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LOWEST-ORDER NONSTANDARD FINITE ELEMENT METHODS FOR
TIME-FRACTIONAL BIHARMONIC PROBLEM

Shantiram Mahata1, Neela Nataraj1,* and Jean-Pierre Raymond2,3

Abstract. In this work, we consider an initial-boundary value problem for a time-fractional bihar-
monic equation in a bounded polygonal domain with a Lipschitz continuous boundary in R2 with
clamped boundary conditions. After stating the well-posedness, we focus on some regularity results
of the solution with respect to the regularity of the problem data. The spatially semidiscrete scheme
covers several popular lowest-order piecewise-quadratic finite element schemes, namely, Morley, discon-
tinuous Galerkin, and 𝐶0 interior penalty methods, and includes both smooth and nonsmooth initial
data. Optimal order error bounds with respect to the regularity assumptions on the data are proved for
both homogeneous and nonhomogeneous problems. The numerical experiments validate the theoretical
convergence rate results.
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1. Introduction

Let Ω be a bounded polygonal domain with a Lipschitz continuous boundary 𝜕Ω in R2 and 𝑇 be a fixed
positive real number. For 0 < 𝛼 < 1, consider the following initial-boundary value problem for time-fractional
biharmonic equation that seeks 𝑢(𝑡) ∈ 𝐻2

0 (Ω) such that

𝜕𝛼
𝑡 𝑢(𝑡) +𝐴𝑢(𝑡) = 𝑓(𝑡) in Ω, 0 < 𝑡 ≤ 𝑇,

𝑢(0) = 𝑢0 in Ω,
(1.1)

where 𝐴 is the unbounded operator in 𝐿2(Ω) corresponding to the biharmonic operator ∆2 with clamped bound-
ary conditions. For an absolutely continuous real function 𝑢 over [0, 𝑇 ], 𝜕𝛼

𝑡 𝑢(𝑡) denotes the Caputo fractional
derivative defined by

𝜕𝛼
𝑡 𝑢(𝑡) =

1
Γ(1− 𝛼)

ˆ 𝑡

0

(𝑡− 𝑠)−𝛼𝑢′(𝑠) d𝑠 = ℐ1−𝛼𝑢′(𝑡), 0 < 𝛼 < 1, (1.2)
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where 𝑢′(𝑡) := 𝜕𝑡𝑢(𝑡) and ℐ𝛽 , 0 < 𝛽 <∞, denotes the Riemann–Liouville fractional integral defined by

ℐ𝛽𝑣(𝑡) =
ˆ 𝑡

0

𝜅𝛽(𝑡− 𝑠)𝑣(𝑠) d𝑠, 𝜅𝛽(𝑡) := 𝑡𝛽−1/Γ(𝛽), (1.3)

with the gamma function Γ(𝑧) =
´∞
0
𝑒−𝑡𝑡𝑧−1 d𝑡, Re(𝑧) > 0. In Definition 2.4, we will use (1.2) for absolutely

continuous functions with values in a Hilbert space 𝑉 * introduced later.
It is well-known that fractional order models describe physical phenomena more accurately compared to

the usual integer-order models (cf. [35]). The equation in model (1.1) represents a particular case of the time-
fractional Cahn–Hilliard equation [2, 18].

The main goal of this work is to study the convergence analysis of semidiscrete approximation with lowest-
order nonstandard finite element methods (FEMs).

To present our contributions, we introduce below some standard notations. For any real 𝑟, 𝐻𝑟(Ω) denotes the
standard Sobolev space associated with the Sobolev-Slobodeckii semi-norm | · |𝐻𝑟(Ω) (cf. [15]). Let 𝐻𝑟

0 (Ω) denote
the closure of𝒟(𝛺) in𝐻𝑟(Ω), 𝑉 := 𝐻2

0 (Ω), and let𝐻−𝑟(Ω) = (𝐻𝑟
0 (Ω))* be the dual of𝐻𝑟

0 (Ω). The notations (·, ·)
and ‖·‖ denote the 𝐿2 scalar product and 𝐿2 norm in Ω. For a Hilbert space 𝐻 with norm ‖·‖𝐻 , let 𝐿𝑝(0, 𝑇 ;𝐻),
1 ≤ 𝑝 < ∞ denote the standard Bochner space equipped with the norm ‖𝑔‖𝐿𝑝(0,𝑇 ;𝐻) = (

´ 𝑇

0
‖𝑔(𝑡)‖𝑝

𝐻 d𝑡)1/𝑝. If
𝑝 = ∞, the space 𝐿∞(0, 𝑇 ;𝐻) has the norm ‖𝑔‖𝐿∞(0,𝑇 ;𝐻) = inf{𝐶 : ‖𝑔(𝑡)‖𝐻 ≤ 𝐶 almost everywhere on (0, 𝑇 )}.
In addition, for 𝑚 ≥ 0, 1 ≤ 𝑝 ≤ ∞, 𝑊𝑚,𝑝(0, 𝑇 ;𝐻) := {𝑔 : (0, 𝑇 ) → 𝐻 such that d𝑗𝑔

d𝑡𝑗 ∈ 𝐿𝑝(0, 𝑇 ;𝐻) for 0 ≤
𝑗 ≤ 𝑚} is equipped with the norm ‖𝑔‖𝑊 𝑚,𝑝(0,𝑇 ;𝐻) =

∑︀𝑚
𝑗=0 ‖

d𝑗𝑔
d𝑡𝑗 ‖𝐿𝑝(0,𝑇 ;𝐻) (cf. [14]). Hereafter, 𝛾0 ∈ (1/2, 1] is

the elliptic regularity index of the biharmonic problem introduced in Section 2.1. Throughout the paper, 𝑎 . 𝑏
denotes 𝑎 ≤ 𝐶𝑏, where 𝐶 is a positive generic constant that may depend on fractional order 𝛼 and the final
time 𝑇 but is independent of the spatial mesh size.

In Theorem 2.6, we state that when initial data 𝑢0 is simply an element of 𝐿2(Ω) and source function 𝑓
belongs to 𝑊 1,1(0, 𝑇 ;𝑉 *), problem (1.1) admits a unique weak solution with

‖𝑢‖𝐿1(0,𝑇 ;𝑉 ) + ‖𝑢′‖𝐿1(0,𝑇 ;𝑉 *) . ‖𝑢0‖+ ‖𝑓‖𝑊 1,1(0,𝑇 ;𝑉 *).

The main contributions of this work are summarized below.

(1) We derive regularity results for the solutions of both homogeneous and nonhomogeneous problems useful
for the error analysis in Theorems 2.8 and 2.10.

(2) In (3.4), we introduce a novel Ritz projection ℛℎ : 𝑉 → 𝑉ℎ, where 𝑉ℎ denotes the space of lowest-order
piecewise-quadratic polynomials for (1.1) with clamped boundary conditions in the proposed semidiscrete
schemes and includes the popular Morley, discontinuous Galerkin (dG), and 𝐶0 interior penalty (𝐶0IP)
methods. We establish the quasi-optimal approximation property displayed below in Lemma 3.4.

‖𝑣 −ℛℎ𝑣‖+ ℎ𝛾‖𝑣 −ℛℎ𝑣‖ℎ . ℎ
2𝛾‖𝑣‖𝐻2+𝛾(Ω),

for all 𝛾 ∈ [0, 𝛾0] and for all 𝑣 ∈ 𝐻2+𝛾(Ω), where the regularity index 𝛾0 belongs to (1/2, 1) if Ω is not
convex and 𝛾0 = 1 if Ω is convex. These properties are crucial to obtaining optimal order error bounds for
both smooth and nonsmooth initial data.

(3) We use an energy argument in a unified framework for the nonstandard FEM analysis with lowest-order
piecewise-quadratic polynomials for (1.1). Since the solution of model (1.1) reflects a singular behavior near
𝑡 = 0 (see below Thms. 2.8 and 2.10), a straightforward analysis of numerical scheme is problematic. This
is addressed by multiplication by weights of type 𝑡𝑗 , 𝑗 = 1, 2 in the semidiscrete scheme. For initial data in
𝐿2(Ω) and a source term equal to zero, in Theorem 4.2(i) we obtain the following error bound in the 𝐿2(Ω)
and energy norms for each fixed time 𝑡 ∈ (0, 𝑇 ],

‖𝑢(𝑡)− 𝑢ℎ(𝑡)‖ .
(︀
ℎ2𝛾0𝑡−𝛼 + ℎ2𝑡−(1+𝛼)/2

)︀
‖𝑢0‖,
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‖𝑢(𝑡)− 𝑢ℎ(𝑡)‖ℎ . ℎ
𝛾0𝑡−𝛼‖𝑢0‖+

(︀
ℎ2𝛾0𝑡−3𝛼/2 + ℎ2𝑡−(𝛼+1/2)

)︀
‖𝑢0‖,

where ℎ is the mesh size of the FEM. Similar error bounds are also proved for the nonhomogeneous problem
with an appropriate assumption on 𝑓 and 𝑢0 ∈ 𝐷(𝐴) in Theorem 4.2(ii) for 𝑡 ∈ (0, 𝑇 ].

(4) Numerical experiments that validate the theoretical results are presented for examples with smooth and
nonsmooth initial data.

The article is organized as follows:

– In Section 2, we introduce some notations, state the well-posedness of (1.1), and derive regularity results of
the solution of (1.1).

– This is followed by a discussion on the semidiscrete schemes and error analysis in Sections 3 and 4. Optimal
order error bounds are proved for both smooth and nonsmooth initial data.

– Finally, Section 5 presents the results of the numerical implementations that validate the theoretical esti-
mates.

Below, we compare our findings with those already known from the literature and review the existing results
for (1.1).

– The well-posedness result is inspired by the work in [36] for second-order fractional diffusion-wave equations.
For (1.1), the well-posedness result is summarized in appendix of [25]. However, in (A.1) and (A.2) of [25],
the well-posedness and regularity results are stated with higher regularity assumptions on the problem data,
for example, initial data 𝑢0 ∈ 𝐷(∆𝑗+2) and source function 𝑓 such that 𝜕𝑙𝑓(𝑡)

𝜕𝑡𝑙 ∈ 𝐷(∆𝑗), where 𝑗 ∈ N and
𝑙 = 0, 1, 2, 3. These studies to (1.1) in our work are done comparatively with less smoother assumptions on
the problem data (cf. Thms. 2.6, 2.8, and 2.10).

– The introduction of the Ritz projection for lowest-order piecewise-quadratic based FEM on 𝐻2
0 (Ω)∩𝐻2+𝛾(Ω)

for all 𝛾 ∈ [0, 𝛾0] and its quasi-optimal approximation properties on 𝐻2+𝛾(Ω) in 𝐿2(Ω) and energy norms
are new. The idea of this operator is borrowed from [7] for the analysis of FEMs for biharmonic plates. In
[25], the authors have introduced the Ritz projection on 𝐻2

0 (Ω) ∩𝐻𝑗+1(Ω), 𝑗 ≥ 2 for the analysis of virtual
element methods, and have proved optimal projection errors which demand at least 𝐻3(Ω) regularity of
the continuous solution 𝑢(𝑡). We also have to mention that the idea of using a Ritz projection is suggested,
without proof, in Remark 3.1 of [12], for the Morley finite element approximation of fourth-order nonlinear
reaction-diffusion problems.
There are technical difficulties that arise in the error analysis because (i) the space discretization is not
conforming and (ii) the error estimates are established under lower regularity of the solution. To overcome
these challenges, we introduce a novel Ritz projection ℛℎ using a smoother (or companion) operator 𝑄
in (3.4). This leads to an error equation in (4.13) that is different from those obtained for the conforming
second-order problems [22, 32]. The idea is also completely new in comparison to the available works for
time-fractional fourth-order problems in the literature.

– The semidiscrete convergence analysis in this work is inspired by the technique in [22, 30, 32] for time-
fractional parabolic problems with and without memory. The cited works discuss only second-order problems
and the conforming case, where the discrete trial space is a finite-dimensional subspace of 𝐻1

0 (Ω). In contrast,
the analysis of conforming FEMs for fourth-order problems demands 𝐶1 continuity and requires a high
polynomial degree, which imposes many conditions on the vertices and edges of an element, and hence, is
prohibitively expensive. Most of the available literature for (1.1) discuss simply supported boundary conditions
(𝑢 = ∆𝑢 = 0) that enables a mixed formulation via an auxiliary variable 𝑣 = ∆𝑢 and subsequently, the
reduction of the problem to a system of two second-order equations.
As far as we know, the semidiscrete error analysis with 𝑢0 ∈ 𝐿2(Ω) is a totally new result for the time-
fractional biharmonic problem with clamped boundary conditions.

– The work in [11] deals with a compact finite difference scheme with clamped plate problem, where the author
has discretized the spatial derivatives by the Stephenson scheme on uniform meshes, and fractional derivative
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by L1 scheme on graded time meshes, and established the stability of the scheme and convergence analysis
under the assumptions ‖𝜕𝑖+𝑗𝑢(𝑡)

𝜕𝑥𝑖𝜕𝑦𝑗 ‖ ≤ 𝐶 with 0 ≤ 𝑖 + 𝑗 ≤ 8 and ‖𝜕𝑗𝑢(𝑡)
𝜕𝑡𝑗 ‖ ≤ 𝐶(1 + 𝑡𝛼−𝑗), 0 ≤ 𝑗 ≤ 2, for some

positive constant 𝐶. In contrast, the semidiscrete finite element approximation in this work assumes a lower
regularity on the solution 𝑢(𝑡) and includes the case 𝑢0 ∈ 𝐿2(Ω).

Several numerical methods to (1.1) and its nonlinear variants with simply supported boundary conditions
(that is, 𝑢 = ∆𝑢 = 0) are studied in literature with stability and convergence analysis. These methods include,
for example, Adomian decomposition method [20], finite difference method [41], weak Galerkin method [40],
mixed FEMs [18, 19, 27–29], local discontinuous Galerkin methods [13, 39], Petrov–Galerkin method [1], and
spline-based methods [16,42]. The FEM based works in [18,19,27–29] for fourth-order problems are studied for
simply supported boundary conditions. An auxiliary variable 𝑣 = ∆𝑢 is introduced for the mixed formulation,
and subsequently, the problem reduces to a system of two second-order equations with boundary conditions
𝑢 = 𝑣 = 0.

2. Well-posedness and regularity

We introduce function spaces and norms and present some useful properties of the Mittag–Leffler functions
in Section 2.1. The well-posedness results for (1.1) are stated in Section 2.2. In Section 2.3, regularity results
for the solutions of both homogeneous and nonhomogeneous problems are derived.

2.1. Preliminaries

The elliptic operator 𝐴

To study the well-posedness results, we start with the solution representation. The results are based on the
eigenfunction expansion of the corresponding elliptic operator associated with homogeneous boundary condi-
tions. Consider the following eigenvalue problem

∆2𝜑 = 𝜇𝜑 in Ω, 𝜑 =
𝜕𝜑

𝜕𝜈
= 0 on 𝜕Ω. (2.1)

Here 𝜈 is the outward unit normal to 𝜕Ω. It is well-known ([3], p. 761) that there exists a family (𝜇𝑗 , 𝜑𝑗)∞𝑗=1

such that (𝜇𝑗 , 𝜑𝑗) is solution of (2.1), 0 < 𝜇1 ≤ 𝜇2 ≤ . . ., 𝜇𝑗 → ∞ as 𝑗 → ∞, and the corresponding family
of eigenfunctions {𝜑𝑗}∞𝑗=1 is an orthonormal basis of 𝐿2(Ω). For further development of this work, define the
unbounded operator (𝐴,𝐷(𝐴)) in 𝐿2(Ω) by

𝐷(𝐴) = {𝜑 ∈ 𝐻2
0 (Ω) | ∆2𝜑 ∈ 𝐿2(Ω)} and 𝐴𝜑 = ∆2𝜑 for all 𝜑 ∈ 𝐷(𝐴).

It is known that [15]
𝐷(𝐴) ⊂ 𝑉 ∩𝐻2+𝛾*(Ω) with 𝑉 = 𝐻2

0 (Ω) and 𝛾* ∈ (1/2, 2], (2.2)

where the index 𝛾* belongs to [1, 2] if Ω is convex and 𝛾* ∈ (1/2, 1) if Ω is not convex. The value of 𝛾* can
be related to the greatest angle of the polygon. Define the domain of the fractional power 𝐴𝑟, 𝑟 ∈ R+ ([34],
Chap. 2), of the operator 𝐴, by

𝐷(𝐴𝑟) =

⎧⎨⎩𝑣 =
∞∑︁

𝑗=1

𝑣𝑗𝜑𝑗 | 𝑣𝑗 ∈ R,
∞∑︁

𝑗=1

𝜇2𝑟
𝑗 |𝑣𝑗 |2 <∞

⎫⎬⎭, 𝐴𝑟𝑣 =
∞∑︁

𝑗=1

𝜇𝑟
𝑗𝑣𝑗𝜑𝑗 =

∞∑︁
𝑗=1

𝜇𝑟
𝑗(𝑣, 𝜑𝑗)𝜑𝑗 . (2.3)

The space 𝐷(𝐴𝑟) is equipped with the norm

‖𝑣‖𝐷(𝐴𝑟) =

⎛⎝ ∞∑︁
𝑗=1

𝜇2𝑟
𝑗 |(𝑣, 𝜑𝑗)|2

⎞⎠1/2

. (2.4)
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The orthonormality of the basis {𝜑𝑗}∞𝑗=1 is used above and throughout in this section. In particular, for 𝑟 = 0,
we obtain ‖ · ‖𝐷(𝐴0) = ‖ · ‖𝐿2(Ω) = ‖ · ‖.

