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IMPLICIT KINETIC SCHEMES FOR THE SAINT-VENANT SYSTEM

Chourouk El Hassanieh1,2 , Mathieu Rigal3,* and Jacques Sainte-Marie1,2

Abstract. Explicit (in time) kinetic schemes applied to the nonlinear shallow water equations have
been extensively studied in the past. The novelty of this paper is to investigate an implicit version
of such methods in order to improve their stability properties. In the case of a flat bathymetry we
obtain a fully implicit kinetic solver satisfying a discrete entropy inequality and keeping the water
height non negative without any restriction on the time step. Remarkably, a simplified version of this
nonlinear implicit scheme allows to express the update explicitly which we implement in practice. The
case of varying bottoms is then dealt with through an iterative solver combined with the hydrostatic
reconstruction technique. We show that this scheme preserves the water height non-negativity under a
CFL condition and satisfies a discrete entropy inequality without error term, which is an improvement
over its explicit version. An extension of the implicit and iterative methods to the two dimensional case
is also discussed. Finally we perform some numerical validations underlining the advantages and the
computational cost of our strategy.
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1. Introduction

1.1. General motivation and goals

Free surface flows are a subject of great importance whose understanding is at the core of many present
challenges. These include the issue of safety related to submersion and tsunami waves affecting urbanized areas,
rogue waves that can be a hazard for sailing, or the transport in rivers or lakes. Another relevant topic is that of
renewable energy generated from hydraulic dams or sea buoys, and the impact of these systems on the aquatic
fauna to give only a few examples. To describe such complex fluid flows, there exists numerous mathematical
models, and when restricting to shallow areas where it is reasonable to neglect dispersive effects but not nonlinear
ones the Saint-Venant equations [18, 28], also known as the shallow water equations, are often preferred to the
incompressible Navier–Stokes system with free surface for practical applications. In fact, although the latter
model is more accurate, it is also significantly more complex to study theoretically and numerically. On the
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other hand the Saint-Venant system has a reduced complexity since it is a vertically averaged nonlinear model
belonging to the class of hyperbolic systems of balance laws. Despite being simpler, it can be successfully used to
approximate various geophysical flows such as rivers, coastal areas, and oceans when completed with a Coriolis
term, and granular flows when completed with friction terms.

The analytical solutions of the Saint-Venant equations satisfy important properties, among which the con-
servation of the total water and of the total momentum when the bathymetry is flat, the positivity of the water
height, or the existence of the lake at rest steady state that becomes a nontrivial equilibrium in presence of
a varying bathymetry, which is accounted for through a source term in the momentum equation. Because the
solutions of the Saint-Venant system are non-unique, it is usual to select the one obtained through a viscosity
perturbation, and which satisfies additional entropy inequalities that can be interpreted as the dissipation of
some energy. For the derivation of a numerical scheme approximating the Saint-Venant system, the main dif-
ficulty is to construct a structure preserving numerical method, that is to say a method able to preserve the
aforementioned properties at the discrete level so that the numerical approximation is qualitatively relevant.
The present paper is dedicated to this issue. More specifically we focus on a kinetic solver, which provides a
good framework regarding positivity and entropy stability, and investigate the advantages of combining it with
an implicit time integrator compared to the more common explicit approach.

There are several contributions in this work. In the case of the one dimensional Saint-Venant system with flat
bathymetry, we propose a new, fully implicit kinetic scheme which is structure preserving without constraint
on the time step. The case of varying bathymetries is dealt with by the mean of the hydrostatic reconstruction
technique together with a fixed point method approximating the implicit update. Unlike its explicit version which
does not always dissipate the entropy, our iterative scheme is shown to be structure preserving under a CFL
condition. We then point to the possibility of extending these two numerical methods to the two dimensional
Saint-Venant equations, and numerical simulations are performed to evaluate the interest of the proposed
approaches.

1.2. State of the art and outline of the paper

The derivation of an efficient, robust and stable numerical scheme for the Saint-Venant system has received
an extensive coverage, we refer the reader to [11,20,23,30] and references therein. In particular, kinetic schemes
approximating macroscopic systems of conservation laws have become popular over the last decades. Such
methods consist to substitute the macroscopic system, in our case the Saint-Venant equations, by a scalar
kinetic equation featuring a transport term with a collision operator, and which is easier to discretize. In [9],
Bouchut developed a general theory to construct kinetic representations involving a BGK collision operator
and admitting a family of kinetic entropies. As we will recall later, kinetic entropies are an important tool
allowing one to recover the dissipation mechanism of the macroscopic entropy at the kinetic level. Once a kinetic
representation with a kinetic entropy is known, it is then possible to design a numerical scheme satisfying a
discrete entropy inequality as explained in [10].

In presence of a source term, such as the one induced by a varying bathymetry in the Saint-Venant equations,
one of the challenges involves the design of a well-balanced scheme, that is to say a discretization able to preserve
some characteristic stationary solutions. In [27], Perthame and Simeoni proposed a well-balanced kinetic scheme
where the bathymetry is seen as a stair-shaped parametrization against which fluid particles can be reflected.
A drawback of this is that the associated macroscopic update cannot be written explicitly, and instead some
integrals have to be approximated by a quadrature. They also provided a Maxwellian with compact support
that differs from the usual Gaussian distribution, and that has been used later in [6, 14, 21]. This allows the
scheme to be positive and entropy stable under a CFL condition depending on the size of the support. In a
recent work [6], some of the authors have proposed a kinetic scheme coupled with the hydrostatic reconstruction
technique introduced in [4, 5] for the numerical treatment of the topography source term. With this approach
an explicit writing of the macroscopic update is available, however an error term with positive sign is present
in the discrete entropy inequality; as a result the entropy can increase in some test cases. Despite this, Bouchut
and Lhebrard have proved the convergence of the kinetic hydrostatic reconstruction scheme towards entropy
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solutions of the Saint-Venant system, see [12]. The implicit version of the scheme proposed in [6] gives a stronger
stability result where the discrete entropy inequality is free of the positive error term and the entropy is always
dissipated.

The capability of implicit time integrators to improve the stability properties of numerical schemes has been
studied in the last years. Explicit finite volume approaches for the approximation of conservation laws have
to deal with a CFL constraint that can be very restrictive for some applications where large time scales and
significant wave velocities have to be considered. This is for instance the case in the low Froude regime, where
the surface gravity waves travel at a much larger velocity than the fluid particles. A solution consists in implicit-
explicit schemes [2,8,22,29] where the fast dynamics are approximated implicitly, allowing the use of larger time
steps while keeping the scheme stable. Another important question is the computational costs, in the sense that
for explicit schemes, the CFL constraint implies small time steps whereas for implicit schemes, the computation
of the numerical fluxes can be costly. Indeed in the explicit setting, the numerical fluxes at an interface depend
on the value of the variables at the two neighboring cells whereas in the implicit context, the numerical fluxes
depend on the value of the variables of all the cells. In [16], a fully implicit lattice Boltzmann scheme was
proposed, with the advantage of having the computational cost of an explicit approach thanks to a sweeping
algorithm, however to our knowledge this method lacks a fully discrete entropy inequality. The novelties of the
paper are:

– a fully implicit numerical scheme for the Saint-Venant system is detailed and analyzed;
– the proposed numerical scheme satisfies a fully discrete entropy inequality;
– whereas, in general, an implicit scheme often requires to invert an operator – typically a matrix – at each

time step, our fully implicit kinetic scheme offers a very favorable context since we have an explicit expression
of the inverse of the operator. Hence, one can hardly imagine a truly implicit entropy stable scheme for the
Saint-Venant system with a lower computational cost than the kinetic solver proposed here.

This paper is organized as follows. In the remainder of this section we recall the formulation of the Saint-
Venant system, its kinetic description and the framework of its numerical approximation in the context of
a kinetic solver. Especially, the notion of kinetic entropy is detailed. Then in Section 2, the implicit kinetic
scheme for the Saint-Venant system with flat topography is proposed and studied in the one dimensional case.
An iterative kinetic scheme is proposed in Section 3 where the topography can be taken into account through the
hydrostatic reconstruction technique. In Section 4, we briefly discuss the extension of the previous approaches
to the two dimensional Saint-Venant system. Finally in Section 5, numerical examples are given to evaluate the
interest of the proposed schemes.

1.3. The Saint-Venant system and its kinetic interpretation

The classical Saint-Venant system for shallow water flows describes the evolution of the height of water
ℎ(𝑡, 𝑥) ≥ 0, and the water velocity 𝑢(𝑡, 𝑥) ∈ R (𝑥 denotes a coordinate in the horizontal direction) over a slowly
varying topography 𝑧(𝑥), and reads

𝜕𝑡ℎ + 𝜕𝑥(ℎ𝑢) = 0,

𝜕𝑡(ℎ𝑢) + 𝜕𝑥

(︂
ℎ𝑢2 + 𝑔

ℎ2

2

)︂
+ 𝑔ℎ𝜕𝑥𝑧 = 0, (1.1)

where 𝑔 > 0 is the gravity constant. This system is completed with an entropy (energy) inequality

𝜕𝑡

(︂
ℎ

𝑢2

2
+ 𝑔

ℎ2

2
+ 𝑔ℎ𝑧

)︂
+ 𝜕𝑥

(︂(︂
ℎ

𝑢2

2
+ 𝑔ℎ2 + 𝑔ℎ𝑧

)︂
𝑢

)︂
≤ 0. (1.2)

We shall denote 𝑈 = (ℎ, ℎ𝑢)𝑇 and

𝜂(𝑈) = ℎ
𝑢2

2
+ 𝑔

ℎ2

2
, 𝐺(𝑈) =

(︂
ℎ

𝑢2

2
+ 𝑔ℎ2

)︂
𝑢, (1.3)
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the entropy and entropy fluxes without topography. The reader can refer to [6] and references therein for a
complete presentation of the description of the Saint-Venant system.

The classical kinetic Maxwellian (see e.g. [27]) is given by

𝑀(𝑈, 𝜉) =
1
𝑔𝜋

(︀
2𝑔ℎ− (𝜉 − 𝑢)2

)︀1/2

+
, (1.4)

where 𝜉 ∈ R and 𝑥+ ≡ max(0, 𝑥) for any 𝑥 ∈ R. It satisfies the following moment relations,∫︁
R

𝑀(𝑈, 𝜉) d𝜉 = ℎ,

∫︁
R

𝜉𝑀(𝑈, 𝜉) d𝜉 = ℎ𝑢,∫︁
R

𝜉2𝑀(𝑈, 𝜉) d𝜉 = ℎ𝑢2 + 𝑔
ℎ2

2
· (1.5)

These definitions allow us to obtain a kinetic representation of the Saint-Venant system.

Lemma 1.1. If the topography 𝑧(𝑥) is Lipschitz continuous, the pair of functions (ℎ, ℎ𝑢) is a weak solution to
the Saint-Venant system (1.1) if and only if 𝑀(𝑈, 𝜉) satisfies the kinetic equation

𝜕𝑡𝑀 + 𝜉𝜕𝑥𝑀 − 𝑔(𝜕𝑥𝑧)𝜕𝜉𝑀 = 𝑄, (1.6)

for some “collision term” 𝑄(𝑡, 𝑥, 𝜉) that satisfies, for a.e. (𝑡, 𝑥),∫︁
R

𝑄 d𝜉 =
∫︁

R
𝜉𝑄 d𝜉 = 0. (1.7)

Proof. If (1.6) and (1.7) are satisfied, we can multiply (1.6) by (1, 𝜉)𝑇 , and integrate with respect to 𝜉. Using (1.5)
and (1.7) and integrating by parts the term in 𝜕𝜉𝑀 , we obtain (1.1). Conversely, if (ℎ, ℎ𝑢) is a weak solution
to (1.1), just define 𝑄 by (1.6); it will satisfy (1.7) according to the same computations. �

The standard way to use Lemma 1.1 is to write a kinetic relaxation equation [9, 10,15,24,25], like

𝜕𝑡𝑓 + 𝜉𝜕𝑥𝑓 − 𝑔(𝜕𝑥𝑧)𝜕𝜉𝑓 =
𝑀 − 𝑓

𝜖
, (1.8)

where the distribution 𝑓(𝑡, 𝑥, 𝜉) is positive, where 𝑀 = 𝑀(𝑈, 𝜉) with 𝑈(𝑡, 𝑥) =
∫︀

(1, 𝜉)𝑇 𝑓(𝑡, 𝑥, 𝜉)d𝜉, and where
𝜖 > 0 is a relaxation time. In the limit 𝜖 → 0 we recover formally the formulation (1.6), (1.7). We refer to [9] for
general considerations on such kinetic relaxation models without topography, the case with topography being
introduced in [27]. Note that the notion of kinetic representation as (1.6), (1.7) differs from the so called kinetic
formulations where a large set of entropies is involved, see [26]. For systems of conservation laws, these kinetic
formulations include non-advective terms that prevent from writing down simple approximations. In general,
kinetic relaxation approximations can be compatible with just a single entropy. Nevertheless this is enough for
proving the convergence as 𝜖 → 0, see [7].

The interest of the particular form (1.4) lies in its link with a kinetic entropy. Consider the kinetic entropy,

𝐻(𝑓, 𝜉, 𝑧) =
𝜉2

2
𝑓 +

𝑔2𝜋2

6
𝑓3 + 𝑔𝑧𝑓, (1.9)

where 𝑓 ≥ 0, 𝜉 ∈ R and 𝑧 ∈ R, and its version without topography

𝐻0(𝑓, 𝜉) =
𝜉2

2
𝑓 +

𝑔2𝜋2

6
𝑓3. (1.10)
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Then one can check the relations ∫︁
R

𝐻
(︀
𝑀(𝑈, 𝜉), 𝜉, 𝑧

)︀
d𝜉 = 𝜂(𝑈) + 𝑔ℎ𝑧, (1.11)∫︁

R
𝜉𝐻
(︀
𝑀(𝑈, 𝜉), 𝜉, 𝑧

)︀
d𝜉 = 𝐺(𝑈) + 𝑔ℎ𝑧𝑢. (1.12)

One has the following entropy relations.

Lemma 1.2. Let 𝑓(𝜉) ≥ 0 satisfy
∫︀

𝑓(𝜉) d𝜉 = ℎ and
∫︀

𝜉𝑓(𝜉) d𝜉 = ℎ𝑢 (assumed finite). The half-disk
Maxwellian (1.4) satisfies the two properties below.

(i) For any 𝜉 ∈ R one has

𝐻0(𝑓, 𝜉) ≥ 𝐻0(𝑀(𝑈, 𝜉), 𝜉) + 𝜂′(𝑈) ·
(︂

1
𝜉

)︂
(𝑓 −𝑀(𝑈, 𝜉)). (1.13)

(ii) For 𝑈 = (ℎ, ℎ𝑢)𝑇 there holds the inequality

𝜂(𝑈) =
∫︁

R
𝐻0

(︀
𝑀(𝑈, 𝜉), 𝜉

)︀
d𝜉 ≤

∫︁
R

𝐻0

(︀
𝑓(𝜉), 𝜉

)︀
d𝜉. (1.14)

Proof of Lemma 1.2. (i) A proof of inequality (1.13) is given in [6] and relies on the following relation

𝜕𝑓𝐻0(𝑀(𝑈, 𝜉), 𝜉) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝜂′(𝑈) ·

(︃
1
𝜉

)︃
if 𝜉 ∈ supp 𝑀(𝑈, ·)

≥ 𝜂′(𝑈) ·

(︃
1
𝜉

)︃
otherwise,

(1.15)

which we will use in Section 3 to obtain discrete entropy inequalities. The property (ii) was proved by Perthame
and Simeoni in [27]. It is simply recovered from (i) by integrating (1.13) over 𝜉 ∈ R and using the fact that
𝑓 −𝑀(𝑈, 𝜉) is a collision term. �

One can recover the macroscopic entropy inequality (1.2) thanks to Lemma 1.2. For this, assuming 𝐻 to be
at least 𝐶1, we multiply the kinetic relaxation equation (1.8) by 𝜕𝑓𝐻(𝑓, 𝜉, 𝑧) to get

𝜕𝑡𝐻(𝑓, 𝜉, 𝑧) + 𝜉(𝜕𝑥𝐻(𝑓, 𝜉, 𝑧)− 𝜕𝑧𝐻(𝑓, 𝜉, 𝑧)𝜕𝑥𝑧)− 𝑔(𝜕𝑥𝑧)(𝜕𝜉𝑓)𝜕𝑓𝐻(𝑓, 𝜉, 𝑧) = 𝜕𝑓𝐻(𝑓, 𝜉, 𝑧)
𝑀 − 𝑓

𝜖
·

By convexity of 𝐻 we have the following inequality

𝜕𝑡𝐻(𝑓, 𝜉, 𝑧) + 𝜉𝜕𝑥𝐻(𝑓, 𝜉, 𝑧)− 𝜕𝑥𝑧
(︁
𝜉𝜕𝑧𝐻(𝑓, 𝜉, 𝑧) + 𝑔(𝜕𝜉𝑓)𝜕𝑓𝐻(𝑓, 𝜉, 𝑧)

)︁
≤ 𝐻(𝑀, 𝜉, 𝑧)−𝐻(𝑓, 𝜉, 𝑧)

𝜖
,

and using 𝜕𝑧𝐻(𝑓, 𝜉, 𝑧) = 𝑔𝑓 and 𝜕𝑓𝐻(𝑓, 𝜉, 𝑧) = 1
2𝜉2 + 1

2 (𝑔𝜋𝑓)2 + 𝑔𝑧, this yields

𝜕𝑡𝐻(𝑓, 𝜉, 𝑧) + 𝜉𝜕𝑥𝐻(𝑓, 𝜉, 𝑧)− 𝑔𝜕𝑥𝑧

(︂
𝜉𝑓 +

(︂
𝜉2

2
+ 𝑔𝑧

)︂
𝜕𝜉𝑓 +

𝑔2𝜋2

6
𝜕𝜉𝑓

3

)︂
≤ 𝐻(𝑀, 𝜉, 𝑧)−𝐻(𝑓, 𝜉, 𝑧)

𝜖
· (1.16)

In the general setting of weak solutions, one cannot assume 𝐻 to be smooth, in which case the above steps
cannot be undertaken. Rather, the inequality (1.16) should be seen as an entropy condition. Notice that in the
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left hand side of (1.16), the term in factor of 𝑔𝜕𝑥𝑧 is macroscopically zero, therefore integrating this inequality
w.r.t. 𝜉 results in

𝜕𝑡

∫︁
R

𝐻(𝑓, 𝜉, 𝑧) d𝜉 + 𝜕𝑥

∫︁
R

𝜉𝐻(𝑓, 𝜉, 𝑧) d𝜉 ≤ 1
𝜖

∫︁
R

(︁
𝐻0(𝑀, 𝜉) + 𝑔𝑧𝑀 −𝐻0(𝑓, 𝜉)− 𝑔𝑧𝑓)

)︁
d𝜉 ≤ 0,

where we used the second point of Lemma 1.2 to get the second inequality. Finally, considering that the solution
𝑓 of (1.8) formally converges to 𝑀 as 𝜖 → 0, together with the relations (1.11) and (1.12), one obtains the
desired macroscopic entropy inequality (1.2).

1.4. Explicit kinetic schemes for the Saint-Venant system

We intend to approximate the solution 𝑈(𝑡, 𝑥) of the system (1.1) for 𝑥 ∈ R and 𝑡 ≥ 0 by discrete values 𝑈𝑛
𝑖 ,

with 𝑖 ∈ Z the spatial index and 𝑛 ∈ N the time index. For this, we consider a grid of real points (𝑥𝑖+1/2)𝑖∈Z
and discrete times (𝑡𝑛)𝑛∈N satisfying

𝑥𝑖+1/2 − 𝑥𝑖−1/2 = ∆𝑥𝑖, 𝑡𝑛+1 − 𝑡𝑛 = ∆𝑡𝑛,

with ∆𝑥𝑖 > 0 the spatial step and ∆𝑡𝑛 > 0 the time step. Defining the cell 𝐶𝑖 = (𝑥𝑖−1/2, 𝑥𝑖+1/2) of length ∆𝑥𝑖,
we shall consider 𝑈𝑛(𝑥) the piecewise constant function approximating the solution at time 𝑡𝑛 and corresponding
to

𝑈𝑛(𝑥) = 𝑈𝑛
𝑖 , for 𝑥 ∈ 𝐶𝑖. (1.17)

A finite volume scheme for (1.1) is a formula providing a relation between 𝑈𝑛+1
𝑖 and the set {𝑈𝑛

𝑗 }𝑗∈Z of the
form

𝑈𝑛+1
𝑖 = 𝑈𝑛

𝑖 − 𝜎𝑖

(︀
𝐹𝑖+1/2− − 𝐹𝑖−1/2+

)︀
, (1.18)

where 𝜎𝑖 = ∆𝑡𝑛/∆𝑥𝑖, and where 𝐹𝑖±1/2∓ are two-points numerical fluxes given by

𝐹𝑖+1/2− = ℱ𝑙

(︀
𝑈𝑛+𝑝

𝑖 , 𝑈𝑛+𝑝
𝑖+1 , 𝑧𝑖+1 − 𝑧𝑖

)︀
, 𝐹𝑖+1/2+ = ℱ𝑟

(︀
𝑈𝑛+𝑝

𝑖 , 𝑈𝑛+𝑝
𝑖+1 , 𝑧𝑖+1 − 𝑧𝑖

)︀
, (1.19)

with 𝑝 ∈ {0, 1} and with ℱ𝑙,ℱ𝑟 some functions valued in R2 consistent with the analytic flux of the Saint-Venant
system, see [11]. The value 𝑝 = 0 classically corresponds to a first order explicit time scheme for solving (1.1)
whereas 𝑝 = 1 means an implicit time scheme. In this paper, we focus on the case 𝑝 = 1, but we recall how to
construct kinetic schemes in the classical explicit framework.

A kinetic scheme is a numerical discretization of the BGK-type kinetic equation (1.8) which then provides
a numerical scheme for the Saint-Venant system using to the moment relations (1.5) after integration against
(1, 𝜉). In [27], a splitting between the transport term and the collision term is considered, requiring to solve the
following problem at every time step{︃

𝜕𝑡𝑓 + 𝜉𝜕𝑥𝑓 − 𝑔(𝜕𝑥𝑧)𝜕𝜉𝑓 = 0

𝑓(𝑡𝑛, 𝑥, 𝜉) = 𝑀(𝑈𝑛(𝑥), 𝜉),
𝑡 ∈

(︀
𝑡𝑛, 𝑡𝑛+1

)︀
. (1.20)

Especially, we see that the initial kinetic density is projected onto the space of Maxwellians. Denoting 𝑓𝑛+1−
𝑖

an approximation of the solution of (1.20) at time 𝑡𝑛+1 in cell 𝐶𝑖, the macroscopic update is given by

𝑈𝑛+1
𝑖 =

∫︁
R

(︂
1
𝜉

)︂
𝑓𝑛+1−

𝑖 (𝜉) d𝜉. (1.21)

It remains to explain how to discretize (1.20). This is achieved by the mean of an upwind scheme accounting
for the sign of the velocity 𝜉, and which for a flat bottom reads

𝑓𝑛+1−
𝑖 = 𝑀𝑖 − 𝜎𝑖𝜉(1𝜉>0𝑀𝑖 + 1𝜉<0𝑀𝑖+1 − 1𝜉<0𝑀𝑖 − 1𝜉>0𝑀𝑖−1). (1.22)
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In particular we see that (1.21) and (1.22) corresponds to the macroscopic update (1.18) with numerical
fluxes (1.19) defined as

ℱ𝑙/𝑟(𝑈𝑙, 𝑈𝑟, ∆𝑧) =
∫︁

R
𝜉

(︂
1
𝜉

)︂
(1𝜉>0𝑀(𝑈𝑙, 𝜉) + 1𝜉<0𝑀(𝑈𝑟, 𝜉)) d𝜉.

In [6], the scheme (1.22) was extended to varying bathymetries thanks to the hydrostatic reconstruction tech-
nique. The resulting discretization reads

𝑓𝑛+1−
𝑖 = 𝑀𝑖 − 𝜎𝑖𝜉

(︀
1𝜉<0

(︀
𝑀𝑖+1/2+ −𝑀𝑖−1/2+

)︀
+ 1𝜉>0

(︀
𝑀𝑖+1/2− −𝑀𝑖−1/2−

)︀)︀
+ 𝜎𝑖(𝜉 − 𝑢𝑖)

(︀
𝑀𝑖+1/2− −𝑀𝑖−1/2+

)︀
, (1.23)

where indices 𝑖 + 1/2± denote reconstructed values at the interface 𝑖 + 1/2 and whose expression will
be detailed later (see Sect. 3.2). In [6], some of the authors have proved the following properties for the
schemes (1.22) and (1.23).

