - v_\pi||_{1,K} \leq C h_K^{s+1} ||v||_{s+1,K},
\]

\[
||v - v_I||_{0,K} + h_K ||v - v_I||_{1,K} \leq C h_K^{s+1} ||v||_{s+1,K},
\]

(2.9)

where \(C \) is a positive constant depending only on the polynomial degree \(k \) and the mesh regularity constant \(\gamma \). Moreover, we also introduce the inf-sup condition from (5.7) in [58]: There exists a constant \(\beta > 0 \), independent of the mesh size \(h \), such that

\[
\sup_{v_h \in \mathbf{X}_h \setminus \{0\}} \frac{(\text{div} v_h, w_h)}{|v_h|_{1,h}} \geq \beta ||w_h||_0 \quad \forall w_h \in W_h.
\]

(2.10)

Remark 2.3. When these four operators (2.1)–(2.3) are defined on the local virtual element discrete space \(\mathbf{X}_{h|K} \), their computability is similar. Taking \(\Pi_{k}^{V,K} \) as an example, the key to realization of its computability is how to calculate \((\nabla v_h, \nabla m)|_K \) for \(m \in [\mathbb{P}_k(K)]^2 \) through the degrees of freedom of the local space \(\mathbf{X}_{h|K} \), i.e.,

\[
(\nabla v_h, \nabla m)|_K = - (v_h, \Delta m)|_K + (v_h, \nabla m \cdot n_K)|_{\partial K}
\]

\[
= - (v_h, \nabla p_{k-1} + g_{k-2}^e)|_K + (v_h \cdot n_K, (\nabla m)^T : (n_K \otimes n_K))|_{\partial K}
\]

\[
+ (v_h \cdot t_K, (\nabla m)^T : (n_K \otimes t_K))|_{\partial K},
\]

where, in the second equality, we use the equivalent deformation of the boundary term \((v_h, \nabla m \cdot n_K)|_{\partial K} \) and the fact that \(\Delta m \in [\mathbb{P}_{k-2}(K)]^2 \) can be uniquely decomposed into \(\nabla p_{k-1} + g_{k-2}^e \) for \(p_{k-1} \in \mathbb{P}_{k-1}(K) \) and \(g_{k-2}^e \in \mathcal{G}_{k-2}(K) \).

2.3. Construction of the virtual element discrete method

Firstly, the local discrete approximations of the Darcy and linear elasticity operators can be designed as \(\tilde{a}^K_h \) on \(\mathbf{Z}_h|K \times \mathbf{Z}_h|K \) and \(a^K_h \) on \(\mathbf{X}_h|K \times \mathbf{X}_h|K \), i.e., for every \(q_h, z_h \in \mathbf{Z}_h|K \) and \(u_h, v_h \in \mathbf{X}_h|K \),

\[
\tilde{a}^K_h (q_h, z_h) = \left(\kappa^{-1} \left(\Pi^{0,K}_{k-1} q_h, \Pi^{0,K}_{k-1} z_h \right)_K \right) + \tilde{S}^K \left(q_h - \Pi^{0,K}_{k-1} q_h, z_h - \Pi^{0,K}_{k-1} z_h \right), \quad (2.11a)
\]

\[
a^K_h (u_h, v_h) = 2\mu \left(\left(\Pi^{0,K}_{k-1} \epsilon(u_h), \Pi^{0,K}_{k-1} \epsilon(v_h) \right)_K \right) + S^K \left(u_h - \Pi^K u_h, v_h - \Pi^K v_h \right).
\]
for every v

There exists a positive constant α

Additionally, we can prove the following discrete Korn’s inequality, which helps to derive the coercivity of the

Proof. Imitating a broken Korn’s inequality in Theorem 3.1 in [63], we can obtain

for some positive constants \tilde{c}_*, \tilde{c}^* and c_*, c^* independent of h.

Remark 2.4. If we want to use operator $\Pi_{k-1}^{0,K}$ instead of $\Pi_{k-1}^{0,K}$ in our discrete scheme (2.11a), we need to introduce the corresponding Brezzi–Douglas–Marini-like virtual element space instead of the Raviart–Thomas-like virtual element space.

Remark 2.5. In the construction of the stabilization bilinear form in (2.11b), we used $S^K(u_h - \Pi_{k-1}^{0,K} u_h, v_h - \Pi_k^{V,K} v_h)$, which corresponds to the stabilization of the H^1 inner product rather than that of the symmetric gradient inner product, but this does not affect the subsequent theoretical results. And it is worth mentioning that the stability bounds of S^K in (2.12) are obtained from a simple scaling argument, and there is currently no rigorous stability results for the space X_h, which is beyond the scope of this paper and may be studied in our future work.

It is evident that the bilinear forms $\tilde{a}_h^K(\cdot, \cdot)$ and $a_h^K(\cdot, \cdot)$ satisfy the k-consistency:

and the continuity and coercivity:

Additionally, we can prove the following discrete Korn’s inequality, which helps to derive the coercivity of the bilinear form $a_h^K(\cdot, \cdot)$:

Lemma 2.6. There exists a positive constant C, depending only on the mesh regularity constant γ, such that, for every $v_h \in X_h$ and the element-wise symmetric gradient $\varepsilon_h(v_h)$,

Proof. Imitating a broken Korn’s inequality in Theorem 3.1 in [63], we can obtain

where \mathcal{E}_h^e represents the set of interelement edges of the mesh and Π_e is the L^2-projection to $P_1(e) = \{m \in [P_1(e)]^2 : \text{the tangential component of } m \text{ belongs to } \mathbf{RM}(e)\}$ with $\mathbf{RM}(e)$ being the space of rigid motions on edge e.\]
Due to the continuity of the normal component of v_h with respect to linear polynomials and the continuity of the tangential component of v_h with respect to constants on the internal edges, it holds that $\int_{e}[v_h] \cdot m \, ds = 0$ for any $e \in \mathcal{E}_h$ and $m \in P_1(e)$. From the definition of the L^2-projection Π, we have $\|\Pi e[v_h]\|^2 = 0$ for any $e \in \mathcal{E}_h$. Also, the last term in the above formula vanishes from the integration by part and the fact $\int_{e}[v_h \cdot t_e] \, ds = 0$ for any $e \in \mathcal{E}_h$. Thus, the desired result will be obtained.

\textbf{Remark 2.7.} The proof of (2.15) can be divided into three steps: firstly, introducing a well-defined interpolation operator and giving its approximation properties according to Corollary A.3 and (3.4) in \[64\]; secondly, proving the generalized Korn’s inequality for piecewise linear vector fields following Lemma 2.2 in \[64\]; finally, using the triangular inequality, and combining the above results with the inverse (cf. \[58\], Lem. 24) and trace (cf. \[62\], (5.19)) inequalities to show the conclusion. For more details, please refer to Theorem 3.1 in \[63\].

Secondly, we realize the discretizations of the coupling terms $-\alpha(p, \text{div} \, v)$, $(\text{div} \, q, w)$ and the right-hand term (f, v) by proposing the local bilinear forms b_h^K on $X_h|K \times W_h|K$, c_h^K on $Z_h|K \times W_h|K$, and the discrete duality product $\langle \cdot, \cdot \rangle_h$, i.e., for every $v_h \in X_h|K$, $p_h, w_h \in W_h|K$ and $q_h \in Z_h|K$,

\begin{align}
& b_h^K(v_h, p_h) = -\alpha(p_h, \Pi^{0,K}_{h-1} \text{div} \, v_h)_K = -\alpha(p_h, \text{div} \, v_h)_K, \quad (2.16a) \\
& c_h^K(q_h, w_h) = (\Pi^{0,K}_h \text{div} \, q_h, w_h)_K = (\text{div} \, q_h, w_h)_K, \quad (2.16b) \\
& \langle f_h, v_h \rangle_h = \sum_{K \in T_h} \int_K f \cdot \Pi^K_{h} \text{div} \, v_h \, dx \quad \text{with} \quad f_h|K = \Pi^K_{h} f. \quad (2.16c)
\end{align}

Also, it is easy to obtain the local discrete forms of term $\alpha(\text{div} \, u, w)$ by $\alpha(\Pi^{0,K}_{h-1} \text{div} \, u_h, w_h)_K$ and term $-\langle p, \text{div} \, z \rangle$ by $-(p_h, \Pi^{0,K}_{h-1} \text{div} \, z_h)_K$, which can be expressed as $-b_h^K(u_h, w_h)$ and $-c_h^K(z_h, p_h)$, respectively.