When 𝑟 = 1/2, we have 𝐷(𝐴1/2) = 𝑉 . From Part II, Chapter 1, Proposition 6.1 of [4], it follows that

𝐷(𝐴𝑟) = [𝐿2(Ω), 𝐷(𝐴)]𝑟 for all 𝑟 ∈ [0, 1].

Therefore, with (2.2) and interpolation, we can prove that

𝐷(𝐴𝑟) ⊂ 𝑉 ∩𝐻2+𝛾*(2𝑟−1)(Ω) for all 𝑟 ∈ [1/2, 1].

Now, for 𝑟 > 0, let 𝐷(𝐴−𝑟) := (𝐷(𝐴𝑟))* be the dual of 𝐷(𝐴𝑟), consisting of all bounded linear functionals
on 𝐷(𝐴𝑟). Identifying the dual of 𝐿2(Ω) with itself, we write 𝐷(𝐴𝑟) ⊂ 𝐿2(Ω) ⊂ 𝐷(𝐴−𝑟). The space 𝐷(𝐴−𝑟) is
a Hilbert space with the norm

‖𝑔‖𝐷(𝐴−𝑟) =

⎛⎝ ∞∑︁
𝑗=1

1
𝜇2𝑟

𝑗

|⟨𝑔, 𝜑𝑗⟩|2
⎞⎠1/2

, (2.5)

where for 𝑔 ∈ 𝐷(𝐴−𝑟) and 𝜑 ∈ 𝐷(𝐴𝑟), the symbol ⟨𝑔, 𝜑⟩ stands for the duality pairing of 𝑔 with 𝜑. Further,
with 𝑔 ∈ 𝐿2(Ω) and 𝜑 ∈ 𝐷(𝐴𝑟), we write ⟨𝑔, 𝜑⟩ = (𝑔, 𝜑) (cf. ([6], Chap. V)).

Remark 2.1. In addition to the index 𝛾* introduced in (2.2), we need to introduce the so-called regularity
index (as defined in [5] or [7]) which is an index 𝛾0 ∈ (1/2, 1] for which the operator 𝐴 is an isomorphism from
𝐻2+𝛾0 ∩ 𝑉 into 𝐻−2+𝛾0 . If Ω is convex, 𝛾0 = 1, while if Ω is not convex we have 𝛾0 ∈ (1/2, 1). If Ω is not
convex, we can choose 𝛾0 and 𝛾* such that 𝛾0 = 𝛾*, and the value of 𝛾0 can be related to the greatest angle of
the polygon.

Let 𝑎(·, ·) : 𝑉 × 𝑉 → R be the bilinear form associated with ∆2 defined by

𝑎(𝑣, 𝑤) =
ˆ

Ω

𝐷2𝑣 : 𝐷2𝑤 d𝑥 =
ˆ

Ω

2∑︁
𝑖,𝑗=1

𝜕2𝑣

𝜕𝑥𝑖𝜕𝑥𝑗

𝜕2𝑤

𝜕𝑥𝑖𝜕𝑥𝑗
d𝑥,

where 𝐷2𝑣 denotes the Hessian matrix of 𝑣. Then, we can verify that

(𝐴𝑣,𝑤) = 𝑎(𝑣, 𝑤) for all 𝑣 ∈ 𝐷(𝐴) and for all 𝑤 ∈ 𝑉.

In the convergence analysis of the semidiscrete scheme, we need the following version of Gronwall’s lemma (cf.
([9], Lem. 2.1)).

Lemma 2.2 (Gronwall’s lemma). Assume that 𝜑, 𝜓, and 𝜒 are three non-negative integrable functions on [0, 𝑇 ].
If 𝜑 satisfies

𝜑(𝑡) ≤ 𝜓(𝑡) +
ˆ 𝑡

0

𝜒(𝑠)𝜑(𝑠) d𝑠 for 𝑡 ∈ (0, 𝑇 ),

then,

𝜑(𝑡) ≤ 𝜓(𝑡) +
ˆ 𝑡

0

𝜓(𝑠)𝜒(𝑠)𝑒
´ 𝑡
𝑠

𝜒(𝜏) d𝜏 d𝑠 for 𝑡 ∈ (0, 𝑇 ).
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Mittag–Leffler functions and their properties

The Mittag–Leffler functions play a very important role in the analysis of fractional differential equations.
The two-parameter Mittag–Leffler function 𝐸𝛼,𝛽(·) is defined ([23], p. 42) by

𝐸𝛼,𝛽(𝑧) =
∞∑︁

𝑗=0

𝑧𝑗

Γ(𝑗𝛼+ 𝛽)
, 𝑧 ∈ C, 𝛼 > 0, 𝛽 ∈ R.

It is a generalization of the exponential function 𝑒𝑧 in the sense that 𝐸1,1(𝑧) = 𝑒𝑧. Further, we can directly
verify that it is an entire function in 𝑧. The following properties of the Mittag–Leffler function 𝐸𝛼,𝛽(·) ([23],
(1.8.28)) or ([35], Thm. 1.4), and ([36], Lems. 3.2 and 3.3) are essential in Sections 2.2 and 2.3.

Lemma 2.3 (Properties of Mittag–Leffler functions). Let 𝑟 be a real number with 𝛼𝜋
2 < 𝑟 < min{𝜋, 𝛼𝜋}, where

𝛼 ∈ (0, 2). Then for any real number 𝛽 and 𝑟 ≤ | arg 𝑧| ≤ 𝜋,

|𝐸𝛼,𝛽(𝑧)| .

{︃
1

1+|𝑧|2 , (𝛽 − 𝛼) ∈ Z− ∪ {0},
1

1+|𝑧| , otherwise.
(2.6)

Further, for 𝛼, 𝜇 > 0 and 𝑘 ∈ N,

d𝑘

d𝑡𝑘
𝐸𝛼,1(−𝜇𝑡𝛼) = −𝜇𝑡𝛼−𝑘𝐸𝛼,𝛼−𝑘+1(−𝜇𝑡𝛼), 𝑡 ∈ (0, 𝑇 ],

𝐸𝛼,𝛼(−𝜇) ≥ 0, 𝛼 ∈ (0, 1), 𝜇 ≥ 0.
(2.7)

2.2. Well-posedness

Definition 2.4 (Weak solution). Let us assume that 𝑢0 ∈ 𝐿2(Ω) and 𝑓 ∈ 𝑊 1,1(0, 𝑇 ;𝑉 *). A function 𝑢 ∈
𝐿1(0, 𝑇 ;𝑉 ) ∩𝑊 1,1(0, 𝑇 ;𝑉 *) is called a weak solution to (1.1) if the following identities hold.

𝜕𝛼
𝑡 ⟨𝑢(𝑡), 𝑣⟩+ 𝑎(𝑢(𝑡), 𝑣) = ⟨𝑓(𝑡), 𝑣⟩ in 𝐿1(0, 𝑇 ) for all 𝑣 ∈ 𝑉, (2.8)

and
lim
𝑡→0

‖𝑢(𝑡)− 𝑢0‖𝑉 * = 0.

Remark 2.5. Since we have

‖𝜕𝛼
𝑡 ⟨𝑢(𝑡), 𝑣⟩‖𝐿1(0,𝑇 ) =

⃦⃦⃦⃦ˆ 𝑡

0

(𝑡− 𝑠)−𝛼

Γ(1− 𝛼)
⟨𝑢′(𝑠), 𝑣⟩d𝑠

⃦⃦⃦⃦
𝐿1(0,𝑇 )

. ‖⟨𝑢′(·), 𝑣⟩‖𝐿1(0,𝑇 )

. ‖𝑢′‖𝐿1(0,𝑇 ;𝑉 *)‖𝑣‖𝑉 for all 𝑣 ∈ 𝑉,

we can define 𝜕𝛼
𝑡 𝑢 in 𝐿1(0, 𝑇 ;𝑉 *) by the equation

⟨𝜕𝛼
𝑡 𝑢(𝑡), 𝑣⟩ := 𝜕𝛼

𝑡 ⟨𝑢(𝑡), 𝑣⟩ for all 𝑣 ∈ 𝑉 and all 𝑡 ∈ (0, 𝑇 ].

Theorem 2.6 (Well-posedness of (1.1)). Assume that 𝑢0 ∈ 𝐿2(Ω) and 𝑓 ∈𝑊 1,1(0, 𝑇 ;𝑉 *). Then, (1.1) admits
a unique weak solution determined by

𝑢(𝑡) = 𝐸(𝑡)𝑢0 +
ˆ 𝑡

0

𝐹 (𝑡− 𝑠)𝑓(𝑠) d𝑠, (2.9)

with the operators 𝐸(𝑡) ∈ ℒ(𝐿2(Ω)) and 𝐹 (𝑡) ∈ ℒ(𝑉 *) defined by

𝐸(𝑡)𝑢0 =
∞∑︁

𝑗=1

(𝑢0, 𝜑𝑗)𝐸𝛼,1(−𝜇𝑗𝑡
𝛼)𝜑𝑗(𝑥),

𝐹 (𝑡)𝑓(·) =
∞∑︁

𝑗=1

⟨𝑓(·), 𝜑𝑗⟩𝑡𝛼−1𝐸𝛼,𝛼(−𝜇𝑗𝑡
𝛼)𝜑𝑗(𝑥), 𝑡 ∈ (0, 𝑇 ].

(2.10)
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Moreover, we have

‖𝑢‖𝐿1(0,𝑇 ;𝑉 ) + ‖𝑢′‖𝐿1(0,𝑇 ;𝑉 *) . ‖𝑢0‖+ ‖𝑓‖𝑊 1,1(0,𝑇 ;𝑉 *). (2.11)

The following stability properties of the solution operator 𝐹 (𝑡) of the nonhomogeneous problem are essential
in the proof of Theorems 2.6 and 2.10. For related results of second-order time-fractional differential equations,
we refer to Lemma 2.2 of [21].

Lemma 2.7 (Stability). For 𝑞 ≥ −1, 𝑡 ∈ (0, 𝑇 ], and 𝑣 ∈ 𝐷(𝐴𝑞/2), we have

‖𝐹 (𝑡)𝑣‖𝐷(𝐴𝑝/2) . 𝑡
−1+

(︀
1+

(𝑞−𝑝)
2

)︀
𝛼‖𝑣‖𝐷(𝐴𝑞/2), 0 ≤ 𝑝− 𝑞 ≤ 4.

Proof. In view of (2.10), (2.4) (or (2.5)), and (2.6), we obtain

‖𝐹 (𝑡)𝑣‖2𝐷(𝐴𝑝/2) =
∞∑︁

𝑗=1

𝜇𝑝
𝑗 𝑡

2𝛼−2|𝐸𝛼,𝛼(−𝜇𝑗𝑡
𝛼)|2|⟨𝑣, 𝜑𝑗⟩|2 . 𝑡2𝛼−2

∞∑︁
𝑗=1

𝜇𝑝
𝑗

(1 + (𝜇𝑗𝑡𝛼)2)2
|⟨𝑣, 𝜑𝑗⟩|2

= 𝑡2𝛼−2+(𝑞−𝑝)𝛼
∞∑︁

𝑗=1

(𝜇𝑗𝑡
𝛼)𝑝−𝑞

(1 + (𝜇𝑗𝑡𝛼)2)2
𝜇𝑞

𝑗 |⟨𝑣, 𝜑𝑗⟩|2 ≤ 𝑡2𝛼−2+(𝑞−𝑝)𝛼‖𝑣‖2𝐷(𝐴𝑞/2),

where we have used (𝜇𝑗𝑡𝛼)𝑝−𝑞

(1+(𝜇𝑗𝑡𝛼)2)2 ≤ 1 for 0 ≤ 𝑝− 𝑞 ≤ 4 and 𝑗 ∈ N. This concludes the proof. �

Proof of Theorem 2.6. The statement follows from standard arguments using the stated properties of the
Mittag–Leffler functions from Lemma 2.3 to show the claimed regularity 𝑢 ∈ 𝐿1(0, 𝑇 ;𝑉 ) ∩ 𝑊 1,1(0, 𝑇 ;𝑉 *).
The details of the proof are omitted for the sake of brevity. For a complete proof, see [31]. �

2.3. Regularity results

The following regularity results for the solutions of both homogeneous and nonhomogeneous problems are
employed in the error analysis.

Theorem 2.8 (Regularity for homogeneous case). Let 𝑢 be the solution of (1.1) with 𝑓 = 0. Then, for 𝑡 ∈ (0, 𝑇 ],
the following results hold true:

(i) (Nonsmooth initial data) For 𝑢0 ∈ 𝐿2(Ω), we have

‖𝑢(𝑖)(𝑡)‖𝐷(𝐴𝑝) . 𝑡
−(𝑖+𝛼𝑝)‖𝑢0‖ for 𝑖 ∈ {0, 1}, 0 ≤ 𝑝 ≤ 1, (2.12)

‖𝑢′′(𝑡)‖ . 𝑡−2‖𝑢0‖, (2.13)
‖𝜕𝛼

𝑡 𝑢(𝑡)‖ . 𝑡−𝛼‖𝑢0‖. (2.14)

In addition, ‖𝑢‖𝐶([0,𝑇 ];𝐿2(Ω)) . ‖𝑢0‖.
(ii) (Smooth initial data) For 𝑢0 ∈ 𝐷(𝐴),

‖𝑢(𝑡)‖𝐷(𝐴) . ‖𝑢0‖𝐷(𝐴) (2.15)

‖𝑢′(𝑡)‖𝐷(𝐴𝑝) . 𝑡
−(1+𝛼(𝑝−1))‖𝑢0‖𝐷(𝐴) for 0 ≤ 𝑝 ≤ 1, (2.16)

‖𝑢′′(𝑡)‖ . 𝑡𝛼−2‖𝑢0‖𝐷(𝐴), (2.17)
‖𝜕𝛼

𝑡 𝑢(𝑡)‖ . ‖𝑢0‖𝐷(𝐴). (2.18)

Furthermore, ‖𝑢‖𝐶([0,𝑇 ];𝐷(𝐴)) . ‖𝑢0‖𝐷(𝐴).
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Remark 2.9. In view of the estimates in Theorem 2.8(i) and (ii), by means of interpolation we obtain for time
𝑡 ∈ (0, 𝑇 ],

‖𝑢(𝑡)‖𝐷(𝐴𝑝) . 𝑡
−𝛼(𝑝−𝑞)‖𝑢0‖𝐷(𝐴𝑞) for 0 ≤ 𝑞 ≤ 𝑝 ≤ 1,

‖𝑢′(𝑡)‖𝐷(𝐴𝑝) . 𝑡
−(1+𝛼(𝑝−𝑞))‖𝑢0‖𝐷(𝐴𝑞) for 0 ≤ 𝑝, 𝑞 ≤ 1,

‖𝑢′′(𝑡)‖ . 𝑡𝑞𝛼−2‖𝑢0‖𝐷(𝐴𝑞) for 0 ≤ 𝑞 ≤ 1, and,

‖𝜕𝛼
𝑡 𝑢(𝑡)‖ . 𝑡−(1−𝑞)𝛼‖𝑢0‖𝐷(𝐴𝑞) for 0 ≤ 𝑞 ≤ 1.

Theorem 2.10 (Regularity for nonhomogeneous case with zero initial data). Let 𝑢 be the solution of (1.1)
with 𝑢0 = 0 and 𝑓 ∈𝑊 1,∞([0, 𝑇 ];𝐷(𝐴𝑞/2)) ∩𝑊 2,1(0, 𝑇 ;𝐿2(Ω)), 𝑞 ∈ [−1, 1]. Then, for all 𝜖 ∈ (0, 1), we have

‖𝑢(𝑡)‖𝐷(𝐴𝑞/2+1−𝜖/2) . 𝜖
−1𝑡𝛼𝜖/2‖𝑓‖𝐿∞(0,𝑡;𝐷(𝐴𝑞/2)), 𝑡 ∈ [0, 𝑇 ], (2.19)

‖𝑢′(𝑡)‖𝐷(𝐴𝑞/2+1−𝜖/2) . 𝜖
−1𝑡𝛼𝜖/2‖𝑓 ′‖𝐿∞(0,𝑡;𝐷(𝐴𝑞/2)) + 𝑡−1+𝛼𝜖/2‖𝑓(0)‖𝐷(𝐴𝑞/2), 𝑡 ∈ (0, 𝑇 ], (2.20)

‖𝑢′′(𝑡)‖ . ℐ𝛼‖𝑓 ′′(·)‖(𝑡) + 𝑡𝛼−1‖𝑓 ′(0)‖+ 𝑡𝛼−2‖𝑓(0)‖, 𝑡 ∈ (0, 𝑇 ], (2.21)

‖𝜕𝛼
𝑡 𝑢(𝑡)‖ . 𝜖−1𝑡𝛼𝜖/2‖𝑓‖𝐿∞(0,𝑡;𝐷(𝐴𝜖/2)) + ‖𝑓(𝑡)‖, 𝑡 ∈ [0, 𝑇 ]. (2.22)

Remark 2.11. The combination of (2.16) with 𝛽 ∈ [1/2, 1) and (2.20) with 𝑞 ∈ [2𝛽 − 2 + 𝜖, 1] results in the
following estimate for the solution 𝑢 of (1.1): For 𝑡 ∈ (0, 𝑇 ],

‖𝑢′(𝑡)‖𝐷(𝐴𝛽) . 𝑡
−1+𝛼(1−𝛽)‖𝑢0‖𝐷(𝐴) + 𝜖−1𝑡𝛼𝜖/2‖𝑓 ′‖𝐿∞(0,𝑡;𝐷(𝐴𝑞/2)) + 𝑡−1+𝛼𝜖/2‖𝑓(0)‖𝐷(𝐴𝑞/2).