Proposition 1.3 (Explicit kinetic schemes [6]). Under the CFL condition 𝜎𝜉max ≤ 1, where 𝜉max = sup{|𝜉|, 𝜉 ∈
∪𝑖∈Z supp 𝑀(𝑈𝑛

𝑖 , ·)} is finite if (𝑈𝑛
𝑖 )𝑖 ∈ ℓ∞(Z; R2), we have that

(1) the scheme (1.22) keeps 𝑓𝑛+1−
𝑖 non-negative and satisfies a fully discrete entropy inequality of the form

𝐻0

(︀
𝑓𝑛+1−

𝑖 , 𝜉
)︀
≤ 𝐻0(𝑀𝑛

𝑖 , 𝜉)− 𝜎𝑖𝜉
(︁
𝐻𝑛

0,𝑖+1/2(𝜉)−𝐻𝑛
0,𝑖−1/2(𝜉)

)︁
,

(2) the scheme (1.23) keeps 𝑓𝑛+1−
𝑖 non-negative and satisfies a fully discrete entropy inequality of the form

𝐻
(︀
𝑓𝑛+1−

𝑖 , 𝑧𝑖, 𝜉
)︀
≤ 𝐻(𝑀𝑛

𝑖 , 𝑧𝑖, 𝜉)− 𝜎𝑖𝜉
(︁ ̃︀𝐻𝑛

𝑖+1/2(𝜉)− ̃︀𝐻𝑛
𝑖−1/2(𝜉)

)︁
+ 𝐷𝑛

𝑖 (𝜉) + 𝐸𝑛
𝑖 (𝜉),

where 𝐷𝑛
𝑖 ≤ 0 is a dissipation and 𝐸𝑛

𝑖 ≥ 0 an error term that can dominate 𝐷𝑛
𝑖 in many cases.

2. A fully implicit kinetic scheme over a flat bathymetry

In this section we consider the model (1.1) with a flat topography, and propose an implicit kinetic scheme based
on (1.20) and (1.21) i.e. an implicit version of (1.22). Since in practice it is not possible to approximate solutions
over the whole space 𝑥 ∈ R, we shall work in a bounded domain and will need to enforce boundary conditions.
First in Section 2.1 we present and study the implicit kinetic scheme; we show that it is unconditionally positive
and entropy stable by using the kinetic entropy (1.10). Next in Section 2.2 we detail how to compute explicitly
the update at the kinetic level, which is possible thanks to the particular structure of the underlying matrix.
Then we consider the associated macroscopic scheme in Section 2.3. Unfortunately, it is not possible to compute
the integral of the kinetic update against (1, 𝜉), instead we propose a compromise consisting to replace the
standard Maxwellian by a simpler one. The question of boundary conditions is then treated in Section 2.4, and
finally we discuss the practical implementation and the computational costs in Section 2.5.

2.1. Kinetic discretization and properties

In the case of a flat topography, the kinetic scheme is a flux vector splitting scheme [10]. We denote 𝑃 ∈ N
the number of cells, and the update (1.22) approaching the solution of (1.20) is replaced for all 1 ≤ 𝑖 ≤ 𝑃 by
the implicit kinetic scheme

𝑓𝑛+1−
𝑖 = 𝑀𝑖 − 𝜎𝜉

(︀
1𝜉<0𝑓

𝑛+1−
𝑖+1 + 1𝜉>0𝑓

𝑛+1−
𝑖 − 1𝜉<0𝑓

𝑛+1−
𝑖 − 1𝜉>0𝑓

𝑛+1−
𝑖−1

)︀
, (2.1)
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with 𝜎 = ∆𝑡𝑛/∆𝑥. We rewrite the previous equations under the form⎧⎪⎪⎨⎪⎪⎩
−𝜎1𝜉>0𝜉𝑓

𝑛+1−
𝑖−1 + (1 + 𝜎|𝜉|)𝑓𝑛+1−

𝑖 + 𝜎1𝜉<0𝜉𝑓
𝑛+1−
𝑖+1 = 𝑀𝑖 2 ≤ 𝑖 ≤ 𝑃 − 1

(1 + 𝜎|𝜉|)𝑓𝑛+1−
1 + 𝜎1𝜉<0𝜉𝑓

𝑛+1−
2 = 𝑀1 + 𝜎1𝜉>0𝜉𝑀

𝑛+1
0

−𝜎1𝜉>0𝜉𝑓
𝑛+1−
𝑃−1 + (1 + 𝜎|𝜉|)𝑓𝑛+1−

𝑃 = 𝑀𝑃 − 𝜎1𝜉<0𝜉𝑀
𝑛+1
𝑃+1.

(2.2)

The quantities 𝑀𝑛+1
0 = 𝑀(𝑈𝑛+1

0 , 𝜉) and 𝑀𝑛+1
𝑃+1 = 𝑀(𝑈𝑛+1

𝑃+1, 𝜉) appearing in the last two lines of (2.2) account
for the imposed boundary conditions. In a first step, we assume that 𝑀𝑛+1

0 and 𝑀𝑛+1
𝑃+1 are two known kinetic

Maxwellian, their expressions will be discussed in more details in the paragraph devoted to the practical com-
putation of the implicit variables, see paragraph 2.4.

With obvious notations, the system (2.2) consists in finding 𝑓𝑛+1 = {𝑓𝑛+1−
𝑖 }𝑖∈{1,...,𝑃} satisfying

(I + 𝜎L)𝑓𝑛+1 = 𝑀 + 𝜎𝐵𝑛+1, (2.3)

where I is the identity matrix of length 𝑃 and L ∈ R𝑃×𝑃 is given by

L =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

|𝜉| 𝜉1𝜉<0 0 . . . 0

−𝜉1𝜉>0 |𝜉| 𝜉1𝜉<0
. . .

...

0
. . . . . . . . . 0

...
. . . −𝜉1𝜉>0 |𝜉| 𝜉1𝜉<0

0 . . . 0 −𝜉1𝜉>0 |𝜉|

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (2.4)

The three vectors 𝑓𝑛+1, 𝑀 and 𝐵𝑛+1 of R𝑃 are defined by

𝑓𝑛+1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑓𝑛+1−
1

...
𝑓𝑛+1−

𝑖

...
𝑓𝑛+1−

𝑃

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
, 𝑀 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

𝑀1

...
𝑀𝑖

...
𝑀𝑃

⎞⎟⎟⎟⎟⎟⎟⎟⎠
and 𝐵𝑛+1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1𝜉>0𝜉𝑀
𝑛+1
0 ,

0
...
0

−1𝜉<0𝜉𝑀
𝑛+1
𝑃+1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
. (2.5)

The practical computation of the densities vector 𝑓𝑛+1 will be discussed in paragraph 2.2. Hereafter, we focus
on the properties of the numerical scheme (2.2) and the two following results hold.

Lemma 2.1. The matrix I + 𝜎L defined by through (2.4)

(i) is invertible for any 𝜎 and 𝜉,
(ii) its inverse (I + 𝜎L)−1 has only positive coefficients.

Proposition 2.2. The numerical scheme (2.2) satisfies the following properties

(i) the discretization (2.2) is consistent with (1.1),
(ii) the system (2.2) – or equivalently the system (2.3) – admits an unique solution and the solution satisfies

𝑓𝑛+1−
𝑖 = 𝑓𝑛+1−

𝑖 (𝜉) ≥ 0, ∀1 ≤ 𝑖 ≤ 𝑃, ∀𝜉 ∈ R.
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To state the main result regarding the entropy stability of the fully implicit kinetic scheme we need to
introduce the function Ψ defined by

Ψ : R2 ∋ (𝑎, 𝑏) ↦−→ 𝑔2𝜋2

6
(𝑏 + 2𝑎)(𝑏− 𝑎)2, (2.6)

which is positive on R2
+.

Proposition 2.3. The system (2.3) admits a unique solution of positive quantities and defines an implicit
kinetic scheme. Moreover, this scheme satisfies the fully discrete entropy equality

𝐻0

(︀
𝑓𝑛+1−

𝑖

)︀
= 𝐻0(𝑀𝑖)− 𝜎

(︁
𝐻𝑛+1−

0,𝑖+1/2 −𝐻𝑛+1−
0,𝑖−1/2

)︁
−Ψ

(︀
𝑓𝑛+1−

𝑖 , 𝑀𝑖

)︀
+ 𝜎𝜉

(︁
1𝜉<0Ψ

(︀
𝑓𝑛+1−

𝑖 , 𝑓𝑛+1−
𝑖+1

)︀
− 1𝜉>0Ψ

(︀
𝑓𝑛+1−

𝑖 , 𝑓𝑛+1−
𝑖−1

)︀)︁
(2.7)

where 𝐻𝑛+1−
0,𝑖+1/2, 𝐻𝑛+1−

0,𝑖−1/2 are given by

𝐻𝑛+1−
0,𝑖+1/2 = 𝜉1𝜉<0𝐻0

(︀
𝑓𝑛+1−

𝑖+1

)︀
+ 𝜉1𝜉>0𝐻0

(︀
𝑓𝑛+1−

𝑖

)︀
, (2.8)

𝐻𝑛+1−
0,𝑖−1/2 = 𝜉1𝜉<0𝐻0

(︀
𝑓𝑛+1−

𝑖

)︀
+ 𝜉1𝜉>0𝐻0

(︀
𝑓𝑛+1−

𝑖−1

)︀
. (2.9)

Since Ψ given in (2.6) is positive on R2
+, the last three terms of equality (2.7) define a nonpositive dissipative

term.

Notice that the results obtained in the two Propositions 2.2 and 2.3 do not require any CFL condition.
A consequence of Proposition 2.3 is that, when using the classical Maxwellian (1.4), the macroscopic scheme
associated to (2.1) will satisfy a discrete entropy inequality that always dissipates the energy. In fact since the
Maxwellian (1.4) minimizes the functional (1.14) we have the following upper bound on the macroscopic entropy
𝜂(𝑈𝑛+1

𝑖 )

𝜂
(︀
𝑈𝑛+1

𝑖

)︀
=
∫︁

R
𝐻0

(︀
𝑀
(︀
𝑈𝑛+1

𝑖 , 𝜉
)︀
, 𝜉
)︀

d𝜉 ≤
∫︁

R
𝐻0

(︀
𝑓𝑛+1−

𝑖 (𝜉), 𝜉
)︀

d𝜉.

We then use equality (2.7) yielding

𝜂
(︀
𝑈𝑛+1

𝑖

)︀
≤ 𝜂(𝑈𝑛

𝑖 )− 𝜎

(︂∫︁
R

𝐻𝑛+1−
0,𝑖+1/2(𝜉)d𝜉 −

∫︁
R

𝐻𝑛+1−
0,𝑖−1/2(𝜉)d𝜉

)︂
+
∫︁

R
𝐷𝑖(𝜉) d𝜉, (2.10)

where 𝐷𝑖 = 𝒪(∆𝑡) is the negative dissipation term corresponding to the terms of (2.7) involving Ψ, making the
inequality (2.10) consistent with the entropy inequality (1.2).

Proof of Lemma 2.1. The matrix I + 𝜎L writes

I + 𝜎L =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 + 𝜎|𝜉| 𝜎𝜉1𝜉<0 0 . . . 0

−𝜎𝜉1𝜉>0 1 + 𝜎|𝜉| 𝜎𝜉1𝜉<0
. . .

...

0
. . . . . . . . . 0

...
. . . −𝜎𝜉1𝜉>0 1 + 𝜎|𝜉| 𝜎𝜉1𝜉<0

0 . . . 0 −𝜎𝜉1𝜉>0 1 + 𝜎|𝜉|

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

and it is easy to see that the matrix I + 𝜎L is strictly diagonally dominant and hence invertible. Moreover the
matrix Λ = I + 𝜎L is such that

Λ𝑖,𝑖 > 0, and Λ𝑖,𝑗 ≤ 0, when 𝑖 ̸= 𝑗,
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meaning I + 𝜎L is a monotone matrix and hence the solution of (2.3) satisfies

𝑓𝑛+1−
𝑖 =

(︀
(I + 𝜎L)−1(𝑀 + 𝜎𝐵𝑛+1,𝑘)

)︀
𝑖
≥ 0, ∀𝑖,

proving the result.
Denoting L𝑑 (resp. L𝑛𝑑) the diagonal (resp. non diagonal) part of L we can write

I + 𝜎L =
(︀
I + 𝜎L𝑑

)︀(︁
I−

(︀
I + 𝜎L𝑑

)︀−1(︀−𝜎L𝑛𝑑
)︀)︁

,

where all the entries of the matrix
J =

(︀
I + 𝜎L𝑑

)︀−1(︀−𝜎L𝑛𝑑
)︀
,

are non negative and less than 1. And hence, we can write

(I + 𝜎L)−1 = (I− J)−1(︀I + 𝜎L𝑑
)︀−1

=
∞∑︁

𝑘=0

J𝑘
(︀
I + 𝜎L𝑑

)︀−1
,

proving all the entries of (I + 𝜎L)−1 are non negative. �

Proof of Proposition 2.2. (i) The four terms in parentheses in (2.1) are conservative, and are classically con-
sistent with 𝜉𝜕𝑥𝑓 in (1.20).

(ii) This is a direct consequence of Lemma 2.1.
�

The proof of Proposition 2.3 makes use of the following lemma which will also be useful later.

Lemma 2.4. The following identity holds for any real pair (𝑎, 𝑏) and for any 𝜉 ∈ R

𝐻0(𝑏, 𝜉) = 𝐻0(𝑎, 𝜉) + 𝜕𝑓𝐻0(𝑎, 𝜉)(𝑏− 𝑎) + Ψ(𝑎, 𝑏), (2.11)

with the function Ψ defined in (2.6). Especially, we recover the convexity of 𝐻0(·, 𝜉) on R+ thanks to the positivity
of Ψ on R2

+. Equality (2.11) remains satisfied if we replace 𝐻0 by 𝐻.

Proof of Lemma 2.4. For any (𝑎, 𝑏) in R2 there holds

𝜕𝑓𝐻0(𝑎)(𝑏− 𝑎) =
𝜉2

2
𝑏 +

𝑔2𝜋2

2
𝑎2𝑏− 𝜉2

2
𝑎− 𝑔2𝜋2

2
𝑎3

= 𝐻0(𝑏) +
𝑔2𝜋2

2
𝑎2𝑏− 𝑔2𝜋2

6
𝑏3 −𝐻0(𝑎)− 𝑔2𝜋2

2
𝑎3 +

𝑔2𝜋2

6
𝑎3

= 𝐻0(𝑏)−𝐻0(𝑎)− 𝑔2𝜋2

6
(︀
𝑏3 − 𝑎3 − 3𝑎2(𝑏− 𝑎)

)︀
,

and equality (2.11) is recovered using the formula

𝑏3 − 𝑎3 − 3𝑎2(𝑏− 𝑎) = (𝑏 + 2𝑎)(𝑏− 𝑎)2.

This result is extended to the kinetic entropy 𝐻 owing to the relation 𝐻(𝑓, 𝜉) = 𝐻0(𝑓, 𝜉) + 𝑔𝑧𝑓 . �

Proof of Proposition 2.3. The proof follows similar lines as what was done in the case of the fully explicit version
of the kinetic scheme in [6]. Instead of multiplying equation (2.1) by 𝜕𝑓𝐻0(𝑓𝑛

𝑖 ), we multiply it by 𝜕𝑓𝐻0(𝑓𝑛+1−
𝑖 ),

which leads to
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𝜕𝑓𝐻0

(︀
𝑓𝑛+1−

𝑖

)︀(︀
𝑓𝑛+1−

𝑖 −𝑀𝑖

)︀
= − 𝜎𝜉1𝜉<0𝜕𝑓𝐻0(𝑓𝑛+1−

𝑖 )
(︀
𝑓𝑛+1−

𝑖+1 − 𝑓𝑛+1−
𝑖

)︀
(2.12)

+ 𝜎𝜉1𝜉>0𝜕𝑓𝐻0(𝑓𝑛+1−
𝑖 )

(︀
𝑓𝑛+1−

𝑖−1 − 𝑓𝑛+1−
𝑖

)︀
.

In (2.12) we have three terms of the form 𝜕𝑓𝐻(𝑎)(𝑏− 𝑎) with 𝑎 = 𝑓𝑛+1−
𝑖 and 𝑏 ∈ {𝑓𝑛+1−

𝑖−1 , 𝑀𝑖, 𝑓
𝑛+1−
𝑖+1 }. Taking

advantage of Lemma 2.4 we can write

𝐻0(𝑓𝑛+1−
𝑖 )−𝐻0(𝑀𝑖) + Ψ

(︀
𝑓𝑛+1−

𝑖 , 𝑀𝑖

)︀
= −𝜎𝜉1𝜉<0

(︀
𝐻0

(︀
𝑓𝑛+1−

𝑖+1

)︀
−𝐻0

(︀
𝑓𝑛+1−

𝑖

)︀
−Ψ

(︀
𝑓𝑛+1−

𝑖 , 𝑓𝑛+1−
𝑖+1

)︀)︀
+ 𝜎𝜉1𝜉>0

(︀
𝐻0

(︀
𝑓𝑛+1−

𝑖−1

)︀
−𝐻0

(︀
𝑓𝑛+1−

𝑖

)︀
−Ψ

(︀
𝑓𝑛+1−

𝑖 , 𝑓𝑛+1−
𝑖−1

)︀)︀
,

and we conclude by grouping the expressions. �

2.2. Practical computation of the implicit kinetic update

When dealing with implicit schemes, one has often to invert an operator and the key point of the numerical
scheme (2.3) is the computation of the inverse of the matrix I + 𝜎L, where L has been defined in (2.4). In our
case, it will be possible to compute analytically this inverse thanks to the triangular structure of the matrix,
which is due to the upwinding of the fluxes in (2.1). More precisely we decompose (I+𝜎L)−1 as the contributions
of the left- and right-going information, which gives

(I + 𝜎L)−1 = (I + 𝜎L+)−11𝜉<0 + (I + 𝜎L−)−11𝜉>0, (2.13)

with the upwinding matrices L+ and L− corresponding to

L+ =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

−𝜉 𝜉 0 . . . 0

0 −𝜉
. . .

...
...

. . . . . . . . . 0
...

. . . . . . 𝜉
0 . . . 0 −𝜉

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, L− =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

𝜉 0 . . . 0

−𝜉
. . . . . .

...

0
. . . . . . . . .

...
...

. . . . . . 0
0 . . . 0 −𝜉 𝜉

⎞⎟⎟⎟⎟⎟⎟⎟⎠
. (2.14)

Introducing J+ and J− the matrices of R𝑃×𝑃 defined as

(J+)𝑖,𝑗 =

{︃
1 if 𝑖 = 𝑗 − 1
0 otherwise,

(J−)𝑖,𝑗 =

{︃
1 if 𝑖 = 𝑗 + 1
0 otherwise,

we can write ⎧⎪⎪⎪⎨⎪⎪⎪⎩
(I + 𝜎L−)−1 =

(︀
(1 + 𝜎𝜉)I− 𝜎𝜉J−

)︀−1 =
1

1 + 𝜎𝜉

(︂
I− 𝜎𝜉

1 + 𝜎𝜉
J−
)︂−1

(I + 𝜎L+)−1 =
(︀
(1− 𝜎𝜉)I + 𝜎𝜉J+

)︀−1 =
1

1− 𝜎𝜉

(︂
I +

𝜎𝜉

1− 𝜎𝜉
J+

)︂−1

.

The above inverses can be computed through geometric sums since J+
𝑃 and J−𝑃 have a spectral radius equal

to zero. More specifically these two matrices are nilpotent, which implies that the geometric sums in question
contain a finite number of nonzero terms and are given below

(I + 𝜎L−)−1 =
𝑃∑︁

𝑘=0

(𝜎𝜉)𝑘

(1 + 𝜎𝜉)𝑘+1
(J−)𝑘, (I + 𝜎L+)−1 =

𝑃∑︁
𝑘=0

(−𝜎𝜉)𝑘

(1− 𝜎𝜉)𝑘+1
(J+)𝑘.
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To conclude we give the analytic expression of the inverse:

(I + 𝜎L−)−1
𝑖,𝑗 =

⎧⎪⎨⎪⎩
(𝜎𝜉)𝑖−𝑗

(1 + 𝜎𝜉)𝑖−𝑗+1
if 𝑖 ≥ 𝑗

0 else,
(2.15)

(I + 𝜎L+)−1
𝑖,𝑗 =

⎧⎪⎨⎪⎩
(−𝜎𝜉)𝑗−𝑖

(1− 𝜎𝜉)𝑗−𝑖+1
if 𝑖 ≤ 𝑗

0 else.
(2.16)

Especially we recover the properties enumerated in Lemma 2.1, since we see that all the coefficients of the
inverse (2.13) are comprised between zero and one respectively when 𝜉 ≥ 0 and 𝜉 ≤ 0.

2.3. Macroscopic implicit scheme

We now focus on obtaining an explicit writing of the macroscopic update (1.20) associated to (2.1). Using
the expressions (2.15) and (2.16) of the matrix inverse, we need to compute the integral of

1±𝜉>0
(±𝜎𝜉)𝑘

(1± 𝜎𝜉)𝑘+1
𝑀(𝑈, 𝜉)

against 1, 𝜉 and 𝜉2 for all 0 ≤ 𝑘 ≤ 𝑃 − 1. This seems hardly possible with the classical Maxwellian (1.4) and
we use the result presented in the following remark.

Remark 2.5. Let us recall that the half-disk Maxwellian 𝑀(𝑈, 𝜉) defined by (1.4) has some optimal properties
presented in Lemma 1.2, which allow to obtain the discrete entropy inequality (2.10) at the macroscopic scale.
Other choices of Maxwellians are possible but the discrete entropy inequality (2.7) is not granted to hold
anymore. A general possibility is to choose 𝑀(𝑈, 𝜉) of the form

𝑀(𝑈, 𝜉) =
ℎ

𝑐
𝜒
(︁𝜉 − 𝑢

𝑐

)︁
,

with

𝑐 =

√︂
𝑔ℎ

2
,

where 𝜒 is a non-negative, compactly supported even function satisfying∫︁
R

𝜒(𝑧) d𝑧 =
∫︁

R
𝑧2𝜒(𝑧) d𝑧 = 1.

There are a lot of possible choices for 𝜒 e.g.

𝜒1(𝑧) =
1

2
√

3
1|𝑧|≤

√
3, or 𝜒2(𝑧) =

3
20
√

5
𝑧2 +

3
4
√

5
1|𝑧|≤

√
5. (2.17)

Notice that the definition (1.4) of the half-disk Maxwellian corresponds to the choice

𝜒3(𝑧) =
1
𝜋

√︂
1− 𝑧2

4
1|𝑧|≤2.

In order to compute explicitly the macroscopic scheme i.e. without approximate quadrature formula, we now
use in this section the following expression for the Maxwellian

𝑀(𝑈, 𝜉) =
ℎ

𝑐
𝜒1

(︁𝜉 − 𝑢

𝑐

)︁
=

ℎ

2
√

3𝑐
1|𝜉−𝑢|≤

√
3𝑐 (2.18)
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and referred to as the index Maxwellian. This is the simplest choice we can make, and it will enable us to
obtain analytic expressions for the aforementioned integrals. Furthermore note that it satisfies all the moment
relations (1.5), which is important for consistency with the macroscopic Saint-Venant system.

In order to compute the macroscopic version of the scheme (2.2), we proceed as follows. The strategy consists
to dissociate the contribution of the information coming from the interior of the computational domain, and
the one coming from the boundaries⎧⎪⎪⎨⎪⎪⎩

𝑈 int =
∫︁

R

(︂
1
𝜉

)︂
(I + 𝜎L)−1𝑀 d𝜉

𝑈 ext =
∫︁

R

(︂
1
𝜉

)︂
(I + 𝜎L)−1𝜎𝐵𝑛+1 d𝜉.

(2.19)

The final update is then set as 𝑈𝑛+1 = 𝑈 int + 𝑈 ext, which coincides with definition (1.21). We postpone the
details about the computation of 𝐵𝑛+1 to the next section, and assume that it is known for now. First for 𝑈 int,
we have

𝑈 int =
∫︁

R
1𝜉≤0

(︂
1
𝜉

)︂(︀
I + 𝜎L+

)︀−1
𝑀 d𝜉 +

∫︁
R
1𝜉≥0

(︂
1
𝜉

)︂(︀
I + 𝜎L−

)︀−1
𝑀 d𝜉.