Finally, we can obtain the global discrete forms $\tilde{a}_h(\cdot, \cdot), a_h(\cdot, \cdot), b_h(\cdot, \cdot)$, and $c_h(\cdot, \cdot)$ by simply summing their respective local contributions and give the fully discrete virtual element method for Biot’s problem at each time $t^n (1 \leq n \leq N)$: Find $(u^n_h, q^n_h, p^n_h) \in X_h \times Z_h \times W_h$ such that

\begin{align}
& a_h(u^n_h, v_h) + b_h(v_h, p^n_h) = (f^n_h, v_h)_h \quad \forall v_h \in X_h, \quad (3.1a) \\
& c_0(\partial_t p^n_h, w_h) - b_h(\partial_t u^n_h, w_h) + c_h(q^n_h, w_h) = (g^n, w_h) \quad \forall w_h \in W_h, \quad (3.1b) \\
& \tilde{a}_h(q^n_h, z_h) - c_h(z_h, p^n_h) = 0 \quad \forall z_h \in Z_h, \quad (3.1c)
\end{align}

with the given initial values (u^0_h, p^0_h) (i.e., the values of the virtual element interpolations (u_f, p_f) at time t^0), where operator ∂_t can be defined as the backward Euler difference:

$$\partial_t \chi^n = \frac{\chi^n - \chi^{n-1}}{\tau}.$$

\section{3. Numerical Analysis for the Fully Discrete Method}

In this section, we discuss the existence and uniqueness of a solution for the fully discrete method at each time step t^n and investigate its unified error estimate with $c_0 \geq 0$.

\subsection{3.1. Well-posedness}

Let us rewrite equation (2.17) as the following saddle point problem:

\begin{align}
& A_h((u^n_h, q^n_h, (v_h, z_h)) + B_h((v_h, z_h), p^n_h) = (f_h^n, v_h)_h \quad \forall (v_h, z_h) \in X_h \times Z_h, \quad (3.1a) \\
& B_h((u^n_h, q^n_h), w_h) - C_h(p^n_h, w_h) = -\tau (g^n, w_h) + b_h(u^{n-1}_h, w_h) - c_0(p^{n-1}_h, w_h) \quad \forall w_h \in W_h, \quad (3.1b)
\end{align}
where the bilinear forms are defined by
\[A_h((u_h, q_h), (v_h, z_h)) = a_h(u_h, v_h) + \tau \tilde{a}_h(q_h, z_h), \]
\[B_h((v_h, z_h), p_h) = b_h(v_h, p_h) - \tau c_h(z_h, p_h), \]
\[C_h(p_h, w_h) = c_h(p_h, w_h). \]

Meanwhile, we define a discrete time-dependent norm on space \(X_h \times Z_h \):
\[\|(v_h, z_h)\|_1 = \left(\|v_h\|_{1,h}^2 + \tau^2 \|z_h\|^2_{H(div)} \right)^{1/2} \]
and introduce the following kernel:
\[\text{Ker} \ B_h = \{ (v_h, z_h) \in X_h \times Z_h : B_h((v_h, z_h), w_h) = 0 \; \forall w_h \in W_h \} \]
\[= \{ (v_h, z_h) \in X_h \times Z_h : \text{div} \, v_h + \tau \text{div} \, z_h = 0 \}, \tag{3.2} \]
\[\text{Ker} \ B_h^T = \{ w_h \in W_h : B_h((v_h, z_h), w_h) = 0 \; \forall (v_h, z_h) \in X_h \times Z_h \} \]
\[= \{ 0 \}. \tag{3.3} \]

It is noted that the kernel of \(B_h \) can be directly obtained through the definitions of \(b_h, c_h \) and the fact that \(\text{div} \, X_h \subseteq W_h, \text{div} \, Z_h \subseteq W_h \), while the kernel of \(B_h^T \) can be obtained by using the equivalent form of (2.7), more specifically, choosing \((v_h, z_h) \in X_h \times Z_h \) such that \(v_h = 0, \text{div} \, z_h = w_h \) in the bilinear form \(B_h((v_h, z_h), w_h) = 0 \).

Lemma 3.1. There exists a positive constant \(C \), independent of \(h \) and \(\tau \), such that
\[A_h((v_h, z_h), (v_h, z_h)) \geq C \|(v_h, z_h)\|^2 \quad \forall (v_h, z_h) \in \text{Ker} \ B_h. \]

Proof. According to (2.12), (2.14), (3.2) and Lemma 2.6, we have
\[A_h((v_h, z_h), (v_h, z_h)) \geq 2 \mu \min \{1, c_*\} \|\varepsilon(v_h)\|_0^2 + \lambda \|\text{div} \, v_h\|_0^2 + \tau \tilde{C}_* \|\kappa^{-\frac{1}{2}} z_h\|_0^2, \]
\[\geq 2 \mu \min \{1, c_*\} C \|v_h\|_{1,h}^2 + \tau^2 \frac{\lambda}{\alpha^2} \|\text{div} \, z_h\|_0^2 + \tau^2 \tilde{C}_* \kappa^{-\frac{1}{2}} \|z_h\|_0^2, \]
which leads to the desired result for sufficiently small \(\tau > 0 \). \(\square \)

Lemma 3.2. There exists a positive constant \(C \), independent of \(h \) and \(\tau \), such that
\[\sup_{(v_h, z_h) \in X_h \times Z_h} \frac{B_h((v_h, z_h), w_h)}{\|(v_h, z_h)\|_1} \geq C \|w_h\|_0 \quad \forall w_h \in W_h. \]

Proof. Taking \(v_h = 0 \), it holds that
\[\frac{B_h((v_h, z_h), w_h)}{\|(v_h, z_h)\|_1} = \frac{-\tau (\text{div} \, z_h, w_h)}{\tau \|z_h\|_{H(div)}} = \frac{\|w_h\|_0^2}{\|z_h\|_{H(div)}} \geq \tilde{\beta} \|w_h\|_0, \]
where in the second equality we use the fact that for every \(w_h \in W_h \), there exists \(z_h \in Z_h \) such that \(\text{div} \, z_h = -w_h \) and \(\tilde{\beta} \|z_h\|_{H(div)} \leq \|w_h\|_0 \). \(\square \)

Theorem 3.3. The fully discrete method (2.17) has a unique solution \((u_h^n, q_h^n, p_h^n) \in X_h \times Z_h \times W_h \) at each time step \(t^n \).