Proofs of Theorems 2.8 and 2.10. The proofs of these assertions are based on the solution representation in
(2.9), the properties of Mittag–Leffler functions in (2.6) and (2.7), and Lemma 2.7. For details, see [31]. �

3. Semidiscrete scheme

In this section, we describe the lowest-order finite element discretization schemes for the spatial variable in
Section 3.1. The Ritz projection operator and its approximation properties are stated in Section 3.2.

3.1. Lowest-order finite element discretizations

Let 𝒯 denote a shape regular triangulation of the polygonal Lipschitz domain into compact triangles. Asso-
ciate its piecewise constant mesh-size ℎ𝒯 ∈ 𝑃0(𝒯 ) with ℎ𝐾 := ℎ𝒯 |𝐾 := diam(𝐾) ≈ |𝐾|1/2 in any triangle
𝐾 ∈ 𝒯 of area |𝐾| and its maximal mesh-size ℎ := max ℎ𝒯 . Let 𝒱 (resp. 𝒱(Ω) or 𝒱(𝜕Ω)) denote the set of all
(resp. interior or boundary) vertices in 𝒯 . Let ℰ (resp. ℰ(Ω) or ℰ(𝜕Ω)) denote the set of all (resp. interior or
boundary) edges. The length of an edge 𝑒 is denoted by ℎ𝑒. Let the Hilbert space 𝐻𝑚(𝒯 ) ≡

∏︀
𝐾∈𝒯 𝐻

𝑚(𝐾).
The edge-patch 𝜔(𝑒) := int(𝐾+ ∪ 𝐾−) of the interior edge 𝑒 = 𝜕𝐾+ ∩ 𝜕𝐾− ∈ ℰ(Ω) is the interior of union
𝐾+∪𝐾− of the neighboring triangles 𝐾+ and 𝐾−; the jump and average of 𝜙 are defined by

[︀[︀
𝜙
]︀]︀

:= 𝜙|𝐾+−𝜙|𝐾−
and

{︀{︀
𝜙
}︀}︀

:= 1
2

(︀
𝜙|𝐾+ + 𝜙|𝐾−

)︀
across the interior edge 𝑒 of the adjacent triangles 𝐾+ and 𝐾− ∈ 𝒯 in an order

such that the unit normal vector 𝜈𝐾+ |𝑒 = 𝜈𝑒 = −𝜈𝐾− |𝑒 along the edge 𝑒 has a fixed orientation and points
outside 𝐾+ and inside 𝐾−; 𝜈𝐾 is the outward unit normal of 𝐾 along 𝜕𝐾. Further for 𝑒 ∈ ℰ(𝜕Ω), define
𝜔(𝑒) := int(𝐾), and the jump and average by

[︀[︀
𝜙
]︀]︀

:= 𝜙|𝑒 and
{︀{︀
𝜙
}︀}︀

:= 𝜙|𝑒. For functions in 𝐻2
0 (Ω), the notation

||| · ||| := | · |𝐻2(Ω) stands for the energy norm. The notation ||| · |||pw := | · |𝐻2(𝒯 ) := ‖𝐷2
pw · ‖ refers to the piecewise

energy norm with the piecewise Hessian 𝐷2
pw. Define the piecewise polynomials space 𝑃𝑟(𝒯 ) of degree 𝑟 ∈ N by

𝑃𝑟(𝒯 ) = {𝑣 ∈ 𝐿2(Ω) : 𝑣|𝐾 ∈ 𝑃𝑟(𝐾) for all 𝐾 ∈ 𝒯 }.
The nonconforming Morley finite element space M(𝒯 ) [10] is defined as

M(𝒯 ) := {𝜒ℎ ∈ 𝑃2(𝒯 ) : 𝜒ℎ is continuous at the vertices and its normal derivative 𝜕𝜒ℎ/𝜕𝜈 is
continuous at the midpoints of interior edges, 𝜒ℎ vanishes at the vertices on 𝜕Ω
and its normal derivative 𝜕𝜒ℎ/𝜕𝜈 vanishes at the midpoints of boundary edges}.
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On a finite-dimensional space 𝑉ℎ ⊂ 𝐻2(𝒯 ), define a mesh-dependent broken norm [8] by

‖𝜒ℎ‖2ℎ =
∑︁
𝐾∈𝒯

|𝜒ℎ|2𝐻2(𝐾) +
∑︁
𝑒∈ℰ

∑︁
𝑧∈𝒱(𝑒)

ℎ−2
𝑒

⃒⃒[︀[︀
𝜒ℎ

]︀]︀
(𝑧)
⃒⃒2 +

∑︁
𝑒∈ℰ

⃒⃒⃒⃒ 
𝑒

[︂[︂
𝜕𝜒ℎ

𝜕𝜈

]︂]︂
d𝑠
⃒⃒⃒⃒2
, (3.1)

where
ffl

𝑒
denotes the integral mean over the edge 𝑒. In particular, for 𝜒ℎ ∈ M(𝒯 ), ‖𝜒ℎ‖ℎ = |||𝜒ℎ|||pw as the

jump terms in (3.1) vanish. Further, the discrete bilinear form 𝑎ℎ : (𝑉ℎ + M(𝒯 ))× (𝑉ℎ + M(𝒯 )) → R in all the
examples in this paper has the form

𝑎ℎ(·, ·) = 𝑎pw(·, ·) + 𝑏ℎ(·, ·) + 𝑐ℎ(·, ·),

and satisfies (H) below.

(H) 𝑎ℎ(·, ·) is symmetric, positive-definite, and continuous on 𝑉ℎ with respect to the discrete norm ‖ · ‖ℎ, i.e.,
∃ constants 𝛽1, 𝛽2 > 0 independent of ℎ such that, for all 𝑤ℎ, 𝜒ℎ ∈ 𝑉ℎ, 𝑎ℎ(𝑤ℎ, 𝜒ℎ) = 𝑎ℎ(𝜒ℎ, 𝑤ℎ) and

𝑎ℎ(𝜒ℎ, 𝜒ℎ) ≥ 𝛽1‖𝜒ℎ‖2ℎ and 𝑎ℎ(𝑤ℎ, 𝜒ℎ) ≤ 𝛽2‖𝑤ℎ‖ℎ‖𝜒ℎ‖ℎ. (3.2)

The semidiscrete problem that corresponds to the weak formulation in Definition 2.4 seeks 𝑢ℎ ∈𝑊 1,1(0, 𝑇 ;𝑉ℎ)
such that

𝜕𝛼
𝑡 (𝑢ℎ(𝑡), 𝜒ℎ) + 𝑎ℎ(𝑢ℎ(𝑡), 𝜒ℎ) = (𝑓(𝑡), 𝜒ℎ) for all 𝜒ℎ ∈ 𝑉ℎ, 0 < 𝑡 ≤ 𝑇,

𝑢ℎ(0) = 𝑃ℎ𝑢0 ∈ 𝑉ℎ.
(3.3)

Here 𝑃ℎ : 𝐿2(Ω) → 𝑉ℎ denotes the 𝐿2-projection defined by (𝑃ℎ𝑣, 𝜒ℎ) = (𝑣, 𝜒ℎ) for all 𝜒ℎ ∈ 𝑉ℎ.
Now we present Examples 3.1–3.3 below for which the discrete bilinear form 𝑎ℎ(·, ·) satisfies (H) ([7], Sect. 5).

Example 3.1 (Morley). In this case, 𝑉ℎ := M(𝒯 ), and for all 𝑤ℎ, 𝜒ℎ ∈ M(𝒯 ),

𝑎ℎ(𝑤ℎ, 𝜒ℎ) := 𝑎pw(𝑤ℎ, 𝜒ℎ) :=
ˆ

Ω

𝐷2
pw𝑤ℎ : 𝐷2

pw𝜒ℎ d𝑥.

The discrete Morley norm on 𝑉ℎ is defined by ||| · |||ℎ = ||| · |||pw = 𝑎pw(·, ·)1/2. Notice that this norm is equivalent
on 𝑉ℎ to that introduced in (3.1).

Example 3.2 (dG). Choose 𝑉ℎ := 𝑃2(𝒯 ), and for all 𝑤ℎ, 𝜒ℎ ∈ 𝑉ℎ, let

𝑎ℎ(𝑤ℎ, 𝜒ℎ) := 𝑎pw(𝑤ℎ, 𝜒ℎ) + 𝑏ℎ(𝑤ℎ, 𝜒ℎ) + 𝑐dG(𝑤ℎ, 𝜒ℎ),

𝑏ℎ(𝑤ℎ, 𝜒ℎ) := −𝒥 (𝑤ℎ, 𝜒ℎ)− 𝒥 (𝜒ℎ, 𝑤ℎ),𝒥 (𝑤ℎ, 𝜒ℎ) :=
∑︁
𝑒∈ℰ

ˆ
𝑒

[︀[︀
∇𝑤ℎ

]︀]︀
·
{︀{︀
𝐷2

pw𝜒ℎ

}︀}︀
𝜈 d𝑠,

𝑐dG(𝑤ℎ, 𝜒ℎ) :=
∑︁
𝑒∈ℰ

(︂
𝜎1

dG

ℎ3
𝑒

ˆ
𝑒

[︀[︀
𝑤ℎ

]︀]︀[︀[︀
𝜒ℎ

]︀]︀
d𝑠+

𝜎2
dG

ℎ𝑒

ˆ
𝑒

[︂[︂
𝜕𝑤ℎ

𝜕𝜈

]︂]︂[︂[︂
𝜕𝜒ℎ

𝜕𝜈

]︂]︂
d𝑠
)︂
,

where 𝜎1
dG, 𝜎2

dG > 0 are the penalty parameters and 𝑎pw(·, ·) is as defined in Example 3.1. The dG norm ‖ · ‖dG

on 𝑃2(𝒯 ) is defined by ‖𝑤ℎ‖dG = (|||𝑤ℎ|||2pw + 𝑐dG(𝑤ℎ, 𝑤ℎ))1/2, 𝑤ℎ ∈ 𝑉ℎ. As in the previous example, this norm
is equivalent on 𝑉ℎ to that introduced in (3.1).

Example 3.3 (𝐶0IP). Choose 𝑉ℎ := 𝑃2(𝒯 ) ∩𝐻1
0 (Ω) and for all 𝑤ℎ, 𝜒ℎ ∈ 𝑉ℎ, define

𝑎ℎ(𝑤ℎ, 𝜒ℎ) := 𝑎pw(𝑤ℎ, 𝜒ℎ) + 𝑏ℎ(𝑤ℎ, 𝜒ℎ) + 𝑐IP(𝑤ℎ, 𝜒ℎ),

𝑐IP(𝑤ℎ, 𝜒ℎ) :=
∑︁
𝑒∈ℰ

𝜎IP

ℎ𝑒

ˆ
𝑒

[︂[︂
𝜕𝑤ℎ

𝜕𝜈

]︂]︂[︂[︂
𝜕𝜒ℎ

𝜕𝜈

]︂]︂
d𝑠,



52 S. MAHATA ET AL.

where 𝜎IP is a positive parameter, 𝑎pw(·, ·) and 𝑏ℎ(·, ·) are as defined in Examples 3.1 and 3.2. The discrete
norm ‖ · ‖IP on the space 𝑉ℎ reads ‖𝑤ℎ‖IP = (|||𝑤ℎ|||2pw + 𝑐IP(𝑤ℎ, 𝑤ℎ))1/2 for 𝑤ℎ ∈ 𝑉ℎ. In this example as well,
‖ · ‖IP is equivalent on 𝑉ℎ to that introduced in (3.1).

The equivalence of the common norm ‖ ·‖ℎ with the norms defined in the Examples 3.1-3.3 (see [7]) is helpful
in the proofs of the approximation properties of the Ritz projection in the next section.

3.2. Ritz projection and its approximation properties

We introduce the Ritz projection which is the elliptic projection for the biharmonic problem and state its
approximation properties. The Ritz projection ℛℎ : 𝑉 → 𝑉ℎ is defined by

𝑎ℎ(ℛℎ𝑣, 𝜒ℎ) = 𝑎(𝑣,𝑄𝜒ℎ) for all 𝜒ℎ ∈ 𝑉ℎ and 𝑣 ∈ 𝑉, (3.4)

where 𝑄 := 𝐽𝐼M is a smoother defined from 𝐻2(𝒯 ) to 𝑉 , with 𝐼M : 𝐻2(𝒯 ) → M(𝒯 ) and 𝐽 : M(𝒯 ) → 𝑉 denoting
the extended Morley interpolation operator and the companion operator, respectively (see appendix of [31] for
the details of the definitions and properties of the interpolation and companion operators). The Lax–Milgram
lemma shows that the projection ℛℎ is a well-defined operator on 𝑉 .

In the semidiscrete error analysis discussed in Section 4, the error 𝑢(𝑡)−𝑢ℎ(𝑡) is split by introducing the Ritz
projection ℛℎ as

𝑢(𝑡)− 𝑢ℎ(𝑡) = (𝑢(𝑡)−ℛℎ𝑢(𝑡)) + (ℛℎ𝑢(𝑡)− 𝑢ℎ(𝑡)).

Given the approximation properties for the Ritz projection from Lemma 3.4, the main task will be to establish
bounds for 𝑢ℎ(𝑡)−ℛℎ𝑢(𝑡) in the next section.

Lemma 3.4 (Approximation properties [7, 31]). For any 𝑣 ∈ 𝑉 and the Ritz projection ℛℎ : 𝑉 → 𝑉ℎ defined
in (3.4), the approximation properties in the energy and 𝐿2 norms stated below hold.

‖𝑣 −ℛℎ𝑣‖+ ℎ𝛾‖𝑣 −ℛℎ𝑣‖ℎ . ℎ
2𝛾‖𝑣‖𝐻2+𝛾(Ω),

for all 𝛾 ∈ [0, 𝛾0] and for all 𝑣 ∈ 𝐻2+𝛾(Ω), where 𝛾0 ∈ (1/2, 1] is the regularity index introduced in Remark 2.1.

In the error analysis, we also need the following approximation property of the operator 𝑄 for piecewise
quadratic functions.

Lemma 3.5 ([7], Thm. 4.5(d)). For any 𝜒ℎ ∈ 𝑃2(𝒯 ), the operator 𝑄 = 𝐽𝐼M satisfies

‖𝜒ℎ −𝑄𝜒ℎ‖𝐻𝑠(𝒯 ) ≤ 𝐶1ℎ
2−𝑠 min

𝑣∈𝑉
‖𝑣 − 𝜒ℎ‖ℎ for any 0 ≤ 𝑠 ≤ 2 and a constant 𝐶1 > 0.

4. Semidiscrete error estimates

In this section, we derive error bounds for the semidiscrete scheme for both smooth and nonsmooth initial
data. To start with, in Section 4.1, we state some important properties of fractional integrals that are relevant
in the context. This is followed by the main results of this section and their proofs in Sections 4.2 and 4.3.

4.1. Properties of Riemann–Liouville fractional integrals

For all 𝛼 ∈ (0,∞), all 𝛽 ∈ (0,∞) satisfying 𝛼 + 𝛽 ≥ 1, all 𝑣 ∈ 𝐿1(0, 𝑇 ), the operators ℐ𝛼 and ℐ𝛽 (cf. (1.3))
satisfy

ℐ𝛼ℐ𝛽𝑣(𝑡) = ℐ𝛼+𝛽𝑣(𝑡), for almost all 𝑡 ∈ (0, 𝑇 ). (4.1)

If 𝑣 ∈ 𝐶([0, 𝑇 ]), then (4.1) is satisfied at all points 𝑡 ∈ [0, 𝑇 ] and 𝛼, 𝛽 > 0 (cf. ([37], p. 34)). Recall that
𝜅𝛼(𝑡) := 𝑡𝛼−1/Γ(𝛼). In the rest of this subsection, we assume that 0 < 𝛼 < 1, and so 0 < 1− 𝛼 < 1. The three



LOWEST-ORDER NONSTANDARD FINITE ELEMENT METHODS 53

identities below hold for 𝑣1(𝑡) = 𝑡𝑣(𝑡) and 𝑣2(𝑡) = 𝑡2𝑣(𝑡) for 𝑡 ∈ [0, 𝑇 ] (see Lem. 2 of [22] and Lem. 2.1 of [32]
for a proof).