Plugging the analytic expressions (2.15) and (2.16) in the above integrals, we can express the 𝑖-th component
of 𝑈 int as

𝑈 int
𝑖 =

∫︁
𝜉<0

𝑃∑︁
𝑗=1

(︂
1
𝜉

)︂(︀
I + 𝜎L+

)︀−1

𝑖,𝑗
𝑀𝑗 d𝜉 +

∫︁
𝜉>0

𝑃∑︁
𝑗=1

(︂
1
𝜉

)︂(︀
I + 𝜎L−

)︀−1

𝑖,𝑗
𝑀𝑗 d𝜉

=
∫︁

𝜉<0

𝑃∑︁
𝑗=𝑖

(︂
1
𝜉

)︂
(−𝜎𝜉)𝑗−𝑖

(1− 𝜎𝜉)𝑗−𝑖+1
𝑀𝑗 d𝜉 +

∫︁
𝜉>0

𝑖∑︁
𝑗=1

(︂
1
𝜉

)︂
(𝜎𝜉)𝑖−𝑗

(1 + 𝜎𝜉)𝑖−𝑗+1
𝑀𝑗 d𝜉. (2.20)

A detailed expression of the quantities appearing in relation (2.20) is given in Appendix A. Similarly for the
exterior contribution we have

𝑈 ext = 𝜎

∫︁
𝜉<0

(︂
1
𝜉

)︂(︀
I + 𝜎L+

)︀−1
𝐵𝑛+1 d𝜉 + 𝜎

∫︁
𝜉>0

(︂
1
𝜉

)︂(︀
I + 𝜎L−

)︀−1
𝐵𝑛+1 d𝜉.

Using definition (2.5) and equalities (2.15)–(2.16), the 𝑖-th component of 𝑈 ext is

𝑈 ext
𝑖 =

∫︁
𝜉<0

(︂
1
𝜉

)︂
(−𝜎𝜉)𝑃−𝑖+1

(1− 𝜎𝜉)𝑃−𝑖+1
𝑀𝑛+1

𝑃+1 d𝜉 +
∫︁

𝜉>0

(︂
1
𝜉

)︂
(𝜎𝜉)𝑖

(1 + 𝜎𝜉)𝑖
𝑀𝑛+1

0 d𝜉. (2.21)

The expressions necessary to compute (2.20) and (2.21) are detailed in Appendices A and B.

2.4. Boundary conditions

In this paragraph we discuss how to enforce the boundary conditions associated with the contribution 𝑈 ext

in (2.19). To achieve this, it will be necessary to introduce two ghosts cells numbered 0 and 𝑃 +1 and neighbors
of the cells 𝐶1 and 𝐶𝑃 and we have to define 𝑈𝑛+1

0 and 𝑈𝑛+1
𝑃+1. The problem we are facing is that these ghost

quantities depend on the neighboring values in cells 𝐶1 and 𝐶𝑃 at time 𝑡𝑛+1, and which are themselves unknown.
Hence we have an implicit problem where the relation between the ghost and border terms can be nonlinear
depending on the type of boundary conditions. In practice we will avoid this issue by substituting 𝐵𝑛+1 with
𝐵𝑛 in the definition (2.19) of 𝑈 ext. Doing so can be interpreted as a first order approximation in time since we
have

𝑈𝑛+1
0 = 𝑈𝑛

0 + 𝑂(∆𝑡), 𝑈𝑛+1
𝑃+1 = 𝑈𝑛

𝑃+1 + 𝑂(∆𝑡).
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Note that expliciting the ghost values does not prevent the scheme from satisfying a discrete entropy as the
one in Proposition 2.3. In fact, equality (2.7) still holds in the interior cells 2 ≤ 𝑖 ≤ 𝑃 − 1, and in border cells
𝑖 = 1, 𝑁 one obtains

𝐻0

(︀
𝑓𝑛+1−
1

)︀
= 𝐻0(𝑀1)− 𝜎

(︁
𝐻𝑛+1−

0,3/2 −𝐻𝑛+1−
0,1/2

)︁
−Ψ

(︀
𝑓𝑛+1−
1 , 𝑀1

)︀
(2.22)

+ 𝜎𝜉
(︁
1𝜉<0Ψ

(︀
𝑓𝑛+1−
1 , 𝑓𝑛+1−

2

)︀
− 1𝜉>0Ψ

(︀
𝑓𝑛+1−
1 , 𝑀𝑛

0

)︀)︁
,

𝐻0

(︀
𝑓𝑛+1−

𝑃

)︀
= 𝐻0(𝑀𝑃 )− 𝜎

(︁
𝐻𝑛+1−

0,𝑃+1/2 −𝐻𝑛+1−
0,𝑃−1/2

)︁
−Ψ

(︀
𝑓𝑛+1−

𝑃 , 𝑀𝑃

)︀
(2.23)

+ 𝜎𝜉
(︁
1𝜉<0Ψ

(︀
𝑓𝑛+1−

𝑃 , 𝑓𝑛+1−
𝑃−1

)︀
− 1𝜉>0Ψ

(︀
𝑓𝑛+1−

𝑃 , 𝑀𝑛
𝑃+1

)︀)︁
,

where the border entropy fluxes 𝐻𝑛+1−
0,1/2 , 𝐻𝑛+1−

0,𝑃+1/2 are given by

𝐻𝑛+1−
0,1/2 = 𝜉1𝜉<0𝐻0

(︀
𝑓𝑛+1−
1

)︀
+ 𝜉1𝜉>0𝐻0(𝑀𝑛

0 ), 𝐻𝑛+1−
0,𝑃+1/2 = 𝜉1𝜉<0𝐻0

(︀
𝑀𝑛

𝑃+1

)︀
+ 𝜉1𝜉>0𝐻0

(︀
𝑓𝑛+1−

𝑃

)︀
.

The benefit of expliciting the ghost Maxwellian 𝑀0, 𝑀𝑃+1 is that we can more easily determine the macroscopic
ghost quantities 𝑈𝑛

0 , 𝑈𝑛
𝑃+1 at time 𝑡𝑛 based on 𝑈𝑛

1 , 𝑈𝑛
𝑃 following the procedure described hereafter and similar

to that of Bristeau and Coussin in [13]. We will focus on fluvial flows where the material velocity of particles
|𝑢| is smaller than the celerity of surface gravity waves

√
𝑔ℎ; in particular low Froude flows enter this regime.

Since in this case the eigenvalues 𝑢−
√

𝑔ℎ and 𝑢 +
√

𝑔ℎ have opposite sign, at each boundary we have exactly
one wave entering the domain and one wave leaving it. Hence we dispose of a single degree of freedom to set the
ghost values, which generally consists in enforcing either a given water height or a discharge. The ghost state is
then fully determined by asking the outgoing Riemann invariant to remain constant through the interface.

In the following we detail the handling of the left boundary condition when enforcing either the water height
or the discharge; we put aside the case of the right boundary condition as it is symmetric.

Given water height. First we consider the case where the water height is enforced at the left boundary of
the domain, and we denote by ℎ𝑔,𝑙 the value attributed to the ghost cell. Together with the condition on the
outgoing Riemann invariant, we get the following nonlinear system which is solved analytically{︂

ℎ𝑛
0 = ℎ𝑔,𝑙

𝑢𝑛
0 − 2

√︀
𝑔ℎ𝑛

0 = 𝑢𝑛
1 − 2

√︀
𝑔ℎ𝑛

1

=⇒ 𝑈𝑛
0 = ℎ𝑔,𝑙

(︃
1

𝑢𝑛
1 − 2

(︀√︀
𝑔ℎ𝑛

1 −
√︀

𝑔ℎ𝑔,𝑙

)︀)︃.

Given flux. Another possibility is to enforce the discharge at the boundary, and we denote by 𝑞𝑔,𝑙 the left ghost
value. This time, the constraint on the Riemann invariant will enable to determine the ghost water height. Indeed
we have the system {︂

𝑞𝑛
0 = 𝑞𝑔,𝑙

𝑢𝑛
0 − 2

√︀
𝑔ℎ𝑛

0 = 𝑢𝑛
1 − 2

√︀
𝑔ℎ𝑛

1 ,
(2.24)

and the second equality involving the outgoing Riemann invariant requires to find the real roots of the third
order polynomial in 𝑋 =

√︀
ℎ𝑛

0 given by

𝒫(𝑋) := 𝑋3 +
𝑢𝑛

1 − 2
√︀

𝑔ℎ𝑛
1

2
√

𝑔
𝑋2 − 𝑞𝑔,𝑙

2
√

𝑔
= 0. (2.25)

Its derivative 𝒫 ′ admits two real distinct roots

𝑋0 = 0 and 𝑋1 = −
𝑢𝑛

1 − 2
√︀

𝑔ℎ𝑛
1

3
√

𝑔
, with 𝒫(𝑋1) = −1

2
𝑋3

1 −
𝑞𝑔,𝑙

2
√

𝑔
,
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and we recall that we make the assumption that 𝑢𝑛
1 −

√︀
𝑔ℎ𝑛

1 ≤ 0 so that 𝑋1 ≥ 0. If 𝑞𝑔,𝑙 ≥ −√𝑔𝑋3
1 , one has

𝒫(𝑋1) ≤ 0; together with the fact that 𝒫(𝑋) → +∞ as 𝑋 goes to infinity, there exists one real root larger
than 𝑋1 ≥ 0. If additionally 𝑞𝑔,𝑙 > 0, this root is the only real one since 𝒫(𝑋0) < 0; if 𝑞𝑔,𝑙 ≤ 0 then 𝒫(𝑋0) ≥ 0
and there exists a second positive root between 𝑋0 and 𝑋1. In this case we take the convention to retain the
smaller of the two. On the other hand, when 𝑞𝑔,𝑙 < −√𝑔𝑋3

1 we have that 𝒫(𝑋0),𝒫(𝑋1) are both positive, and
there doesn’t exist a positive root. In this case one can choose to enforce the water height instead.

Note that when enforcing the flux, our approach differs from that of Bristeau and Coussin in [13], where
the ghost value is chosen such that the resulting numerical flux at the interface coincides with the boundary
discharge. Instead we do not enforce any value at the interface but directly in the ghost cell, which can be seen
as a first order simplification in space. A common practice for channel flows is to enforce the water height at
the inlet and the flux at the outlet.

Remark 2.6. When substituting 𝐵𝑛+1 with 𝐵𝑛 in the implicit kinetic scheme (2.3), the corresponding update
can be reformulated as (I + 𝜎L)𝑓

𝑛+1
= 𝑀

𝑛
with

I + 𝜎L =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1

−𝜎𝜉1𝜉>0

...
0 I + 𝜎L 0
... 𝜎𝜉1𝜉<0

1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, 𝑓

𝑛+1
=

⎛⎜⎝𝑓𝑛+1
0

𝑓𝑛+1

𝑓𝑛+1
𝑃+1

⎞⎟⎠, 𝑀
𝑛

=

⎛⎝ 𝑀𝑛
0

𝑀𝑛

𝑀𝑛
𝑃+1

⎞⎠.

As a consequence the maximum principle ‖𝑓𝑛+1
(𝜉)‖∞ ≤ ‖𝑀𝑛

(𝜉)‖∞ holds for any 𝜉 in R during the transport
step. In fact we can verify that matrix (I + 𝜎L) is monotone, and following the argument involved in Lemma 5.1
from [1] we can write

0 ≤ 𝑓
𝑛+1

=
(︀
I + 𝜎L

)︀−1
𝑀

𝑛 ≤
(︀
I + 𝜎L

)︀−1
(︁⃦⃦⃦

𝑀
𝑛
⃦⃦⃦
∞

1
)︁
,

with 1 the vector from R𝑃+2 whose entries are all equal to one. Using equality (I + 𝜎L)−11 = 1 allows to
conclude. Note however that there is no such principle at the macroscopic scale, similarly to the continuous
Saint-Venant system.

2.5. Implementation and computational costs

It is important to keep a reasonable algorithmic complexity so that the implicit method presented in the
previous lines and especially the formulae (2.20), (2.21) can be used in practice. We discuss here how to improve
its computational cost by a substantial margin. In Appendix A, we show that the 𝑖-th component of vectors
ℎint and (ℎ𝑢)int have the form⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ℎint
𝑖 =

1
2𝜎
√

3

(︃
𝑃∑︁

𝑗=𝑖

√︃
2ℎ𝑛

𝑗

𝑔
(𝐴ℎ)𝑖,𝑗 +

𝑖∑︁
𝑗=1

√︃
2ℎ𝑛

𝑗

𝑔
(𝐵ℎ)𝑖,𝑗

)︃

(ℎ𝑢)int
𝑖 =

1
2𝜎2

√
3

(︃
−

𝑃∑︁
𝑗=𝑖

√︃
2ℎ𝑛

𝑗

𝑔
(𝐴ℎ𝑢)𝑖,𝑗 +

𝑖∑︁
𝑗=1

√︃
2ℎ𝑛

𝑗

𝑔
(𝐵ℎ𝑢)𝑖,𝑗

)︃
,

(2.26)

where 𝐴ℎ, 𝐴ℎ𝑢 are dense upper triangular matrices, and 𝐵ℎ, 𝐵ℎ𝑢 are dense lower triangular matrices. Therefore
computing ℎint and (ℎ𝑢)int through (2.26) is analog to performing a matrix-vector product which has a quadratic
complexity 𝑂(𝑃 2), and we cannot hope to do better than that. However the coefficients (A.3)–(A.6) of the
above matrices involve a summation, and at a first glance the cost to assemble them is seemingly cubic. This is
quite expensive and can render the method pretty much inefficient. However this complexity can be reduced to a
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quadratic cost by computing the coefficients in the correct order. More specifically we show that all the matrices
above can be defined through a recurrence relation allowing to compute each coefficient from a previous one in
𝑂(1) operation. In fact, denoting 𝑦 = 𝑥/(1 + 𝑥) and 𝑧 = ln |1 + 𝑥|, the matrix 𝐴ℎ is given by⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

[𝑧]−min(0,𝑎1)𝜎
−min(0,𝑏1)𝜎

[𝑧 − 𝑦]−min(0,𝑎2)𝜎
−min(0,𝑏2)𝜎

. . . . . .
[︁
𝑧 −

∑︀𝑃−1
𝑙=1 𝑦𝑙/𝑙

]︁−min(0,𝑎𝑃 )𝜎

−min(0,𝑏𝑃 )𝜎

0 [𝑧]−min(0,𝑎2)𝜎
−min(0,𝑏2)𝜎

...
...

. . .
...

...
. . . [𝑧 − 𝑦]−min(0,𝑎𝑃 )𝜎

−min(0,𝑏𝑃 )𝜎

0 . . . . . . 0 [𝑧]−min(0,𝑎𝑃 )𝜎
−min(0,𝑏𝑃 )𝜎

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

where 𝑎𝑛
𝑗 = 𝑢𝑛

𝑗 −
√

3 𝑐𝑛
𝑗 and 𝑏𝑛

𝑗 = 𝑢𝑛
𝑗 +

√
3 𝑐𝑛

𝑗 . This corresponds to the recursive definition below

(𝐴ℎ)𝑖,𝑗 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 if 𝑗 < 𝑖[︀

ln(|1 + 𝑥|)
]︀−min(0,𝑎𝑗)𝜎

−min(0,𝑏𝑗)𝜎
if 𝑖 = 𝑗

(𝐴ℎ)𝑖+1,𝑗 − 1
𝑗−𝑖

[︀
𝑦𝑗−𝑖

]︀−min(0,𝑎𝑗)𝜎

−min(0,𝑏𝑗)𝜎
if 𝑗 > 𝑖.

(2.27)

Likewise, the lower triangular matrix 𝐵ℎ is given by⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

[𝑧]max(0,𝑏𝑛
1 )𝜎

max(0,𝑎𝑛
1 )𝜎 0 . . . . . . 0

[𝑧 − 𝑦]max(0,𝑏𝑛
1 )𝜎

max(0,𝑎𝑛
1 )𝜎

. . .
...

. . .
... [𝑧]

max(0,𝑏𝑛
𝑃−1)𝜎

max(0,𝑎𝑛
𝑃−1)𝜎

0[︁
𝑧 −

∑︀𝑃−1
𝑙=1 𝑦𝑙/𝑙

]︁max(0,𝑏𝑛
1 )𝜎

max(0,𝑎𝑛
1 )𝜎

. . . . . . [𝑧 − 𝑦]
max(0,𝑏𝑛

𝑃−1)𝜎

max(0,𝑎𝑛
𝑃−1)𝜎

[︀
𝑧
]︀max(0,𝑏𝑛

𝑃 )𝜎

max(0,𝑎𝑛
𝑃 )𝜎

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

and can be defined by the following recurrence formula

(𝐵ℎ)𝑖,𝑗 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 if 𝑖 < 𝑗[︀

ln(|1 + 𝑥|)
]︀max(0,𝑏𝑗)𝜎

max(0,𝑎𝑗)𝜎
if 𝑖 = 𝑗

(𝐵ℎ)𝑖−1,𝑗 − 1
𝑖−𝑗

[︀
𝑦𝑖−𝑗

]︀max(0,𝑏𝑗)𝜎

max(0,𝑎𝑗)𝜎
if 𝑖 > 𝑗.

(2.28)

Hence it is more efficient to assemble matrices 𝐴ℎ and 𝐵ℎ column wise, starting from the diagonal coefficient
and moving towards the first or last row. This way we only have to subtract one term to the previous coefficient
so as to get the next one, and the cost of this operation is in 𝑂(1). Since there are 𝑃 (𝑃 + 1)/2 coefficients to
compute in total, the assembly of 𝐴ℎ and 𝐵ℎ following this strategy requires 𝑂(𝑃 2) steps.

A similar conclusion is achieved for 𝐴ℎ𝑢 and 𝐵ℎ𝑢, although the recurrence relation is less straightforward to
obtain. We first remark that, introducing (𝑙)𝑖,𝑗 = 𝑖− 𝑗 + 1 the relations (A.5) and (A.6) become

(𝐴ℎ𝑢)𝑖,𝑗 = 1𝑗≥𝑖

[︃
−(𝑙)𝑗,𝑖 ln|1 + 𝑥|+ 𝑥 +

𝑗−𝑖∑︁
𝑘=1

𝑘
𝑦(𝑙)𝑗,𝑖−𝑘

(𝑙)𝑗,𝑖 − 𝑘

]︃−min(0,𝑎𝑗)𝜎

−min(0,𝑏𝑗)𝜎

,
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(𝐵ℎ𝑢)𝑖,𝑗 = 1𝑖≥𝑗

[︃
−(𝑙)𝑖,𝑗 ln|1 + 𝑥|+ 𝑥 +

𝑖−𝑗∑︁
𝑘=1

𝑘
𝑦(𝑙)𝑖,𝑗−𝑘

(𝑙)𝑖,𝑗 − 𝑘

]︃max(0,𝑏𝑗)𝜎

max(0,𝑎𝑗)𝜎

.

Performing the change of index 𝑟 = (𝑙)𝑗,𝑖 − 𝑘 for matrix 𝐴ℎ𝑢 and 𝑠 = (𝑙)𝑖,𝑗 − 𝑘 for matrix 𝐵ℎ𝑢 we find

(𝐴ℎ𝑢)𝑖,𝑗 =

[︃
−(𝑙)𝑖,𝑗 ln|1 + 𝑥|+ 𝑥 + (𝑙)𝑖,𝑗

𝑗−𝑖∑︁
𝑟=1

𝑦𝑟

𝑟
−

𝑗−𝑖∑︁
𝑟=1

𝑦𝑟

]︃−min(0,𝑎𝑗)𝜎

−min(0,𝑏𝑗)𝜎

,

(𝐵ℎ𝑢)𝑖,𝑗 =

[︃
−(𝑙)𝑖,𝑗 ln|1 + 𝑥|+ 𝑥 + (𝑙)𝑖,𝑗

𝑖−𝑗∑︁
𝑠=1

𝑦𝑠

𝑠
−

𝑖−𝑗∑︁
𝑠=1

𝑦𝑠

]︃max(0,𝑏𝑗)𝜎

max(0,𝑎𝑗)𝜎

.

Next we introduce the matrices defined column wise in a recursive manner

(𝑈𝐴)𝑖,𝑗 =

{︃
0 if 𝑗 ≤ 𝑖

(𝑈𝐴)𝑖+1,𝑗 +
[︀
𝑦𝑗−𝑖

]︀−min(0,𝑎𝑗)𝜎

−min(0,𝑏𝑗)𝜎
if 𝑗 > 𝑖,

(𝑉 𝐴)𝑖,𝑗 =

⎧⎨⎩0 if 𝑗 ≤ 𝑖

(𝑉 𝐴)𝑖+1,𝑗 +
[︁

𝑦𝑗−𝑖

𝑗−𝑖

]︁−min(0,𝑎𝑗)𝜎

−min(0,𝑏𝑗)𝜎
if 𝑗 > 𝑖.

Then we can write that

(𝐴ℎ𝑢)𝑖,𝑗 =

⎧⎪⎪⎨⎪⎪⎩
0 𝑗 < 𝑖

[𝑥− ln|1 + 𝑥|]−min(0,𝑎𝑗)𝜎

−min(0,𝑏𝑗)𝜎
𝑗 = 𝑖

(𝑙)𝑗,𝑖(𝑉 𝐴)𝑖,𝑗 − (𝑈𝐴)𝑖,𝑗 + [𝑥− (𝑙)𝑗,𝑖 ln|1 + 𝑥|]−min(0,𝑎𝑗)𝜎

−min(0,𝑏𝑗)𝜎
𝑗 > 𝑖.

(2.29)

Similarly we introduce

(𝑈𝐵)𝑖,𝑗 =

{︃
0 if 𝑖 ≤ 𝑗

(𝑈𝐵)𝑖−1,𝑗 +
[︀
𝑦𝑖−𝑗

]︀max(0,𝑏𝑗)𝜎

max(0,𝑎𝑗)𝜎
if 𝑖 > 𝑗,

(𝑉 𝐵)𝑖,𝑗 =

⎧⎨⎩0 if 𝑖 ≤ 𝑗

(𝑉 𝐵)𝑖−1,𝑗 +
[︁

𝑦𝑖−𝑗

𝑖−𝑗

]︁max(0,𝑏𝑗)𝜎

max(0,𝑎𝑗)𝜎
if 𝑖 > 𝑗,

so that we have

(𝐵ℎ𝑢)𝑖,𝑗 =

⎧⎪⎪⎨⎪⎪⎩
0 𝑖 < 𝑗[︀
𝑥− ln|1 + 𝑥|

]︀max(0,𝑏𝑗)𝜎

max(0,𝑎𝑗)𝜎
𝑖 = 𝑗

(𝑙)𝑖,𝑗(𝑉 𝐵)𝑖,𝑗 − (𝑈𝐵)𝑖,𝑗 +
[︀
𝑥− (𝑙)𝑖,𝑗 ln|1 + 𝑥|

]︀max(0,𝑏𝑗)𝜎

max(0,𝑎𝑗)𝜎
𝑖 > 𝑗.

(2.30)

To conclude, through relations (2.29) and (2.30) we are also able to assemble matrices 𝐴ℎ𝑢 and 𝐵ℎ𝑢 with a
quadratic cost with respect to the number of cells, which means that the overall method has a 𝑂(𝑃 2) complexity.

Remark 2.7. We have considered here the specific case of a kinetic solver and one can imagine that an implicit
scheme for another finite volume solver can lead to reduced numerical costs. But it is worth noticing that since
the explicit expression of the inverse of the matrix I + 𝜎L is accessible in the kinetic context, one can hardly
find a more efficient implicit technique.
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Obviously the proposed implicit scheme is not constrained by any CFL condition associated with an explicit
scheme, nevertheless it is important to compare the computational costs of the explicit and implicit strategies
in the context of a kinetic solver. This comparison is performed below in the case of a flat topography.

Explicit scheme. Let ∆𝑡𝑛 be the time step allowing to satisfy the CFL constraint. In order to obtain the
expression of 𝑈𝑛+1 from 𝑈𝑛, approximately 4𝑃 numerical fluxes have to be computed (2 numerical fluxes at
each interface for each variable ℎ and ℎ𝑢). The explicit kinetic scheme is fully detailed in [4, 6].

Implicit scheme. The CFL constraint being relaxed, we can consider a time step ∆𝑡𝑛𝑖𝑚𝑝 ≫ ∆𝑡𝑛. The results
obtained in this paragraph shows that the update from 𝑈𝑛+1 from 𝑈𝑛 requires approximately 𝑃 2 numerical
fluxes to compute.

We conclude that the implicit strategy is less expensive when

∆𝑡𝑛𝑖𝑚𝑝

∆𝑡𝑛
≫ 𝑃 2

4𝑃
=

𝑃

4
· (2.31)

Note however that the computational cost is not the only factor to account for, and one should also consider the
efficiency of the scheme, that is to say the relation between the error and the computational time. Generally,
taking a very coarse resolution in time results in poorly accurate results, in which case it is not desirable to
have (2.31). Nevertheless there are some cases where the fast dynamics do not play an important role such as
in the low Froude regime. Then it might be advantageous to consider large time steps. We will see through the
upcoming numerical results from Section 5.1 that the interest of the implicit kinetic scheme is rather limited
when it comes to efficiency, at least for the considered test cases. Hence the explicit strategy is preferable to
the implicit one, unless we account for the greater stability offered by the latter in terms of discrete entropy
inequality. In this regard, a semi-implicit in time strategy could ensure the stability of the scheme with a better
efficiency (see for instance [19]).