Proof. From the positive semidefiniteness and symmetry of \(C_h(\cdot, \cdot) \), as well as Lemmas 3.1, 3.2 and (3.3), we can easily obtain the existence and uniqueness of a solution to (2.17). \(\square \)
3.2. A unified error estimate for $c_0 \geq 0$

In order to prove optimal error estimates, we assume the following regularity conditions:

\[p \in L^\infty(0, T; H^k(\Omega)) \cap L^2(0, T; H^k(\Omega)), \quad p_t \in L^2(0, T; L^2(\Omega)), \quad q \in [L^2(0, T; H^k(\Omega))]^2, \]
\[u \in [L^\infty(0, T; H^{k+1}(\Omega))]^2 \cap [L^2(0, T; H^{k+1}(\Omega))]^2, \quad u_t \in [L^2(0, T; H^1(\Omega))]^2, \]
\[f \in [L^\infty(0, T; H^k(\Omega))]^2 \cap [L^2(0, T; H^k(\Omega))]^2. \]

(3.4)

Also, for convenience, we introduce the following notation for the time-dependent auxiliary, interpolation and projection errors:

\[\eta^n X = \chi^n - \eta^n, \quad \xi^n X = \chi^n - \chi^n, \quad \zeta^n X = \chi^n - \chi^n, \quad \text{with } \chi = u, q, \text{or } p, \]

which leads to the fact $\chi^n - \chi^n = \eta^n + \xi^n$.

Theorem 3.4. Let $(u, q, p) \in H^1_{uD}(\Omega) \times H^1(\Omega) \times L^2(\Omega)$ and $(u_h, q_h, p_h) \in X_h \times Z_h \times W_h$ be, respectively, the solutions of the continuous variational problem and the fully discrete problem (2.17). If assumption (A0) holds for the family of partitions \mathcal{T}_h, and there is sufficient regularity (3.4) of true solutions and data functions, we have the error estimate

\[\max_{1 \leq n \leq N} \|u^n - u^n_h\|_{1, h} + \max_{1 \leq n \leq N} \|p^n - p^n_h\|_0 + \tau \sum_{n=1}^N \|\kappa^{-\frac{1}{2}}(q^n - q^n_h)\|_0 \leq C(h^k + \tau), \]

where C is a constant independent of h, λ, and κ.

Proof. At time $t = t^n$, multiplying equation (1.1) by the test function $(v_h, z_h, w_h) \in X_h \times Z_h \times W_h$ and using the Taylor expansion

\[\partial_t \chi^n := \frac{\chi^n - \chi^n_{t-1}}{\tau} = \chi^n_t + \frac{1}{\tau} \int_{t_{n-1}}^{t_n} (s - t_{n-1}) \chi_{tt}(s) \, ds, \]

(3.5)

we can obtain

\[\tilde{a}(q^n, z_h) - (p^n, \text{div} z_h) = - \sum_{K \in \mathcal{T}_h} (p^n, n_K, z_h)_{\partial K}, \]
\[a(u^n, v_h) - \alpha(p^n, \text{div} v_h) = (f^n, v_h) + \sum_{K \in \mathcal{T}_h} ((\sigma^n - \alpha p^n) \cdot n_K, v_h)_{\partial K}, \]
\[c_0(\partial_t p^n, w_h) + \alpha(\text{div} \partial_t u^n, w_h) + (\text{div} q^n, w_h) = (g^n, w_h) + \frac{c_0}{\tau} \left(\int_{t_{n-1}}^{t_n} (s - t_{n-1}) p_t(s) \, ds, w_h \right) \]
\[+ \frac{\alpha}{\tau} \left(\int_{t_{n-1}}^{t_n} (s - t_{n-1}) \text{div} u_t(s) \, ds, w_h \right). \]

(3.6)

Then, we denote the first term (corresponding to the symmetric gradient inner product) of $a_h^K (\cdot, \cdot), a^K (\cdot, \cdot)$ as $a_h^{\sigma,K} (\cdot, \cdot), a^{\sigma,K} (\cdot, \cdot)$, i.e.,

\[a_h^{K} (\cdot, \cdot) = a_h^{\sigma,K} (\cdot, \cdot) + \lambda(\text{div} \cdot, \text{div} \cdot)_K \quad \text{and} \quad a^K (\cdot, \cdot) = a^{\sigma,K} (\cdot, \cdot) + \lambda(\text{div} \cdot, \text{div} \cdot)_K. \]

By subtracting (2.17) from (3.6) and simplifying the resulting equations, it holds that

\[\tilde{a}_h (\zeta^n, z_h) - (\xi^n, p, \text{div} z_h) = - \sum_{K \in \mathcal{T}_h} \left[\tilde{a}_h^K (\zeta^n, z_h) + \hat{a}_h^K (q^n, z_h - \Pi_{k-1}^h z_h) + \tilde{a}_h^K (\eta^n - \zeta^n, z_h) \right], \]

\[a_h(\xi^n_u, v_h) - a(\xi^n_p, \text{div } v_h) = \sum_{K \in \mathcal{T}_h} \left[(f^n - \Pi^0_k f^n, v_h)_K - a^{\varepsilon,K} (\xi^n_u, v_h) - a_h^{\varepsilon,K} (\eta^n_u - \xi^n_u, v_h) \right. \\
- \lambda (\text{div } \eta^n_u, \text{div } v_h)_K \right] + \sum_{e \in \mathcal{E}_h} (\sigma^n \cdot n_e, [v_h]_e), \]
\[c_0 \left(\partial_t \xi^n_p, w_h \right) + \alpha (\text{div } \partial_t \xi^n_u, w_h) + (\text{div } \xi^n_{s \mathcal{Q}}, w_h) = \frac{c_0}{\tau} \left(\int_{t_{n-1}}^{t_n} (s-t_{n-1}) \ p_{tt}(s) \ ds, w_h \right) \\
+ \frac{\alpha}{\tau} \left(\int_{t_{n-1}}^{t_n} (s-t_{n-1}) \text{div } u_{tt}(s) \ ds, w_h \right), \tag{3.7} \]

where we use the \(k \)-consistency (2.13), the boundary conditions (1.1d) and (1.1e), the continuity of \(v_h \cdot n_e \) and \(z_h \cdot n_e \) on each edge \(e \in \mathcal{E}^i_h \), and the fact from (2.5) and (2.8):

\[\left(\eta^p_n, w_h \right)_K = 0, \quad \left(\eta^p_n, \text{div } z_h \right)_K = 0, \quad \left(\eta^p_n, \text{div } v_h \right)_K = 0, \]
\[(\text{div } \eta^n_u, w_h)_K = 0, \quad (\text{div } \eta^n_u, w_h)_K = 0. \]

Now, taking \(v_h = \xi^n_u - \xi^{n-1}_u \), \(z_h = \tau \xi^n_{s \mathcal{Q}} \), \(w_h = \tau \xi^n_p \) in (3.7), adding the resulting equations, using the following inequalities

\[a_h(\xi^n_u, \xi^n_u - \xi^{n-1}_u) \geq \frac{1}{2} a_h(\xi^n_u, \xi^n_u) - \frac{1}{2} a_h(\xi^{n-1}_u, \xi^{n-1}_u), \]
\[c_0(\xi^n_p, \xi^n_p - \xi^{n-1}_p) \geq \frac{c_0}{2} \| \xi^n_p \|^2_0 - \frac{c_0}{2} \| \xi^{n-1}_p \|^2_0, \]