𝑡ℐ𝛼𝑣(𝑡) = ℐ𝛼𝑣1(𝑡) + 𝛼ℐ𝛼+1𝑣(𝑡), (4.2)
𝑡ℐ𝛼𝑣′(𝑡) = ℐ𝛼(𝑣1)′(𝑡) + (𝛼− 1)ℐ𝛼𝑣(𝑡)− 𝑡𝜅𝛼(𝑡)𝑣(0), (4.3)
𝑡2ℐ𝛼𝑣′(𝑡) = ℐ𝛼(𝑣2)′(𝑡) + 2(𝛼− 1)ℐ𝛼𝑣1(𝑡) + 𝛼(𝛼− 1)ℐ𝛼+1𝑣(𝑡)− 𝑡2𝜅𝛼(𝑡)𝑣(0). (4.4)

For 𝜑, 𝑣 ∈ 𝐿2(0, 𝑇 ;𝐿2(Ω)), since cos(𝛼𝜋/2)− (1−𝛼) ≥ 0, the following continuity property with any positive 𝜗
holds for ℐ1−𝛼 ([33], Lem. 3.1(iii)):

ˆ 𝑡

0

(ℐ1−𝛼𝜑, 𝑣) d𝑠 ≤ 𝜗

ˆ 𝑡

0

(ℐ1−𝛼𝑣, 𝑣) d𝑠+
1

4𝜗(1− 𝛼)2

ˆ 𝑡

0

(ℐ1−𝛼𝜑, 𝜑) d𝑠. (4.5)

If 𝑣 : [0, 𝑇 ] → 𝐿2(Ω) is a piecewise continuous function in time, then ℐ𝛼 satisfies ([33], Lem. 3.1(ii))
ˆ 𝑇

0

(ℐ𝛼𝑣, 𝑣) d𝑡 ≥ cos(𝛼𝜋/2)
ˆ 𝑇

0

‖ℐ𝛼/2𝑣‖2 d𝑡 ≥ 0. (4.6)

In addition, if 𝑣′ : [0, 𝑇 ] → 𝐿2(Ω) is a piecewise continuous function in time, then for 𝑡 ∈ (0, 𝑇 ], it follows from
Lemma 2.1 of [24] that

‖𝑣(𝑡)− 𝑣(0)‖2 . 𝑡𝛼
ˆ 𝑡

0

‖ℐ(1−𝛼)/2𝑣′‖2 d𝑠 . 𝑡𝛼
ˆ 𝑡

0

(ℐ1−𝛼𝑣′, 𝑣′) d𝑠, (4.7)

where the last inequality follows from (4.6).
The proofs of this section use the inequality below frequently. For 𝑎, 𝑏 ≥ 0, it holds that

(𝑎+ 𝑏)2 . (𝑎2 + 𝑏2) . (𝑎+ 𝑏)2. (4.8)

4.2. Main results

For the semidiscrete error analysis, we split the error 𝑢(𝑡)−𝑢ℎ(𝑡) by introducing the Ritz projection ℛℎ from
(3.4) as

𝑢(𝑡)− 𝑢ℎ(𝑡) =: 𝜌(𝑡) + 𝜃(𝑡), (4.9)

with
𝜌(𝑡) := 𝑢(𝑡)−ℛℎ𝑢(𝑡) and 𝜃(𝑡) := ℛℎ𝑢(𝑡)− 𝑢ℎ(𝑡).

Let

Λ0(𝜖, 𝑡) := ‖𝑢0‖𝐷(𝐴) + 𝜖−1𝑡𝛼𝜖/2‖𝑓‖𝐿∞(0,𝑇 ;𝐷(𝐴𝜖/2)), 𝜖 ∈ (0, 1), 𝑡 ∈ [0, 𝑇 ]. (4.10)

Recall that 𝐷(𝐴) ⊂ 𝑉 ∩ 𝐻2+𝛾*(Ω) ⊂ 𝑉 ∩ 𝐻2+𝛾0(Ω). For the homogeneous problem, using (2.12) with 𝑖 = 0,
𝑝 = 1, and for the nonhomogeneous problem, applying (2.15) and (2.19) with 𝑞 = 𝜖 we obtain

‖𝑢(𝑡)‖𝐻2+𝛾0 (Ω) .

{︃
𝑡−𝛼‖𝑢0‖ for 𝑢0 ∈ 𝐿2(Ω) and 𝑓 = 0, 𝑡 ∈ (0, 𝑇 ],
Λ0(𝜖, 𝑡) for 𝑢0 ∈ 𝐷(𝐴) and 𝑓 ̸= 0, 𝑡 ∈ [0, 𝑇 ].

This and Lemma 3.4 establish the estimates for 𝜌(𝑡) as given below.

‖𝜌(𝑡)‖+ ℎ𝛾0‖𝜌(𝑡)‖ℎ .

{︃
ℎ2𝛾0𝑡−𝛼‖𝑢0‖ for 𝑢0 ∈ 𝐿2(Ω) and 𝑓 = 0, 𝑡 ∈ (0, 𝑇 ],
ℎ2𝛾0Λ0(𝜖, 𝑡) for 𝑢0 ∈ 𝐷(𝐴) and 𝑓 ̸= 0, 𝑡 ∈ [0, 𝑇 ].

(4.11)
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Hence the main task in the remaining part of this section is to bound 𝜃(𝑡) in the 𝐿2(Ω) and energy norms. For
𝑡 ∈ [0, 𝑇 ] and an 𝜖 ∈ (0, 1) (determined by the smoothness of 𝑓), set

Λ1(𝜖, 𝑡) := 𝑡
3
2 ‖𝑢0‖𝐷(𝐴) + 𝑡

3
2−𝛼(1− 𝜖

2 )‖𝑓(0)‖
𝐷
(︁

𝐴
𝜖
2
)︁ + 𝑡‖𝑓‖𝐿2(0,𝑡;𝐿2(Ω))

+ 𝜖−1𝑡
5
2−𝛼(1− 𝜖

2 )‖𝑓 ′‖
𝐿∞
(︁
0,𝑇 ;𝐷

(︁
𝐴

𝜖
2
)︁)︁

Λ2(𝜖, 𝑡) := 𝑡
3
2 ‖𝑢0‖𝐷(𝐴) +𝐵

(︁𝛼𝜖
2
, 1− 𝛼

)︁
𝑡

3
2−𝛼(1− 𝜖

2 )‖𝑓(0)‖
𝐷
(︁

𝐴
𝜖
2
)︁ + 𝑡‖𝑓‖𝐿2(0,𝑡;𝐿2(Ω))

+ 𝜖−1𝑡
5
2−𝛼(1− 𝜖

2 )‖𝑓 ′‖
𝐿∞
(︁
0,𝑇 ;𝐷

(︁
𝐴

𝜖
2
)︁)︁

ℬ0(𝜖, 𝑡) := ‖𝑢0‖𝐷(𝐴) + 𝜖−1𝑡
𝛼𝜖
2 ‖𝑓‖𝑊 1,∞(0,𝑇 ;𝐷(𝐴𝜖/2))

ℬ1(𝜖, 𝑡) := Λ1(𝜖, 𝑡) + Λ2(𝜖, 𝑡) + 𝑡2‖𝑓(𝑡)‖+ 𝑡‖𝑓‖𝐿2(0,𝑡;𝐿2(Ω)) + 𝑡2‖𝑓 ′‖𝐿2(0,𝑡;𝐿2(Ω))

+ 𝑡
3
2 (‖𝑓(0)‖+ 𝑡‖𝑓 ′(0)‖) + 𝑡5/2‖𝑓 ′′‖𝐿1(0,𝑇 ;𝐿2(Ω)),

(4.12)

where 𝐵(·, ·) denotes the standard beta function. Note that in the above expression and in the sequel, whenever
the norm of the function 𝑓 is dependent only on the space variable, we denote the dependence of 𝑓 on 𝑡 as 𝑓(𝑡);
if the norm is space-time dependent, the arguments in 𝑓 are omitted for notational brevity.

Theorem 4.1 (Estimates for 𝜃(𝑡)). Let 𝑢(𝑡) and 𝑢ℎ(𝑡) solve (1.1) and (3.3), respectively. Let ℛℎ𝑢(𝑡) denote
the Ritz projection of 𝑢(𝑡) defined in (3.4). Then for 𝜃(𝑡) = ℛℎ𝑢(𝑡)−𝑢ℎ(𝑡), the estimates in (i)–(ii) below hold.

(i) (Nonsmooth initial data) For 𝑢0 ∈ 𝐿2(Ω) and 𝑓 = 0,

‖𝜃(𝑡)‖+ 𝑡𝛼/2‖𝜃(𝑡)‖ℎ .
(︀
ℎ2𝛾0𝑡−𝛼 + ℎ2𝑡−(1+𝛼)/2

)︀
‖𝑢0‖, 𝑡 ∈ (0, 𝑇 ].

(ii) (Smooth initial data) For 𝑢0 ∈ 𝐷(𝐴), 𝑓 ∈𝑊 1,∞([0, 𝑇 ];𝐷(𝐴𝜖/2))∩𝑊 2,1(0, 𝑇 ;𝐿2(Ω)), and for all 𝜖 ∈ (0, 1),

‖𝜃(𝑡)‖+ 𝑡𝛼/2‖𝜃(𝑡)‖ℎ . ℎ
2𝛾0ℬ0(𝜖, 𝑡) + ℎ2𝑡𝛼/2−2ℬ1(𝜖, 𝑡), 𝑡 ∈ (0, 𝑇 ],

with ℬ0(𝜖, 𝑡) and ℬ1(𝜖, 𝑡) defined in (4.12).

A combination of the estimates for 𝜌(𝑡) from (4.11) and 𝜃(𝑡) from Theorem 4.1, shows the error estimates for
the semidiscrete scheme for both smooth and nonsmooth initial data in Theorem 4.2.

Theorem 4.2 (Error estimates). Let 𝑢(𝑡) and 𝑢ℎ(𝑡) be solutions of the continuous and semidiscrete problems
in (1.1) and (3.3), respectively.

(i) (Nonsmooth initial data) For 𝑢0 ∈ 𝐿2(Ω), source function 𝑓 = 0, 𝑢ℎ(0) = 𝑃ℎ𝑢0, and 𝑡 ∈ (0, 𝑇 ], it holds
that

‖𝑢(𝑡)− 𝑢ℎ(𝑡)‖ .
(︀
ℎ2𝛾0𝑡−𝛼 + ℎ2𝑡−(1+𝛼)/2

)︀
‖𝑢0‖,

‖𝑢(𝑡)− 𝑢ℎ(𝑡)‖ℎ . ℎ
𝛾0𝑡−𝛼‖𝑢0‖+

(︀
ℎ2𝛾0𝑡−3𝛼/2 + ℎ2𝑡−(𝛼+1/2)

)︀
‖𝑢0‖.

(ii) (Smooth initial data) For 𝑢0 ∈ 𝐷(𝐴), 𝑓 ∈ 𝑊 1,∞([0, 𝑇 ];𝐷(𝐴𝜖/2)) ∩ 𝑊 2,1(0, 𝑇 ;𝐿2(Ω)), 𝑢ℎ(0) = 𝑃ℎ𝑢0,
𝑡 ∈ (0, 𝑇 ], and for all 𝜖 ∈ (0, 1), it holds that

‖𝑢(𝑡)− 𝑢ℎ(𝑡)‖ . ℎ2𝛾0Λ0(𝜖, 𝑡) + ℎ2𝛾0ℬ0(𝜖, 𝑡) + ℎ2𝑡𝛼/2−2ℬ1(𝜖, 𝑡),

‖𝑢(𝑡)− 𝑢ℎ(𝑡)‖ℎ . ℎ
𝛾0Λ0(𝜖, 𝑡) + ℎ2𝛾0𝑡−𝛼/2ℬ0(𝜖, 𝑡) + ℎ2𝑡−2ℬ1(𝜖, 𝑡),

where Λ0(𝜖, 𝑡) and ℬ0(𝜖, 𝑡), ℬ1(𝜖, 𝑡) are defined, respectively, in (4.10) and (4.12).

Proof. The error decomposition (4.9), the triangle inequality, the first estimate in (4.11), and Theorem 4.1(i)
lead to the proof of (i). The proof of (ii) follows from (4.9), the triangle inequality, the second estimate in (4.11),
and Theorem 4.1(ii). �
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4.3. Proof of Theorem 4.1

First of all, a key inequality is proved in Lemma 4.3, and bounds for the terms appearing in this lemma are
established in Lemmas 4.5–4.8. A combination of these results establishes the proof of Theorem 4.1.

The following notations hold throughout this subsection.

𝜃1(𝑡) := 𝑡𝜃(𝑡), 𝜃2(𝑡) := 𝑡2𝜃(𝑡), and

̂︀𝑣(𝑡) := ℐ𝑣(𝑡) =
ˆ 𝑡

0

𝑣(𝑠) d𝑠, ̂︀̂︀𝑣(𝑡) := ℐ2𝑣(𝑡) =
ˆ 𝑡

0

ˆ 𝑠

0

𝑣(𝜏) d𝜏 d𝑠.

Recall the smoother 𝑄 from Section 3.2. For each 𝜒ℎ ∈ 𝑉ℎ, test (2.8) with 𝑄𝜒ℎ ∈ 𝑉 and subtract (3.3) from
(2.8) to obtain

(𝜕𝛼
𝑡 𝑢(𝑡), 𝑄𝜒ℎ)− (𝜕𝛼

𝑡 𝑢ℎ(𝑡), 𝜒ℎ) + (𝑎(𝑢(𝑡), 𝑄𝜒ℎ)− 𝑎ℎ(𝑢ℎ(𝑡), 𝜒ℎ)) = (𝑓(𝑡), (𝑄− 𝐼)𝜒ℎ).

Add and subtract (𝜕𝛼
𝑡 𝑢(𝑡), 𝜒ℎ), utilize (3.4) and 𝜃(𝑡) := 𝑅ℎ𝑢(𝑡) − 𝑢ℎ(𝑡) on the left-hand side of the above

expression to obtain

(𝜕𝛼
𝑡 (𝑢(𝑡)− 𝑢ℎ(𝑡)), 𝜒ℎ) + (𝜕𝛼

𝑡 𝑢(𝑡), (𝑄− 𝐼)𝜒ℎ) + 𝑎ℎ(𝜃(𝑡), 𝜒ℎ) = (𝑓(𝑡), (𝑄− 𝐼)𝜒ℎ).

Recall 𝑢(𝑡)−𝑢ℎ(𝑡) = 𝜌(𝑡)+𝜃(𝑡) and the notation from (1.2), that yields 𝜕𝛼
𝑡 𝜃(𝑡) = ℐ1−𝛼𝜃′(𝑡), 𝜕𝛼

𝑡 𝜌(𝑡) = ℐ1−𝛼𝜌′(𝑡),
and 𝜕𝛼

𝑡 𝑢(𝑡) = ℐ1−𝛼𝑢′(𝑡). For ease of notation in the subsequent estimates, we denote 𝜙(𝑡) := ℐ1−𝛼𝑢′(𝑡). Then
for all 𝜒ℎ ∈ 𝑉ℎ and 𝑡 ∈ (0, 𝑇 ], the above displayed identity leads to the error equation in 𝜃(𝑡) as

(ℐ1−𝛼𝜃′(𝑡), 𝜒ℎ) + 𝑎ℎ(𝜃(𝑡), 𝜒ℎ) = −(ℐ1−𝛼𝜌′(𝑡), 𝜒ℎ)− (𝜙(𝑡), (𝑄− 𝐼)𝜒ℎ) + (𝑓(𝑡), (𝑄− 𝐼)𝜒ℎ). (4.13)

Recall the notations

𝜃𝑖(𝑡) = 𝑡𝑖𝜃(𝑡), 𝜌𝑖(𝑡) = 𝑡𝑖𝜌(𝑡) for 𝑖 = 1, 2; 𝜙2(𝑡) = 𝑡2𝜙(𝑡), 𝑓2(𝑡) = 𝑡2𝑓(𝑡), ̂︀𝜃(𝑡) =
ˆ 𝑡

0

𝜃(𝑠) d𝑠,

̂︀𝜌(𝑡) =
ˆ 𝑡

0

𝜌(𝑠) d𝑠, 𝜌′2(𝑡) = (𝑡2𝜌(𝑡))′, 𝜙′2(𝑡) = (𝑡2𝜙(𝑡))′, 𝑓 ′2(𝑡) = (𝑡2𝑓(𝑡))′, and

𝜆(𝑡) = −𝜌′2(𝑡) + 2𝛼𝜌1(𝑡) + 𝛼(1− 𝛼)̂︀𝜌(𝑡).