3. An iterative resolution scheme

The kinetic scheme (2.3) requires to solve a linear system and in the previous section, we have seen that it
was possible to have an analytic expression for the inverse of the matrix I + 𝜎L with L given in (2.4). For the
numerical approximation of PDEs e.g. in finite elements methods when the linear system to solve is large an
iterative strategy is singled out compared to a direct inversion of the matrix. We propose to follow the same
idea here, with mainly two benefits. First it will allow us to use the half disk Maxwellian (1.4), for which we
recall the integrals (2.19) could not be computed analytically in the case of the fully implicit kinetic scheme.
This is important as it will enable to prove some discrete entropy inequality at the macroscopic scale thanks to
the existence of a kinetic entropy 𝐻0 given by (1.10) that satisfies (1.13) and (1.14), while having an explicit
writing of the update. The second advantage lies in the possibility to couple the iterative strategy with the
hydrostatic reconstruction to obtain a well balanced treatment for varying bottoms, which we will discuss in
Section 3.2. Before this, the simpler case of flat bathymetries is investigated as a toy problem in Section 3.1,
and will give some insight.

More precisely we shall use a Gauss-Jacobi type decomposition, which consists to write the matrix I + 𝜎L as
D−N, where D and N are two matrices from R𝑃×𝑃 with D is invertible. Then the scheme (2.3) also writes

D𝑓𝑛+1 = N𝑓𝑛+1 + 𝑀 + 𝜎𝐵𝑛+1,

and one can propose an iterative resolution of the previous equation under the form

𝑓𝑛+1,𝑘+1 = D−1N𝑓𝑛+1,𝑘 + D−1
(︀
𝑀 + 𝜎𝑘𝐵𝑛+1

)︀
, 𝜎𝑘 =

∆𝑡𝑘

∆𝑥
,

where the time step ∆𝑡𝑘 is allowed to vary at each sub-iteration in order to satisfy some CFL condition. If it
converges, the sequence (𝑓𝑛+1,𝑘)𝑘∈N converges towards the solution of (2.3).
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3.1. Case of a flat topography

In this section, we study iterative strategies with the particular choice

D = (1 + 𝛼)I, and N = 𝛼I− 𝜎𝑘L,

when the bathymetry is flat and where 𝛼 ∈ (0,∞) is a relaxation parameter. The main goal is to put forward the
differences between such iterative methods and the fully implicit kinetic scheme proposed in Section 2; the first
one being that it will no longer be possible to use arbitrary large time steps since a CFL condition will be needed
to ensure the convergence of the sub-iterations and the positivity of the water height; the second one being that
the iterative scheme enables one to have an explicit writing of the update while using the half-disk Maxwellian.
As long as we are restricted to flat bathymetries, it should also be noticed that an iterative strategy proves less
advantageous than the forward Euler kinetic scheme, which is more efficient while preserving the water height
positivity and being entropy stable. The iterative kinetic scheme presents however a clear advantage over the
explicit scheme in terms of entropy stability in the case of varying bathymetries, which is treated in Section 3.2.

We consider two iterative schemes below; they differ only in whether or not the vector of kinetic densities
𝑓𝑛+1,𝑘(𝜉) is projected onto the space of Maxwellians at every sub-iteration or just at 𝑘 = 0. In the latter
and easier setting, we shall obtain a CFL condition to ensure the convergence of sub-iterations. In the former
case, this question is also addressed, although more restrictive assumptions are needed. The question of entropy
stability is only investigated when the projection step occurs at every sub-iteration.

When developed, the iterative process with a single projection at 𝑘 = 0 reads:⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑓𝑛+1,0 = 𝑀

(1 + 𝛼)𝑓𝑛+1,𝑘+1 =
(︀
𝛼I− 𝜎𝑘L

)︀
𝑓𝑛+1,𝑘 + 𝑀 + 𝜎𝑘𝐵𝑛+1,𝑘

∀1 ≤ 𝑖 ≤ 𝑃, 𝑈𝑛+1,𝑘
𝑖 =

∫︁
R

(︂
1
𝜉

)︂
𝑓𝑛+1,𝑘

𝑖 (𝜉) d𝜉

, (3.1)

with 𝐵𝑛+1,𝑘 the boundary condition associated with the macroscopic state 𝑈𝑛+1,𝑘 as explained in Section 2.4,
see (2.5). The following proposition highlights the main compromise linked with such an iterative approach,
which is the requirement for a CFL condition in order for the method to converge.

Proposition 3.1. Assume that 𝐵𝑛+1,𝑘 remains constant equal to 𝐵𝑛 for any 𝑘 in N. Then (3.1) defines an
arithmetico-geometric sequence which converges if the CFL condition 𝜎|𝜉| < 1 + 2𝛼 holds for all 𝜉 belonging to
supp 𝑀 ∪ supp 𝐵𝑛.

Proof. By recurrence, we can show that for any 𝑘 ∈ N the support of 𝑓𝑛+1,𝑘 is included in supp 𝑀 ∪ supp 𝐵𝑛,
which is why we restrict to velocities 𝜉 belonging to this set. Consider 𝑓 the solution of

𝑓 = D−1N𝑓 + D−1(𝑀 + 𝜎𝐵𝑛).

The sequence (𝑔𝑘)𝑘 defined by 𝑔𝑘 = 𝑓𝑛+1,𝑘 − 𝑓 satisfies 𝑔𝑘+1 = D−1N𝑔𝑘 and converges to zero as soon as the
spectral radius of D−1N is strictly less than one. Since D−1N is a triangular matrix, its eigenvalues are given
by its diagonal coefficients, all equal to (1+𝛼)−1(𝛼−𝜎𝑘|𝜉|). Under the assumption 𝜎𝑘|𝜉| < 1+2𝛼, this quantity
is strictly less than one in absolute value, which concludes the proof. �

Remark 3.2. As we did in Section 2.4 for the fully implicit scheme, we can replace 𝐵𝑛+1,𝑘 by 𝐵𝑛 in the iterative
process (3.1). In fact this constitutes a first order approximation in time since we have 𝑓𝑛+1,𝑘 = 𝑀 + 𝒪(∆𝑡).
Under this simplification, the assumption from Proposition 3.1 that 𝐵𝑛+1,𝑘 does not depend on 𝑘 becomes
automatically satisfied.

In practice, we wish to apply an iterative method directly at the macroscopic level. An issue with (3.1) is
that the distribution involved in the kinetic flux (i.e. the term in factor of 𝜎𝑘L) is not a vector of Maxwellians,
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Figure 1. Example of Maxwellians 𝑀𝑖, 𝑀𝑖−1 and 𝑀𝑖+1. For each quantity appearing over the
figure, the superscripts have been omitted.

which prevents us to write the recurrence relation at the macroscopic level since there is no general expression
for the numerical flux. To bypass this issue, we propose the following modification of (3.1), where we replace
all occurrences of 𝑓𝑛+1,𝑘 on the right hand side by a vector of Maxwellians 𝑀𝑛+1,𝑘, which yields⎧⎪⎨⎪⎩

𝑓𝑛+1,0(𝜉) = 𝑀

(1 + 𝛼)𝑓𝑛+1,𝑘+1(𝜉) =
(︀
𝛼I− 𝜎𝑘L

)︀
𝑀𝑛+1,𝑘 + 𝑀 + 𝜎𝑘𝐵̄𝑛+1,𝑘

𝑀𝑛+1,𝑘+1 = 𝑓𝑛+1,𝑘+1 + ∆𝑡𝑘𝑄̄𝑛+1,𝑘+1.

(3.2)

This new iterative process is alternating two stages, the first one being the usual transport step, while the
second one is a projection step onto the set of Maxwellians yielding 𝑀𝑛+1,𝑘+1. In this sense (3.2) is an iterative
BGK splitting approach where the projection step doesn’t modify the macroscopic quantities of interest since
the term 𝑄̄𝑛+1,𝑘 is a vector of collision operators satisfying the conservation constraints (1.7). Note that the
time stepping ∆𝑡𝑘 is made dependent on 𝑘 as the support of 𝑀𝑛+1,𝑘 can change from iteration to iteration.

Remark 3.3. For each value of 𝑘, each row of the density 𝑓𝑛+1,𝑘+1(𝜉) defined by (3.2) is a combination of half
disks. Hence 𝑓𝑛+1,𝑘+1

𝑖 (𝜉) that is the row 𝑖 of 𝑓𝑛+1,𝑘+1(𝜉) is a combination of 𝑀𝑛+1,𝑘
𝑖 , 𝑀𝑖 and possibly 𝐵𝑛+1,𝑘

𝑖

if 𝑖 = 1 or 𝑖 = 𝑃 , see Figure 1. This illustrates the role of the collision term 𝑄̄𝑛+1,𝑘+1.

The practical implementation of scheme (3.2) is based on its macroscopic version given by

(1 + 𝛼)𝑈𝑛+1,𝑘+1
𝑖 = 𝛼𝑈𝑛+1,𝑘

𝑖 + 𝑈𝑖 − 𝜎𝑘
(︁
ℱ
(︁
𝑈𝑛+1,𝑘

𝑖 , 𝑈𝑛+1,𝑘
𝑖+1

)︁
−ℱ

(︁
𝑈𝑛+1,𝑘

𝑖−1 , 𝑈𝑛+1,𝑘
𝑖

)︁)︁
, (3.3)

for all 1 ≤ 𝑖 ≤ 𝑃 , where the numerical flux ℱ is defined as

ℱ(𝑈𝐿, 𝑈𝑅) =
∫︁

R
𝜉

(︂
1
𝜉

)︂
(1𝜉>0𝑀(𝑈𝐿, 𝜉) + 1𝜉<0𝑀(𝑈𝑅, 𝜉)) d𝜉, (3.4)

and where the vectors 𝑈𝑛+1,𝑘
0 , 𝑈𝑛+1,𝑘

𝑃+1 appearing in the border cells 𝑖 ∈ {1, 𝑃} are respectively functions of
𝑈𝑛+1,𝑘

1 and 𝑈𝑛+1,𝑘
𝑃 since the boundary conditions are imposed though a ghost cell strategy fully described

in [1,13]. As previously, one can choose to make these ghost values independent from the sub-iteration index 𝑘.
Notice that if the sequence (𝑈𝑛+1,𝑘)𝑘∈N ⊂ (R2)𝑃 from (3.3) converges in (R2)𝑃 , its limit 𝑈𝑛+1 then satisfies

∀1 ≤ 𝑖 ≤ 𝑃, 𝑈𝑛+1
𝑖 = 𝑈𝑛

𝑖 − 𝜎𝑘
(︀
ℱ
(︀
𝑈𝑛+1

𝑖 , 𝑈𝑛+1
𝑖+1

)︀
−ℱ

(︀
𝑈𝑛+1

𝑖−1 , 𝑈𝑛+1
𝑖

)︀)︀
(3.5)

by continuity of the numerical flux (3.4).
Because of the projection step, the convergence of the iterative method (3.2) is more complex to prove than

in Proposition 3.1. But the following result holds.
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Proposition 3.4. Let the sequence {𝑓𝑛+1,𝑘(·)}𝑘∈N be defined through (3.2), and let {𝑄̄𝑛+1,𝑘(·)}𝑘∈N be the
associated sequence of collision terms assumed to be bounded. Then under the CFL condition 𝜎𝑘|𝜉| < min(1, 𝛼)
the sequence {𝑓𝑛+1,𝑘(·)}𝑘∈N is non-negative and converges.

Proof of Proposition 3.4. First, we see that under the CFL condition 𝜎𝑘|𝜉| ≤ 𝛼, the quantity 𝑓𝑛+1,𝑘 defined
by (3.2) is non-negative for any 𝜉. In fact there holds

(1 + 𝛼)𝑓𝑛+1,𝑘+1
𝑖 = 𝑀𝑖 + 𝛼𝑀𝑛+1,𝑘

𝑖 − 𝜎𝑘
(︁
𝜉1𝜉≤0

(︁
𝑀𝑛+1,𝑘

𝑖+1 −𝑀𝑛+1,𝑘
𝑖

)︁
− 𝜉1𝜉≥0

(︁
𝑀𝑛+1,𝑘

𝑖−1 −𝑀𝑛+1,𝑘
𝑖

)︁)︁
≥ 𝑀𝑖 +

(︀
𝛼− 𝜎𝑘|𝜉|

)︀
𝑀𝑛+1,𝑘

𝑖 − 𝜎𝑘𝜉1𝜉≤0𝑀
𝑛+1,𝑘
𝑖+1 + 𝜎𝑘𝜉1𝜉≥0𝑀

𝑛+1,𝑘
𝑖−1 ,

with the last two terms of the lower bound non-negative. To obtain the convergence we write the recurrence
formula (3.2) as

(1 + 𝛼)𝑀𝑛+1,𝑘+1 =
(︀
𝛼I− 𝜎𝑘L

)︀
𝑀𝑛+1,𝑘 + 𝑀 + 𝜎𝑘𝐵̄𝑛+1,𝑘 + (1 + 𝛼)∆𝑡𝑘𝑄̄𝑛+1,𝑘+1. (3.6)

The previous formula is nothing else than an arithmetico-geometric-like sequence having the form

𝑀𝑛+1,𝑘+1 = A𝑘,𝛼𝑀𝑛+1,𝑘 + 𝐶𝑛,𝑘 = A𝑘,𝛼 · · ·A0,𝛼𝑀 +
𝑘∑︁

𝑗=0

(︃
𝑘−𝑗−1∏︁

𝑙=0

A𝑘−𝑙,𝛼

)︃
𝐶𝑛,𝑗 ,

with

A𝑘,𝛼 =
𝛼I− 𝜎𝑘L

1 + 𝛼
, 𝐶𝑛,𝑘 =

𝑀 + 𝜎𝑘𝐵̄𝑛+1,𝑘

1 + 𝛼
+ ∆𝑡𝑘𝑄̄𝑛+1,𝑘+1, (3.7)

whose convergence is ensured as soon as the sequence

𝑘∑︁
𝑗=0

(︃
𝑘−𝑗−1∏︁

𝑙=0

A𝑘−𝑙,𝛼

)︃
𝐶𝑛,𝑗 ,

converges when 𝑘 grows. Since the collision terms 𝑄̄𝑛+1,𝑘+1 are assumed to be bounded independently of 𝑘, we
have |𝐶𝑛,𝑘|∞ ≤ 𝐶 and the CFL condition ensures the existence of 0 ≤ 𝛽 < 1 such that

⃦⃦
A𝑘,𝛼

⃦⃦
∞,∞ =

𝛼 + 2𝜎𝑘|𝜉|
1 + 𝛼

≤ 𝛼 + 𝛽

1 + 𝛼
< 1,

where ‖·‖∞,∞ is the maximum subordinate matrix norm associated to |·|∞. This allows to write

𝑘∑︁
𝑗=0

⃒⃒⃒(︁ 𝑘−𝑗−1∏︁
𝑙=0

A𝑘−𝑙,𝛼
)︁
𝐶𝑛,𝑗

⃒⃒⃒
∞
≤

𝑘∑︁
𝑗=0

(︁𝛼 + 𝛽

1 + 𝛼

)︁𝑘−𝑗−1

|𝐶𝑛,𝑗 |∞ ≤ 𝐶

1− 𝛼+𝛽
1+𝛼

(3.8)

giving the absolute convergence of the series and thus proving the result. �

Finally we investigate the entropy stability of the iterative kinetic scheme (3.2). Note that when restricting to
a flat bathymetry, the explicit kinetic scheme [6] already verifies a discrete entropy inequality, while being more
efficient since it avoids the use of sub-iterations. The benefit of the iterative kinetic scheme compared to the fully
explicit one will become clearer in the next section, where it is combined with the hydrostatic reconstruction.
Nevertheless, the simpler case of a flat bottom is interesting in order to understand why the iterative kinetic
scheme involving the half-disk Maxwellian (1.4) offers a favorable setting to get a discrete entropy inequality.
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Proposition 3.5. The kinetic entropy of the iterative scheme (3.2) with half-disk Maxwellian (1.4) satisfies
the following inequality

𝐻0

(︁
𝑀𝑛+1,𝑘+1

𝑖

)︁
≤

𝐻0(𝑀𝑖) + 𝛼𝐻0

(︁
𝑀𝑛+1,𝑘

𝑖

)︁
1 + 𝛼

− 𝜎𝑘𝜉

1 + 𝛼

(︁
𝐻𝑛+1,𝑘

0,𝑖+1/2 −𝐻𝑛+1,𝑘
0,𝑖−1/2

)︁
(3.9)

+ 𝜂′
(︁
𝑈𝑛+1,𝑘+1

𝑖

)︁
·
(︂

1
𝜉

)︂
𝑄𝑛+1,𝑘+1

𝑖 + 𝐷𝑛+1,𝑘+1
𝑖 ,

with 𝑄𝑛+1,𝑘+1
𝑖 = 𝑀𝑛+1,𝑘+1

𝑖 − 𝑓𝑛+1,𝑘+1
𝑖 a collision operator verifying the conservation constraints (1.7), and

with 𝜂 the entropy given in (1.3). The interfacial kinetic entropies 𝐻𝑛+1,𝑘
0,𝑖±1/2 are

𝐻𝑛+1,𝑘
0,𝑖−1/2 = 1𝜉>0𝐻0

(︁
𝑀𝑛+1,𝑘

𝑖−1 , 𝜉
)︁

+ 1𝜉<0𝐻0

(︁
𝑀𝑛+1,𝑘

𝑖 , 𝜉
)︁
,

𝐻𝑛+1,𝑘
0,𝑖+1/2 = 1𝜉>0𝐻0

(︁
𝑀𝑛+1,𝑘

𝑖 , 𝜉
)︁

+ 1𝜉<0𝐻0

(︁
𝑀𝑛+1,𝑘

𝑖+1 , 𝜉
)︁
,

and the term 𝐷𝑛+1,𝑘+1
𝑖 is given by

𝐷𝑛+1,𝑘+1
𝑖 = − 1

1 + 𝛼
Ψ
(︁
𝑀𝑛+1,𝑘+1

𝑖 , 𝑀𝑖

)︁
− 𝛼− 𝜎𝑘|𝜉|1Ξ

1 + 𝛼
Ψ
(︁
𝑀𝑛+1,𝑘+1

𝑖 , 𝑀𝑛+1,𝑘
𝑖

)︁
− 𝜎𝑘|𝜉|1Ξ

1 + 𝛼
Ψ
(︁
𝑀𝑛+1,𝑘+1

𝑖 , 𝑀𝑛+1,𝑘
𝑖±1

)︁
,

where Ξ = supp 𝑀𝑛+1,𝑘, where we recall that the function Ψ defined in (2.6) is positive on R2
+, and with

𝑖± 1 = 𝑖− sign 𝜉. As a consequence, if for any integer 𝑘 the CFL condition

∀𝜉 ∈ supp 𝑀𝑛+1,𝑘, 𝜎𝑘|𝜉| ≤ 𝛼 (3.10)

holds, then 𝐷𝑛+1,𝑘+1
𝑖 is a dissipation term with negative sign and at each iteration the kinetic entropy is dissipated

up to terms that are macroscopically zero, that is to say there exists a kinetic entropy flux ̃︀𝐻𝑛+1,𝑘
0,𝑖+1/2, a negative

dissipation ̃︀𝐷𝑛+1,𝑘+1
𝑖 and a term ̃︀𝑍𝑛+1,𝑘+1

𝑖 (𝜉) whose integral over 𝜉 ∈ R is zero such that

𝐻0

(︁
𝑀𝑛+1,𝑘+1

𝑖 , 𝜉
)︁
≤ 𝐻0(𝑀𝑖, 𝜉)− 𝜎𝑘𝜉

(︁ ̃︀𝐻𝑛+1,𝑘
0,𝑖+1/2 − ̃︀𝐻𝑛+1,𝑘

0,𝑖−1/2

)︁
+ ̃︀𝐷𝑛+1,𝑘+1

𝑖 + ̃︀𝑍𝑛+1,𝑘+1
𝑖 . (3.11)

Before giving the proof we have the remark below.

Remark 3.6. Even when the CFL condition (3.10) is not satisfied, we can ensure that the scheme (3.2) satisfies
a discrete entropy inequality from some rank 𝑘 assuming the convergence of the method, which holds under the
assumptions of Proposition 3.4. In fact, multiplying inequality (3.9) by 1 + 𝛼 it is possible to write

𝐻0

(︁
𝑀𝑛+1,𝑘+1

𝑖 , 𝜉
)︁
≤ 𝐻0(𝑀𝑖, 𝜉)− 𝜎𝑘𝜉

(︁
𝐻𝑛+1,𝑘

0,𝑖+1/2 −𝐻𝑛+1,𝑘
0,𝑖−1/2

)︁
+ (1 + 𝛼)𝜂′

(︁
𝑈𝑛+1,𝑘+1

𝑖

)︁
·
(︂

1
𝜉

)︂
𝑄𝑛+1,𝑘+1

𝑖

−Ψ
(︁
𝑀𝑛+1,𝑘+1

𝑖 , 𝑀𝑖

)︁
− 𝜎𝑘|𝜉|1ΞΨ

(︁
𝑀𝑛+1,𝑘+1

𝑖 , 𝑀𝑛+1,𝑘
𝑖±1

)︁
(3.12)

+ 𝛼
(︁
𝐻0

(︁
𝑀𝑛+1,𝑘

𝑖 , 𝜉
)︁
−𝐻0

(︁
𝑀𝑛+1,𝑘+1

𝑖 , 𝜉
)︁)︁

−
(︀
𝛼− 𝜎𝑘|𝜉|1Ξ

)︀
Ψ
(︁
𝑀𝑛+1,𝑘+1

𝑖 , 𝑀𝑛+1,𝑘
𝑖

)︁
.

In the right hand side of (3.12), the quantity

(1 + 𝛼)𝜂′
(︁
𝑈𝑛+1,𝑘+1

𝑖

)︁
·
(︂

1
𝜉

)︂
𝑄𝑛+1,𝑘+1

𝑖
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does not cause any issue as it vanishes upon integration over 𝜉 ∈ R. This is due to the collision term 𝑄𝑛+1,𝑘+1
𝑖 sat-

isfying the conservation constraints (1.7), meaning that its integral against (1, 𝜉)𝑇 vanishes. Therefore in (3.12)
the only problematic terms are contained in the last line, as their sign can be positive since we do not assume
𝜎𝑘|𝜉|1Ξ ≤ 𝛼 anymore. Nevertheless, by regularity of 𝐻0(·, 𝜉) and by definition (2.6) of Ψ, these terms write as a
𝒪(𝑀𝑛+1,𝑘+1

𝑖 −𝑀𝑛+1,𝑘
𝑖 ) and vanish as 𝑘 →∞ owing to the convergence of the method. As a consequence, from

some rank 𝑘 these two terms become negligible compared to −Ψ(𝑀𝑛+1,𝑘+1
𝑖 , 𝑀𝑖) < 0 which remains bounded

away from zero, and we recover a dissipation with negative sign. (Note that if 𝑀𝑛+1,𝑘 was converging to 𝑀 as
𝑘 → ∞, it would imply that 𝑀 solves the fixed point problem and thus 𝑀𝑛+1,𝑘 = 𝑀 for all 𝑘; putting aside
this trivial case, this is why Ψ(𝑀𝑛+1,𝑘+1

𝑖 , 𝑀𝑖) remains bounded away from zero).