and summing from 1 to \(N \), we see that

\[\frac{1}{2} a_h(\xi^n_u, \xi^n_u) - \frac{1}{2} a_h(\xi^n_u, \xi^n_u) + \frac{c_0}{2} \| \xi^n_p \|^2_0 - \frac{c_0}{2} \| \xi^{n-1}_p \|^2_0 + \tau \sum_{n=1}^{N} a_h(\xi^n_q, \xi^n_q) \]
\[\leq -\tau \sum_{n=1}^{N} \left[\tilde{a}^K(\xi^n_q, \xi^n_q) + \tilde{a}^K(\xi^n_q - \Pi^0_k \xi^n_q) + \tilde{a}_h^K(\xi^n_q, \xi^n_q) \right] \]
\[\Phi_1 \]
\[+ \sum_{n=1}^{N} \sum_{K \in \mathcal{T}_h} \left[(f^n - \Pi^0_k f^n, \xi^n_u - \xi^{n-1}_u)_K - a^{\varepsilon,K} (\xi^n_u, \xi^n_u - \xi^{n-1}_u) - a_h^{\varepsilon,K} (\eta^n_u - \xi^n_u, \xi^n_u - \xi^{n-1}_u) \right. \\
\left. - \lambda (\text{div } \eta^n_u, \text{div } (\xi^n_u - \xi^{n-1}_u))_K \right] \]
\[\Phi_2 \]
\[+ \sum_{n=1}^{N} (\sigma^n \cdot n_e, [\xi^n_u - \xi^{n-1}_u]_e) \]
\[\Phi_3 \]
\[+ c_0 \sum_{n=1}^{N} \left(\int_{t_{n-1}}^{t_n} (s-t_{n-1}) \ p_{tt}(s) \ ds, \xi^n_p \right) + \alpha \sum_{n=1}^{N} \left(\int_{t_{n-1}}^{t_n} (s-t_{n-1}) \text{div } u_{tt}(s) \ ds, \xi^n_p \right) \]
\[\Phi_4 \]

That is, according to (2.12), (2.14), Lemma 2.6 and the fact \(\xi^0_u = 0, \xi^0_p = 0 \), it is easy to get the following inequality:

\[\frac{C_s}{2} \| \xi^n_u \|^2_{1,h} + \frac{c_0}{2} \| \xi^n_p \|^2_0 + \tilde{C}_s \tau \sum_{n=1}^{N} \left(\kappa^{-\frac{1}{2}} \xi^n_q \right)^2_0 \leq \Phi_1 + \Phi_2 + \Phi_3 + \Phi_4. \tag{3.8} \]
First, we apply Cauchy–Schwarz’s and Young’s inequalities to bound Φ_1:

$$\Phi_1 = -\tau \sum_{n=1}^{N} \sum_{K \in T_h} \left[a^K(\zeta^n_q, \zeta^n_q) + \left(\kappa^{-1} q^n_x - \Pi_k^{0,K} \left(\kappa^{-1} q^n_x \right) \right) + \tilde{a}_h \left(\eta^n_q - \zeta^n_q, \zeta^n_q \right) \right]$$

$$\leq \tau \sum_{n=1}^{N} \sum_{K \in T_h} \left[\| \kappa^{-\frac{1}{2}} \zeta^n_q \|_{0,K} \left\| \kappa^{-\frac{1}{2}} \zeta^n_q \right\|_{0,K} + \| \kappa^{-\frac{1}{2}} \left(\kappa^{-1} q^n_x - \Pi_k^{0,K} \left(\kappa^{-1} q^n_x \right) \right) \right\|_{0,K} \left\| \kappa^{-\frac{1}{2}} \zeta^n_q \right\|_{0,K} \right]$$

$$+ \tilde{c} \left(\left\| \kappa^{-\frac{1}{2}} \eta^n_q \right\|_{0,K} + \left\| \kappa^{-\frac{1}{2}} \zeta^n_q \right\|_{0,K} \right) \right\| \kappa^{-\frac{1}{2}} \zeta^n_q \right\|_{0,K} \right]$$

$$\leq 3\varepsilon_1 \sum_{n=1}^{N} \left(\| \kappa^{-\frac{1}{2}} \zeta^n_q \|_0^2 + C \tau \sum_{n=0}^{N} \left[\| \zeta^n_q \|_0^2 + \| \eta^n_q \|_0^2 + h^{2k} \| q^n \|_k^2 \right] \right).$$

To estimate Φ_2, we need to use the Taylor expansion (3.5) and the following discrete integration by parts formula for the grid functions χ^n and ψ^n:

$$\sum_{n=1}^{N} A(\chi^n, \psi^n - \psi^{n-1}) = A(\chi^N, \psi^N) - A(\chi^0, \psi^0) - \sum_{n=1}^{N} A(\chi^n - \chi^{n-1}, \psi^{n-1}). \quad (3.9)$$

Taking the second term in Φ_2 as an example, we have

$$\sum_{n=1}^{N} \sum_{K \in T_h} a^K(\zeta^n_u, \zeta^n_u - \zeta^{n-1}_u) = \sum_{K \in T_h} \left[a^K(\zeta^n_u, \zeta^n_u) - \sum_{n=1}^{N} a^K(\zeta^n_u - \zeta^{n-1}_u, \zeta^{n-1}_u) \right]$$

$$= \sum_{K \in T_h} \left[a^K(\zeta^n_u, \zeta^n_u) - \sum_{n=1}^{N} a^K(\zeta^n_u - \zeta^{n-1}_u, \zeta^{n-1}_u) \right]$$

$$\leq \| \zeta^n_u \|_{1,1,h} + \tau \sum_{n=1}^{N} \| \zeta^n_u \|_{1,1,h} + \sum_{n=1}^{N} \tau^2 \left(\int_{t_{n-1}}^{t_n} \| \zeta_{u|t|} \|_{1,1,h}^2 \right)^{\frac{1}{2}} \| \zeta^{n-1}_u \|_{1,1,h} \right] \leq \varepsilon_2 \| \zeta^n_u \|_{1,1,h} + C \left[\| \zeta^n_u \|_{1,1,h}^2 + \tau \sum_{n=0}^{N} \left(\| \zeta^n_u \|_{1,1,h}^2 + \| \zeta^{n-1}_u \|_{1,1,h}^2 \right) + \tau^2 T \int_0^T \| \zeta_{u|t|} \|_{1,1,h}^2 \right],$$

where in the third equality we use the estimate with different norms $\| \cdot \|_Y$:

$$\left\| \int_{t_{n-1}}^{t_n} (s - t^{n-1}) \chi(s) \, ds \right\|_Y \leq \tau^2 \left(\int_{t_{n-1}}^{t_n} \| \chi \|_Y^2 \, ds \right)^{\frac{1}{2}}. \quad (3.10)$$

Similarly, we can derive the estimates of the residual terms in Φ_2 and give the following result:

$$\Phi_2 \leq 4\varepsilon_2 \| \zeta^n_u \|_{1,1,h}^2 + C \left[\tau \sum_{n=0}^{N} \left(\| \zeta^n_u \|_{1,1,h}^2 + \| \eta^n_u \|_{1,1,h}^2 + \| \lambda \text{div} \eta^n_u \|_0^2 + \| f^n_t - \Pi_k^{0,K} f^n_t \|_0^2 + \| \zeta^n_u \|_{1,1,h}^2 \right) + \| \zeta^n_u \|_{1,1,h}^2 \right]$$

$$+ \| \lambda \text{div} \eta^n_u \|_0^2 + \| f^n - \Pi_k^{0,K} f^n \|_0^2 + \tau^2 T \int_0^T \| \zeta_{u|t|} \|_{1,1,h}^2 + \| \eta_{u|t|} \|_{0,0}^2 + \| \lambda \text{div} \eta_{u|t|} \|_0^2 + \| f_{tt} - \Pi_k^{0,K} f_{tt} \|_0^2 \right]$$

$$\leq 4\varepsilon_2 \| \zeta^n_u \|_{1,1,h}^2 + C \left[\tau \sum_{n=0}^{N} \left(\| \zeta^n_u \|_{1,1,h}^2 + \| \eta^n_u \|_{1,1,h}^2 + \| \lambda \text{div} \eta^n_u \|_0^2 + \| f^n \|_{1,1,h}^2 + \| \lambda \text{div} f^n \|_0^2 + \| \Pi_k^{0,K} f^n \|_0^2 \right) + \| \zeta^n_u \|_{1,1,h}^2 + \| \eta^n_u \|_{1,1,h}^2 \right]$$