Lemma 4.3 (Key inequality). If 𝜃 satisfies (4.13), then for time 𝑡 ∈ (0, 𝑇 ], it holds that

‖𝜃(𝑡)‖2 + 𝑡𝛼‖𝜃(𝑡)‖2ℎ . 𝑡𝛼−4

ˆ 𝑡

0

(︁
(ℐ1−𝛼̂︀𝜃, ̂︀𝜃) + (ℐ1−𝛼𝜃1, 𝜃1) + (ℐ1−𝛼𝜆, 𝜆)

)︁
d𝑠

+ ℎ4𝑡𝛼−4

(︂
‖𝜙2(𝑡)‖2 +

ˆ 𝑡

0

(‖𝜙2(𝑠)‖2 + ‖𝜙′2(𝑠)‖2) d𝑠+ ‖𝑓2(𝑡)‖2 +
ˆ 𝑡

0

(‖𝑓2(𝑠)‖2 + ‖𝑓 ′2(𝑠)‖2) d𝑠
)︂
.

Remark 4.4. Note the dependency of the variables ̂︀𝜃, ̂︀𝜃1, 𝜆, etc. on the time variable is suppressed in the above
and in the sequel for notational ease when there is no chance of confusion.

Proof. To prove the assertion, we first show that 𝜃2 ∈𝑊 1,1(0, 𝑇 ;𝑉ℎ) and 𝜙2 ∈𝑊 1,1(0, 𝑇 ;𝐿2(Ω)). For nonsmooth
initial data, from (2.12), it follows that

‖𝑢′(𝑡)‖𝑉 = ‖𝑢′(𝑡)‖𝐷(𝐴1/2) . 𝑡
−(1+𝛼/2)‖𝑢0‖.

From which, we deduce that
‖ℛℎ𝑢

′(𝑡)‖ℎ . 𝑡
−(1+𝛼/2)‖𝑢0‖,
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and that 𝑡 ↦→ 𝑡2ℛℎ𝑢(𝑡) belongs to 𝑊 1,1(0, 𝑇 ;𝑉ℎ). We already know that 𝑢ℎ belongs to 𝑊 1,1(0, 𝑇 ;𝑉ℎ). Thus 𝜃2
also belongs to 𝑊 1,1(0, 𝑇 ;𝑉ℎ). With (2.14), we have

‖𝜙(𝑡)‖ . 𝑡−𝛼‖𝑢0‖.

Thus 𝜙2 belongs to 𝑊 1,1(0, 𝑇 ;𝐿2(Ω)). A similar argument holds for smooth initial data.
Multiply both sides of (4.13) by 𝑡2, apply (4.4) (twice) to rewrite both 𝑡2ℐ1−𝛼𝜃′ and 𝑡2ℐ1−𝛼𝜌′, utilize (𝜌(0) +

𝜃(0), 𝜒ℎ) = 0 from the second identity in (3.3), and the definition of 𝜆 to obtain

(ℐ1−𝛼𝜃′2, 𝜒ℎ) + 𝑎ℎ(𝜃2, 𝜒ℎ) = 2𝛼(ℐ1−𝛼𝜃1, 𝜒ℎ) + 𝛼(1− 𝛼)(ℐ1−𝛼̂︀𝜃, 𝜒ℎ) + (ℐ1−𝛼𝜆, 𝜒ℎ)
− (𝜙2, (𝑄− 𝐼)𝜒ℎ) + (𝑓2, (𝑄− 𝐼)𝜒ℎ) for all 𝜒ℎ ∈ 𝑉ℎ.

Substitute 𝜒ℎ = 𝜃′2(𝑡) in the last displayed equation, integrate over (0, 𝑡), and apply (4.5) for the first three
terms on the right-hand side with the choice of 𝜗 as 1

2(2𝛼+𝛼(1−𝛼)+1) to obtain

ˆ 𝑡

0

(ℐ1−𝛼𝜃′2, 𝜃
′
2) d𝑠+

ˆ 𝑡

0

𝑎ℎ(𝜃2, 𝜃′2) d𝑠 ≤ 1
2

ˆ 𝑡

0

(ℐ1−𝛼𝜃′2, 𝜃
′
2) d𝑠+ 𝐶

ˆ 𝑡

0

(︁
(ℐ1−𝛼̂︀𝜃, ̂︀𝜃)

+ (ℐ1−𝛼𝜃1, 𝜃1) + (ℐ1−𝛼𝜆, 𝜆)
)︁

d𝑠−
ˆ 𝑡

0

(𝜙2, (𝑄− 𝐼)𝜃′2) d𝑠+
ˆ 𝑡

0

(𝑓2, (𝑄− 𝐼)𝜃′2) d𝑠.

The constant 𝐶 in the above inequality depends on 𝛼. The symmetry of 𝑎ℎ(·, ·) from (H) shows
2𝑎ℎ(𝜃2(𝑡), 𝜃′2(𝑡)) = d

d𝑡𝑎ℎ(𝜃2(𝑡), 𝜃2(𝑡)). This with (3.2), (4.7), and 𝜃2(0) = 0 on the left-hand side of the above
inequality establishes

𝑡−𝛼‖𝜃2(𝑡)‖2 + 𝛽1‖𝜃2(𝑡)‖2ℎ .
ˆ 𝑡

0

(︁
(ℐ1−𝛼̂︀𝜃, ̂︀𝜃) + (ℐ1−𝛼𝜃1, 𝜃1) + (ℐ1−𝛼𝜆, 𝜆)

)︁
d𝑠

+
⃒⃒⃒⃒ˆ 𝑡

0

(𝜙2, (𝑄− 𝐼)𝜃′2) d𝑠
⃒⃒⃒⃒

+
⃒⃒⃒⃒ˆ 𝑡

0

(𝑓2, (𝑄− 𝐼)𝜃′2) d𝑠
⃒⃒⃒⃒
. (4.14)

Now, the task is to bound the last two terms on the right-hand side of (4.14). Since 𝜃2 and 𝜙2 belong to
𝑊 1,1(0, 𝑇 ;𝐿2(Ω)), with an integration by parts, we have

𝑇1 :=
ˆ 𝑡

0

(𝜙2(𝑠), (𝑄− 𝐼)𝜃′2(𝑠)) d𝑠 = (𝜙2(𝑡), (𝑄− 𝐼)𝜃2(𝑡))−
ˆ 𝑡

0

(𝜙′2(𝑠), (𝑄− 𝐼)𝜃2(𝑠)) d𝑠.

The Hölder inequality and Lemma 3.5 show

|𝑇1| ≤ 𝐶1ℎ
2

(︂
‖𝜙2(𝑡)‖‖𝜃2(𝑡)‖ℎ +

ˆ 𝑡

0

‖𝜙′2(𝑠)‖‖𝜃2(𝑠)‖ℎ d𝑠
)︂

≤ 𝛽1

4
‖𝜃2(𝑡)‖2ℎ + 𝐶2

1𝛽
−1
1 ℎ4‖𝜙2(𝑡)‖2 +

1
2

ˆ 𝑡

0

‖𝜃2(𝑠)‖2ℎ d𝑠+
𝐶2

1ℎ
4

2

ˆ 𝑡

0

‖𝜙′2(𝑠)‖2 d𝑠,

with an application of Young’s inequality in the last step above. A similar approach is applied to bound the
term 𝑇2 :=

´ 𝑡

0
(𝑓2, (𝑄− 𝐼)𝜃′2) d𝑠 and leads to

|𝑇2| ≤ 𝐶1ℎ
2

(︂
‖𝑓2(𝑡)‖‖𝜃2(𝑡)‖ℎ +

ˆ 𝑡

0

‖𝑓 ′2(𝑠)‖‖𝜃2(𝑠)‖ℎ d𝑠
)︂

≤ 𝛽1

4
‖𝜃2(𝑡)‖2ℎ + 𝐶2

1𝛽
−1
1 ℎ4‖𝑓2(𝑡)‖2 +

1
2

ˆ 𝑡

0

‖𝜃2(𝑠)‖2ℎ d𝑠+
𝐶2

1ℎ
4

2

ˆ 𝑡

0

‖𝑓 ′2(𝑠)‖2 d𝑠.
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Substitute these bounds of |𝑇1| and |𝑇2| in (4.14) to obtain

𝑡−𝛼‖𝜃2(𝑡)‖2 + 𝛽1‖𝜃2(𝑡)‖2ℎ .
ˆ 𝑡

0

(︁
(ℐ1−𝛼̂︀𝜃, ̂︀𝜃) + (ℐ1−𝛼𝜃1, 𝜃1) + (ℐ1−𝛼𝜆, 𝜆)

)︁
d𝑠

+ ℎ4
(︁
‖𝜙2(𝑡)‖2 +

ˆ 𝑡

0

‖𝜙′2(𝑠)‖2 d𝑠+ ‖𝑓2(𝑡)‖2 +
ˆ 𝑡

0

‖𝑓 ′2(𝑠)‖2 d𝑠
)︁

+
ˆ 𝑡

0

‖𝜃2(𝑠)‖2ℎ d𝑠.

Apply Gronwall’s lemma in Lemma 2.2 with

𝜑(𝑡) = 𝑡−𝛼‖𝜃2(𝑡)‖2 + 𝛽1‖𝜃2(𝑡)‖2ℎ, 𝜒(𝑡) = 𝐶, and

𝜓(𝑡) = 𝐶

ˆ 𝑡

0

(︀
(ℐ1−𝛼̂︀𝜃, ̂︀𝜃) + (ℐ1−𝛼𝜃1, 𝜃1) + (ℐ1−𝛼𝜆, 𝜆)

)︀
d𝑠

+ 𝐶ℎ4

(︂
‖𝜙2(𝑡)‖2 +

ˆ 𝑡

0

‖𝜙′2(𝑠)‖2 d𝑠+ ‖𝑓2(𝑡)‖2 +
ˆ 𝑡

0

‖𝑓 ′2(𝑠)‖2 d𝑠
)︂
,

utilize (4.6),
´ 𝑡

0

´ 𝑠

0
𝑔(𝜏) d𝜏 d𝑠 .

´ 𝑡

0
𝑔(𝑠) d𝑠 for

´ 𝑡

0
𝑔(𝑠) d𝑠 > 0 (𝑔(𝑡) ≥ 0) and 𝑡 ∈ (0, 𝑇 ] for the terms corresponding

to a double integral in time, and recall 𝜃2(𝑡) = 𝑡2𝜃(𝑡) to conclude the proof. �

Lemmas 4.5–4.8 bound each term on the right-hand side of the estimate in Lemma 4.3.
The notations ̂︀𝜐(𝑡) =

´ 𝑡

0
𝜐(𝑠) d𝑠 for the choices 𝜐 = 𝜃, 𝜌, 𝜙, 𝑓 and ̂︀̂︀𝜐(𝑡) =

´ 𝑡

0

´ 𝑠

0
𝜐(𝜏) d𝜏 d𝑠 for the choices

𝜐 = 𝜃, 𝜙, 𝑓 are used in the next lemma.

Lemma 4.5 (Estimate for
´ 𝑡

0
(ℐ1−𝛼̂︀𝜃, ̂︀𝜃) d𝑠). For 𝑡 ∈ (0, 𝑇 ] and 𝜃 satisfying (4.13), the bounds stated below hold.

ˆ 𝑡

0

(ℐ1−𝛼̂︀𝜃, ̂︀𝜃) d𝑠+ ‖̂︀̂︀𝜃(𝑡)‖2ℎ . 𝑡4−𝛼
(︁
ℎ2𝛾0𝑡−𝛼 + ℎ2𝑡−(𝛼+1)/2

)︁2

‖𝑢0‖2,

if 𝑢0 ∈ 𝐿2(Ω) and 𝑓 = 0, and
ˆ 𝑡

0

(ℐ1−𝛼̂︀𝜃, ̂︀𝜃) d𝑠+ ‖̂︀̂︀𝜃(𝑡)‖2ℎ . 𝑡4−𝛼
(︁
ℎ2𝛾0Λ0(𝜖, 𝑡) + ℎ2𝑡𝛼/2−2Λ1(𝜖, 𝑡)

)︁2

,

for all 𝜖 ∈ (0, 1), if 𝑢0 ∈ 𝐷(𝐴) and 𝑓 is such that Λ0(𝜖, 𝑡) and Λ1(𝜖, 𝑡), defined in (4.10) and (4.12), are finite.

Proof. The proof is split into four steps. The first step derives an intermediate bound, and Steps 2–4 estimate
the terms derived in Step 1.
Step 1 (An intermediate bound). The definition of ℐ𝛽(·) in (1.3) and (4.1) establish

ℐ2−𝛼𝑣′(𝑡) = ℐ1−𝛼ℐ(𝑣′(𝑡)) = ℐ1−𝛼(𝑣(𝑡)− 𝑣0) = ℐ1−𝛼𝑣(𝑡)− 𝜅2−𝛼(𝑡)𝑣(0).

Integrate (4.13) over (0, 𝑡), utilize the above identity twice, and (𝜌(0) + 𝜃(0), 𝜒ℎ) = 0 for all 𝜒ℎ ∈ 𝑉ℎ from the
second identity in (3.3) to obtain

(ℐ1−𝛼𝜃, 𝜒ℎ) + 𝑎ℎ(̂︀𝜃, 𝜒ℎ) = −(ℐ1−𝛼𝜌, 𝜒ℎ)− (̂︀𝜙, (𝑄− 𝐼)𝜒ℎ) + ( ̂︀𝑓, (𝑄− 𝐼)𝜒ℎ) for all 𝜒ℎ ∈ 𝑉ℎ.

Integrate the above identity in time from 0 to 𝑡 and choose 𝜒ℎ = ̂︀𝜃(𝑡) to establish

(ℐ1−𝛼̂︀𝜃, ̂︀𝜃) + 𝑎ℎ(̂︀̂︀𝜃, ̂︀𝜃) = −(ℐ1−𝛼̂︀𝜌, ̂︀𝜃)− (̂︀̂︀𝜙, (𝑄− 𝐼)̂︀𝜃) + (̂︀̂︀𝑓, (𝑄− 𝐼)̂︀𝜃).
Integrate the above identity once again in time from 0 to 𝑡, apply (4.5) with 𝜗 = 1/2 to

´ 𝑡

0
(ℐ1−𝛼(−̂︀𝜌), ̂︀𝜃) d𝑠,

utilize 2𝑎ℎ(̂︀̂︀𝜃, ̂︀𝜃) = d
d𝑡𝑎ℎ(̂︀̂︀𝜃,̂︀̂︀𝜃), and (3.2) to obtain

ˆ 𝑡

0

(ℐ1−𝛼̂︀𝜃, ̂︀𝜃) d𝑠+ 𝛽1‖
̂︀̂︀𝜃‖2ℎ . ˆ 𝑡

0

(ℐ1−𝛼̂︀𝜌, ̂︀𝜌) d𝑠+
⃒⃒⃒⃒ˆ 𝑡

0

(̂︀̂︀𝜙, (𝑄− 𝐼)̂︀𝜃) d𝑠
⃒⃒⃒⃒
+
⃒⃒⃒⃒ˆ 𝑡

0

(̂︀̂︀𝑓, (𝑄− 𝐼)̂︀𝜃) d𝑠
⃒⃒⃒⃒
.
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The bounds for the terms
⃒⃒ ´ 𝑡

0
(̂︀̂︀𝜙, (𝑄− 𝐼)̂︀𝜃) d𝑠

⃒⃒
and

⃒⃒ ´ 𝑡

0
(̂︀̂︀𝑓, (𝑄− 𝐼)̂︀𝜃) d𝑠

⃒⃒
can be established in an analogous way

following the steps of the derivation of the bounds for |𝑇1| and |𝑇2| in Lemma 4.3. In this case, we obtain

ˆ 𝑡

0

(ℐ1−𝛼̂︀𝜃, ̂︀𝜃) d𝑠+ ‖̂︀̂︀𝜃(𝑡)‖2ℎ . ˆ 𝑡

0

(ℐ1−𝛼̂︀𝜌, ̂︀𝜌) d𝑠+ ℎ4

(︃
‖̂︀̂︀𝜙(𝑡)‖2 +

ˆ 𝑡

0

‖̂︀𝜙(𝑠)‖2 d𝑠

+ ‖̂︀̂︀𝑓(𝑡)‖2 +
ˆ 𝑡

0

‖ ̂︀𝑓(𝑠)‖2 d𝑠

)︃
+
ˆ 𝑡

0

‖̂︀̂︀𝜃(𝑠)‖2ℎ d𝑠. (4.15)

Apply Gronwall’s lemma in (4.15) to obtain

ˆ 𝑡

0

(ℐ1−𝛼̂︀𝜃, ̂︀𝜃) d𝑠+ ‖̂︀̂︀𝜃(𝑡)‖2ℎ . ˆ 𝑡

0

(ℐ1−𝛼̂︀𝜌, ̂︀𝜌) d𝑠+ ℎ4

(︃
‖̂︀̂︀𝜙(𝑡)‖2 +

ˆ 𝑡

0

(‖̂︀𝜙(𝑠)‖2 + ‖̂︀̂︀𝜙(𝑠)‖2) d𝑠

+ ‖̂︀̂︀𝑓(𝑡)‖2 +
ˆ 𝑡

0

(‖ ̂︀𝑓(𝑠)‖2 + ‖̂︀̂︀𝑓(𝑠)‖2) d𝑠

)︃
. (4.16)

Step 2 (Estimate for the term
´ 𝑡

0
(ℐ1−𝛼̂︀𝜌, ̂︀𝜌) d𝑠 on the right-hand side of (4.16)). An application of (4.11) results

in

‖̂︀𝜌(𝑠)‖ ≤
ˆ 𝑠

0

‖𝜌(𝜏)‖d𝜏 .