Proof of Proposition 3.5. First, we remark that for any 𝜉 there holds

𝜕𝑓𝐻0

(︁
𝑀𝑛+1,𝑘+1

𝑖 , 𝜉
)︁
𝑄𝑛+1,𝑘+1

𝑖 ≤ 𝜂′
(︁
𝑈𝑛+1,𝑘+1

𝑖

)︁
·
(︂

1
𝜉

)︂
𝑄𝑛+1,𝑘+1

𝑖 , (3.13)

which is implied by the relation (1.15) and by the fact that 𝑄𝑛+1,𝑘+1
𝑖 = 𝑀𝑛+1,𝑘+1

𝑖 − 𝑓𝑛+1,𝑘+1
𝑖 is negative for

any 𝜉 ̸∈ supp 𝑀𝑛+1,𝑘+1
𝑖 . As a consequence of (3.13), inequality (3.9) (and equivalently (3.12)) is verified if there

holds

𝐻0

(︁
𝑀𝑛+1,𝑘+1

𝑖

)︁
=

𝐻0(𝑀𝑖) + 𝛼𝐻0

(︁
𝑀𝑛+1,𝑘

𝑖

)︁
1 + 𝛼

− 𝜎𝑘𝜉

1 + 𝛼

(︁
𝐻𝑛+1,𝑘

0,𝑖+1/2 −𝐻𝑛+1,𝑘
0,𝑖−1/2

)︁
+ 𝜕𝑓𝐻0

(︁
𝑀𝑛+1,𝑘+1

𝑖

)︁
𝑄𝑛+1,𝑘+1

𝑖 + 𝐷𝑛+1,𝑘+1
𝑖 . (3.14)

To prove equality (3.14) we write the sub-iteration (3.2) as

𝑀𝑛+1,𝑘+1
𝑖 =

1
1 + 𝛼

(︁
𝑀𝑖 +

(︀
𝛼− 𝜎𝑘|𝜉|1Ξ

)︀
𝑀𝑛+1,𝑘

𝑖 + 𝜎𝑘|𝜉|1Ξ𝑀𝑛+1,𝑘
𝑖±1

)︁
+ 𝑄𝑛+1,𝑘+1

𝑖 , (3.15)

with 𝑖 ± 1 = 𝑖 − sign 𝜉. Applying Lemma 2.4 for 𝑎 = 𝑀𝑛+1,𝑘+1
𝑖 and 𝑏 = 𝑀𝑛+1,𝑘

𝑖±1 , 𝑀𝑖, 𝑀
𝑛+1,𝑘
𝑖 , we respectively

get:

𝐻0

(︁
𝑀𝑛+1,𝑘

𝑖±1

)︁
= 𝐻0

(︁
𝑀𝑛+1,𝑘+1

𝑖

)︁
+ 𝜕𝑓𝐻0

(︁
𝑀𝑛+1,𝑘+1

𝑖

)︁(︁
𝑀𝑛+1,𝑘

𝑖±1 −𝑀𝑛+1,𝑘+1
𝑖

)︁
+ Ψ

(︁
𝑀𝑛+1,𝑘+1

𝑖 , 𝑀𝑛+1,𝑘
𝑖±1

)︁
, (3.16)

𝐻0

(︁
𝑀𝑛+1,𝑘

𝑖

)︁
= 𝐻0

(︁
𝑀𝑛+1,𝑘+1

𝑖

)︁
+ 𝜕𝑓𝐻0

(︁
𝑀𝑛+1,𝑘+1

𝑖

)︁(︁
𝑀𝑛+1,𝑘

𝑖 −𝑀𝑛+1,𝑘+1
𝑖

)︁
+ Ψ

(︁
𝑀𝑛+1,𝑘+1

𝑖 , 𝑀𝑛+1,𝑘
𝑖

)︁
, (3.17)

𝐻0(𝑀𝑖) = 𝐻0

(︁
𝑀𝑛+1,𝑘+1

𝑖

)︁
+ 𝜕𝑓𝐻0

(︁
𝑀𝑛+1,𝑘+1

𝑖

)︁(︁
𝑀𝑖 −𝑀𝑛+1,𝑘+1

𝑖

)︁
+ Ψ

(︁
𝑀𝑛+1,𝑘+1

𝑖 , 𝑀𝑖

)︁
. (3.18)

Performing the linear combination

1
1 + 𝛼

(︀
(3.18) +

(︀
𝛼− 𝜎𝑘|𝜉|1Ξ

)︀
(3.17) + 𝜎𝑘|𝜉|1Ξ(3.16)

)︀
,

and using (3.15) we obtain

1
1 + 𝛼

(︁
𝐻0(𝑀𝑖) +

(︀
𝛼− 𝜎𝑘|𝜉|1Ξ

)︀
𝐻0

(︁
𝑀𝑛+1,𝑘

𝑖

)︁
+ 𝜎𝑘|𝜉|1Ξ𝐻0

(︁
𝑀𝑛+1,𝑘

𝑖±1

)︁)︁
= 𝐻0

(︁
𝑀𝑛+1,𝑘+1

𝑖

)︁
− 𝜕𝑓𝐻0

(︁
𝑀𝑛+1,𝑘+1

𝑖

)︁
𝑄𝑛+1,𝑘+1

𝑖 +
1

1 + 𝛼
Ψ
(︁
𝑀𝑛+1,𝑘+1

𝑖 , 𝑀𝑖

)︁
+

𝛼− 𝜎𝑘|𝜉|1Ξ

1 + 𝛼
Ψ
(︁
𝑀𝑛+1,𝑘+1

𝑖 , 𝑀𝑛+1,𝑘
𝑖

)︁
+

𝜎𝑘|𝜉|1Ξ

1 + 𝛼
Ψ
(︁
𝑀𝑛+1,𝑘+1

𝑖 , 𝑀𝑛+1,𝑘
𝑖±1

)︁
,

which corresponds to equality (3.14) after rearranging the terms.
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Next we proceed by induction to show that the kinetic entropy is dissipated at every iteration assuming the
CFL condition (3.10) holds for any integer 𝑘. The key argument is that under this CFL condition, the term
𝐷𝑛+1,𝑘+1

𝑖 defines a convex combination of negative quantities, and is thus negative. The initialization is obvious
since we have 𝑀𝑛+1,0

𝑖 = 𝑀𝑖, so we focus on the recurrence. We want to show that (3.11) holds at some rank
𝑘 ≥ 1 assuming that it is satisfied at rank 𝑘 − 1. Under this assumption we can develop (3.9) as

𝐻0

(︁
𝑀𝑛+1,𝑘+1

𝑖

)︁
≤ 1

1 + 𝛼

(︁
𝐻0(𝑀𝑖) + 𝛼

(︁
𝐻0(𝑀𝑖)− 𝜎𝑘𝜉

(︁ ̃︀𝐻𝑛+1,𝑘−1
0,𝑖+1/2 − ̃︀𝐻𝑛+1,𝑘−1

0,𝑖−1/2

)︁
+ ̃︀𝐷𝑛+1,𝑘

𝑖 + ̃︀𝑍𝑛+1,𝑘
𝑖

)︁)︁
− 𝜎𝑘𝜉

1 + 𝛼

(︁
𝐻𝑛+1,𝑘

0,𝑖+1/2 −𝐻𝑛+1,𝑘
0,𝑖−1/2

)︁
+ 𝜂′

(︁
𝑈𝑛+1,𝑘+1

𝑖

)︁
·
(︂

1
𝜉

)︂
𝑄𝑛+1,𝑘+1

𝑖 + 𝐷𝑛+1,𝑘+1
𝑖 ,

with ̃︀𝑍𝑛+1,𝑘
𝑖 and 𝜂′(𝑈𝑛+1,𝑘+1

𝑖 ) ·
(︂

1
𝜉

)︂
𝑄𝑛+1,𝑘+1

𝑖 macroscopically zero as per Remark 3.6. Therefore we have

𝐻0

(︁
𝑀𝑛+1,𝑘+1

𝑖

)︁
≤ 𝐻0(𝑀𝑖)−

𝜎𝑘𝜉

1 + 𝛼

(︁
𝐻𝑛+1,𝑘

0,𝑖+1/2 + 𝛼 ̃︀𝐻𝑛+1,𝑘−1
0,𝑖+1/2 −𝐻𝑛+1,𝑘

0,𝑖−1/2 − 𝛼 ̃︀𝐻𝑛+1,𝑘−1
0,𝑖−1/2

)︁
+

𝛼

1 + 𝛼
̃︀𝑍𝑛+1,𝑘

𝑖 + 𝜂′
(︁
𝑈𝑛+1,𝑘+1

𝑖

)︁
·
(︂

1
𝜉

)︂
𝑄𝑛+1,𝑘+1

𝑖 +
𝛼

1 + 𝛼
̃︀𝐷𝑛+1,𝑘

𝑖 + 𝐷𝑛+1,𝑘+1
𝑖

and the proof is complete by setting

̃︀𝐻𝑛+1,𝑘
0,𝑖+1/2 =

1
1 + 𝛼

(︁
𝐻𝑛+1,𝑘

0,𝑖+1/2 + 𝛼 ̃︀𝐻𝑛+1,𝑘−1
0,𝑖+1/2

)︁
, ̃︀𝐷𝑛+1,𝑘+1

𝑖 =
𝛼

1 + 𝛼
̃︀𝐷𝑛+1,𝑘

𝑖 + 𝐷𝑛+1,𝑘+1
𝑖 ,

̃︀𝑍𝑛+1,𝑘+1
𝑖 =

𝛼

1 + 𝛼
̃︀𝑍𝑛+1,𝑘

𝑖 + 𝜂′
(︁
𝑈𝑛+1,𝑘+1

𝑖

)︁
·
(︂

1
𝜉

)︂
𝑄𝑛+1,𝑘+1

𝑖 .

�

3.2. Case of a non flat topography

In presence of a varying bathymetry, one difficulty is to design well-balanced schemes, that is to say schemes
that preserve the lake at rest equilibrium given by (ℎ, 𝑞) = (−𝑧, 0), where we recall 𝑧(𝑥) is a parameterization of
the topography at the bottom. One of the issue stems from the numerical diffusion which, when the bathymetry
is non flat, can induce a transfer of water from one cell to its neighbors even in the case of the rest state. To
illustrate this we can consider the toy update below

ℎ𝑛+1
𝑖 − ℎ𝑛

𝑖

∆𝑡
= −

𝑞𝑛
𝑖+1/2 − 𝑞𝑛

𝑖−1/2

∆𝑥
+ 𝜈

ℎ𝑛
𝑖+1 − 2ℎ𝑛

𝑖 + ℎ𝑛
𝑖−1

∆𝑥
= −𝜈

𝑧𝑖+1 − 2𝑧𝑖 + 𝑧𝑖−1

∆𝑥
,

where 𝜈 > 0 is a numerical viscosity coefficient, and where the second equality holds if we assume a discrete lake
at rest such that 𝑞𝑛

𝑖+1/2 = 0 and ℎ𝑛
𝑖 + 𝑧𝑖 = Cst for all 𝑖. For general bathymetries the right hand side doesn’t

vanish, and thus the water height fails to remain constant from one iteration to the other. A second problem
lies in the momentum equation, which in the case of a lake at rest implies the balancing between the spatial
derivative of the pressure and the source term:

𝜕𝑥

(︁𝑔

2
ℎ2
)︁

= −𝑔ℎ𝜕𝑥𝑧.

One has to recover this equality at the discrete level by approximating the source term accordingly with the
choice of numerical flux.

The hydrostatic reconstruction technique introduced in [5] is a well-known strategy to circumvent these
difficulties. More recently [6], it has been established that when combined with the explicit kinetic scheme,
this reconstruction step can prevent the entropy from being dissipated in some test cases featuring a non flat
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bathymetry, no matter how refined the time and spatial steps are. This is due to a positive error term appearing
in the discrete entropy inequality and which can dominate the dissipation. In this section our goal is to show
that an iterative version of this explicit kinetic scheme does not suffer from this defect provided enough sub-
iterations are performed. Therefore the iterative strategy, which approximates a fully implicit kinetic scheme, can
be considered an improvement over the explicit method in terms of stability. We also emphasize that compared
to the fully implicit kinetic scheme proposed in Section 2, the stability properties of the iterative scheme does
not translate in the possibility to use arbitrary large time steps. In fact a CFL condition is required to ensure
the convergence of the sub-iterations, as already pointed by the Propositions 3.1 and 3.4 for iterative schemes
applied to the flat bottom case.

Let us briefly recall the principle of the hydrostatic reconstruction, which is based on the reconstruction of
the water height at every interface. Let 𝑈𝑖 = (ℎ𝑖, ℎ𝑖𝑢𝑖)𝑇 ∈ R2 denote the vector of quantities of interest over cell
1 ≤ 𝑖 ≤ 𝑃 , with 𝑃 the number of interior cells and with ghost cells corresponding to indices 0 and 𝑃 + 1. The
reconstructed states are vectors from R+ × R defined on the left and right neighborhoods of each cell interface
as follows:

∀1 ≤ 𝑖 ≤ 𝑃, 𝑈𝑖+1/2− =
(︂

ℎ𝑖+1/2−

ℎ𝑖+1/2−𝑢𝑖

)︂
, 𝑈𝑖−1/2+ =

(︂
ℎ𝑖−1/2+

ℎ𝑖−1/2+𝑢𝑖

)︂
. (3.19)

The reconstructed interfacial water heights are given by

ℎ𝑖−1/2+ =
(︀
ℎ𝑖 + 𝑧𝑖 − 𝑧𝑖−1/2

)︀
+
, ℎ𝑖+1/2− =

(︀
ℎ𝑖 + 𝑧𝑖 − 𝑧𝑖+1/2

)︀
+
, (3.20)

with the interfacial bathymetry 𝑧𝑖+1/2 = max(𝑧𝑖, 𝑧𝑖+1). The truly implicit kinetic scheme we are considering
reads as below

𝑈𝑛+1
𝑖 = 𝑈𝑛

𝑖 − 𝜎
(︁
𝐹𝑛+1

𝑖+1/2− − 𝐹𝑛+1
𝑖−1/2+

)︁
, (3.21)

with 𝜎 = ∆𝑡/∆𝑥 and the numerical fluxes decomposed as:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝐹𝑛+1
𝑖+1/2− = ℱ

(︁
𝑈𝑛+1

𝑖+1/2−, 𝑈𝑛+1
𝑖+1/2+

)︁
+ 𝑔

2

⎛⎝ 0(︀
ℎ𝑛+1

𝑖

)︀2 − (︁ℎ𝑛+1
𝑖+1/2−

)︁2

⎞⎠
𝐹𝑛+1

𝑖−1/2+ = ℱ
(︁
𝑈𝑛+1

𝑖−1/2−, 𝑈𝑛+1
𝑖−1/2+

)︁
+ 𝑔

2

⎛⎝ 0(︀
ℎ𝑛+1

𝑖

)︀2 − (︁ℎ𝑛+1
𝑖−1/2+

)︁2

⎞⎠.

(3.22)

We recall that in our case the upwinding of the numerical flux ℱ is induced at the kinetic level according to
definition (3.4). In (3.22), the terms in factor of 𝑔/2 look like pressure variations and are consistent with the
topography source term when we subtract them. In fact, owing to (3.20) we formally have

𝑔

2

(︂(︁
ℎ𝑛+1

𝑖+1/2−

)︁2

−
(︁
ℎ𝑛+1

𝑖−1/2+

)︁2
)︂

= 𝑔
ℎ𝑛+1

𝑖+1/2− + ℎ𝑛+1
𝑖−1/2+

2

(︁
ℎ𝑛+1

𝑖+1/2− − ℎ𝑛+1
𝑖−1/2+

)︁
≈ 𝑔ℎ𝑛+1

𝑖

(︀
𝑧𝑖+1/2 − 𝑧𝑖−1/2

)︀
.

This discretization of the topography source term can be interpreted at the kinetic level through the relations∫︁
R

(︂
1
𝜉

)︂
(𝜉 − 𝑢𝑖)

(︀
𝑀(𝑈𝑖, 𝜉)−𝑀

(︀
𝑈𝑖+1/2−, 𝜉

)︀)︀
d𝜉 =

(︃ 0
𝑔
2

(︁
ℎ2

𝑖 − ℎ2
𝑖+1/2−

)︁)︃,

∫︁
R

(︂
1
𝜉

)︂
(𝜉 − 𝑢𝑖)

(︀
𝑀(𝑈𝑖, 𝜉)−𝑀

(︀
𝑈𝑖−1/2+, 𝜉

)︀)︀
d𝜉 =

(︃ 0
𝑔
2

(︁
ℎ2

𝑖 − ℎ2
𝑖−1/2+

)︁)︃,
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and we introduce the following notations for convenience{︃
𝛿𝑀𝑖+1/2−(𝜉) = (𝜉 − 𝑢𝑖)

(︀
𝑀(𝑈𝑖, 𝜉)−𝑀

(︀
𝑈𝑖+1/2−, 𝜉

)︀)︀
,

𝛿𝑀𝑖−1/2+(𝜉) = (𝜉 − 𝑢𝑖)
(︀
𝑀(𝑈𝑖, 𝜉)−𝑀

(︀
𝑈𝑖−1/2+, 𝜉

)︀)︀
.

(3.23)

An issue with the nonlinear update (3.21) is that it cannot be solved analytically. Instead we will approximate
it by an iterative process with a relaxation parameter 𝛼 > 0 similar to the one from Section 3.1, and which
reads

∀1 ≤ 𝑖 ≤ 𝑃, (1 + 𝛼)𝑈𝑛+1,𝑘+1
𝑖 = 𝑈𝑖 + 𝛼𝑈𝑛+1,𝑘

𝑖 − 𝜎𝑘
(︁
𝐹𝑛+1,𝑘

𝑖+1/2− − 𝐹𝑛+1,𝑘
𝑖−1/2+

)︁
, (3.24)

where we can choose to take 𝑈𝑛+1,0 = 𝑈𝑛 as the initialization. If the sequence defined through (3.24) converges,
we recover the implicit scheme (3.21) by setting the macroscopic update as 𝑈𝑛+1 = lim𝑘→∞ 𝑈𝑛+1,𝑘 and 𝜎 =
lim𝑘→∞ 𝜎𝑘. In practice we will stop the sub-iterations for some 𝑘 large enough such that 𝑈𝑛+1,𝑘 ≈ 𝑈𝑛+1. We
also comment on the fact that when the bathymetry is flat (𝑧 ≡ Cst) the hydrostatic reconstruction becomes
transparent, in the sense that the scheme (3.24) coincides with (3.3).

At the kinetic level, the recurrence relation (3.24) consists in introducing for any real 𝜉 the sequence
(𝑓𝑛+1,𝑘(𝜉))𝑘∈N ⊂ R𝑃

+ initialized with 𝑓𝑛+1,0(𝜉) = 𝑀(𝑈𝑛, 𝜉) and defined recursively as:⎧⎨⎩(1 + 𝛼)𝑓𝑛+1,𝑘+1
𝑖 = 𝑀𝑖 + 𝛼𝑀𝑛+1,𝑘

𝑖 − 𝜎𝑘
(︁
𝜉
(︁
𝑀𝑛+1,𝑘

𝑖+1/2 −𝑀𝑛+1,𝑘
𝑖−1/2

)︁
+ 𝛿𝑀𝑛+1,𝑘

𝑖+1/2− − 𝛿𝑀𝑛+1,𝑘
𝑖−1/2+

)︁
𝑀𝑛+1,𝑘+1

𝑖 = 𝑓𝑛+1,𝑘+1 + ∆𝑡𝑘𝑄𝑛+1,𝑘+1,
(3.25)

where the interfacial Maxwellians 𝑀𝑖±1/2 are defined through the following upwinding

𝑀𝑖±1/2(𝜉) = 1𝜉>0𝑀
(︀
𝑈𝑖±1/2−, 𝜉

)︀
+ 1𝜉<0𝑀

(︀
𝑈𝑖±1/2+, 𝜉

)︀
∀1 ≤ 𝑖 ≤ 𝑃, (3.26)

and where we have used the notations (3.23).
We now consider the question of whether or not the iterative kinetic scheme with hydrostatic reconstruc-

tion (3.25) and (3.26) is structure preserving. We recall that in our context, structure preserving means the
ability to keep the water height positive, to preserve the lake at rest steady state and to satisfy a discrete entropy
inequality. When considering a flat bathymetry, this latter point was proved by making use of Lemma 2.4, pro-
viding in particular an estimate of the discrete spatial variation of the flux, namely

𝜕𝑓𝐻(𝑀𝑖)(𝑀𝑖 −𝑀𝑖±1) = 𝐻(𝑀𝑖)−𝐻(𝑀𝑖±1) + Ψ(𝑀𝑖, 𝑀𝑖±1),

which involves a conservative difference and the positive function Ψ defined in (2.6) responsible for the dis-
sipation. In presence of a varying bathymetry however, fluxes are computed after performing the hydrostatic
reconstruction, and we now need an estimate for the following quantity

𝜕𝑓𝐻(𝑀𝑖)
(︀
𝜉
(︀
𝑀𝑖+1/2 −𝑀𝑖−1/2

)︀
+ 𝛿𝑀𝑖+1/2− − 𝛿𝑀𝑖−1/2+

)︀
,

which appears when multiplying the first line of (3.25) by 𝜕𝑓𝐻(𝑀𝑛+1,𝑘
𝑖 , 𝜉). Because the derivative of the kinetic

entropy is multiplied by quantities all different from 𝑀𝑖, we can no longer use Lemma 2.4. Instead, we will need
the following inequality that corresponds to the Proposition 3.1 from [6].

Proposition 3.7 ([6]). One has

−𝜕𝑓𝐻
(︁
𝑀𝑛+1,𝑘

𝑖 , 𝑧𝑖

)︁[︁
𝜉
(︁
𝑀𝑛+1,𝑘

𝑖+1/2 −𝑀𝑛+1,𝑘
𝑖−1/2

)︁
+ 𝛿𝑀𝑛+1,𝑘

𝑖+1/2− − 𝛿𝑀𝑛+1,𝑘
𝑖−1/2+

]︁
≤ − ̃︀𝐺𝑛+1,𝑘

𝑖+1/2− + ̃︀𝐺𝑛+1,𝑘
𝑖−1/2+, (3.27)

with ̃︀𝐺𝑛+1,𝑘
𝑖+1/2− and ̃︀𝐺𝑛+1,𝑘

𝑖−1/2+ defined by

̃︀𝐺𝑖±1/2∓ = 𝜉1𝜉<0𝐻
(︀
𝑀𝑖±1/2+, 𝑧𝑖±1/2

)︀
+ 𝜉1𝜉>0𝐻

(︀
𝑀𝑖±1/2−, 𝑧𝑖±1/2

)︀
+ 𝜉𝐻(𝑀𝑖, 𝑧𝑖)
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− 𝜉𝐻
(︀
𝑀𝑖±1/2∓, 𝑧𝑖±1/2

)︀
+
(︂

𝜂′(𝑈𝑖) ·
(︂

1
𝜉

)︂
+ 𝑔𝑧𝑖

)︂(︀
𝜉𝑀𝑖±1/2∓ − 𝜉𝑀𝑖 + 𝛿𝑀𝑖±1/2∓

)︀
. (3.28)

Moreover, the difference ̃︀𝐺𝑛+1,𝑘
𝑖+1/2− − ̃︀𝐺𝑛+1,𝑘

𝑖−1/2+ is macroscopically conservative∫︁
R

(︁ ̃︀𝐺𝑛+1,𝑘
𝑖+1/2− − ̃︀𝐺𝑛+1,𝑘

𝑖−1/2+

)︁
d𝜉 = 𝐺𝑛+1,𝑘

𝑖+1/2 −𝐺𝑛+1,𝑘
𝑖−1/2 ,

with the macroscopic entropy flux

𝐺𝑖+1/2 =
∫︁

R
𝜉
(︀
1𝜉>0𝐻

(︀
𝑀𝑖+1/2−, 𝑧𝑖+1/2

)︀
+ 1𝜉<0𝐻

(︀
𝑀𝑖+1/2+, 𝑧𝑖+1/2

)︀)︀
d𝜉. (3.29)

We are now able to state our result.

Proposition 3.8. The scheme (3.24) is structure preserving, in the sense that we have the three properties
below:

(i) the sub-iterations are well balanced, that is to say 𝑈𝑛+1,𝑘 = 𝑈𝑛 for all 𝑘 ∈ N if 𝑈𝑛 is a discrete lake at
rest;

(ii) assuming that the water height vectors ℎ𝑛 and ℎ𝑛+1,𝑘 are positive, the update ℎ𝑛+1,𝑘+1 defined in the
iterative scheme (3.24) is also positive if for all 1 ≤ 𝑖 ≤ 𝑃 the CFL condition 𝜎𝑘|𝜉| ≤ 𝛼 + 𝑀𝑖/𝑀

𝑛+1,𝑘
𝑖

holds for any 𝜉 belonging to supp 𝑀𝑛+1,𝑘;
(iii) the kinetic entropy of the iterative process (3.25) verifies the following kinetic entropy inequality

𝐻
(︁
𝑀𝑛+1,𝑘+1

𝑖 , 𝑧𝑖

)︁
≤ 𝐻(𝑀𝑖, 𝑧𝑖)− 𝜎𝑘

(︁ ̃︀𝐺𝑛+1,𝑘
𝑖+1/2− − ̃︀𝐺𝑛+1,𝑘

𝑖−1/2+

)︁
+ (1 + 𝛼)

(︂
𝜂′(𝑈𝑛+1,𝑘+1

𝑖 ) ·
(︂

1
𝜉

)︂
+ 𝑔𝑧𝑖

)︂
𝑄𝑛+1,𝑘+1

𝑖

+ 𝛼
(︁
𝐻
(︁
𝑀𝑛+1,𝑘

𝑖 , 𝑧𝑖

)︁
−𝐻

(︁
𝑀𝑛+1,𝑘+1

𝑖 , 𝑧𝑖

)︁)︁
+ (1 + 𝛼)

(︁
Ψ
(︁
𝑀𝑛+1,𝑘

𝑖 , 𝑓𝑛+1,𝑘+1
𝑖

)︁
− Ψ

(︁
𝑀𝑛+1,𝑘+1

𝑖 , 𝑓𝑛+1,𝑘+1
𝑖

)︁)︁
−Ψ

(︁
𝑀𝑛+1,𝑘

𝑖 , 𝑀𝑖

)︁
, (3.30)

where 𝑄𝑛+1,𝑘+1
𝑖 = 𝑀𝑛+1,𝑘+1

𝑖 − 𝑓𝑛+1,𝑘+1
𝑖 is a collision term verifying the conservation constraints (1.7),

where Ψ defined in (2.6) is positive and where ̃︀𝐺𝑛+1,𝑘
𝑖+1/2− and ̃︀𝐺𝑛+1,𝑘

𝑖−1/2+ are defined by (3.28).