$$+ \| \lambda \text{div} \eta^n_u \|_0^2 + h^{2k} \| f^n \|_k^2 + \tau^2 T \int_0^T \| \zeta_{u|t|} \|_{1,1,h}^2 + \| \eta_{u|t|} \|_{0,0}^2 + \| \lambda \text{div} \eta_{u|t|} \|_0^2 + \| f_{tt} \|_0^2 \right].$$
Next, we apply the discrete integration by parts formula (3.9), another Taylor expansion and its estimate

$$
\|\chi^n - \chi^{n-1}\|_k = \left\| \int_{t_{n-1}}^{t_n} \chi_t(s) \, ds \right\|_k \leq \tau^2 \left(\int_{t_{n-1}}^{t_n} \|\chi_t\|_k^2 \, ds \right)^{\frac{1}{2}}
$$

to get

$$
\Phi_3 = \sum_{n=1}^{N} \left[\sum_{K \in \mathcal{T}_h} \left((\sigma^N \cdot n_K, \xi^n_{u} - \xi^{n-1}_{u}) \right)_{\partial K} - \sum_{e \in \mathcal{E}_h^k} \left((\sigma^n \cdot n_e, \xi^n_{u} - \xi^{n-1}_{u}) \right)_e \right]
$$

$$
= \sum_{K \in \mathcal{T}_h} \left[(\sigma^N \cdot n_K, \xi^n_{u})_{\partial K} - \sum_{n=1}^{N} \left((\sigma^n - \sigma^{n-1}) \cdot n_K, \xi^{n-1}_{u} \right)_{\partial K} \right]
$$

$$
- \sum_{e \in \mathcal{E}_h^k} \left((\sigma^N \cdot n_e, \xi^n_{u})_e - \sum_{n=1}^{N} \left((\sigma^n - \sigma^{n-1}) \cdot n_e, \xi^{n-1}_{u} \right)_e \right)
$$

$$
= \sum_{e \in \mathcal{E}_h^k} \left[\left([\xi^n_{u} \cdot t_e], (\sigma^N)^T : (n_e \otimes t_e) \right)_e - \sum_{n=1}^{N} \left([\xi^{n-1}_{u} \cdot t_e], (\sigma^n - \sigma^{n-1})^T : (n_e \otimes t_e) \right)_e \right]
$$

$$
= \sum_{e \in \mathcal{E}_h^k} \left[\left([\xi^n_{u} - \xi^{n-1}_{u} \cdot t_e], (\sigma^N)^T : (n_e \otimes t_e) \right)_e - \sum_{n=1}^{N} \left([\xi^{n-1}_{u} \cdot t_e], (\sigma^n - \sigma^{n-1})^T : (n_e \otimes t_e) \right)_e \right]
$$

$$
\leq C h^k \|\xi^n_{u}\|_{1,h} \|\sigma^N\|_k + C \sum_{n=1}^{N} h^{k,2} \|\xi^n_{u} - \xi^{n-1}_{u}\|_{1,h} \left(\int_{t_{n-1}}^{t_n} \|\sigma_t\|_k^2 \, ds \right)^{\frac{1}{2}}
$$

$$
\leq \varepsilon_3 \|\xi^n_{u}\|_{1,h} + C \left[h^{2k} \|u^N\|_{k+1} + \tau \sum_{n=0}^{N} \|\xi^n_{u}\|_{1,h}^{2} + h^{2k} \int_{0}^{T} \|u_t\|_{k+1}^2 \, ds \right],
$$

where in the third equality we use the equivalent deformation of the boundary term:

$$
\sum_{K \in \mathcal{T}_h} (\chi, \Psi^T : (n_K \otimes n_K))_{\partial K} = \sum_{K \in \mathcal{T}_h} (\chi, \Psi^T : (n_K \otimes n_K))_{\partial K} + \sum_{K \in \mathcal{T}_h} (\chi, t_K, \Psi^T : (n_K \otimes t_K))_{\partial K}
$$

$$
= \sum_{e \in \mathcal{E}_h} \left([\chi \cdot n_e], [\Psi^T : (n_e \otimes n_e)] \right)_e + \sum_{e \in \mathcal{E}_h} \left([\chi \cdot t_e], [\Psi^T : (n_e \otimes t_e)] \right)_e
$$

and the continuity of $\xi^n_{u} \cdot n_e$ on each edge $e \in \mathcal{E}_h^k$.

Then, we are in a position to bound Φ_4. Combining (3.10) with Cauchy–Schwarz’s and Young’s inequalities, it is easy to derive at

$$
\Phi_4 \leq c_0 \sum_{n=1}^{N} \int_{t_{n-1}}^{t_n} \|p_t(s)\|_0 \|\xi^n_p\|_0 + \alpha \sum_{n=1}^{N} \int_{t_{n-1}}^{t_n} (s - t^{n-1}) \|\text{div} u_{tt}(s)\|_0 \|\xi^n_p\|_0 \leq \sum_{n=1}^{N} c_0 \tau^2 \left(\int_{t_{n-1}}^{t_n} \|p_t\|_0^2 \, ds \right)^{\frac{1}{2}} \|\xi^n_p\|_0 + \sum_{n=1}^{N} \alpha \tau^2 \left(\int_{t_{n-1}}^{t_n} \|\text{div} u_{tt}\|_0^2 \, ds \right)^{\frac{1}{2}} \|\xi^n_p\|_0
$$

$$
\leq C \tau \sum_{n=0}^{N} \|\xi^n_p\|_0^2 + C \tau^2 \int_{0}^{T} c_0 \|p_t\|_0^2 + \|u_{tt}\|_1^2 \, ds.
$$
Obviously, for \(c_0 > 0 \), from (3.8) and the estimations of \(\Phi_1 - \Phi_4 \), we see that

\[
\left(\frac{C_\ast}{2} - 4\varepsilon_2 - \varepsilon_3 \right) \left| \xi_{\mathbf{n}}^N \right|_{1,h}^2 + \frac{c_0}{2} \left\| \xi_{\mathbf{p}}^n \right\|_0^2 + \left(C_\ast - 3\varepsilon_1 \right) \tau \sum_{n=1}^{N} \left\| \kappa^{-\frac{1}{2}} \xi_n^\ast \right\|_0^2
\]

\[
\leq C \left[\tau \sum_{n=0}^{N} \left(\|\xi_{\mathbf{u}}^n\|_{1,h}^2 + \|\xi_{\mathbf{n}}^n\|_{0}^2 \right) + \left\| \xi_{\mathbf{n}}^n \right\|_1^2 + \left\| \eta_{\mathbf{u}}^n \right\|_{1,h}^2 + \left\| \lambda \text{div } \eta_{\mathbf{u}}^n \right\|_0^2 + h^{2k} \left\| \mathbf{f}_n^N \right\|_k^2 + h^{2k} \left\| \mathbf{u}_N \right\|_{k+1}^2 \\
+ \frac{\tau}{\alpha} \sum_{n=0}^{N} \left(\left\| \xi_{\mathbf{u}}^n \right\|_0^2 + \left\| \eta_{\mathbf{u}}^n \right\|_0^2 + \left\| \lambda \text{div } \eta_{\mathbf{u}}^n \right\|_0^2 + h^{2k} \left\| \mathbf{q}_n^N \right\|_k^2 + h^{2k} \left\| \mathbf{f}_n^N \right\|_k^2 \right)
\right]
\leq h^{2k} \int_0^T \|\mathbf{u}_t\|_{k+1}^2 \, ds + \tau \int_0^T \left\| \xi_{\mathbf{u}}^n \right\|_1^2 + \left\| \eta_{\mathbf{u}}^n \right\|_{1,h}^2 + \left\| \lambda \text{div } \eta_{\mathbf{u}}^n \right\|_0^2 + \left\| \mathbf{f}_t \right\|_0^2 + \left\| \mathbf{u}_t \right\|_1^2 \, ds, \tag{3.11}
\]