{︃
ℎ2𝛾0‖𝑢0‖

´ 𝑠

0
𝜏−𝛼 d𝜏 . ℎ2𝛾0𝑠1−𝛼‖𝑢0‖ for 𝑓 = 0 and 𝑢0 ∈ 𝐿2(Ω),

ℎ2𝛾0𝑠 Λ0(𝜖, 𝑠) for 𝑓 ̸= 0 and 𝑢0 ∈ 𝐷(𝐴).

This bound, the definition of ℐ1−𝛼, and 𝜏 ≤ 𝑠 in the computation of the integral in the second step below lead
to

‖ℐ1−𝛼̂︀𝜌(𝑠)‖ .
ˆ 𝑠

0

(𝑠− 𝜏)−𝛼‖̂︀𝜌(𝜏)‖ d𝜏 .

{︃
ℎ2𝛾0𝑠2−2𝛼‖𝑢0‖ for 𝑓 = 0 and 𝑢0 ∈ 𝐿2(Ω),
ℎ2𝛾0𝑠2−𝛼Λ0(𝜖, 𝑠) for 𝑓 ̸= 0 and 𝑢0 ∈ 𝐷(𝐴).

The Hölder inequality and a combination of the last two displayed bounds show

ˆ 𝑡

0

(ℐ1−𝛼̂︀𝜌, ̂︀𝜌) d𝑠 ≤
ˆ 𝑡

0

‖ℐ1−𝛼̂︀𝜌‖‖̂︀𝜌‖d𝑠 .

{︃
ℎ4𝛾0𝑡4−3𝛼‖𝑢0‖2 for 𝑓 = 0 and 𝑢0 ∈ 𝐿2(Ω),
ℎ4𝛾0𝑡4−𝛼Λ0(𝜖, 𝑡)2 for 𝑓 ̸= 0 and 𝑢0 ∈ 𝐷(𝐴).

Step 3 (Estimate for the term (‖̂︀̂︀𝜙(𝑡)‖2 +
´ 𝑡

0
(‖̂︀𝜙(𝑠)‖2 + ‖̂︀̂︀𝜙(𝑠)‖2) d𝑠) on the right-hand side of (4.16)). The

approach for the estimates for the nonsmooth and smooth initial data differs here as direct bounds for the
required estimates offer challenges due to the singularity factor 𝑡−1 (see (2.12) with 𝑖 = 1, 𝑝 = 0) when 𝑢0 ∈
𝐿2(Ω). However, this issue is resolved below with the help of (4.1).
Nonsmooth initial data (𝑓 = 0 and 𝑢0 ∈ 𝐿2(Ω)). Recall 𝜙 = ℐ1−𝛼𝑢′ and apply (4.1) to observe

̂︀𝜙 = ℐ(ℐ1−𝛼𝑢′(𝑡)) = ℐ1−𝛼ℐ(𝑢′(𝑡)) = ℐ1−𝛼(𝑢(𝑡)− 𝑢0), ̂︀̂︀𝜙(𝑡) = ℐ2−𝛼(𝑢(𝑡)− 𝑢0).

The definition of ℐ2−𝛼 (cf. (1.3)), (𝑡− 𝑠) ≤ 𝑡, and (2.12) with 𝑖 = 0, 𝑝 = 0 lead to

‖̂︀̂︀𝜙(𝑡)‖2 =
⃦⃦⃦⃦ˆ 𝑡

0

(𝑡− 𝑠)1−𝛼

Γ(2− 𝛼)
(𝑢(𝑠)− 𝑢0) d𝑠

⃦⃦⃦⃦2

.

(︂
𝑡1−𝛼

ˆ 𝑡

0

(‖𝑢(𝑠)‖+ ‖𝑢0‖) d𝑠
)︂2

. 𝑡4−2𝛼‖𝑢0‖2.
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This yields ˆ 𝑡

0

‖̂︀̂︀𝜙(𝑠)‖2 d𝑠 .
ˆ 𝑡

0

𝑠4−2𝛼‖𝑢0‖2 d𝑠 =
𝑡5−2𝛼

5− 2𝛼
‖𝑢0‖2 . 𝑡4−2𝛼‖𝑢0‖2 (4.17)

with 𝑡 ≤ 𝑇 (used once) in the last step. The definition of ℐ1−𝛼 (cf. (1.3)) and (2.12) with 𝑖 = 0, 𝑝 = 0 establish

‖̂︀𝜙(𝑠)‖2 =
⃦⃦⃦⃦ˆ 𝑠

0

(𝑠− 𝜏)−𝛼

Γ(1− 𝛼)
(𝑢(𝜏)− 𝑢0) d𝜏

⃦⃦⃦⃦2

.

(︂ˆ 𝑠

0

(𝑠− 𝜏)−𝛼(‖𝑢(𝜏)‖+ ‖𝑢0‖) d𝜏
)︂2

. 𝑠2−2𝛼‖𝑢0‖2,

and this shows
´ 𝑡

0
‖̂︀𝜙(𝑠)‖2 d𝑠 . 𝑡3−2𝛼‖𝑢0‖2. Altogether, we obtain

‖̂︀̂︀𝜙(𝑡)‖2 +
ˆ 𝑡

0

(‖̂︀𝜙(𝑠)‖2 + ‖̂︀̂︀𝜙(𝑠)‖2) d𝑠 . 𝑡3−2𝛼(𝑡+ 1)‖𝑢0‖2.

Smooth initial data (𝑓 ̸= 0 and 𝑢0 ∈ 𝐷(𝐴)). Using ̂︀̂︀𝜙(𝑡) = ℐ3−𝛼𝑢′(𝑡), (𝑡 − 𝑠) ≤ 𝑡, and (2.16) with 𝑝 = 0 and
(2.20) with 𝑞 = 𝜖, we have

‖̂︀̂︀𝜙(𝑡)‖2 .
(︂ˆ 𝑡

0

(𝑡− 𝑠)2−𝛼‖𝑢′(𝑠)‖d𝑠
)︂2

.

(︂
𝑡2−𝛼

ˆ 𝑡

0

(︀
𝑠𝛼−1‖𝑢0‖𝐷(𝐴) + 𝑠−1+ 𝛼𝜖

2 ‖𝑓(0)‖𝐷(𝐴𝜖/2)

+ 𝜖−1𝑠
𝛼𝜖
2 ‖𝑓 ′‖𝐿∞(0,𝑇 ;𝐷(𝐴𝜖/2))

)︀
d𝑠
)︂2

.
(︁
𝑡2‖𝑢0‖𝐷(𝐴) + 𝑡2−𝛼(1−𝜖/2)‖𝑓(0)‖𝐷(𝐴𝜖/2) + 𝜖−1𝑡3−𝛼(1−𝜖/2)‖𝑓 ′‖𝐿∞(0,𝑇 ;𝐷(𝐴𝜖/2))

)︁2

.

An integration from 0 to 𝑡, (4.8), elementary algebraic manipulations, and 𝑡 ≤ 𝑇 (used once) as in (4.17), lead
to a similar bound for

´ 𝑡

0
‖̂︀̂︀𝜙(𝑠)‖2 d𝑠. Analogous arguments with elementary manipulations lead to

ˆ 𝑡

0

‖̂︀𝜙(𝑠)‖2 d𝑠 .
(︁
𝑡

3
2 ‖𝑢0‖𝐷(𝐴) + 𝑡

3
2−𝛼(1− 𝜖

2 )‖𝑓(0)‖
𝐷(𝐴

𝜖
2 )

+ 𝜖−1𝑡
5
2−𝛼(1− 𝜖

2 )‖𝑓 ′‖
𝐿∞(0,𝑇 ;𝐷(𝐴

𝜖
2 ))

)︁2

.

A combination of the last two displayed inequalities establishes the required estimate in this step.

Step 4 (Estimate for the term
(︀
‖̂︀̂︀𝑓(𝑡)‖2 +

´ 𝑡

0
(‖ ̂︀𝑓(𝑠)‖2 + ‖̂︀̂︀𝑓(𝑠)‖2) d𝑠

)︀
on the right-hand side of (4.16)). For

nonsmooth initial data, since 𝑓 is chosen as zero, the term is zero. For smooth initial data, the definitions of ̂︀𝑓
and ̂︀̂︀𝑓 show

‖̂︀̂︀𝑓(𝑡)‖2 +
ˆ 𝑡

0

(‖ ̂︀𝑓(𝑠)‖2 + ‖̂︀̂︀𝑓(𝑠)‖2) d𝑠 .
(︁
𝑡3/2‖𝑓‖𝐿2(0,𝑡;𝐿2(Ω)) + 𝑡‖𝑓‖𝐿2(0,𝑡;𝐿2(Ω))

)︁2

.

A combination of Steps 2–4 in (4.16) and algebraic manipulations conclude the proof. �

The notations 𝜐1(𝑡) = 𝑡𝜐(𝑡) for 𝜐 = 𝜃, 𝜌, 𝜙, 𝑓 and ̂︀𝜐(𝑡) =
´ 𝑡

0
𝜐(𝑠) d𝑠 for 𝜐 = 𝜃, 𝜃1, 𝜌, 𝜙1, 𝑓1 are used in the next

lemma.

Lemma 4.6 (Estimate for
´ 𝑡

0
(ℐ1−𝛼𝜃1, 𝜃1) d𝑠). For 𝜃 that satisfies (4.13) and 𝑡 ∈ (0, 𝑇 ], the bounds stated below

hold. ˆ 𝑡

0

(ℐ1−𝛼𝜃1, 𝜃1) d𝑠+ ‖ ̂︀𝜃1(𝑡)‖2ℎ . 𝑡4−𝛼
(︁
ℎ2𝛾0𝑡−𝛼 + ℎ2𝑡−(𝛼+1)/2

)︁2

‖𝑢0‖2,

if 𝑢0 ∈ 𝐿2(Ω) and 𝑓 = 0, and
ˆ 𝑡

0

(ℐ1−𝛼𝜃1, 𝜃1) d𝑠+ ‖ ̂︀𝜃1(𝑡)‖2ℎ . 𝑡4−𝛼
(︁
ℎ2𝛾0Λ0(𝜖, 𝑡) + ℎ2𝑡𝛼/2−2Λ2(𝜖, 𝑡)

)︁2

,

for all 𝜖 ∈ (0, 1), if 𝑢0 ∈ 𝐷(𝐴) and 𝑓 is such that Λ0(𝜖, 𝑡) and Λ2(𝜖, 𝑡), defined in (4.10) and (4.12), are finite.
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Proof. The structure of the proof is similar to that of Lemma 4.5. However, the majorizations are different and
for the readability of the paper, we give the necessary details. The proof is presented in four steps. To prove the
desired bounds, we proceed following Lemma 4.3 as follows.
Step 1 (An intermediate bound). Multiply (4.13) by 𝑡, use (4.3), and (𝜌(0) + 𝜃(0), 𝜒ℎ) = 0 for all 𝜒ℎ ∈ 𝑉ℎ to
arrive at

(ℐ1−𝛼𝜃′1, 𝜒ℎ) + 𝑎ℎ(𝜃1, 𝜒ℎ) = 𝛼(ℐ1−𝛼𝜃, 𝜒ℎ)− (ℐ1−𝛼𝜌′1, 𝜒ℎ) + 𝛼(ℐ1−𝛼𝜌, 𝜒ℎ)
− (𝜙1(𝑡), (𝑄− 𝐼)𝜒ℎ) + (𝑓1(𝑡), (𝑄− 𝐼)𝜒ℎ) for all 𝜒ℎ ∈ 𝑉ℎ.

Integrate the above equality over (0, 𝑡), and next choose 𝜒ℎ = 𝜃1(𝑡) to obtain

(ℐ1−𝛼𝜃1, 𝜃1) + 𝑎ℎ( ̂︀𝜃1, 𝜃1) = 𝛼(ℐ1−𝛼̂︀𝜃, 𝜃1)− (ℐ1−𝛼𝜌1, 𝜃1) + 𝛼(ℐ1−𝛼̂︀𝜌, 𝜃1)

− (̂︁𝜙1(𝑡), (𝑄− 𝐼)𝜃1) + ( ̂︀𝑓1(𝑡), (𝑄− 𝐼)𝜃1).

An integration over (0, 𝑡) once again, an application of (4.5) to the first three terms on the right-hand side, and
the choice 𝜗 = 1

2(2𝛼+1) reveal

ˆ 𝑡

0

(ℐ1−𝛼𝜃1, 𝜃1) d𝑠+
ˆ 𝑡

0

𝑎ℎ( ̂︀𝜃1, 𝜃1) d𝑠 ≤ 1
2

ˆ 𝑡

0

(ℐ1−𝛼𝜃1, 𝜃1) d𝑠+ 𝐶

ˆ 𝑡

0

[︁
(ℐ1−𝛼̂︀𝜃, ̂︀𝜃) + (ℐ1−𝛼𝜌1, 𝜌1)

+ (ℐ1−𝛼̂︀𝜌, ̂︀𝜌)
]︁

d𝑠+
⃒⃒⃒⃒ˆ 𝑡

0

(̂︁𝜙1(𝑠), (𝑄− 𝐼)𝜃1) d𝑠
⃒⃒⃒⃒

+
⃒⃒⃒⃒ˆ 𝑡

0

( ̂︀𝑓1(𝑠), (𝑄− 𝐼)𝜃1) d𝑠
⃒⃒⃒⃒
.

Apply 2𝑎ℎ( ̂︀𝜃1(𝑡), 𝜃1(𝑡)) = d
d𝑡𝑎ℎ( ̂︀𝜃1(𝑡), ̂︀𝜃1(𝑡)), (3.2), approach of Step 1 of Lemma 4.5 to bound the last two terms

of the above displayed estimate, and Gronwall’s lemma to obtain
ˆ 𝑡

0

(ℐ1−𝛼𝜃1, 𝜃1) d𝑠+ ‖ ̂︀𝜃1(𝑡)‖2ℎ .
ˆ 𝑡

0

(ℐ1−𝛼̂︀𝜃, ̂︀𝜃) d𝑠+
ˆ 𝑡

0

(ℐ1−𝛼̂︀𝜌, ̂︀𝜌) d𝑠+
ˆ 𝑡

0

(ℐ1−𝛼𝜌1, 𝜌1) d𝑠

+ ℎ4
(︁
‖̂︁𝜙1(𝑡)‖2 +

ˆ 𝑡

0

(‖𝜙1(𝑠)‖2 + ‖̂︁𝜙1(𝑠)‖2) d𝑠+ ‖ ̂︀𝑓1(𝑡)‖2 +
ˆ 𝑡

0

(‖𝑓1(𝑠)‖2 + ‖ ̂︀𝑓1(𝑠)‖2) d𝑠
)︁
. (4.18)

Observe that the bounds of the first two terms on the right-hand side of (4.18) are available from the statement
and Step 2 of Lemma 4.5. Hence in the steps below, we bound the remaining terms.
Step 2 (Estimate for the term

´ 𝑡

0
(ℐ1−𝛼𝜌1, 𝜌1) d𝑠 on the right-hand side of (4.18)). In view of (4.11), we obtain

‖𝜌1(𝑠)‖ = 𝑠‖𝜌(𝑠)‖ .

{︃
ℎ2𝛾0𝑠1−𝛼‖𝑢0‖ for 𝑓 = 0 and 𝑢0 ∈ 𝐿2(Ω),
ℎ2𝛾0𝑠 Λ0(𝜖, 𝑠) for 𝑓 ̸= 0 and 𝑢0 ∈ 𝐷(𝐴).

Employ this to establish

‖ℐ1−𝛼𝜌1(𝑠)‖ .
ˆ 𝑠

0

(𝑠− 𝜏)−𝛼‖𝜌1(𝜏)‖ d𝜏 .

{︃
ℎ2𝛾0𝑠2−2𝛼‖𝑢0‖ for 𝑓 = 0 and 𝑢0 ∈ 𝐿2(Ω),
ℎ2𝛾0𝑠2−𝛼Λ0(𝜖, 𝑠) for 𝑓 ̸= 0 and 𝑢0 ∈ 𝐷(𝐴).

The Hölder inequality plus the last two displayed bounds reveal

ˆ 𝑡

0

(ℐ1−𝛼𝜌1, 𝜌1) d𝑠 ≤
ˆ 𝑡

0

‖ℐ1−𝛼𝜌1‖‖𝜌1‖d𝑠 .

{︃
ℎ4𝛾0𝑡4−3𝛼‖𝑢0‖2 for 𝑓 = 0 and 𝑢0 ∈ 𝐿2(Ω),
ℎ4𝛾0𝑡4−𝛼Λ0(𝜖, 𝑡)2 for 𝑓 ̸= 0 and 𝑢0 ∈ 𝐷(𝐴).