Before giving the proof we make the following remark.

Remark 3.9. We reiterate the comments made in Remark 3.6 which are to say that in (3.30) the term(︂
𝜂′
(︁
𝑈𝑛+1,𝑘+1

𝑖

)︁
·
(︂

1
𝜉

)︂
+ 𝑔𝑧𝑖

)︂
𝑄𝑛+1,𝑘+1

𝑖

is macroscopically zero since 𝑄𝑛+1,𝑘+1
𝑖 is a collision term satisfying the conservation constraints (1.7). Besides,

assuming the method converges as 𝑘 →∞, the quantity

𝛼
(︁
𝐻
(︁
𝑀𝑛+1,𝑘

𝑖 , 𝑧𝑖

)︁
−𝐻

(︁
𝑀𝑛+1,𝑘+1

𝑖 , 𝑧𝑖

)︁)︁
+ (1 + 𝛼)

(︁
Ψ
(︁
𝑀𝑛+1,𝑘

𝑖 , 𝑓𝑛+1,𝑘+1
𝑖

)︁
−Ψ

(︁
𝑀𝑛+1,𝑘+1

𝑖 , 𝑓𝑛+1,𝑘+1
𝑖

)︁)︁
will eventually become negligible compared to −Ψ(𝑀𝑛+1,𝑘

𝑖 , 𝑀𝑖) < 0 from some rank 𝑘. Integrating inequal-
ity (3.30) over 𝜉 ∈ R, this implies that there exists 𝐾 ∈ N such that for any 𝑘 ≥ 𝐾 the fully discrete entropy
inequality

𝜂
(︁
𝑈𝑛+1,𝑘+1

𝑖

)︁
≤ 𝜂(𝑈𝑛

𝑖 )− 𝜎𝑘
(︁
𝐺𝑛+1,𝑘

𝑖+1/2 −𝐺𝑛+1,𝑘
𝑖−1/2

)︁
(3.31)
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is satisfied at the macroscopic level, with 𝐺𝑛+1,𝑘
𝑖+1/2 given in (3.29). Summing inequality (3.31) over every cell

1 ≤ 𝑖 ≤ 𝑃 we obtain the dissipation of the total energy up to boundary fluxes

1
∆𝑡𝑘

𝑃∑︁
𝑖=1

(︁
𝜂
(︁
𝑈𝑛+1,𝑘+1

𝑖

)︁
− 𝜂(𝑈𝑛

𝑖 )
)︁

+
1

∆𝑥

(︂∫︁
R

𝜉 𝐻𝑛+1,𝑘
𝑃+1/2(𝜉) d𝜉 −

∫︁
R

𝜉 𝐻𝑛+1,𝑘
1/2 (𝜉) d𝜉

)︂
≤ 0. (3.32)

In addition to the usual tolerance criterion where the iterations are stopped whenever two successive iterates
are sufficiently close to each other, we can use (3.32) as a complementary condition to ensure the dissipation of
total energy.

Proof of Proposition 3.8. The proof makes use of the kinetic writing (3.25) of scheme (3.24).

(i) The well-balancedness is a consequence of the hydrostatic reconstruction, see [5].
(ii) Remarking that the quantity 𝛿𝑀𝑛+1,𝑘

𝑖+1/2− − 𝛿𝑀𝑛+1,𝑘
𝑖−1/2+ appearing in the last line of (3.25) defines an odd

function of 𝜉 − 𝑢𝑛+1,𝑘
𝑖 , its integral over 𝜉 ∈ R vanishes and we have at the macroscopic level

(1 + 𝛼)ℎ𝑛+1,𝑘+1
𝑖 =

∫︁
R

(︁
𝑀𝑖 + 𝛼𝑀𝑛+1,𝑘

𝑖 − 𝜎𝑘𝜉
(︁
𝑀𝑛+1,𝑘

𝑖+1/2 −𝑀𝑛+1,𝑘
𝑖−1/2

)︁)︁
d𝜉.

Thus it is enough to prove the positivity of the integrand, whose developed form is

𝑀𝑖 + 𝛼𝑀𝑛+1,𝑘
𝑖 − 𝜎𝑘𝜉

(︁
1𝜉>0𝑀

𝑛+1,𝑘
𝑖+1/2− − 1𝜉<0𝑀

𝑛+1,𝑘
𝑖−1/2+

)︁
+ 𝜎𝑘𝜉

(︁
1𝜉>0𝑀

𝑛+1,𝑘
𝑖−1/2− − 1𝜉<0𝑀

𝑛+1,𝑘
𝑖+1/2+

)︁
.

By definition of the water height reconstruction (3.20), we have the inequalities ℎ𝑛+1,𝑘
𝑖+1/2− ≤ ℎ𝑛+1,𝑘

𝑖 and

ℎ𝑛+1,𝑘
𝑖−1/2+ ≤ ℎ𝑛+1,𝑘

𝑖 . As a consequence 𝑀𝑛+1,𝑘
𝑖+1/2− ≤ 𝑀𝑛+1,𝑘

𝑖 and 𝑀𝑛+1,𝑘
𝑖−1/2+ ≤ 𝑀𝑛+1,𝑘

𝑖 , which allows us to
bound the integrand from below by

𝑀𝑖 + 𝛼𝑀𝑛+1,𝑘
𝑖 − 𝜎𝑘|𝜉|𝑀𝑛+1,𝑘

𝑖 .

If 𝜉 does not belong to supp 𝑀𝑛+1,𝑘 this quantity equals 𝑀𝑖 which is positive. Otherwise, it is made
positive under the condition 𝜎𝑘|𝜉| ≤ 𝛼 + 𝑀0

𝑖 /𝑀𝑛+1,𝑘
𝑖 which gives the desired result.

(iii) We start to rewrite (3.25) as

(1 + 𝛼)
(︁
𝑓𝑛+1,𝑘+1

𝑖 −𝑀𝑛+1,𝑘
𝑖

)︁
=
(︁
𝑀𝑖 −𝑀𝑛+1,𝑘

𝑖

)︁
− 𝜎𝑘𝜉

(︁
𝑀𝑛+1,𝑘

𝑖+1/2 −𝑀𝑛+1,𝑘
𝑖−1/2 + 𝛿𝑀𝑛+1,𝑘

𝑖+1/2− − 𝛿𝑀𝑛+1,𝑘
𝑖−1/2+

)︁
. (3.33)

The strategy is to multiply (3.33) by 𝜕𝑓𝐻(𝑀𝑛+1,𝑘
𝑖 , 𝑧𝑖) and to separate the discrete time variation from

the flux and source contributions as

𝜕𝑓𝐻
(︁
𝑀𝑛+1,𝑘

𝑖 , 𝑧𝑖

)︁[︁
(1 + 𝛼)

(︁
𝑓𝑛+1,𝑘+1

𝑖 −𝑀𝑛+1,𝑘
𝑖

)︁
−
(︁
𝑀𝑖 −𝑀𝑛+1,𝑘

𝑖

)︁]︁
= −𝜎𝑘𝜕𝑓𝐻

(︁
𝑀𝑛+1,𝑘

𝑖 , 𝑧𝑖

)︁[︁
𝜉
(︁
𝑀𝑛+1,𝑘

𝑖+1/2 −𝑀𝑛+1,𝑘
𝑖−1/2

)︁
+ 𝛿𝑀𝑛+1,𝑘

𝑖+1/2− − 𝛿𝑀𝑛+1,𝑘
𝑖−1/2+

]︁
. (3.34)

We apply Lemma 2.4 to the left hand side of (3.34) to get

𝜕𝑓𝐻(𝑀𝑛+1,𝑘
𝑖 , 𝑧𝑖)

[︁
(1 + 𝛼)

(︁
𝑓𝑛+1,𝑘+1

𝑖 −𝑀𝑛+1,𝑘
𝑖

)︁
−
(︁
𝑀𝑖 −𝑀𝑛+1,𝑘

𝑖

)︁]︁
= (1 + 𝛼)

(︁
𝐻
(︁
𝑓𝑛+1,𝑘+1

𝑖 , 𝑧𝑖

)︁
−𝐻

(︁
𝑀𝑛+1,𝑘

𝑖 , 𝑧𝑖

)︁
−Ψ

(︁
𝑀𝑛+1,𝑘

𝑖 , 𝑓𝑛+1,𝑘+1
𝑖

)︁)︁
−
(︁
𝐻(𝑀𝑖, 𝑧𝑖)−𝐻

(︁
𝑀𝑛+1,𝑘

𝑖 , 𝑧𝑖

)︁
−Ψ

(︁
𝑀𝑛+1,𝑘

𝑖 , 𝑀𝑖

)︁)︁
. (3.35)
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Furthermore, an upper bound on the right hand side of (3.34) is obtained by applying Proposition 3.7
which directly yields

− 𝜕𝑓𝐻
(︁
𝑀𝑛+1,𝑘

𝑖 , 𝑧𝑖

)︁[︁
𝜉
(︁
𝑀𝑛+1,𝑘

𝑖+1/2 −𝑀𝑛+1,𝑘
𝑖−1/2

)︁
+ 𝛿𝑀𝑛+1,𝑘

𝑖+1/2− − 𝛿𝑀𝑛+1,𝑘
𝑖−1/2+

]︁
≤ − ̃︀𝐺𝑛+1,𝑘

𝑖+1/2− + ̃︀𝐺𝑛+1,𝑘
𝑖−1/2+, (3.36)

with ̃︀𝐺𝑛+1,𝑘
𝑖+1/2− and ̃︀𝐺𝑛+1,𝑘

𝑖−1/2+ defined by (3.28). Injecting equality (3.35) and inequality (3.27) into (3.34)
we obtain

(1 + 𝛼)𝐻
(︁
𝑓𝑛+1,𝑘+1

𝑖 , 𝑧𝑖

)︁
≤ 𝐻(𝑀𝑖, 𝑧𝑖)− 𝜎𝑘

(︁ ̃︀𝐺𝑛+1,𝑘
𝑖+1/2− − ̃︀𝐺𝑛+1,𝑘

𝑖−1/2+

)︁
+ 𝛼𝐻

(︁
𝑀𝑛+1,𝑘

𝑖 , 𝑧𝑖

)︁
+ (1 + 𝛼)Ψ

(︁
𝑀𝑛+1,𝑘

𝑖 , 𝑓𝑛+1,𝑘+1
𝑖

)︁
−Ψ

(︁
𝑀𝑛+1,𝑘

𝑖 , 𝑀𝑖

)︁
. (3.37)

Using again Lemma 2.4 we can also write

𝐻
(︁
𝑓𝑛+1,𝑘+1

𝑖 , 𝑧𝑖

)︁
= 𝐻

(︁
𝑀𝑛+1,𝑘+1

𝑖 , 𝑧𝑖

)︁
+ 𝜕𝑓𝐻

(︁
𝑀𝑛+1,𝑘+1

𝑖 , 𝑧𝑖

)︁(︁
𝑓𝑛+1,𝑘+1

𝑖 −𝑀𝑛+1,𝑘+1
𝑖

)︁
+ Ψ

(︁
𝑀𝑛+1,𝑘+1

𝑖 , 𝑓𝑛+1,𝑘+1
𝑖

)︁
≥ 𝐻

(︁
𝑀𝑛+1,𝑘+1

𝑖 , 𝑧𝑖

)︁
−
(︂

𝜂′
(︁
𝑈𝑛+1,𝑘+1

𝑖

)︁
·
(︂

1
𝜉

)︂
+ 𝑔𝑧𝑖

)︂(︁
𝑀𝑛+1,𝑘+1

𝑖 − 𝑓𝑛+1,𝑘+1
𝑖

)︁
+ Ψ

(︁
𝑀𝑛+1,𝑘+1

𝑖 , 𝑓𝑛+1,𝑘+1
𝑖

)︁
, (3.38)

where we used 𝜕𝑓𝐻 = 𝜕𝑓𝐻0 +𝑔𝑧 and (3.13) to get (3.38). Combining this inequality with (3.37) we finally
get

(1 + 𝛼)𝐻
(︁
𝑀𝑛+1,𝑘+1

𝑖 , 𝑧𝑖

)︁
≤ 𝐻(𝑀𝑖, 𝑧𝑖)− 𝜎𝑘

(︁ ̃︀𝐺𝑛+1,𝑘
𝑖+1/2− − ̃︀𝐺𝑛+1,𝑘

𝑖−1/2+

)︁
+ 𝛼𝐻

(︁
𝑀𝑛+1,𝑘

𝑖 , 𝑧𝑖

)︁
+ (1 + 𝛼)Ψ

(︁
𝑀𝑛+1,𝑘

𝑖 , 𝑓𝑛+1,𝑘+1
𝑖

)︁
−Ψ

(︁
𝑀𝑛+1,𝑘

𝑖 , 𝑀𝑖

)︁
− (1 + 𝛼)Ψ

(︁
𝑀𝑛+1,𝑘+1

𝑖 , 𝑓𝑛+1,𝑘+1
𝑖

)︁
− (1 + 𝛼)

(︂
𝜂′(𝑈𝑛+1,𝑘+1

𝑖 ) ·
(︂

1
𝜉

)︂
+ 𝑔𝑧𝑖

)︂(︁
𝑓𝑛+1,𝑘+1

𝑖 −𝑀𝑛+1,𝑘+1
𝑖

)︁
.

After rearranging the terms and using 𝑄𝑛+1,𝑘+1
𝑖 = −(𝑓𝑛+1,𝑘+1

𝑖 −𝑀𝑛+1,𝑘+1
𝑖 ) we obtain the desired kinetic

entropy inequality (3.30).

�

Compared to the flat topography case, proving the convergence of the iterative kinetic scheme with hydrostatic
reconstruction (3.24) as 𝑘 → ∞ is significantly more difficult owing to the reconstruction step. Instead we
investigate this question through numerical experiments in Section 5, where in all considered test cases the
sub-iterations seem to converge with no issue.

4. Towards the two dimensional Saint-Venant system

Being able to simulate the two dimensional Saint-Venant system is important if one wishes to deal with more
relevant applications. In this section, we investigate the possibility to extend the previous methods to the higher
dimension, while retaining the good stability properties obtained in the one dimensional case. The following lines
should be regarded as more exploratory, and in particular we leave for a future work the in-depth study of the
two dimensional schemes that we briefly discuss below. In Section 4.1 we give the two dimensional Saint-Venant
system and its kinetic interpretation. Then in Section 4.2 we derive a fully implicit scheme over flat bathymetry,
and finally in Section 4.3 we propose an iterative kinetic scheme with hydrostatic reconstruction. In all cases a
Cartesian mesh is considered.
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4.1. The two dimensional system and its kinetic representation

We consider the two dimensional Saint-Venant system written, with obvious notations, under the form⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

𝜕ℎ

𝜕𝑡
+

𝜕ℎ𝑢

𝜕𝑥
+

𝜕ℎ𝑣

𝜕𝑦
= 0

𝜕ℎ𝑢

𝜕𝑡
+

𝜕

𝜕𝑥

(︁
ℎ𝑢2 +

𝑔

2
ℎ2
)︁

+
𝜕

𝜕𝑦
(ℎ𝑢𝑣) = −𝑔ℎ

𝜕𝑧

𝜕𝑥
𝜕ℎ𝑣

𝜕𝑡
+

𝜕

𝜕𝑥
(ℎ𝑢𝑣) +

𝜕

𝜕𝑦

(︁
ℎ𝑣2 +

𝑔

2
ℎ2
)︁

= −𝑔ℎ
𝜕𝑧

𝜕𝑦

(4.1)

with (𝑢, 𝑣) the horizontal velocity vector. A straightforward extension of Lemma 1.1 allows to get a kinetic
interpretation of system (4.1) as studied in [1,4]. To build the two dimensional Gibbs equilibrium, we define the
function

𝜒(𝑧1, 𝑧2) =
1

4𝜋
1𝑧2

1+𝑧2
2≤4, (4.2)

and we have

∀𝑈 = (ℎ, ℎ𝑢, ℎ𝑣)𝑇 , ∀𝜉 ∈ R2, 𝑀(𝑈, 𝜉) =
ℎ

𝑐2
𝜒

(︂
𝜉1 − 𝑢

𝑐
,
𝜉2 − 𝑣

𝑐

)︂
=

1
2𝑔𝜋

1|𝜉−(𝑢,𝑣)𝑇 |2≤
√

2𝑔ℎ, (4.3)

with the velocity 𝑐 =
√︀

𝑔
2ℎ. Let us remark that when averaging this Maxwellian function in the direction 𝜉1

(resp. 𝜉2), we get a function of 𝜉2 (resp. 𝜉1) that coincides with the half-disk Maxwellian (1.4) used in the one
dimensional case. We then state the following lemma.

Lemma 4.1. If the topography 𝑧(𝑥, 𝑦) is Lipschitz continuous, then 𝑈 = (ℎ, ℎ𝑢, ℎ𝑣)𝑇 is a weak solution to the
Saint-Venant system (4.1) if and only if 𝑀(𝑈, 𝜉) satisfies the kinetic equation

𝜕𝑡𝑀 + 𝜉 · ∇(𝑥,𝑦)𝑀 − 𝑔∇(𝑥,𝑦)𝑧 · ∇(𝜉1,𝜉2)𝑀 = 𝑄, (4.4)

for some “collision term” 𝑄(𝑡, 𝑥, 𝑦, 𝜉) that satisfies, for a.e. (𝑡, 𝑥, 𝑦),∫︁
R2

𝑄 d𝜉1 d𝜉2 =
∫︁

R2
𝜉1𝑄 d𝜉1 d𝜉2 =

∫︁
R2

𝜉2𝑄 d𝜉1 d𝜉2 = 0. (4.5)

Proof of Lemma 4.1. The proof relies on simple computations. Classically, the integral of equation (4.4) over
𝜉 ∈ R2 gives the first line of the system (4.1) whereas the last two lines of this system are obtained by taking
the scalar product of (4.4) against 𝜉 ∈ R2 and by integrating over R2. �

As in the one dimensional case, the Maxwellian (4.3) is associated with a kinetic entropy 𝐻(𝑓, 𝜉) satisfying
the two dimensional analogous of Lemma 1.2, see [3]. This kinetic entropy is given by

𝐻(𝑓, 𝜉) =
|𝜉|2

2
𝑓 + 𝑔𝑧𝑓. (4.6)

4.2. Fully implicit kinetic scheme over a flat bathymetry

Let us consider a bounded rectangular domain Ω = (0, 𝐿𝑥)× (0, 𝐿𝑦) and its Cartesian discretization using 𝑃
cells in both 𝑥- and 𝑦-directions, such that the total number of cells is 𝑃 2. We denote (𝑃𝑖,𝑗)0≤𝑖,𝑗≤𝑃 the vertices
with coordinates (𝑥𝑖, 𝑦𝑗)𝑇 given by

𝑥𝑖 = (𝑖 + 1/2)∆𝑥, 𝑦𝑗 = (𝑗 + 1/2)∆𝑦,

where ∆𝑥 = 𝐿𝑥/𝑃 , ∆𝑦 = 𝐿𝑦/𝑃 . We use the following notations:
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– for all (𝑖, 𝑗) ∈ J1, 𝑃 K2, 𝐶𝑖,𝑗 is the rectangular cell centered on 𝑃𝑖,𝑗 with area |𝐶𝑖,𝑗 | = ∆𝑥∆𝑦,
– 𝜕𝐶𝑖,𝑗 is the boundary of 𝐶𝑖,𝑗 ,
– indices (𝑖, 𝑗) such that 𝑖 ∈ {0, 𝑃 + 1} or 𝑗 ∈ {0, 𝑃 + 1} indicate a ghost cell outside of Ω.

We define the piecewise constant functions 𝑈𝑛(𝑥, 𝑦) and 𝑧(𝑥, 𝑦) on cells 𝐶𝑖,𝑗 as

𝑈𝑛(𝑥, 𝑦) = 𝑈𝑛
𝑖,𝑗 , 𝑧(𝑥, 𝑦) = 𝑧𝑖,𝑗 , for (𝑥, 𝑦) ∈ 𝐶𝑖,𝑗 , (4.7)

with 𝑈𝑛
𝑖,𝑗 = (ℎ𝑛

𝑖,𝑗 , (ℎ𝑢)𝑛
𝑖,𝑗 , (ℎ𝑣)𝑛

𝑖,𝑗)𝑇 such that they approximate the cell averages as below

𝑈𝑛
𝑖,𝑗 ≈

1
|𝐶𝑖,𝑗 |

∫︁
𝐶𝑖,𝑗

𝑈(𝑡𝑛, 𝑥, 𝑦) d𝑥 d𝑦, 𝑧𝑖,𝑗 ≈
1

|𝐶𝑖,𝑗 |

∫︁
𝐶𝑖,𝑗

𝑧(𝑥, 𝑦) d𝑥 d𝑦.

In the case of a flat topography, the integral over 𝐶𝑖,𝑗 of the convective part of the kinetic equation (4.4)
gives ∫︁

𝐶𝑖,𝑗

(︂
𝜕𝑀

𝜕𝑡
+ 𝜉 · ∇(𝑥,𝑦)𝑀

)︂
d𝑥 d𝑦 ≈ |𝐶𝑖,𝑗 |

𝜕𝑀𝑖,𝑗

𝜕𝑡
+
∫︁

𝜕𝐶𝑖,𝑗

(︀
𝜉 · 𝑛𝜕𝐶𝑖,𝑗

)︀
𝑀𝑖,𝑗 dℓ

≈ |𝐶𝑖,𝑗 |
𝜕𝑀𝑖,𝑗

𝜕𝑡
+ 𝜉1∆𝑦(1𝜉1>0(𝑀𝑖,𝑗 −𝑀𝑖−1,𝑗) + 1𝜉1<0(𝑀𝑖+1,𝑗 −𝑀𝑖,𝑗))

+ 𝜉2∆𝑥(1𝜉2>0(𝑀𝑖,𝑗 −𝑀𝑖,𝑗−1) + 1𝜉2<0(𝑀𝑖,𝑗+1 −𝑀𝑖,𝑗)), (4.8)

with 𝑀𝑖,𝑗(𝑡) = 𝑀(𝑈𝑖,𝑗(𝑡), 𝜉) and 𝑛𝜕𝐶𝑖,𝑗
(ℓ) the normal to 𝜕𝐶𝑖,𝑗 at the contour abscissa ℓ ∈ 𝜕𝐶𝑖,𝑗 taken outward

to 𝐶𝑖,𝑗 . From the spatial semi-discretization (4.8) of the convection operator, we deduce an implicit Euler scheme
for the kinetic interpretation (4.4)

𝑓𝑛+1
𝑖,𝑗 = 𝑀𝑛

𝑖,𝑗 − 𝜎𝑥𝜉1

(︁
𝑓𝑛+1

𝑖+1/2,𝑗 − 𝑓𝑛+1
𝑖−1/2,𝑗

)︁
− 𝜎𝑦𝜉2

(︁
𝑓𝑛+1

𝑖,𝑗+1/2 − 𝑓𝑛+1
𝑖,𝑗−1/2

)︁
, (4.9)

where we used 𝜎𝑥 = ∆𝑡𝑛/∆𝑥, 𝜎𝑦 = ∆𝑡𝑛/∆𝑦 and the interfacial kinetic densities

𝑓𝑛+1
𝑖+1/2,𝑗 = 1𝜉1>0𝑓

𝑛+1
𝑖,𝑗 + 1𝜉1<0𝑓

𝑛+1
𝑖+1,𝑗 , 𝑓𝑛+1

𝑖,𝑗+1/2 = 1𝜉2>0𝑓
𝑛+1
𝑖,𝑗 + 1𝜉2<0𝑓

𝑛+1
𝑖,𝑗+1.