which leads to

\[
\max_{1 \leq n \leq N} \left\| \xi_{\mathbf{u}}^n \right\|_{1,h}^2 + \max_{1 \leq n \leq N} \left\| \xi_{\mathbf{p}}^n \right\|_0^2 + \tau \sum_{n=1}^{N} \left\| \kappa^{-\frac{1}{2}} \xi_n^\ast \right\|_0^2 \leq C \left(h^{2k} + \tau^2 \right)
\]

for sufficiently small \(\varepsilon_1, \varepsilon_2, \varepsilon_3 \) by using the discrete Gronwall's lemma, the appropriate interpolation and projection errors (2.5), (2.6), (2.9), and the fact that \(\| \lambda \text{div } \mathbf{u}_k \|, \| \lambda \text{div } \mathbf{u}_k \|, \| \lambda \text{div } \mathbf{u}_k \| \) can be bounded by a constant related to the right-hand term \(\mathbf{f}, \mathbf{g} \) and the initial condition (cf. Thm. 3.3 in [26]). For \(c_0 = 0 \), according to (2.10) and (3.7), we need to consider

\[
\left\| \xi_{\mathbf{n}}^n \right\|_0 \leq \frac{1}{\beta} \left\| \mathbf{v}_n \right\|_1 \left\| \xi_{\mathbf{p}}^n \right\|_0 \leq \frac{1}{\alpha \beta} \left\| \mathbf{v}_n \right\|_1 \left\| \xi_{\mathbf{p}}^n \right\|_0 \sum_{K \in T_h} a^K_h (\xi_{\mathbf{n}}^n, \mathbf{v}_h) \left(\mathbf{f}_n^N - \Pi_{\mathbf{K}}^0 \mathbf{f}_n^N, \mathbf{v}_h \right) + a^\sigma K (\xi_{\mathbf{n}}^n, \mathbf{v}_h) + a_h^\sigma K (\eta_{\mathbf{u}}^n - \xi_{\mathbf{n}}^n, \mathbf{v}_h)
\]

\[
\leq C \left[\left\| \xi_{\mathbf{u}}^n \right\|_{1,h} + \left\| \xi_{\mathbf{u}}^n \right\|_1 + \left\| \eta_{\mathbf{u}}^n \right\|_{1,h} + \left\| \lambda \text{div } \eta_{\mathbf{u}}^n \right\|_0 + h^k \left\| \mathbf{f}_n^N \right\|_k + h^k \left\| \mathbf{q}_n^N \right\|_k + h^k \left\| \mathbf{f}_n^N \right\|_k \right]
\tag{3.12}
\]

That is, we have the following formula instead of (3.11):

\[
\left(\frac{C_\ast}{2} - 4\varepsilon_2 - \varepsilon_3 \right) \left| \xi_{\mathbf{u}}^N \right|_{1,h}^2 + \left(C_\ast - 3\varepsilon_1 \right) \tau \sum_{n=1}^{N} \left\| \kappa^{-\frac{1}{2}} \xi_n^\ast \right\|_0^2
\]

\[
\leq C \left[\tau \sum_{n=0}^{N} \left(\|\xi_{\mathbf{u}}^n\|_{1,h}^2 + \left\| \xi_{\mathbf{n}}^n \right\|_1^2 + \left\| \eta_{\mathbf{u}}^n \right\|_{1,h}^2 + \left\| \lambda \text{div } \eta_{\mathbf{u}}^n \right\|_0^2 + h^{2k} \left\| \mathbf{f}_n^N \right\|_k^2 + h^{2k} \left\| \mathbf{u}_N \right\|_{k+1}^2 + \tau \sum_{n=0}^{N} \left(\left\| \xi_{\mathbf{u}}^n \right\|_0^2 + \left\| \eta_{\mathbf{u}}^n \right\|_0^2 + \left\| \lambda \text{div } \eta_{\mathbf{u}}^n \right\|_0^2 + h^{2k} \left\| \mathbf{q}_n^N \right\|_k^2 + h^{2k} \left\| \mathbf{f}_n^N \right\|_k^2 + h^{2k} \left\| \mathbf{q}_n^N \right\|_k^2 \right)\right]
\]

\[
+ h^{2k} \left\| \mathbf{f}_n^N \right\|_k^2 \right) + h^{2k} \int_0^T \|\mathbf{u}_t\|_{k+1}^2 \, ds + \tau \int_0^T \left\| \xi_{\mathbf{u}}^n \right\|_1^2 + \left\| \eta_{\mathbf{u}}^n \right\|_{1,h}^2 + \left\| \lambda \text{div } \eta_{\mathbf{u}}^n \right\|_0^2 + \left\| \mathbf{f}_t \right\|_0^2 + \left\| \mathbf{u}_t \right\|_1^2 \, ds \right]
\]

which means that

\[
\max_{1 \leq n \leq N} \left\| \xi_{\mathbf{u}}^n \right\|_{1,h} + \tau \sum_{n=1}^{N} \left\| \kappa^{-\frac{1}{2}} \xi_n^\ast \right\|_0^2 \leq C \left(h^{2k} + \tau^2 \right).
\]
Finally, combined with (3.12), it is clear that
\[
\max_{1 \leq n \leq N} \left\| \xi_n \right\|_0^2 \leq C (h^{2k} + \tau^2).
\]

\[\square\]

4. Numerical experiments

In this section, we test two poroelasticity problems to validate the accuracy and effectiveness of our proposed virtual element method. The first example is used to confirm the optimal convergence rates with different approximation accuracy and different meshes, and to illustrate that our method is Poisson-locking-free by comparing with a coupled continuous-mixed virtual element method. The second example is used to verify that our method overcomes spurious pressure oscillations by testing the cantilever bracket problem and the Barry and Mercer problem.

Firstly, we give the following diagram of mesh partitions, i.e., randomly distorted triangular mesh \(\mathcal{T}_1^h \), uniform trapezoidal mesh \(\mathcal{T}_2^h \), non-structured hexagonal mesh \(\mathcal{T}_3^h \), and hanging-node mesh \(\mathcal{T}_4^h \), in Figure 1. Also, we introduce the error measures by

\[
\text{err}_u : = \sqrt{\sum_{K \in \mathcal{T}_h} a_K^h (u_h^N - u_N^h, u_N^h - u_N^I) \int_{\Omega}}
\]

for the displacement,

\[
\text{err}_p : = \left\| p_N^I - p_h^N \right\|_0
\]

for the pressure,

\[
\text{err}_q : = \left(\tau \sum_{n=1}^{N} \left\| q_n^I - \Pi_{k-1}^0 q_h^N \right\|_0^2 \right)^{1/2}
\]

for the fluid velocity,

and use the classical stability formulas for every \(u_h, v_h \in X_h \) and \(q_h, z_h \in Z_h \)

\[
S^K(u_h, v_h) = \sum_{r=1}^{\dim X_h/K} \theta_r^X(u_h) \theta_r^X(v_h), \quad \tilde{S}^K(q_h, z_h) = \kappa^{-1} |K| \sum_{r=1}^{\dim Z_h/K} \theta_r^Z(q_h) \theta_r^Z(z_h).
\]

4.1. Convergence and Poisson-locking test

We give the physical parameters \(\alpha = 1, \kappa = 1, \mu = 1, \lambda = 10^8 \) and choose the following exact solution on domain \(\Omega := [0,1]^2 \) with \(T = 1 \):

\[
\begin{align*}
\mathbf{u} & = e^{-t} \left[(\sin(2\pi y)\cos(2\pi x) - 1) + \frac{1}{\mu + \lambda} \sin(\pi x) \sin(\pi y) \right], \\
p & = e^{-t} \sin(\pi x) \sin(\pi y),
\end{align*}
\]

which helps us determine the values of the right-hand terms \(f, g \) and impose the Dirichlet boundary conditions for \(u, p \). It should be noted that the solution satisfies \(\text{div} \ u \to 0 \) as \(\lambda \to \infty \) at any time \(t \).
Table 1. Error results of our method on T^1_h, T^2_h, T^3_h and T^4_h for $k = 1$, $c_0 = 0$.