Step 3 (Estimate for the term
(︀
‖̂︁𝜙1(𝑡)‖2 +

´ 𝑡

0
(‖𝜙1(𝑠)‖2 + ‖̂︁𝜙1(𝑠)‖2) d𝑠

)︀
on the right-hand side of (4.18)). Since

the nonsmooth data stability estimate reflects a singularity factor 𝑡−1 (cf. (2.12) with 𝑖 = 1, 𝑝 = 0), we proceed
as follows for this case.
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Nonsmooth initial data (𝑓 = 0 and 𝑢0 ∈ 𝐿2(Ω)). Recall that 𝜙 = ℐ1−𝛼𝑢′ and apply (4.3) to observe

𝜙1(𝑠) = 𝑠𝜙(𝑠) = 𝑠ℐ1−𝛼𝑢′(𝑠) = ℐ1−𝛼(𝑠𝑢(𝑠))′ − 𝛼ℐ1−𝛼𝑢(𝑠)− 𝑠𝜅1−𝛼(𝑠)𝑢0

= ℐ1−𝛼(𝑢(𝑠) + 𝑠𝑢′(𝑠))− 𝛼ℐ1−𝛼𝑢(𝑠)− 𝑠𝜅1−𝛼(𝑠)𝑢0.

The definition of ℐ1−𝛼 in (1.3) and repeated applications of (2.12) with 𝑖 = 0, 𝑝 = 0 and 𝑖 = 1, 𝑝 = 0 yield
‖𝜙1(𝑠)‖ . 𝑠1−𝛼‖𝑢0‖ and hence ‖̂︁𝜙1(𝑡)‖2 . 𝑡4−2𝛼‖𝑢0‖2. Utilize this bound to arrive at

ˆ 𝑡

0

‖̂︁𝜙1(𝑠)‖2 d𝑠 .
ˆ 𝑡

0

𝑠4−2𝛼‖𝑢0‖2 d𝑠 . 𝑡4−2𝛼‖𝑢0‖2,

with 𝑡 ≤ 𝑇 (used once) in the last step. Analogous arguments show
´ 𝑡

0
‖𝜙1(𝑠)‖2 d𝑠 . 𝑡3−2𝛼‖𝑢0‖2. A combination

of these bounds shows

‖̂︁𝜙1(𝑡)‖2 +
ˆ 𝑡

0

(‖𝜙1(𝑠)‖2 + ‖̂︁𝜙1(𝑠)‖2) d𝑠 . 𝑡3−2𝛼(𝑡+ 1)‖𝑢0‖2.

Smooth initial data (𝑓 ̸= 0 and 𝑢0 ∈ 𝐷(𝐴)). Apply the definition of ℐ1−𝛼 in (1.3), 𝑠 ≤ 𝑡, and (2.16) with 𝑝 = 0
and (2.20) with 𝑞 = 𝜖 to obtain

‖̂︁𝜙1(𝑡)‖2 =
⃦⃦⃦⃦ˆ 𝑡

0

𝑠ℐ1−𝛼𝑢′(𝑠) d𝑠
⃦⃦⃦⃦2

.

(︂
𝑡

ˆ 𝑡

0

ˆ 𝑠

0

(𝑠− 𝜏)−𝛼‖𝑢′(𝜏)‖ d𝜏 d𝑠
)︂2

.

(︂
𝑡

ˆ 𝑡

0

ˆ 𝑠

0

(𝑠− 𝜏)−𝛼
(︀
𝜏𝛼−1‖𝑢0‖𝐷(𝐴) + 𝜏−1+ 𝛼𝜖

2 ‖𝑓(0)‖𝐷(𝐴𝜖/2)

+ 𝜖−1𝜏
𝛼𝜖
2 ‖𝑓 ′‖𝐿∞(0,𝑇 ;𝐷(𝐴𝜖/2))

)︀
d𝜏 d𝑠

)︂2

. (4.19)

For 𝛼 ∈ (0, 1), recall the following identities involving the beta function 𝐵(·, ·):
ˆ 𝑡

0

(𝑡− 𝑠)−𝛼𝑠𝛼−1 d𝑠 =
ˆ 1

0

(1− 𝑠)𝛼−1𝑠−𝛼 d𝑠 = 𝐵(𝛼, 1− 𝛼),
ˆ 𝑡

0

(𝑡− 𝑠)−𝛼𝑠
𝛼𝜖
2 −1 d𝑠 = 𝑡−𝛼(1−𝜖/2)

ˆ 1

0

(1− 𝑠)
𝛼𝜖
2 −1𝑠−𝛼 d𝑠 = 𝐵(𝛼𝜖/2, 1− 𝛼)𝑡−𝛼(1−𝜖/2).

(4.20)

Substitute (4.20) in (4.19) to obtain

‖̂︁𝜙1(𝑡)‖2 .
(︁
𝑡2‖𝑢0‖𝐷(𝐴) +𝐵(𝛼𝜖/2, 1− 𝛼)𝑡2−𝛼(1−𝜖/2)‖𝑓(0)‖𝐷(𝐴𝜖/2) + 𝜖−1𝑡3−𝛼(1−𝜖/2)‖𝑓 ′‖𝐿∞(0,𝑇 ;𝐷(𝐴𝜖/2))

)︁2

.

Utilize 𝑡 ≤ 𝑇 to conclude that an analogous bound holds for the term
´ 𝑡

0
‖̂︁𝜙1(𝑠)‖2 d𝑠. Further, similar calculations

as for ‖̂︁𝜙1(𝑡)‖2 above and algebraic manipulations with (4.8) reveal
ˆ 𝑡

0

‖𝜙1(𝑠)‖2 d𝑠 =
ˆ 𝑡

0

‖𝑠ℐ1−𝛼𝑢′(𝑠)‖2 d𝑠 . 𝑡2
ˆ 𝑡

0

(︂ˆ 𝑠

0

(𝑠− 𝜏)−𝛼‖𝑢′(𝜏)‖d𝜏
)︂2

d𝑠 .
(︁
𝑡3/2‖𝑢0‖𝐷(𝐴)

+𝐵(𝛼𝜖/2, 1− 𝛼)𝑡3/2−𝛼(1−𝜖/2)‖𝑓(0)‖𝐷(𝐴𝜖/2) + 𝜖−1𝑡5/2−𝛼(1−𝜖/2)‖𝑓 ′‖𝐿∞(0,𝑇 ;𝐷(𝐴𝜖/2))

)︁2

.

Step 4 (Estimate for the term
(︀
‖ ̂︀𝑓1(𝑡)‖2 +

´ 𝑡

0
(‖𝑓1(𝑠)‖2 + ‖ ̂︀𝑓1(𝑠)‖2) d𝑠

)︀
on the right-hand side of (4.18)). Since

𝑓 = 0 for nonsmooth initial data, the estimate is trivial. For the case of smooth initial data, the definitions of
𝑓1, ̂︀𝑓1 lead to

‖ ̂︀𝑓1(𝑡)‖2 +
ˆ 𝑡

0

(‖𝑓1(𝑠)‖2 + ‖ ̂︀𝑓1(𝑠)‖2) d𝑠 .
(︁
𝑡3/2‖𝑓‖𝐿2(0,𝑡;𝐿2(Ω)) + 𝑡‖𝑓‖𝐿2(0,𝑡;𝐿2(Ω))

)︁2

.

A combination of the estimates from Steps 2–4 with (4.18) concludes the proof. �
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Lemma 4.7 (Estimate for
´ 𝑡

0
(ℐ1−𝛼𝜆, 𝜆) d𝑠). For 𝜆 = −𝜌′2+2𝛼𝜌1+𝛼(1−𝛼)̂︀𝜌 with 𝜌′2(𝑡) = (𝑡2𝜌(𝑡))′, 𝜌1(𝑡) = 𝑡𝜌(𝑡),̂︀𝜌(𝑡) =

´ 𝑡

0
𝜌(𝑠) d𝑠, and 𝑡 ∈ (0, 𝑇 ], the following bounds hold.

ˆ 𝑡

0

(ℐ1−𝛼𝜆, 𝜆) d𝑠 . 𝑡4−𝛼
(︁
ℎ2𝛾0𝑡−𝛼‖𝑢0‖

)︁2

,

for 𝑢0 ∈ 𝐿2(Ω) and 𝑓 = 0, and

ˆ 𝑡

0

(ℐ1−𝛼𝜆, 𝜆) d𝑠 . 𝑡4−𝛼
(︁
ℎ2𝛾0ℬ0(𝜖, 𝑡)

)︁2

,

for all 𝜖 ∈ (0, 1), if 𝑢0 ∈ 𝐷(𝐴) and 𝑓 such that ℬ0(𝜖, 𝑡) defined in (4.12) is finite.

Proof. Step 1 (Nonsmooth data). For 𝑓 = 0 and 𝑢0 ∈ 𝐿2(Ω), Lemma 3.4 and (2.12) (with 𝑖 = 0, 𝑝 = 1 and
𝑖 = 𝑝 = 1) result in

‖𝜆(𝑠)‖ ≤ ‖̂︀𝜌(𝑠)‖+ 3‖𝜌1(𝑠)‖+ 𝑠2‖𝜌′(𝑠)‖ . ℎ2𝛾0𝑠1−𝛼‖𝑢0‖+ ℎ2𝛾0𝑠2‖𝑢′(𝑠)‖𝐻2+𝛾0 (Ω)

. ℎ2𝛾0𝑠1−𝛼‖𝑢0‖.

This bound leads to

‖ℐ1−𝛼𝜆(𝑠)‖ .
ˆ 𝑠

0

(𝑠− 𝜏)−𝛼‖𝜆(𝜏)‖ d𝜏 . ℎ2𝛾0𝑠2−2𝛼‖𝑢0‖.

The Hölder inequality and the two bounds displayed above establish

ˆ 𝑡

0

(ℐ1−𝛼𝜆, 𝜆) d𝑠 ≤
ˆ 𝑡

0

‖ℐ1−𝛼𝜆‖‖𝜆‖ d𝑠 . ℎ4𝛾0𝑡4−3𝛼‖𝑢0‖2.

Step 2 (Smooth data). For 𝑓 ̸= 0 and 𝑢0 ∈ 𝐷(𝐴), apply Lemma 3.4, (2.15) and (2.19) with 𝑞 = 𝜖, (2.16) with
𝑝 = 1 and (2.20) with 𝑞 = 𝜖 to obtain

‖𝜆(𝑠)‖ ≤ ‖̂︀𝜌(𝑠)‖+ 3‖𝜌1(𝑠)‖+ 𝑠2‖𝜌′(𝑠)‖ . ℎ2𝛾0𝑠Λ0(𝜖, 𝑠) + ℎ2𝛾0𝑠2‖𝑢′(𝑠)‖𝐻2+𝛾0 (Ω)

. ℎ2𝛾0𝑠Λ0(𝜖, 𝑠) + ℎ2𝛾0

(︁
𝑠‖𝑢0‖𝐷(𝐴) + 𝑠1+

𝛼𝜖
2 ‖𝑓(0)‖𝐷(𝐴𝜖/2) + 𝜖−1𝑠2+

𝛼𝜖
2 ‖𝑓 ′‖𝐿∞(0,𝑇 ;𝐷(𝐴𝜖/2))

)︁
.

An application of this bound in the definition of ℐ1−𝛼 shows

‖ℐ1−𝛼𝜆(𝑠)‖ .
ˆ 𝑠

0

(𝑠− 𝜏)−𝛼‖𝜆(𝜏)‖ d𝜏 . ℎ2𝛾0𝑠2−𝛼Λ0(𝜖, 𝑠)

+ ℎ2𝛾0

(︁
𝑠2−𝛼‖𝑢0‖𝐷(𝐴) + 𝑠2−𝛼(1−𝜖/2)‖𝑓(0)‖𝐷(𝐴𝜖/2) + 𝜖−1𝑠3−𝛼(1−𝜖/2)‖𝑓 ′‖𝐿∞(0,𝑇 ;𝐷(𝐴𝜖/2))

)︁
.

The Hölder inequality and the two bounds displayed above establish

ˆ 𝑡

0

(ℐ1−𝛼𝜆, 𝜆) d𝑠 ≤
ˆ 𝑡

0

‖ℐ1−𝛼𝜆‖‖𝜆‖d𝑠 . ℎ4𝛾0𝑡4−𝛼
(︁

Λ0(𝜖, 𝑡)

+ 𝑡𝛼𝜖/2‖𝑓(0)‖𝐷(𝐴𝜖/2) + 𝜖−1𝑡1+𝛼𝜖/2‖𝑓 ′‖𝐿∞(0,𝑇 ;𝐷(𝐴𝜖/2))

)︁2

.

This concludes the proof. �
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Lemma 4.8 (Estimate for the last term in Lem. 4.3). For 𝑡 ∈ (0, 𝑇 ] and for all 𝜖 ∈ (0, 1), it holds that

ℎ4
(︁
‖𝜙2(𝑡)‖2+

ˆ 𝑡

0

(‖𝜙2(𝑠)‖2 + ‖𝜙′2(𝑠)‖2) d𝑠+ ‖𝑓2(𝑡)‖2 +
ˆ 𝑡

0

(‖𝑓2(𝑠)‖2 + ‖𝑓 ′2(𝑠)‖2) d𝑠
)︁

. 𝑡4−𝛼

⎧⎪⎨⎪⎩
(︁
ℎ2𝑡−(𝛼+1)/2‖𝑢0‖

)︁2

, if 𝑢0 ∈ 𝐿2(Ω), 𝑓 = 0,(︁
ℎ2𝑡𝛼/2−2ℬ1(𝜖, 𝑡)

)︁2

, if 𝑢0 ∈ 𝐷(𝐴), 𝑓 ̸= 0,

where 𝜙2(𝑡) = 𝑡2𝜙(𝑡), 𝜙′2(𝑠) = (𝑠2𝜙(𝑠))′, 𝑓2(𝑡) = 𝑡2𝑓(𝑡), 𝑓 ′2(𝑠) = (𝑠2𝑓(𝑠))′, and 𝑓 is such that ℬ1(𝜖, 𝑡) defined in
(4.12) is finite.

Proof. Step 1 (Nonsmooth data). For 𝑓 = 0 and 𝑢0 ∈ 𝐿2(Ω), we recall (4.4) to arrive at

𝜙2(𝑡) = 𝑡2ℐ1−𝛼𝑢′(𝑡) = ℐ1−𝛼(𝑢2)′(𝑡)− 2𝛼ℐ1−𝛼(𝑢1)(𝑡)− 𝛼(1− 𝛼)ℐ2−𝛼(𝑢(𝑡))− 𝑡2𝜅1−𝛼(𝑡)𝑢0

= ℐ1−𝛼(2𝑡𝑢(𝑡) + 𝑡2𝑢′(𝑡))− 2𝛼ℐ1−𝛼(𝑡𝑢(𝑡))− 𝛼(1− 𝛼)ℐ2−𝛼(𝑢(𝑡))− 𝑡2𝜅1−𝛼(𝑡)𝑢0.

Applications of (1.3) and (2.12) with 𝑖 = 𝑝 = 0 and 𝑖 = 1, 𝑝 = 0 in the above equality yield ‖𝜙2(𝑡)‖ . 𝑡2−𝛼‖𝑢0‖
and this leads to

‖𝜙2(𝑡)‖2 +
ˆ 𝑡

0

‖𝜙2(𝑠)‖2 d𝑠 . 𝑡4−2𝛼‖𝑢0‖2.

To bound the term 𝜙′2(𝑠), we see that

𝜙′2(𝑠) = 2𝑠𝜙(𝑠) + 𝑠2𝜙′(𝑠) with 𝜙(𝑠) = ℐ1−𝛼𝑢′(𝑠). (4.21)

Differentiating 𝜙(𝑠) with respect to 𝑠 we get

𝜙′(𝑠) =
1

Γ(1− 𝛼)

ˆ 𝑠

0

𝜏−𝛼𝑢′′(𝑠− 𝜏) d𝑠+
𝑠−𝛼𝑢′(0)
Γ(1− 𝛼)

= ℐ1−𝛼𝑢′′(𝑠) + 𝜅1−𝛼(𝑠)𝑢′(0).

Thus, in view of (4.4) we arrive at

𝑠2𝜙′(𝑠) = ℐ1−𝛼(𝑠2𝑢′)′ − 2𝛼ℐ1−𝛼(𝑠𝑢′)− 𝛼(1− 𝛼)ℐ2−𝛼(𝑢′)− 𝑠2𝜅1−𝛼(𝑠)𝑢′(0) + 𝑠2𝜅1−𝛼(𝑠)𝑢′(0)
= ℐ1−𝛼(𝑠2𝑢′)′ − 2𝛼ℐ1−𝛼(𝑠𝑢′)− 𝛼(1− 𝛼)ℐ2−𝛼(𝑢′).

Hence ‖𝑠2𝜙′(𝑠)‖ . ‖ℐ1−𝛼(𝑠2𝑢′)′‖+‖ℐ1−𝛼(𝑠𝑢′)‖+‖ℐ2−𝛼(𝑢′)‖. The definition of ℐ1−𝛼 and (2.12) first with 𝑖 = 1,
𝑝 = 0, next with 𝑖 = 0, 𝑝 = 0, and (2.13) lead to

‖𝑠2𝜙′(𝑠)‖ .
ˆ 𝑠

0

(𝑠− 𝜏)−𝛼
(︀
‖𝜏𝑢′(𝜏)‖+ ‖𝜏2𝑢′′(𝜏)‖+ ‖𝑢(𝜏)‖+ ‖𝑢0‖

)︀
d𝜏 . 𝑠1−𝛼‖𝑢0‖.