Denoting 𝑓 the vector of interior values from R𝑃 2

𝑓 = (𝑓1,1, 𝑓2,1, . . . , 𝑓𝑃,1, 𝑓1,2, . . . , 𝑓𝑃,𝑃 )𝑇
,

the kinetic scheme (4.9) also writes

(I𝑃 2 + L𝑃 2)𝑓𝑛+1 = 𝑀 + 𝐵𝑛+1, (4.10)

where we have used the particular geometry of the mesh and with I𝑃 2 is the identity matrix of length 𝑃 2, and
the block matrix L𝑃 2 is defined by

L𝑃 2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

D N+ 0 . . . 0

N− D N+ . . .
...

0
. . . . . . . . . 0

...
. . . N− D N+

0 . . . 0 N− D

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,
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where D,N± are 𝑃 × 𝑃 matrices defined by N+ = −𝜎𝑦𝜉21𝜉2<0I𝑃 , N− = 𝜎𝑦𝜉21𝜉2>0I𝑃 and

D = 𝜎𝑥|𝜉1|

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −1𝜉1<0 0 . . . 0

−1𝜉1>0 1 −1𝜉1<0
. . .

...

0
. . . . . . . . . 0

...
. . . −1𝜉1>0 1 −1𝜉1<0

0 . . . 0 −1𝜉1>0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
+ 𝜎𝑦|𝜉2|I𝑃 .

Likewise, the vector 𝐵𝑛+1(𝜉) ∈ R𝑃 accounting for the boundary conditions is given by

𝐵𝑛+1 =

⎛⎜⎜⎜⎜⎜⎝
N− D−

1 D+
1 0

0 D−
2 D+

2

...
...

...
... 0

0 D−
𝑃 D+

𝑃 N+

⎞⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎝

𝑀bottom

𝑀left

𝑀right

𝑀top

⎞⎟⎟⎟⎠,

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝑀bottom =
(︁
𝑀𝑛+1

1,0 , . . . ,𝑀𝑛+1
𝑃,0

)︁𝑇

𝑀left =
(︁
𝑀𝑛+1

0,1 , . . . ,𝑀𝑛+1
0,𝑃

)︁𝑇

𝑀right =
(︁
𝑀𝑛+1

𝑃+1,1, . . . ,𝑀
𝑛+1
𝑃+1,𝑃

)︁𝑇

𝑀top =
(︁
𝑀𝑛+1

1,𝑃+1, . . . ,𝑀
𝑛+1
𝑃,𝑃+1

)︁𝑇

,

with (D−
𝑘 )𝑖,𝑗 = 𝛿1,𝑖𝛿𝑘,𝑗𝜎𝑥|𝜉1|1𝜉1>0 and (D+

𝑘 )𝑖,𝑗 = 𝛿𝑃,𝑖𝛿𝑘,𝑗𝜎𝑥|𝜉1|1𝜉1<0 for all (𝑖, 𝑗, 𝑘) ∈ J1, 𝑃 K3. Since the matrix
I𝑃 2 + L𝑃 2 has the same structure as the matrix I + 𝜎L studied in Lemma 2.1, and since the kinetic representa-
tion (4.4) admits the kinetic entropy (4.6), the results of Propositions 2.2 and 2.3 are still valid. The practical
computation of the inverse of the matrix I𝑃 2 + L𝑃 2 , of the numerical fluxes at the macroscopic level, and the
implementation of the scheme is left for a later work.

4.3. Iterative kinetic scheme with hydrostatic reconstruction

The iterative kinetic scheme (3.2) and its version with hydrostatic reconstruction (3.25) can be extended to
the two dimensional case. First we need to detail the reconstruction step over a Cartesian mesh. Note that it
is also possible to apply it on unstructured meshes as detailed in [4]. The idea is to apply formulas (3.19) and
(3.20) along the normal of a given edge separating two neighboring cells. More precisely we have

∀1 ≤ 𝑖, 𝑗 ≤ 𝑃, 𝑈𝑖±1/2∓,𝑗 =

⎛⎝ 1
𝑢𝑖,𝑗

𝑣𝑖,𝑗

⎞⎠ℎ𝑖±1/2∓,𝑗 , 𝑈𝑖,𝑗±1/2∓ =

⎛⎝ 1
𝑢𝑖,𝑗

𝑣𝑖,𝑗

⎞⎠ℎ𝑖,𝑗±1/2∓, (4.11)

with the reconstructed interfacial water heights given by

ℎ𝑖±1/2∓,𝑗 =
(︀
ℎ𝑖,𝑗 + 𝑧𝑖,𝑗 − 𝑧𝑖±1/2,𝑗

)︀
+
, ℎ𝑖,𝑗±1/2∓ =

(︀
ℎ𝑖,𝑗 + 𝑧𝑖,𝑗 − 𝑧𝑖,𝑗±1/2

)︀
+
, (4.12)

and with the interfacial bathymetry 𝑧𝑖+1/2,𝑗 = max(𝑧𝑖,𝑗 , 𝑧𝑖+1,𝑗) and 𝑧𝑖,𝑗+1/2 = max(𝑧𝑖,𝑗 , 𝑧𝑖,𝑗+1). It is then
possible to consider the Maxwellian densities associated with the reconstructed interfacial states (4.11) through
an upwinding as follows

𝑀𝑖+1/2,𝑗(𝜉) = 1𝜉1>0𝑀
(︀
𝑈𝑖+1/2−,𝑗 , 𝜉

)︀
+ 1𝜉1<0𝑀

(︀
𝑈𝑖+1/2+,𝑗 , 𝜉

)︀
,

𝑀𝑖,𝑗+1/2(𝜉) = 1𝜉2>0𝑀
(︀
𝑈𝑖,𝑗+1/2−, 𝜉

)︀
+ 1𝜉2<0𝑀

(︀
𝑈𝑖,𝑗+1/2+, 𝜉

)︀
.

An implicit hydrostatic reconstruction kinetic scheme stemming from (4.9) consists to find macroscopic states
(𝑈𝑛+1

𝑖,𝑗 )1≤𝑖,𝑗≤𝑃 such that

𝑀𝑛+1
𝑖,𝑗 = 𝑀𝑛

𝑖,𝑗 − 𝜎𝑥𝜉1

(︁
𝑀𝑛+1

𝑖+1/2,𝑗 −𝑀𝑛+1
𝑖−1/2,𝑗

)︁
− 𝜎𝑦𝜉2

(︁
𝑀𝑛+1

𝑖,𝑗+1/2 −𝑀𝑛+1
𝑖,𝑗−1/2

)︁
+ 𝑄𝑛+1

𝑖,𝑗
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+ 𝜎𝑥

(︁
𝜉1 − 𝑢𝑛+1,𝑘

𝑖,𝑗

)︁(︁
𝑀𝑛+1,𝑘

𝑖+1/2−,𝑗 −𝑀𝑛+1,𝑘
𝑖−1/2+,𝑗

)︁
+ 𝜎𝑦

(︁
𝜉2 − 𝑣𝑛+1,𝑘

𝑖,𝑗

)︁(︁
𝑀𝑛+1,𝑘

𝑖,𝑗+1/2− −𝑀𝑛+1,𝑘
𝑖,𝑗−1/2+

)︁
,

where 𝑄𝑛+1
𝑖,𝑗 is a collision term verifying (4.5), and where the last line of the above expression accounts for the

topography source term. As in the one dimensional case, it is not possible to compute explicitly this update,
instead we approximate it by a fixed point method

(1 + 𝛼)𝑓𝑛+1,𝑘+1
𝑖,𝑗 = 𝑀𝑛

𝑖,𝑗 + 𝛼𝑀𝑛+1,𝑘
𝑖,𝑗 − 𝜎𝑥𝜉1

(︁
𝑀𝑛+1,𝑘

𝑖+1/2,𝑗 −𝑀𝑛+1,𝑘
𝑖−1/2,𝑗

)︁
− 𝜎𝑦𝜉2

(︁
𝑀𝑛+1,𝑘

𝑖,𝑗+1/2 −𝑀𝑛+1,𝑘
𝑖,𝑗−1/2

)︁
+ 𝜎𝑥

(︁
𝜉1 − 𝑢𝑛+1,𝑘

𝑖,𝑗

)︁(︁
𝑀𝑛+1,𝑘

𝑖+1/2−,𝑗 −𝑀𝑛+1,𝑘
𝑖−1/2+,𝑗

)︁
+ 𝜎𝑦

(︁
𝜉2 − 𝑣𝑛+1,𝑘

𝑖,𝑗

)︁(︁
𝑀𝑛+1,𝑘

𝑖,𝑗+1/2− −𝑀𝑛+1,𝑘
𝑖,𝑗−1/2+

)︁
, (4.13)

where 𝛼 > 0 is a relaxation parameter, combined with the projection step

𝑀𝑛+1,𝑘+1
𝑖,𝑗 = 𝑓𝑛+1,𝑘+1

𝑖,𝑗 + 𝑄𝑛+1,𝑘
𝑖,𝑗 . (4.14)

At the macroscopic level, an iterative scheme is obtained by integrating (4.13) against (1, 𝜉) which is implemented
in practice. It reads

(1 + 𝛼)𝑈𝑛+1,𝑘+1
𝑖,𝑗 = 𝑈𝑛

𝑖,𝑗 + 𝛼𝑈𝑛+1,𝑘
𝑖,𝑗 − 𝜎𝑥

(︁
𝐹𝑛+1,𝑘

𝑥,𝑖+1/2−,𝑗 − 𝐹𝑛+1,𝑘
𝑥,𝑖−1/2+,𝑗

)︁
− 𝜎𝑦

(︁
𝐹𝑛+1,𝑘

𝑦,𝑖,𝑗+1/2− − 𝐹𝑛+1,𝑘
𝑦,𝑖,𝑗−1/2+

)︁
, (4.15)

where we have the following definition of the numerical fluxes

𝐹𝑛+1,𝑘
𝑥,𝑖±1/2∓,𝑗 =

∫︁
R2

𝜉1

⎛⎝ 1
𝜉1

𝜉2

⎞⎠𝑀𝑛+1,𝑘
𝑖±1/2,𝑗 d𝜉1d𝜉2 +

𝑔

2

⎛⎜⎝ 0(︁
ℎ𝑛+1,𝑘

𝑖,𝑗

)︁2

−
(︁
ℎ𝑛+1,𝑘

𝑖±1/2∓,𝑗

)︁2

0

⎞⎟⎠,

𝐹𝑛+1,𝑘
𝑦,𝑖,𝑗±1/2∓ =

∫︁
R2

𝜉2

⎛⎝ 1
𝜉1

𝜉2

⎞⎠𝑀𝑛+1,𝑘
𝑖,𝑗±1/2 d𝜉1d𝜉2 +

𝑔

2

⎛⎜⎜⎝
0
0(︁

ℎ𝑛+1,𝑘
𝑖,𝑗

)︁2

−
(︁
ℎ𝑛+1,𝑘

𝑖,𝑗±1/2∓

)︁2

⎞⎟⎟⎠.

The results obtained in Section 3 for the 1d Saint-Venant remain valid in the two dimensional setting since,
the kinetic representation (4.4) of the Saint-Venant equations with Maxwellian (4.3) possesses a convex kinetic
entropy 𝐻 given by (4.6).

The complete analysis of the 2d scheme is left for a forthcoming paper but a numerical experiment consisting
of the two dimensional parabolic bowl [17] is presented in Section 5.3.

5. Numerical simulations

In this section we evaluate the behavior and the efficiency of the proposed kinetic schemes through numerical
experiments. In Section 5.1, we focus on the fully implicit kinetic scheme over a flat bathymetry that corresponds
to (2.1). Then, in Section 5.2, the iterative kinetic scheme with hydrostatic reconstruction is investigated numer-
ically. In particular, we exhibit a test case where our iterative method succeeds to dissipate the total energy
while its explicit version increases it. Finally in Section 5.3 a two dimensional test case is proposed. Unless
specified otherwise, we use a CFL constant of 0.45 and the relaxation parameter 𝛼 is set to one for the iterative
kinetic schemes.

5.1. Fully implicit kinetic scheme in the flat bottom case

Slow moving shock. To assess the efficiency and interest of the implicit scheme (2.2), we perform a numerical
test involving a Riemann problem with a slowly moving shock over a flat bottom. This configuration is achieved
for a nearly transcritical flow where the material velocity 𝑢 is positive and satisfies 𝑢−

√
𝑔ℎ ≈ 0 and 𝑢+

√
𝑔ℎ ≫ 1.
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Figure 2. Slow moving shock approximated by various kinetic schemes, including explicit,
implicit and iterative strategies. The initial condition is given by a Riemann data with discon-
tinuity at position 𝑥 = 0.

Hence the maximum eigenvalue severely constrains the time step, however a small time step might not be
necessary to accurately resolve the slow shock. We set the gravitational acceleration 𝑔 to 10 and the Riemann
problem corresponds to the initial state 𝑈𝐿 = (1, 4.75)𝑇 for 𝑥 < 0 and 𝑈𝑅 = (2, 4.75)𝑇 for 𝑥 > 0. In Figure 2 we
compare several schemes with an explicit time step ∆𝑡exp given by the CFL condition ∆𝑡exp ≤ 0.45 Δ𝑥

𝜆max
, as well

as the implicit kinetic scheme using a time step ∆𝑡imp = 10∆𝑡exp. We also use the iterative scheme (3.3) with
parameter 𝛼 = 1, and plot the results at time 𝑡 = 0.5. We notice that in the discharge profile, an oscillation
appears downwind of the left-going shock, which is quite pronounced for the explicit and iterative kinetic
schemes, and less so for the fully implicit ones. As expected the implicit scheme using ∆𝑡imp strongly diffuses
the fast traveling rarefaction. On the other hand the slow shock seems to be slightly less impacted by the large
time steps, however it is still less diffused when using ∆𝑡exp. Despite requiring ten times less iterations to reach
the final time, the use of large time increments for the implicit kinetic scheme only results in around two percents
faster computations compared to the explicit strategy which is due to the high quadratic cost of the implicit
method. We believe that it is not possible to lower this cost when it comes to unconditionally stable methods,
because the associated stencil has to cover the entire computational domain.

Riemann problem. We compare the fully implicit kinetic scheme and iterative kinetic scheme to explicit
methods. The test case is given by the Riemann problem with initial data 𝑈0(𝑥) = 1𝑥<0𝑈𝐿 + 1𝑥>0𝑈𝑅 where
we define

𝑈𝐿 =
(︂

2
1/2

)︂
, 𝑈𝑅 =

(︂
1

1/2

)︂
.

The gravity constant 𝑔 is set to 100 and the solution consists in a 1-rarefaction and a 2-shock. The iterative
kinetic scheme uses the half-disk Maxwellian, and we choose the parameters 𝛼 = 1 and 𝜀tol = 10−9 for the
stopping criterion. All the schemes use an explicit time step, and the results are given in Figure 3 at time
𝑡 = 0.025. Three aspects have to be considered, namely the accuracy, the computational cost and the stability. In
Figure 3, we see that in terms of efficiency both iterative and implicit kinetic schemes are at their disadvantage.
Especially, the quadratic complexity of the fully implicit version results in a steeper slope of the efficiency
curve. However this is only one part of the picture, and we know from Proposition 3.5 and Remark 3.6 that
the iterative kinetic scheme (3.3) satisfies a discrete entropy inequality without restriction on the time step,
assuming enough iterations are performed. Concretely the greater stability comes with a higher level of diffusion
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Figure 3. Comparing implicit, iterative and explicit kinetic solvers on a Riemann problem.

which is noticeable in the first two plots of Figure 3. This increased diffusion remains within acceptable margin,
and is the price to pay to have better stability properties.

Total water height conservation. We consider a double dam break problem over the domain (−1, 1) with
flat bottom, 𝑔 = 10 and the following initial condition:

∀𝑥 ∈ (−1, 1), ℎ0(𝑥) = 2 · 1|𝑥|<0.2, 𝑞0(𝑥) = 0.

For sufficiently small times 0 ≤ 𝑡 ≤ 𝑇𝑓 the solution remains supported in (−1, 1), hence we can enforce
homogeneous Dirichlet boundary conditions on ℎ and 𝑞. In practice the simulation uses 512 cells and stops at
𝑇𝑓 = 0.05. The relative total water height and total discharge are plotted in Figure 4 for the fully implicit kinetic
scheme (2.1) and the iterative kinetic kinetic scheme (3.24). The latter achieves a deviation of less than 10−15

for both the total water height and total discharge. On the other hand, the maximum deviations for the fully
implicit scheme are respectively of order 10−11 and 10−8. Hence when the conservation of mass and momentum
is of critical importance, the iterative kinetic scheme should be preferred.
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Figure 4. Total water height and discharge evolution. The light blue line stands for the fully
implicit kinetic scheme (2.1) and the dark dotted line for the iterative kinetic scheme (3.24).

5.2. Iterative kinetic scheme with hydrostatic reconstruction

Parabolic bowl. Now we consider the Thacker’s test case, also known as the parabolic bowl test case, taken
from [17]. The analytic solution in the domain Ω = (0, 𝐿) corresponds to⎧⎪⎪⎪⎨⎪⎪⎪⎩

ℎ(𝑡, 𝑥) = −ℎ0
𝑎

(︁[︀(︀
𝑥− 𝐿

2

)︀
+ 1

2 cos(2𝐵𝑡)
]︀2 − 1

)︁
1𝑥∈𝑊 (𝑡)

𝑢(𝑡, 𝑥) = 𝐵 sin(2𝐵𝑡)1𝑥∈𝑊 (𝑡)

𝑧(𝑥) = ℎ0

(︁
1
𝑎2

(︀
𝑥− 𝐿

2

)︀2 − 1
)︁
,

𝑊 (𝑡) =
𝐿

2
− 1

2
cos(2𝐵𝑡) + (−𝑎, 𝑎),

where we set ℎ0 = 0.5, 𝑎 = 1, 𝐿 = 4, 𝐵 = 1
2𝑎

√
2𝑔ℎ0 and 𝑔 = 10. We plot the numerical solution at time 𝑡 = 0.75

in Figure 5. This test case is relevant as it provides us with a non trivial analytical solution enabling to plot
convergence curves, and it is known to be challenging numerically, as it presents a varying bottom together
with an evolving wet/dry front and a discontinuous velocity profile. It is interesting to note that the different
choice of Maxwellian used in the two iterative kinetic schemes has very little impact on the approximation. In
both cases we obtain a convergence with first order accuracy, and unsurprisingly the numerical cost is higher
than for fully explicit methods due to the number of sub-iterations required to update the solution. One should
also note that the use of the half-disk Maxwellian is slightly more expensive than the simpler index Maxwellian.
Besides, in this test case the iterative kinetic scheme with index Maxwellian was always able to fulfill the
entropy condition (3.32) after some iterations, which we only proved rigorously for the half-disk Maxwellian.
Hence despite using the wrong Maxwellian, it seems that the iterative kinetic scheme in question still has better
stability properties than fully explicit methods. This will be further corroborated with the next test case.

Total energy dissipation. To assess the good entropy stability property of our iterative kinetic scheme with
hydrostatic reconstruction (3.22)–(3.24), we wish to compare it to its explicit counterpart in a test case where
this latter method fails to dissipate the entropy. To construct such a test case, we can use the discrete entropy
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Figure 5. Parabolic bowl approximated by explicit and iterative kinetic schemes. First row:
elevation and discharge at time 0.75, second row: convergence and efficiency curves, third row:
conservation of the total water height up to machine precision. The stopping criteria used in
the two kinetic iterative schemes combines the standard tolerance condition with tolerance
𝜀 = 10−9 and the entropy condition (3.32).
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Figure 6. Evolution of the relative total energy obtained for various explicit and iterative
kinetic schemes.

inequality verified by the explicit kinetic scheme established in [6], Theorem 3.6. It reads as

𝐻
(︀
𝑓𝑛+1

𝑖 , 𝑧𝑖

)︀
≤ 𝐻(𝑀𝑛

𝑖 , 𝑧𝑖)− 𝜎
(︁ ̃︀𝐺𝑛

𝑖+1/2− − ̃︀𝐺𝑛
𝑖−1/2+

)︁
− 𝐶1𝜎|𝜉|

(︁
1𝜉<0

(︀
𝑀𝑖+1/2+ + 𝑀𝑖+1/2−

)︀(︀
𝑀𝑖+1/2+ −𝑀𝑖+1/2−

)︀2
+ 1𝜉>0

(︀
𝑀𝑖−1/2+ + 𝑀𝑖−1/2−

)︀(︀
𝑀𝑖−1/2+ −𝑀𝑖−1/2−

)︀2)︁
+ 𝐶2(𝜎𝜉max)2𝑀𝑖

(︁(︀
𝑀𝑖 −𝑀𝑖+1/2−

)︀2 +
(︀
𝑀𝑖 −𝑀𝑖−1/2+

)︀2)︁
,

with the kinetic entropy fluxes ̃︀𝐺𝑛
𝑖+1/2−, ̃︀𝐺𝑛

𝑖−1/2+ defined in (3.28) and with 𝐶1, 𝐶2 > 0 two constants. Since
terms in factor of 𝐶1 have negative sign, they play the role of a dissipation; on the other hand the ones in
factor of 𝐶2 are a positive error contribution. A possibility is thus to choose an initial condition such that the
dissipative term cancels, but not the error one. In the dissipation, quantities of the form 𝑀𝑖±1/2+ −𝑀𝑖±1/2−
vanish when the free surface elevation ℎ + 𝑧 and the velocity 𝑢 are constant across the mesh. At the same time,
terms of the form (𝑀𝑖 −𝑀𝑖±1/2∓) appearing in the positive error term vanish if the bathymetry is taken flat.
Hence we consider an initial condition given by a flat free surface, a non flat bathymetry and constant velocity
which is nonzero (otherwise one would get a lake at rest steady state). More precisely we set the spatial domain
to Ω = (0, 1) with periodic boundary conditions, with 𝑔 = 10 and we have initially

∀𝑥 ∈ (0, 1), ℎin(𝑥) = −𝑧(𝑥), 𝑢in(𝑥) = 1, 𝑧(𝑥) = −5 +
1
2

(︂
1 + cos

(︂
5𝜋

(︂
𝑥− 1

2

)︂)︂)︂
1|𝑥− 1

2 |≤
1
5
.

The results can be seen in Figure 6, where we plot the time evolution of the total energy for various schemes
over a mesh of 𝑃 = 100 cells. Interestingly all the iterative methods manage to dissipate the total energy at
each time step, even the scheme using the index Maxwellian (2.18), for which there is no proof of discrete
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Figure 7. Water height and discharge 𝐿2 errors obtained for the 2d parabolic bowl test case at
final time 𝑡 = 2𝜋/𝜔 with the HLL scheme, explicit kinetic scheme and iterative kinetic scheme.

entropy inequality. On the contrary, as expected the explicit kinetic scheme with half-disk Maxwellian increases
the energy in the first few time steps, after what it decreases. The same goes for the explicit HLL scheme, and
as a result these two explicit methods are not entropy stable for this test case. For comparison we also added
in dark blue the iterative kinetic scheme with 𝛼 = 0 and whose sub-iterations stop as soon as the entropy
condition (3.32) is verified. We can see that after some time this scheme becomes less dissipative than iterative
kinetic methods using the standard tolerance condition; moreover this time roughly corresponds to the time at
which the fully explicit schemes stop increasing the entropy.

5.3. Two dimensional simulation

We investigate the two dimensional iterative kinetic scheme with hydrostatic reconstruction given in
Section 4.3. The exact solution in the domain Ω = (0, 𝐿)2 can be found in [17], and reads⎧⎪⎨⎪⎩

ℎ(𝑡, 𝑥, 𝑦) = 2𝜂ℎ0
𝑎2

(︀[︀(︀
𝑥− 𝐿

2

)︀
cos(𝜔𝑡) +

(︀
𝑦 − 𝐿

2

)︀
sin(𝜔𝑡)

]︀
− 𝑧(𝑥, 𝑦)

)︀
+

𝑢(𝑡, 𝑥, 𝑦) = −𝜂𝜔 sin(𝜔𝑡)1ℎ(𝑡,𝑥,𝑦)>0

𝑣(𝑡, 𝑥, 𝑦) = 𝜂𝜔 cos(𝜔𝑡)1ℎ(𝑡,𝑥,𝑦)>0,

𝑧(𝑥, 𝑦) = −ℎ0

(︂
1− 𝑟2

𝑎2

)︂
,

with 𝑟 =
√︀

(𝑥− 𝐿/2)2 + (𝑦 − 𝐿/2)2, 𝐿 = 1, ℎ0 = 0.1, 𝑎 = 0.25, 𝜂 = 0.2, 𝜔 =
√

2𝑔ℎ0/𝑎 and 𝑔 = 10. Setting
𝑡 = 0 in the above expressions yields the initial condition, and the numerical approximation is computed with
the 2d version of the iterative kinetic scheme (4.15) using the Maxwellian defined by (4.2) and (4.3), with 𝛼 = 3,
𝜀 = 10−9 and a CFL constant of 0.2. The 𝐿2 errors for the water height and the discharge are compared to that
of the explicit HLL and explicit kinetic schemes in Figure 7, where we see similar results. A surface plot of the
elevation and bathymetry is also provided in Figure 8 at different times.