<table>
<thead>
<tr>
<th>Mesh</th>
<th>h</th>
<th>err_u</th>
<th>Rate</th>
<th>err_q</th>
<th>Rate</th>
<th>err_p</th>
<th>Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>T^1_h</td>
<td>1/8</td>
<td>2.2397e-00</td>
<td>-</td>
<td>1.1906e-01</td>
<td>-</td>
<td>2.4081e-02</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>1/16</td>
<td>1.2117e+00</td>
<td>0.89</td>
<td>5.9733e-02</td>
<td>1.00</td>
<td>1.2040e-02</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>1/32</td>
<td>6.2103e-01</td>
<td>0.96</td>
<td>2.9892e-02</td>
<td>1.00</td>
<td>6.0195e-03</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>1/64</td>
<td>3.1261e-01</td>
<td>0.99</td>
<td>1.4949e-02</td>
<td>1.00</td>
<td>3.0097e-03</td>
<td>1.00</td>
</tr>
<tr>
<td>T^2_h</td>
<td>1/8</td>
<td>5.5992e-01</td>
<td>-</td>
<td>1.3068e-01</td>
<td>-</td>
<td>2.9669e-02</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>1/16</td>
<td>1.9654e-01</td>
<td>1.51</td>
<td>6.5466e-02</td>
<td>1.00</td>
<td>1.4770e-02</td>
<td>1.01</td>
</tr>
<tr>
<td></td>
<td>1/32</td>
<td>8.3191e-02</td>
<td>1.26</td>
<td>3.2749e-02</td>
<td>1.00</td>
<td>7.3755e-03</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>1/64</td>
<td>3.8683e-02</td>
<td>1.09</td>
<td>1.6376e-02</td>
<td>1.00</td>
<td>3.6865e-03</td>
<td>1.00</td>
</tr>
<tr>
<td>T^3_h</td>
<td>1/8</td>
<td>4.4401e-00</td>
<td>-</td>
<td>1.5355e-01</td>
<td>-</td>
<td>3.2977e-02</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>1/16</td>
<td>1.8703e-01</td>
<td>1.25</td>
<td>8.1024e-02</td>
<td>0.92</td>
<td>1.7160e-02</td>
<td>0.94</td>
</tr>
<tr>
<td></td>
<td>1/32</td>
<td>7.6462e-02</td>
<td>1.29</td>
<td>4.2535e-02</td>
<td>0.93</td>
<td>8.7301e-03</td>
<td>0.97</td>
</tr>
<tr>
<td></td>
<td>1/64</td>
<td>3.9228e-02</td>
<td>1.39</td>
<td>2.2662e-02</td>
<td>0.91</td>
<td>4.4063e-03</td>
<td>0.99</td>
</tr>
<tr>
<td>T^4_h</td>
<td>1/8</td>
<td>5.4108e-01</td>
<td>-</td>
<td>1.1741e-01</td>
<td>-</td>
<td>2.6607e-02</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>1/16</td>
<td>1.9393e-01</td>
<td>1.48</td>
<td>5.8830e-02</td>
<td>1.00</td>
<td>1.3253e-02</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>1/32</td>
<td>7.9461e-02</td>
<td>1.29</td>
<td>2.9438e-02</td>
<td>1.00</td>
<td>6.6192e-03</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>1/64</td>
<td>3.6268e-02</td>
<td>1.13</td>
<td>1.4724e-02</td>
<td>1.00</td>
<td>3.3087e-03</td>
<td>1.00</td>
</tr>
</tbody>
</table>

Table 2. Error results of our method on T^1_h, T^2_h, T^3_h and T^4_h for $k = 2$, $c_0 = 0$.

<table>
<thead>
<tr>
<th>Mesh</th>
<th>h</th>
<th>err_u</th>
<th>Rate</th>
<th>err_q</th>
<th>Rate</th>
<th>err_p</th>
<th>Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>T^1_h</td>
<td>1/8</td>
<td>2.7884e-01</td>
<td>-</td>
<td>9.1036e-03</td>
<td>-</td>
<td>1.8225e-03</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>1/16</td>
<td>7.2517e-02</td>
<td>1.94</td>
<td>2.3044e-03</td>
<td>1.98</td>
<td>4.5724e-04</td>
<td>1.99</td>
</tr>
<tr>
<td></td>
<td>1/32</td>
<td>1.8578e-02</td>
<td>1.96</td>
<td>5.7792e-04</td>
<td>2.00</td>
<td>1.1441e-04</td>
<td>2.00</td>
</tr>
<tr>
<td></td>
<td>1/64</td>
<td>4.7116e-03</td>
<td>1.99</td>
<td>1.4459e-04</td>
<td>2.00</td>
<td>2.8607e-05</td>
<td>2.00</td>
</tr>
<tr>
<td>T^2_h</td>
<td>1/8</td>
<td>9.4919e-02</td>
<td>-</td>
<td>1.2410e-02</td>
<td>-</td>
<td>2.7805e-03</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>1/16</td>
<td>2.4156e-02</td>
<td>1.97</td>
<td>3.1045e-03</td>
<td>2.00</td>
<td>6.9819e-04</td>
<td>1.99</td>
</tr>
<tr>
<td></td>
<td>1/32</td>
<td>6.0555e-03</td>
<td>1.99</td>
<td>7.7650e-04</td>
<td>2.00</td>
<td>1.7474e-04</td>
<td>2.00</td>
</tr>
<tr>
<td></td>
<td>1/64</td>
<td>1.5194e-03</td>
<td>2.00</td>
<td>1.9415e-04</td>
<td>2.00</td>
<td>4.3698e-05</td>
<td>2.00</td>
</tr>
<tr>
<td>T^3_h</td>
<td>1/8</td>
<td>4.3476e+00</td>
<td>-</td>
<td>2.5341e-02</td>
<td>-</td>
<td>1.0555e-02</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>1/16</td>
<td>1.0605e+00</td>
<td>2.11</td>
<td>5.9272e-03</td>
<td>2.10</td>
<td>1.7922e-03</td>
<td>2.56</td>
</tr>
<tr>
<td></td>
<td>1/32</td>
<td>2.3419e-01</td>
<td>2.10</td>
<td>1.4517e-03</td>
<td>2.03</td>
<td>3.2530e-04</td>
<td>2.46</td>
</tr>
<tr>
<td></td>
<td>1/64</td>
<td>5.3947e-02</td>
<td>2.12</td>
<td>3.1030e-04</td>
<td>2.23</td>
<td>5.9658e-05</td>
<td>2.45</td>
</tr>
<tr>
<td>T^4_h</td>
<td>1/8</td>
<td>1.0249e-01</td>
<td>-</td>
<td>1.0890e-02</td>
<td>-</td>
<td>2.4215e-03</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>1/16</td>
<td>2.3543e-02</td>
<td>2.12</td>
<td>2.7171e-03</td>
<td>2.00</td>
<td>6.0806e-04</td>
<td>1.99</td>
</tr>
<tr>
<td></td>
<td>1/32</td>
<td>5.6058e-03</td>
<td>2.07</td>
<td>6.8040e-04</td>
<td>2.00</td>
<td>1.5219e-04</td>
<td>2.00</td>
</tr>
<tr>
<td></td>
<td>1/64</td>
<td>1.3029e-03</td>
<td>2.11</td>
<td>1.6959e-04</td>
<td>2.00</td>
<td>3.7443e-05</td>
<td>2.02</td>
</tr>
</tbody>
</table>

In Tables 1 and 2, we list the errors and convergence orders of our method on different meshes with $k = 1, 2$ and $c_0 = 0$, which are in agreement with theoretical predictions. Moreover, Figure 2 gives the error results for $c_0 = 0.5$ and shows the similar convergence trend.