This and Step 3 of Lemma 4.6 in (4.21) show

‖𝜙′2(𝑠)‖ . ‖𝑠2𝜙′(𝑠)‖+ ‖𝑠𝜙(𝑠)‖ . 𝑠1−𝛼‖𝑢0‖.
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This shows
´ 𝑡

0
‖𝜙′2(𝑠)‖2 d𝑠 . 𝑡3−2𝛼‖𝑢0‖2.

Step 2 (Smooth data). For 𝑓 ̸= 0 and 𝑢0 ∈ 𝐷(𝐴), follow the steps to bound ‖̂︁𝜙1(𝑡)‖2 for smooth data in the
Step 3 in Lemma 4.6 and recall (4.20) to arrive at

‖𝜙2(𝑡)‖2 .
(︁
𝑡2‖𝑢0‖𝐷(𝐴) +𝐵(𝛼𝜖/2, 1− 𝛼)𝑡2−𝛼(1−𝜖/2)‖𝑓(0)‖𝐷(𝐴𝜖/2) + 𝜖−1𝑡3−𝛼(1−𝜖/2)‖𝑓 ′‖𝐿∞(0,𝑇 ;𝐷(𝐴𝜖/2))

)︁2

.

It is easy to establish a similar bound for
´ 𝑡

0
‖𝜙2(𝑠)‖2 d𝑠. The approach in Step 1 of this lemma and the stability

properties in (2.16) with 𝑝 = 0, (2.17), (2.20) with 𝑞 = 𝜖, and (2.21) show

ˆ 𝑡

0

‖𝜙′2(𝑠)‖2 d𝑠 .
(︁
ℎ2𝑡𝛼/2−2𝐵1(𝜖, 𝑡)

)︁2

.

The definition of 𝑓2 and (4.8) establish

‖𝑓2(𝑡)‖2 +
ˆ 𝑡

0

(‖𝑓2(𝑠)‖2 + ‖𝑓 ′2(𝑠)‖2) d𝑠 .
(︁
𝑡2‖𝑓(𝑡)‖+ 𝑡‖𝑓‖𝐿2(0,𝑡;𝐿2(Ω)) + 𝑡2‖𝑓 ′‖𝐿2(0,𝑡;𝐿2(Ω))

)︁2

.

A combination of Steps 1 and 2 establishes the assertion. �

We are now ready to prove Theorem 4.1.

Proof of Theorem 4.1. A substitution of the bounds from Lemmas 4.5–4.8 in the key inequality from Lemma 4.3
and algebraic manipulations establish

‖𝜃(𝑡)‖+ 𝑡𝛼/2‖𝜃(𝑡)‖ℎ .

{︃
ℎ2𝛾0𝑡−𝛼‖𝑢0‖+ ℎ2𝑡−(𝛼+1)/2‖𝑢0‖, for 𝑢0 ∈ 𝐿2(Ω), 𝑓 = 0,
ℎ2𝛾0ℬ0(𝜖, 𝑡) + ℎ2𝑡𝛼/2−2ℬ1(𝜖, 𝑡), for 𝑢0 ∈ 𝐷(𝐴), 𝑓 ̸= 0,

and this concludes the proof. �

5. Numerical illustrations

The numerical experiments in this section validate the theoretical orders of convergences (𝑂𝐶𝑠) for the
semidiscrete solution established in Section 4. Let 𝐸𝑂𝐶 denote the expected orders of convergence with respect
to the space variable. The numerical experiments are performed using Freefem++ [17] with the following two
sets of problem data on Ω = (0, 1)2. To compute the discrete solution, we first triangulate Ω, and then consider
a uniform partition of [0, 𝑡] with grid points 𝑡𝑛 = 𝑛𝑘, 𝑛 = 0, 1 . . . , 𝑁 , where 𝑘 = 𝑡/𝑁 is the time step size and 𝑡
is the time of interest. The Caputo fractional derivative 𝜕𝛼

𝑡 𝑢(𝑡) at 𝑡 = 𝑡𝑛 is approximated by the L1 scheme (cf.
[26, 38]) as shown below:

𝜕𝛼
𝑡 𝑢(𝑡𝑛) =

1
Γ(1− 𝛼)

𝑛−1∑︁
𝑗=0

ˆ 𝑡𝑗+1

𝑡𝑗

(𝑡𝑛 − 𝑠)−𝛼 𝜕𝑢(𝑠)
𝜕𝑠

d𝑠

≈ 1
Γ(1− 𝛼)

𝑛−1∑︁
𝑗=0

𝑢(𝑡𝑗+1)− 𝑢(𝑡𝑗)
𝑘

ˆ 𝑡𝑗+1

𝑡𝑗

(𝑡𝑛 − 𝑠)−𝛼 d𝑠 =
𝑛−1∑︁
𝑗=0

𝑙𝑗
𝑢(𝑡𝑛−𝑗)− 𝑢(𝑡𝑛−𝑗−1)

𝑘𝛼

= 𝑘−𝛼

⎛⎝𝑙0𝑢(𝑡𝑛)− 𝑙𝑛−1𝑢(𝑡0) +
𝑛−1∑︁
𝑗=1

(𝑙𝑗 − 𝑙𝑗−1)𝑢(𝑡𝑛−𝑗)

⎞⎠,
where the weights 𝑙𝑗 are given by 𝑙𝑗 = ((𝑗 + 1)1−𝛼 − 𝑗1−𝛼)/Γ(2− 𝛼), 𝑗 = 0, . . . , 𝑁 − 1.
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Table 1. The 𝐿2-OC and energy-OC for the Morley method in case (i) for 𝛼 = 0.25, 0.50, 0.75
at 𝑡 = 0.1 with 𝑘 = 0.001.

ℎ 𝛼 Errors in 𝐿2-norm 𝐿2-OC Errors in energy norm Energy-OC

1/16 0.25 4.50057e−05 – 9.30188e−03 –
1/32 1.18977e−05 1.91942 4.69592e−03 0.98611
1/64 3.07517e−06 1.95195 2.34989e−03 0.99881
1/128 7.63686e−07 2.00961 1.17378e−03 1.00143
1/16 0.50 5.59721e−05 – 1.14995e−02 –
1/32 1.47909e−05 1.92000 5.80462e−03 0.98630
1/64 3.82260e−06 1.95208 2.90464e−03 0.99884
1/128 9.49291e−07 2.00963 1.45088e−03 1.00142
1/16 0.75 5.12578e−05 – 1.02222e−02 –
1/32 1.35183e−05 1.92286 5.15662e−03 0.98720
1/64 3.49206e−06 1.95276 2.58010e−03 0.99899
1/128 8.67171e−07 2.00969 1.28878e−03 1.00142
EOC 2.0 1.0

Figure 1. Numerical solutions of dG method on 256× 256 mesh with 𝛼 = 0.25, 0.5, 0.75.

5.1. Examples

(i) Choose the nonsmooth initial data as

𝑢0(𝑥, 𝑦) =

{︃
1, 𝑥 ∈ (0, 1/2], 𝑦 ∈ (0, 1),
−1, 𝑥 ∈ (1/2, 1), 𝑦 ∈ (0, 1),

and 𝑓(𝑥, 𝑦, 𝑡) = 0. In this case, the exact solution 𝑢(𝑥, 𝑦, 𝑡) is not known.
(ii) The manufactured exact solution 𝑢 given by 𝑢(𝑥, 𝑦, 𝑡) = (𝑡𝛼+1 + 1)(𝑥(1− 𝑥)𝑦(1− 𝑦))2 leads to the smooth

initial data 𝑢0(𝑥, 𝑦) = (𝑥(1− 𝑥)𝑦(1− 𝑦))2 and source function 𝑓(𝑥, 𝑦, 𝑡) = Γ(𝛼+ 2)𝑡(𝑥(1− 𝑥)𝑦(1− 𝑦))2 +
(𝑡𝛼+1 + 1)(24(𝑥2 − 2𝑥3 + 𝑥4) + 24(𝑦2 − 2𝑦3 + 𝑦4) + 2(2 − 12𝑥 + 12𝑥2)(2 − 12𝑦 + 12𝑦2)). Note that the
initial data is in 𝐷(𝐴) and the source function belongs to the appropriate function space mentioned in
Theorem 4.2(ii) for any 𝜖 ∈ (0, 1/4).

For the dG method, the numerical computations are performed with the choice of penalty parameters as
𝜎1

dG = 𝜎2
dG = 2, whereas for the 𝐶0IP, we choose 𝜎IP = 8.
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Table 2. The 𝐿2-OC and energy-OC for the 𝐶0IP method in case (i) for 𝛼 = 0.25, 0.50, 0.75
at 𝑡 = 0.1 with 𝑘 = 0.001 and 𝜎IP = 8.

ℎ 𝛼 Errors in 𝐿2-norm 𝐿2-OC Errors in energy-norm Energy-OC

1/16 0.25 5.51766e−06 – 3.13001e−03 –
1/32 1.56160e−06 1.82103 1.59248e−03 0.97489
1/64 4.02967e−07 1.95429 7.94704e−04 1.00278
1/128 1.05072e−07 1.93928 4.02570e−04 0.98117
1/16 0.50 6.79515e−06 – 3.85380e−03 –
1/32 1.92315e−06 1.82103 1.96072e−03 0.97489
1/64 4.96266e−07 1.95429 9.78472e−04 1.00278
1/128 1.29399e−07 1.93929 4.95661e−04 0.98117
1/16 0.75 5.92698e−06 – 3.35774e−03 –
1/32 1.67746e−06 1.82102 1.70834e−03 0.97490
1/64 4.32868e−07 1.95428 8.52520e−04 1.00279
1/128 1.12867e−07 1.93930 4.31861e−04 0.98116
EOC 2.0 1.0

Table 3. The 𝐿2-OC and energy-OC for the Morley method in case (ii) for 𝛼 = 0.25, 0.50, 0.75
at 𝑡 = 0.1 with 𝑘 = 0.001.

ℎ 𝛼 Errors in 𝐿2-norm 𝐿2-OC Errors in energy-norm Energy-OC

1/12 0.25 2.03729e−04 – 2.06933e−02 –
1/24 5.22317e−05 1.96365 1.04746e−02 0.98226
1/48 1.31474e−05 1.99015 5.25437e−03 0.99531
1/96 3.29262e−06 1.99747 2.62936e−03 0.99880
1/12 0.50 1.98919e−04 – 2.02103e−02 –
1/24 5.09999e−05 1.96361 1.02305e−02 0.98222
1/48 1.28375e−05 1.99013 5.13193e−03 0.99530
1/96 3.21502e−06 1.99746 2.56809e−03 0.99880
1/12 0.75 1.96278e−04 – 1.99395e−02 –
1/24 5.03223e−05 1.96363 1.00933e−02 0.98223
1/48 1.26670e−05 1.99013 5.06308e−03 0.99530
1/96 3.17243e−06 1.99741 2.53364e−03 0.99880
EOC 2.0 1.0

5.2. Order of spatial convergence for nonsmooth initial data

Since the exact solution is not known in this case, the OC is calculated by the following formula

OC = log(‖𝑊2ℎ −𝑊ℎ‖*/‖𝑊ℎ −𝑊ℎ/2‖*)/ log 2,

where ‖ · ‖* denotes either the 𝐿2(Ω)- or energy norm and 𝑊ℎ is the discrete solution with mesh size ℎ. The
spatial numerical experiments are performed for case (i) with the mesh size ℎ = {1/16, 1/32, 1/64, 1/128, 1/256},
and fractional order 𝛼 = 0.25, 0.50, 0.75 keeping the time step size 𝑘 fixed at 𝑘 = 0.001.

For the Morley method, the numerical results are illustrated in Table 1. The solution plots for the dG method
are displayed in Figure 1 on 256 × 256 mesh with 𝛼 = 0.25, 0.5, 0.75 with fixed 𝑘 = 0.001. Finally, for 𝐶0IP
method, the empirical results are shown in Table 2. The energy norm and 𝐿2 norm errors demonstrate linear
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Table 4. The 𝐿2-OC and energy-OC for the dG method in case (ii) for 𝛼 = 0.25, 0.50, 0.75 at
𝑡 = 0.1 with 𝑘 = 0.001 and 𝜎1

dG = 𝜎2
dG = 2.

ℎ 𝛼 Errors in 𝐿2-norm 𝐿2-OC Errors in energy-norm Energy-OC

1/12 0.25 1.03592e−03 – 6.45313e−02 –
1/24 2.92835e−04 1.82275 3.05090e−02 1.08076
1/48 7.85626e−05 1.89817 1.41902e−02 1.10434
1/96 2.03336e−05 1.94998 6.97876e−03 1.02385
1/12 0.50 1.01130e−03 – 6.30133e−02 –
1/24 2.85915e−04 1.82256 2.97960e−02 1.08054
1/48 7.67092e−05 1.89812 1.38593e−02 1.10426
1/96 1.98541e−05 1.94996 6.81611e−03 1.02383
1/12 0.75 9.97939e−04 – 6.21740e−02 –
1/24 2.82122e−04 1.82263 2.93972e−02 1.08063
1/48 7.56902e−05 1.89814 1.36735e−02 1.10430
1/96 1.95904e−05 1.94996 6.72469e−03 1.02384
EOC 2.0 1.0

Figure 2. Exact (left) and numerical (right) solutions of dG method on 96× 96 mesh, 𝛼 = 0.5.

and quadratic orders of convergence, respectively. These findings agree with the theoretical convergence rates
established in Theorem 4.2(i).

5.3. Order of spatial convergence for smooth data

The spatial numerical experiments are performed with the mesh size ℎ = { 1
12 ,

1
24 ,

1
48 ,

1
96}, and fractional order

𝛼 = 0.25, 0.50, 0.75 with a fixed time step size 𝑘 = 0.001. For the Morley method, the results are presented
in Table 3. The convergence results for the dG scheme are demonstrated in Table 4. Further, the exact and
numerical solutions plots are also shown in Figure 2. Table 5 and Figure 3 display the numerical results and
the exact and numerical solutions for the 𝐶0IP method. From the experiments, we observe that the empirical
results are independent of the fractional order 𝛼. The energy norm and 𝐿2 norm errors for the Morley, dG, and
𝐶0IP methods are plotted in a log–log scale in Figure 4. This validates the theoretical OCs of Theorem 4.2(ii).
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Table 5. The 𝐿2-OC and energy-OC for the 𝐶0IP method in case (ii) for 𝛼 = 0.25, 0.50, 0.75
at 𝑡 = 0.1 with 𝑘 = 0.001 and 𝜎IP = 8.

ℎ 𝛼 Errors in 𝐿2-norm 𝐿2-OC Errors in energy-norm Energy-OC

1/12 0.25 1.15038e−04 – 1.72387e−02 –
1/24 3.29403e−05 1.80419 8.87466e−03 0.95788
1/48 8.67545e−06 1.92484 4.47807e−03 0.98681
1/96 2.21587e−06 1.96907 2.24645e−03 0.99522
1/12 0.50 1.12328e−04 – 1.68369e−02 –
1/24 3.21638e−05 1.80421 8.66785e−03 0.95788
1/48 8.47091e−06 1.92485 4.37372e−03 0.98681
1/96 2.16363e−06 1.96906 2.19411e−03 0.99522
1/12 0.75 1.10834e−04 – 1.66111e−02 –
1/24 3.17360e−05 1.80421 8.55157e−03 0.95788
1/48 8.35815e−06 1.92487 4.31505e−03 0.98681
1/96 2.13470e−06 1.96915 2.16467e−03 0.99522
EOC 2.0 1.0

Figure 3. Exact (left) and numerical (right) solutions of 𝐶0IP method on 96× 96 mesh, 𝛼 = 0.5.

6. Concluding remarks

In this paper, we have studied an initial-boundary value problem for a time-fractional biharmonic problem
with clamped boundary conditions in a bounded polygonal domain with a Lipschitz continuous boundary
in R2. After defining a weak solution, we have stated the well-posedness result of the problem and derived
several regularity results of the solutions of both homogeneous and nonhomogeneous problems which are useful
in the error analysis. Using an energy argument a spatially semidiscrete scheme that covers various popular
lowest-order nonstandard piecewise quadratic finite element schemes (e.g., the Morley, discontinuous Galerkin,
and 𝐶0 interior penalty) is developed and analyzed. The convergence analysis is carried out for smooth and
nonsmooth initial data cases, including the initial data 𝑢0 ∈ 𝐿2(Ω). Numerical results are provided to validate
the theoretical convergence rates of the discrete solution. One future direction is the convergence analysis for
time discretization, which will be addressed in another work.



LOWEST-ORDER NONSTANDARD FINITE ELEMENT METHODS 69

Figure 4. 𝐿2 errors (left) and energy errors (right) plots for case (ii) for the Morley, dG, and
𝐶0IP schemes at 𝑡 = 0.1 with 𝑘 = 0.001.
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