6. Conclusion

In summary, using a kinetic solver, we built implicit schemes for the one- and two-dimensional Saint-Venant
systems that are structure preserving and in particular entropy dissipating, therefore improving upon the pre-
viously investigated explicit scheme [6]. Indeed we showed that an implicit version of the scheme offers stronger
stability results: in the flat bottom case we got rid of the CFL condition while retaining the positivity and
the entropy dissipation properties; whereas in the varying bottom case we showed that it is possible to fix the
creation of entropy induced by the hydrostatic reconstruction technique when using a fixed point sub-iteration
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Figure 8. Numerical approximation of the 2d parabolic bowl using the iterative kinetic scheme
with 𝜀 = 10−7 over a 100 × 100 mesh. From left to right and top to bottom: initial condition,
approximation at time 𝑡 = 2𝜋/3𝜔, 𝑡 = 4𝜋/3𝜔 and 𝑡 = 2𝜋/𝜔.

process that approximates the implicit update. The benefits of our approach were then illustrated through
numerical experiments.

In general the choice of implicit solvers comes with an increase in computational cost compared to explicit
schemes. Yet in some regimes with multiscale behavior, such as the one corresponding to low Froude numbers,
it can make sense efficiency-wise to use an implicit scheme with large time steps. In this regard, the ability
to explicitly write the update of our fully implicit scheme when the bathymetry is flat makes it competitive
compared to other implicit strategies resolved by a direct method. However when the bathymetry is not flat, this
implicit kinetic scheme cannot be used, instead we can consider the iterative kinetic scheme with hydrostatic
reconstruction, which should be more relevant for real-life applications.

Future works include an improvement of the hydrostatic reconstruction that would allow to preserve a broader
family of steady states. This would be achieved by modifying the velocity in addition to the water height at each
interface. Another point to investigate is whether a semi-implicit time discretization combined with a kinetic
solver can be used in order to reduce the amount of diffusion and improve the efficiency while keeping a fully
discrete entropy inequality.
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Appendix A. Expression of the numerical fluxes

The optimal choice for the Maxwellian is given by (1.4). Unfortunately the explicit expression for the numerical fluxes
appearing in (2.20) is hardly possible with the choice (1.4) and the use of approximate quadrature formula for the
integrals in (1.4) will degrade the accuracy of the scheme and increase the computational costs. Hence, we we choose 𝑀
defined by the first expression in (2.17) and relation (2.20) becomes

𝑈 int
𝑖 =

1

2
√

3

⎛

⎝
∫︁ min(0,𝑏𝑛

𝑗 )

min(0,𝑎𝑛
𝑗
)

𝑃∑︁

𝑗=𝑖

√︃
2ℎ𝑛

𝑗

𝑔

(︂
1
𝜉

)︂
(−𝜎𝜉)𝑗−𝑖

(1− 𝜎𝜉)𝑗−𝑖+1
d𝜉 +

∫︁ max(0,𝑏𝑛
𝑗 )

max(0,𝑎𝑛
𝑗
)

𝑖∑︁

𝑗=1

√︃
2ℎ𝑛

𝑗

𝑔

(︂
1
𝜉

)︂
(𝜎𝜉)𝑖−𝑗

(1 + 𝜎𝜉)𝑖−𝑗+1
d𝜉

⎞

⎠,

with 𝑎𝑛
𝑗 = 𝑢𝑛

𝑗 −
√

3 𝑐𝑛
𝑗 and 𝑏𝑛

𝑗 = 𝑢𝑛
𝑗 +

√
3 𝑐𝑛

𝑗 . The expressions of ℎint
𝑖 and (ℎ𝑢)int

𝑖 are given by

ℎint
𝑖 =

1

2
√

3

⎛

⎜⎜⎜⎜⎜⎝

𝑃∑︁

𝑗=𝑖

√︃
2ℎ𝑛

𝑗

𝑔

∫︁ min(0,𝑏𝑛
𝑗 )

min(0,𝑎𝑛
𝑗
)

(−𝜎𝜉)𝑗−𝑖

(1− 𝜎𝜉)𝑗−𝑖+1
d𝜉

⏟  ⏞  
(𝐴ℎ)𝑖,𝑗

+

𝑖∑︁

𝑗=1

√︃
2ℎ𝑛

𝑗

𝑔

∫︁ max(0,𝑏𝑛
𝑗 )

max(0,𝑎𝑛
𝑗
)

(𝜎𝜉)𝑖−𝑗

(1 + 𝜎𝜉)𝑖−𝑗+1
d𝜉

⏟  ⏞  
(𝐵ℎ)𝑖,𝑗

⎞

⎟⎟⎟⎟⎟⎠
(A.1)

(ℎ𝑢)int
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1

2
√

3

⎛

⎜⎜⎜⎜⎜⎝

𝑃∑︁

𝑗=𝑖

− 1

𝜎

√︃
2ℎ𝑛

𝑗

𝑔
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𝑗 )

min(0,𝑎𝑛
𝑗
)

(−𝜎𝜉)𝑗−𝑖+1

(1− 𝜎𝜉)𝑗−𝑖+1
d𝜉

⏟  ⏞  
(𝐴ℎ𝑢)𝑖,𝑗

+
𝑖∑︁

𝑗=1

1

𝜎
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𝑗

𝑔
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𝑗 )

max(0,𝑎𝑛
𝑗
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(𝜎𝜉)𝑖−𝑗+1
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d𝜉

⏟  ⏞  
(𝐵ℎ𝑢)𝑖,𝑗

⎞
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. (A.2)

Now we need to compute analytically the integrals of both expressions using the following lemmas.
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Lemma A.1. If we denote 𝑦 = 1− 1
1+𝑥

for all 𝑥 ∈ R∖{−1} and 𝐶 ∈ R we have the following primitive:

∫︁
𝑥𝑘

(1 + 𝑥)𝑘+1
d𝑥 = ln(|1 + 𝑥|)−

𝑘∑︁

𝑙=1

𝑦𝑙

𝑙
+ 𝐶.

Lemma A.2. Using the same notation as in the previous lemma, we have

∫︁
𝑥𝑘

(1 + 𝑥)𝑘
d𝑥 = −𝑘 ln(|1 + 𝑥|) + 𝑥 +

𝑘−1∑︁

𝑙=1

𝑙
𝑦𝑘−𝑙

𝑘 − 𝑙
+ 𝐶′.

Proof of Lemma A.1. We have

𝐼 =

∫︁
𝑥𝑘

(1 + 𝑥)𝑘+1
d𝑥 =

∫︁
𝑥𝑘

(1 + 𝑥)𝑘

1

1 + 𝑥
d𝑥 =

∫︁ (︂
1− 𝑥

1 + 𝑥

)︂𝑘
1

1 + 𝑥
·

We pose 𝑦 = 1− 1
1+𝑥

𝐼 =

∫︁
𝑦𝑘(1− 𝑦)

d𝑦

(1− 𝑦)2
=

∫︁
𝑦𝑘 − 1

1− 𝑦
+

1

1− 𝑦
d𝑦.

Now we use the formula 𝑦𝑘 − 1 = (𝑦 − 1)(𝑦𝑘−1 + 𝑦𝑘−2 + . . . + 𝑦 + 1). And we obtain

𝐼 = −
∫︁ 𝑘−1∑︁

𝑙=0

𝑦𝑙 d𝑦 − ln(|1− 𝑦|) + 𝐶 𝐶 ∈ R

= ln(|1 + 𝑥|)−
𝑘∑︁

𝑙=1

𝑦𝑙

𝑙
+ 𝐶′ 𝐶′ ∈ R.

�

Proof of Lemma A.2. We already have denoted 𝑦 = 𝑥
1+𝑥

= 1− 1
1+𝑥

𝐼 =

∫︁ (︂
𝑥

1 + 𝑥

)︂𝑘

d𝑥 =

∫︁
𝑦𝑘 d𝑦

(1− 𝑦)2
=

∫︁ (︂
𝑦𝑘 − 1

(1− 𝑦)2
+

1

(1− 𝑦)2

)︂
d𝑦

where the formula 𝑦𝑘 − 1 = (𝑦 − 1)(𝑦𝑘−1 + 𝑦𝑘−2 + . . . + 𝑦 + 1) has been used. Hence

𝐼 = −
∫︁ 𝑘−1∑︁

𝑙=0

𝑦𝑙

1− 𝑦
d𝑦 + 𝑥 + 𝐶 = −

∫︁ 𝑘−1∑︁

𝑙=0

𝑦𝑙 − 1

1− 𝑦
d𝑦 −

∫︁
1

1− 𝑦

𝑘−1∑︁

𝑙=0

d𝑦 + 𝑥 + 𝐶

=

∫︁ 𝑘−1∑︁

𝑙=1

𝑦𝑙 − 1

𝑦 − 1
d𝑦 + 𝑘 ln(|1− 𝑦|) + 𝑥 + 𝐶′ =

∫︁ 𝑘−1∑︁

𝑙=1

𝑙−1∑︁

𝑝=0

𝑦𝑝 d𝑦 − 𝑘 ln(|1 + 𝑥|) + 𝑥 + 𝐶′

=

𝑘−1∑︁

𝑙=1

𝑙

∫︁
𝑦𝑘−1−𝑙 d𝑦 − 𝑘 ln(|1 + 𝑥|) + 𝑥 + 𝐶′ =

𝑘−1∑︁

𝑙=1

𝑙
𝑦𝑘−𝑙

𝑘 − 𝑙
− 𝑘 ln(|1 + 𝑥|) + 𝑥 + 𝐶′′,

with (𝐶, 𝐶′, 𝐶′′) ∈ R3. �

We are now able to compute the quantities 𝐴ℎ𝑖,𝑗 , 𝐵ℎ𝑖,𝑗 , 𝐴ℎ𝑢𝑖,𝑗 , 𝐵ℎ𝑢𝑖,𝑗

𝐴ℎ𝑖,𝑗 =

∫︁ min(0,𝑏𝑛
𝑗 )

min(0,𝑎𝑛
𝑗
)

(−𝜎𝜉)𝑗−𝑖

(1− 𝜎𝜉)𝑗−𝑖+1
d𝜉 = − 1

𝜎

∫︁ −min(0,𝑏𝑛
𝑗 )𝜎

−min(0,𝑎𝑛
𝑗
)𝜎

(𝑥)𝑗−𝑖

(1 + 𝑥)𝑗−𝑖+1
d𝑥
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=
1

𝜎

[︃

ln(|1 + 𝑥|)−
𝑗−𝑖∑︁

𝑙=1

𝑦𝑙

𝑙

]︃−min(0,𝑎𝑛
𝑗 )𝜎

−min(0,𝑏𝑛
𝑗
)𝜎

. (A.3)

𝐵ℎ𝑖,𝑗 =

∫︁ max(0,𝑏𝑛
𝑗 )

max(0,𝑎𝑛
𝑗
)

(𝜎𝜉)𝑖−𝑗

(1 + 𝜎𝜉)𝑖−𝑗+1
d𝜉 =

1

𝜎

∫︁ max(0,𝑏𝑛
𝑗 )𝜎

max(0,𝑎𝑛
𝑗
)𝜎

(𝑥)𝑖−𝑗

(1 + 𝑥)𝑖−𝑗+1
d𝑥

=
1

𝜎

[︃

ln(|1 + 𝑥|)−
𝑖−𝑗∑︁

𝑙=1

𝑦𝑙

𝑙

]︃max(0,𝑏𝑛
𝑗 )𝜎

max(0,𝑎𝑛
𝑗
)𝜎

. (A.4)

And similarly we obtain the formulas for 𝐴ℎ𝑢 and 𝐵ℎ𝑢 under the form

𝐴ℎ𝑢𝑖,𝑗 =
1

𝜎

[︃

−(𝑗 − 𝑖 + 1) ln(|1 + 𝑥|) + 𝑥 +

𝑗−𝑖∑︁

𝑙=1

𝑙
𝑦𝑗−𝑖+1−𝑙

𝑗 − 𝑖 + 1− 𝑙

]︃−min(0,𝑎𝑛
𝑗 )𝜎

−min(0,𝑏𝑛
𝑗
)𝜎

(A.5)

𝐵ℎ𝑢𝑖,𝑗 =
1

𝜎

[︃

−(𝑖− 𝑗 + 1) ln(|1 + 𝑥|) + 𝑥 +

𝑖−𝑗∑︁

𝑙=1

𝑙
𝑦𝑖−𝑗+1−𝑙

𝑖− 𝑗 + 1− 𝑙

]︃max(0,𝑏𝑛
𝑗 )𝜎

max(0,𝑎𝑛
𝑗
)𝜎

. (A.6)

To conclude this paragraph, we give the final expression of 𝑈 int
𝑖

ℎint
𝑖 =

1

2𝜎
√

3

⎛

⎝
𝑃∑︁

𝑗=𝑖

√︃
2ℎ𝑛

𝑗

𝑔

[︃

ln(|1 + 𝑥|)−
𝑗−𝑖∑︁

𝑙=1

𝑦𝑙

𝑙

]︃−min(0,𝑎𝑛
𝑗 )𝜎

−min(0,𝑏𝑛
𝑗
)𝜎

+

𝑖∑︁

𝑗=1

√︃
2ℎ𝑛

𝑗

𝑔

[︃

ln(|1 + 𝑥|)−
𝑖−𝑗∑︁

𝑙=1

𝑦𝑙

𝑙

]︃max(0,𝑏𝑛
𝑗 )𝜎

max(0,𝑎𝑛
𝑗
)𝜎

⎞

⎠ (A.7)

(ℎ𝑢)int
𝑖 =

1

2𝜎2
√

3

⎛

⎝−
𝑃∑︁

𝑗=𝑖

√︃
2ℎ𝑛

𝑗

𝑔

[︃

−(𝑗 − 𝑖 + 1) ln(|1 + 𝑥|) + 𝑥 +

𝑗−𝑖∑︁

𝑘=1

(𝑗 − 𝑖 + 1− 𝑘)
𝑦𝑘

𝑘

]︃−min(0,𝑎𝑛
𝑗 )𝜎

−min(0,𝑏𝑛
𝑗
)𝜎

+

𝑖∑︁

𝑗=1

√︃
2ℎ𝑛

𝑗

𝑔

[︃

−(𝑖− 𝑗 + 1) ln(|1 + 𝑥|) + 𝑥 +

𝑖−𝑗∑︁

𝑘=1

(𝑖− 𝑗 + 1− 𝑘)
𝑦𝑘

𝑘

]︃max(0,𝑏𝑛
𝑗 )𝜎

max(0,𝑎𝑛
𝑗
)𝜎

⎞

⎠. (A.8)

Appendix B. Computations of the fluxes involving the boundary conditions

We assume the ghost quantities 𝑈𝑛+1
0 and 𝑈𝑛+1

𝑃+1 at time 𝑡𝑛+1 to be known. The exterior contribution given in (2.19)
also writes

𝑈ext
𝑖 =

∫︁

R−

(︂
1
𝜉

)︂
(−𝜎𝜉)𝑃−𝑖+1

(1− 𝜎𝜉)𝑃−𝑖+1
𝑀𝑛+1

𝑃+1 d𝜉 +

∫︁

R+

(︂
1
𝜉

)︂
(𝜎𝜉)𝑖

(1 + 𝜎𝜉)𝑖
𝑀𝑛+1

0 d𝜉.

Using computations similar to what has been proposed in Appendix A, we get

𝑈ext
𝑖 =

1

2
√

3

⎡

⎣

√︃
2ℎ𝑛+1

𝑃+1

𝑔

∫︁ min(0,𝑏𝑛+1
𝑃+1)

min(0,𝑎𝑛+1
𝑃+1)

(︂
1
𝜉

)︂
(−𝜎𝜉)𝑃−𝑖+1

(1− 𝜎𝜉)𝑃−𝑖+1
d𝜉 +

√︃
2ℎ𝑛+1

0

𝑔

∫︁ max(0,𝑏𝑛+1
0 )

max(0,𝑎𝑛+1
0 )

(︂
1
𝜉

)︂
(𝜎𝜉)𝑖

(1 + 𝜎𝜉)𝑖
d𝜉

⎤

⎦,

or equivalently

ℎext
𝑖 =

1

2
√

3

⎡

⎣

√︃
2ℎ𝑛+1

𝑃+1

𝑔

∫︁ min(0,𝑏𝑛+1
𝑃+1)

min(0,𝑎𝑛+1
𝑃+1)

(−𝜎𝜉)𝑃−𝑖+1

(1− 𝜎𝜉)𝑃−𝑖+1
d𝜉 +

√︃
2ℎ𝑛+1

0

𝑔

∫︁ max(0,𝑏𝑛+1
0 )

max(0,𝑎𝑛+1
0 )

(𝜎𝜉)𝑖

(1 + 𝜎𝜉)𝑖
d𝜉

⎤

⎦,

(ℎ𝑢)ext
𝑖 =

1

2
√

3

⎡

⎣

√︃
2ℎ𝑛+1

𝑃+1

𝑔

∫︁ min(0,𝑏𝑛+1
𝑃+1)

min(0,𝑎𝑛+1
𝑃+1)

𝜉
(−𝜎𝜉)𝑃−𝑖+1

(1− 𝜎𝜉)𝑃−𝑖+1
d𝜉 +

√︃
2ℎ𝑛+1

0

𝑔

∫︁ max(0,𝑏𝑛+1
0 )

max(0,𝑎𝑛+1
0 )

𝜉
(𝜎𝜉)𝑖

(1 + 𝜎𝜉)𝑖
d𝜉

⎤

⎦.

As explained in Section 2.4, in practice we will replace the unknown values of 𝑈𝑛+1
0 , 𝑈𝑛+1

𝑃+1 with that of 𝑈𝑛
0 , 𝑈𝑛

𝑃+1. The

expression of ℎext
𝑖 can then be established by the mean of Lemma A.2. We have now to find an analytic expression for

the quantity
∫︀

𝑥𝑘+1

(1+𝑥)𝑘 d𝑥 in order to obtain the final expression (ℎ𝑢)ext
𝑖 . The following lemma holds.
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Lemma B.1. Let 𝑘 ∈ N*. If we denote 𝑦 = 1− 1
1+𝑥

for all 𝑥 ∈ R∖{−1} and 𝐶 ∈ R we have the following expression

∫︁
𝑥𝑘+1

(1 + 𝑥)𝑘
d𝑥 =

(︃

−
𝑘−2∑︁

𝑟=1

(𝑘 − 𝑟 − 1)
𝑘 − 𝑟

2

𝑦𝑟

𝑟

)︃

1𝑘≥3 −
(︂

𝑘(𝑘 − 1)

2
ln|1− 𝑦|

)︂
1𝑘≥2

− 𝑘 + 1

(1− 𝑦)
+

1

2(1− 𝑦)2
−

(︃
𝑘−1∑︁

𝑞=1

(𝑘 − 𝑞)
𝑦𝑞

𝑞

)︃

1𝑘≥2 − 𝑘 ln|1− 𝑦|+ 𝐶.

Proof. We begin by performing the change of variable 𝑦 = 1− 1
1+𝑥

∫︁
𝑥𝑘+1

(1 + 𝑥)𝑘
d𝑥 =

∫︁
𝑦𝑘

(︂
1

1− 𝑦
− 1

)︂
d𝑦

(1− 𝑦)2
=

∫︁
𝑦𝑘

(1− 𝑦)3
d𝑦 −

∫︁
𝑦𝑘

(1− 𝑦)2
d𝑦.

Making use of 𝑦𝑘 − 1 = (𝑦 − 1)(𝑦𝑘−1 + 𝑦𝑘−2 + · · ·+ 1) as before, we remark the following relation for 𝑘 ≥ 1

𝑦𝑘

1− 𝑦
=

𝑦𝑘 − 1

1− 𝑦
+

1

1− 𝑦
= −

𝑘−1∑︁

𝑝=0

𝑦𝑝 +
1

1− 𝑦
·

Dividing this by 1− 𝑦 leads to

𝑦𝑘

(1− 𝑦)2
= −

𝑘−1∑︁

𝑝=0

𝑦𝑝

1− 𝑦
+

1

(1− 𝑦)2
= −

𝑘−1∑︁

𝑝=0

(︂
𝑦𝑝 − 1

1− 𝑦
+

1

1− 𝑦

)︂
+

1

(1− 𝑦)2

=

(︃
𝑘−1∑︁

𝑝=1

𝑝−1∑︁

𝑞=0

𝑦𝑞

)︃

1𝑘≥2 −
𝑘

1− 𝑦
+

1

(1− 𝑦)2
·

Iterating this one more time we find

𝑦𝑘

(1− 𝑦)3
=

(︃
𝑘−1∑︁

𝑝=1

𝑝−1∑︁

𝑞=0

𝑦𝑞

1− 𝑦

)︃

1𝑘≥2 −
𝑘

(1− 𝑦)2
+

1

(1− 𝑦)3

=

(︃
𝑘−1∑︁

𝑝=1

𝑝−1∑︁

𝑞=0

𝑦𝑞 − 1

1− 𝑦
+

1

1− 𝑦

)︃

1𝑘≥2 −
𝑘

(1− 𝑦)2
+

1

(1− 𝑦)3

=

(︃

−
𝑘−1∑︁

𝑝=2

𝑝−1∑︁

𝑞=1

𝑞−1∑︁

𝑟=0

𝑦𝑟

)︃

1𝑘≥3 +
𝑘(𝑘 − 1)

2(1− 𝑦)
1𝑘≥2 −

𝑘

(1− 𝑦)2
+

1

(1− 𝑦)3
·

As a consequence we get the following primitives up to a constant

∫︁
𝑦𝑘

(1− 𝑦)2
d𝑦 =

(︃
𝑘−1∑︁

𝑝=1

𝑝∑︁

𝑞=1

𝑦𝑞

𝑞

)︃

1𝑘≥2 + 𝑘 ln|1− 𝑦|+ 1

(1− 𝑦)

∫︁
𝑦𝑘

(1− 𝑦)3
d𝑦 =

(︃

−
𝑘−1∑︁

𝑝=2

𝑝−1∑︁

𝑞=1

𝑞∑︁

𝑟=1

𝑦𝑟

𝑟

)︃

1𝑘≥3 −
𝑘(𝑘 − 1)

2
ln|1− 𝑦|1𝑘≥2 −

𝑘

(1− 𝑦)
+

1

2(1− 𝑦)2
·

Finally, we simplify the double and triple sums

𝑘−1∑︁

𝑝=1

𝑝∑︁

𝑞=1

𝑦𝑞

𝑞
=

𝑘−1∑︁

𝑞=1

𝑘−1∑︁

𝑝=𝑞

𝑦𝑞

𝑞
=

𝑘−1∑︁

𝑞=1

(𝑘 − 𝑞)
𝑦𝑞

𝑞
·

From this we deduce that

𝑘−1∑︁

𝑝=2

𝑝−1∑︁

𝑞=1

𝑞∑︁

𝑟=1

𝑦𝑟

𝑟
=

𝑘−1∑︁

𝑝=2

𝑝−1∑︁

𝑟=1

(𝑝− 𝑟)
𝑦𝑟

𝑟
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=

𝑘−2∑︁

𝑝=1

𝑝∑︁

𝑟=1

(𝑝− 𝑟 + 1)
𝑦𝑟

𝑟
=

𝑘−2∑︁

𝑟=1

𝑘−2∑︁

𝑝=𝑟

(𝑝− 𝑟 + 1)
𝑦𝑟

𝑟

=

𝑘−2∑︁

𝑟=1

(︁ (𝑘 − 𝑟 − 1)(𝑘 + 𝑟 − 2)

2
+ (𝑘 − 𝑟 − 1)(1− 𝑟)

)︁𝑦𝑟

𝑟

=

𝑘−2∑︁

𝑟=1

(𝑘 − 𝑟 − 1)
𝑘 − 𝑟

2

𝑦𝑟

𝑟
·

As a conclusion we have the expression

∫︁
𝑥𝑘+1

(1 + 𝑥)𝑘
d𝑥 =

(︃

−
𝑘−2∑︁

𝑟=1

(𝑘 − 𝑟 − 1)
𝑘 − 𝑟

2

𝑦𝑟

𝑟

)︃

1𝑘≥3 −
(︂

𝑘(𝑘 − 1)

2
ln|1− 𝑦|

)︂
1𝑘≥2

− 𝑘 + 1

(1− 𝑦)
+

1

2(1− 𝑦)2
−

(︃
𝑘−1∑︁

𝑞=1

(𝑘 − 𝑞)
𝑦𝑞

𝑞

)︃

1𝑘≥2 − 𝑘 ln|1− 𝑦|+ 𝐶

where 𝐶 ∈ R and with 𝑦 = 𝑥/(𝑥 + 1). �
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