Then, we also test a coupled CG-mixed virtual element method that uses the lowest-order continuous virtual element for the displacement and the lowest-order Raviart–Thomas-like virtual element for the flow variables [65]. In Table 3, it is clear to see the Poisson-locking effects (i.e., the errors of the displacement stagnate on the coarser triangular and quadrilateral meshes) when the CG-mixed virtual element is used, while this phenomenon does not appear in Table 1 and the third column and $k = 2$ in Table 3. Therefore, we can conclude that our method is Poisson-locking-free even for a nearly incompressible material case.
Figure 2. Convergence results on different meshes for $c_0 = 0.5$ (the blue, cyan and magenta lines respectively represent err_u, err_q, and err_p; the shapes ◇, × respectively represent the numerical results for $k = 1, 2$). (a) \mathcal{T}_h^1. (b) \mathcal{T}_h^2. (c) \mathcal{T}_h^3. (d) \mathcal{T}_h^4.

Table 3. Displacement error results of CG-mixed virtual element method for $c_0 = 0$.

<table>
<thead>
<tr>
<th>k</th>
<th>h</th>
<th>err_u</th>
<th>Rate</th>
<th>err_u</th>
<th>Rate</th>
<th>err_u</th>
<th>Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1/8</td>
<td>3.1855e+00</td>
<td>–</td>
<td>3.2834e−01</td>
<td>–</td>
<td>6.0284e−01</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>1/16</td>
<td>3.2479e+00</td>
<td>–</td>
<td>2.0961e−01</td>
<td>0.65</td>
<td>2.1880e−01</td>
<td>1.46</td>
</tr>
<tr>
<td></td>
<td>1/32</td>
<td>3.2636e+00</td>
<td>–</td>
<td>1.3222e−01</td>
<td>0.66</td>
<td>6.6073e−02</td>
<td>1.73</td>
</tr>
<tr>
<td></td>
<td>1/64</td>
<td>3.2675e+00</td>
<td>–</td>
<td>7.4493e−02</td>
<td>0.83</td>
<td>1.8051e−02</td>
<td>1.87</td>
</tr>
<tr>
<td>2</td>
<td>1/8</td>
<td>5.5291e−01</td>
<td>–</td>
<td>4.3524e−01</td>
<td>–</td>
<td>5.3273e−01</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>1/16</td>
<td>1.4301e−01</td>
<td>1.95</td>
<td>8.7751e−02</td>
<td>2.31</td>
<td>1.3305e−01</td>
<td>2.00</td>
</tr>
<tr>
<td></td>
<td>1/32</td>
<td>3.3945e−02</td>
<td>2.07</td>
<td>1.7408e−02</td>
<td>2.33</td>
<td>3.2905e−02</td>
<td>2.02</td>
</tr>
<tr>
<td></td>
<td>1/64</td>
<td>8.2941e−03</td>
<td>2.03</td>
<td>3.6601e−03</td>
<td>2.25</td>
<td>8.2896e−03</td>
<td>1.99</td>
</tr>
</tbody>
</table>
4.2. Pressure-oscillation test

Here, in order to show the eliminated pressure oscillations, we need to consider the simulation results on a uniform triangulation of the unit square $\Omega := [0, 1]^2$ under parameters $k = 1, c_0 = 0$ and $\kappa \to 0$. Moreover, we set the body force f, the initial displacement, and the initial pressure to be zero, and use Young’s modulus E and Poisson’s ratio ν to show Lamé constants:

$$\lambda = \frac{E\nu}{(1+\nu)(1-2\nu)}, \quad \mu = \frac{E}{2(1+\nu)}.$$

For the cantilever bracket problem [25], we impose a no-flow boundary condition $\mathbf{q} \cdot \mathbf{n} = 0$ along all sides; the displacement on the left edge is fixed, i.e., $\mathbf{u} = \mathbf{0}$; there is a downward traction at the top edge and a traction-free boundary condition at the right and bottom edges. Then, we set $\tau = 0.001, h = 1/32$ and use the material parameters $\alpha = 0.93, E = 10^4, \nu = 0.4, \kappa = 10^{-8}$.

Figure 3 shows a comparison of the numerical pressure results after one time step using the CG-mixed method and our method. It clearly shows that the CG-mixed method mainly produces spurious oscillations at the upper-left and lower-left corners, while the numerical pressure results obtained from our method do not suffer from these oscillations.
For the Barry and Mercer problem [66], we consider the time-independent boundary conditions:

\[u \cdot t_k = 0, \quad n_k^T \nabla u_n = 0, \quad p = 0, \]

and give a periodic pointwise source \(g = \delta(x-x_0) \sin(\tilde{t}) \) with location \(x_0 = (1/4, 1/4) \) and the normalized time \(\tilde{t} = (\lambda + 2\mu)ct \). Then, we set \(\tau = 10^{-4}, h = 1/32 \) and use the material parameters \(\alpha = 1, E = 10^5, \nu = 0.1, \kappa = 10^{-7} \).

Figure 4 shows a comparison of the numerical pressure results after one time step along the diagonal \((0, 0) - (1, 1)\) of the domain using the CG-mixed method and our method. One can observe the nonphysical pressure oscillations from the CG-mixed method, while nearly all oscillations have been eliminated by our method.

5. Conclusions

In this paper, our proposed method employs the Raviart–Thomas-like virtual element space for the flow variables and the divergence-free nonconforming virtual element for the displacement in Biot’s consolidation model. We have presented a stability result for this fully discrete method that guarantees the existence and uniqueness of a solution at each time step and have derived an optimal convergence rate for the displacement in the \(\ell^\infty(0, T; H^1(\Omega)) \) norm, the pressure in the \(\ell^\infty(0, T; L^2(\Omega)) \) norm, and the fluid velocity in the \([\ell^2(0, T; L^2(\Omega))]^2 \) norm. Finally, we have presented several numerical experiments that illustrate the convergence of the method with different meshes and different approximation accuracies, and the effectiveness in overcoming two modes of locking phenomena (i.e., Poisson’s locking and pressure oscillations) under a certain set of parameters.

Acknowledgements

The authors thank the support from the Youth Innovation Team (on computationally efficient numerical methods based on new energy problems) of Shaanxi Universities.

Funding

This research was supported in part by National Natural Science Foundation of China (No. 11901462, No. 2020JQ-130), and the fellowship of China Postdoctoral Science Foundation (No. 2020M683546).

References

A VEM FOR OVERCOMING LOCKING PHENOMENA IN BIOT’S CONSOLIDATION MODEL

3027

Please help to maintain this journal in open access!

This journal is currently published in open access under the Subscribe to Open model (S2O). We are thankful to our subscribers and supporters for making it possible to publish this journal in open access in the current year, free of charge for authors and readers.

Check with your library that it subscribes to the journal, or consider making a personal donation to the S2O programme by contacting subscribers@edpsciences.org.

More information, including a list of supporters and financial transparency reports, is available at https://edpsciences.org/en/subscribe-to-open-s2o.