Free Access
Volume 49, Number 2, March-April 2015
Page(s) 303 - 330
Published online 05 February 2015
  1. C. Alboin, J. Jaffré, J. Roberts and C. Serres, Modeling fractures as interfaces for flow and transport in porous media. In vol. 295 of Fluid flow and transport in porous media, edited by Chen, Ewing. American Mathematical Society (2002) 13–24. [Google Scholar]
  2. O. Angelini, K. Brenner and D. Hilhorst, A finite volume method on general meshes for a degenerate parabolic convection-reaction-diffusion equation. Numer. Math. 123 (2013) 219-257. [CrossRef] [MathSciNet] [Google Scholar]
  3. P. Angot, F. Boyer and F. Hubert, Asymptotic and numerical modelling of flows in fractured porous media. ESAIM: M2AN 23 (2009) 239–275. [CrossRef] [EDP Sciences] [Google Scholar]
  4. S.N. Antontsev, A.V. Kazhikhov and V.N. Monakhov, Boundary value problems in mechanics of nonhomogeneous fluids, vol. 22 of Stud. Math. Appl. North-Holland Publishing Co., Amsterdam (1990). Translated from Russian. [Google Scholar]
  5. B.R. Baliga and S.V. Patankar SV, A control volume finite-element method for two dimensional fluid flow and heat transfer. Numerical Heat Transfer 6 (1983) 245–261. [Google Scholar]
  6. K. Brenner and R. Masson, Convergence of a Vertex centred Discretization of Two-Phase Darcy flows on General Meshes, Int. J. Finite Volume Methods (2013). [Google Scholar]
  7. K. Brenner, C. Cancès and D. Hilhorst, Finite volume approximation for an immiscible two-phase flow in porous media with discontinuous capillary pressure. Comput. Geosci. 17 (2013) 573–597. [CrossRef] [Google Scholar]
  8. C. Cancès, Finite volume scheme for two-phase flows in heterogeneous porous media involving capillary pressure discontinuities. ESAIM: M2AN 43 (2009) 973–1001. [CrossRef] [EDP Sciences] [Google Scholar]
  9. Cancès, Clément and Pierre, Michel, An existence result for multidimensional immiscible two-phase flows with discontinuous capillary pressure field. SIAM J. Math. Anal. 44 (2012) 966–992. [CrossRef] [MathSciNet] [Google Scholar]
  10. G. Chavent and J. Jaffré. Mathematical Models and Finite Elements for Reservoir Simulation, vol. 17 of Stud. Math. Appl. North-Holland, Amsterdam (1986). [Google Scholar]
  11. C.J. van Duijn, J. Molenaar and M. J. de Neef, The effect of capillary forces on immiscible two-phase flows in heterogeneous porous media. Transp. Porous Media 21 (1995) 71–93. [CrossRef] [Google Scholar]
  12. R. Eymard, R. Herbin and A. Michel. Mathematical study of a petroleum-engineering scheme. ESAIM: M2AN 37 (2003) 937–972. [CrossRef] [EDP Sciences] [Google Scholar]
  13. R. Eymard, C. Guichard and R. Herbin, Small-stencil 3D schemes for diffusive flows in porous media. ESAIM: M2AN 46 (2010) 265–290. [Google Scholar]
  14. R. Eymard, C. Guichard, R. Herbin and R. Masson, Vertex centred Discretization of Two-Phase Darcy flows on General Meshes. ESAIM Proc. 35 (2012) 59–78. [Google Scholar]
  15. R. Eymard, R. Herbin, C. Guichard and R. Masson, Vertex Centred discretization of compositional Multiphase Darcy flows on general meshes. Comput. Geosci. 16 (2012) 987–1005. [Google Scholar]
  16. R. Eymard, P. Féron, T. Gallouët, R. Herbin and C. Guichard. Gradient schemes for the Stefan problem. Int. J. Finite Volumes (2013). [Google Scholar]
  17. R. Eymard, C. Guichard, R. Herbin and R. Masson, Gradient schemes for two-phase flow in heterogeneous porous media and Richards equation, article first published online, ZAMM – J. Appl. Math. Mech. (2013). Doi:10.1002/zamm.201200206. [Google Scholar]
  18. E. Flauraud, F. Nataf, I. Faille and R. Masson, Domain Decomposition for an asymptotic geological fault modeling. C. R. l’Académie des Sciences, Mécanique 331 (2003) 849-855. [Google Scholar]
  19. L. Formaggia, A. Fumagalli, A. Scotti and P. Ruffo, A reduced model for Darcy’s problem in networks of fractures. ESAIM: M2AN 48 (2014) 1089–1116. [Google Scholar]
  20. H. Haegland, I. Aavatsmark, C. Guichard, R. Masson and R. Kaufmann, Comparison of a Finite Element Method and a Finite Volume Method for Flow on General Grids in 3D. In Proc. of ECMOR XIII. Biarritz (2012). [Google Scholar]
  21. J. Hoteit and A. Firoozabadi, An efficient numerical model for incompressible two-phase flow in fracture media. Adv. Water Resources 31 (2008) 891–905. [CrossRef] [Google Scholar]
  22. R. Huber and R. Helmig, Node-centred finite volume discretizations for the numerical simulation of multi-phase flow in heterogeneous porous media, Comput. Geosci. 4 (2000) 141–164. [CrossRef] [Google Scholar]
  23. J. Jaffré, M. Mnejja and J.E. Roberts, A discrete fracture model for two-phase flow with matrix-fracture interaction. Procedia Comput. Sci. 4 (2011) 967–973. [Google Scholar]
  24. M. Karimi-Fard, L.J. Durlovski and K. Aziz, An efficient discrete-fracture model applicable for general-purpose reservoir simulators. SPE journal (2004). [Google Scholar]
  25. S. Lacroix, Y.V. Vassilevski and M.F. Wheeler, Decoupling preconditioners in the Implicit Parallel Accurate Reservoir Simulator (IPARS). Numer. Linear Algebra Appl. 8 (2001) 537–549. [CrossRef] [MathSciNet] [Google Scholar]
  26. V. Martin, J. Jaffré and J.E. Roberts, Modeling fractures and barriers as interfaces for flow in porous media. SIAM J. Sci. Comput. 26 (2005) 1667–1691. [Google Scholar]
  27. A. Michel, A finite volume scheme for two-phase immiscible flow in porous media. SIAM J. Numer. Anal. 41 (2003) 1301–1317. [Google Scholar]
  28. J. Monteagudu and A. Firoozabadi, Control-volume model for simulation of water injection in fractured media: incorporating matrix heterogeneity and reservoir wettability effects. SPE J. 12 (2007) 355–366. [CrossRef] [Google Scholar]
  29. V. Reichenberger, H. Jakobs, P. Bastian and R. Helmig, A mixed-dimensional finite volume method for multiphase flow in fractured porous media. Adv. Water Resources 29 (2006) 1020–1036. [CrossRef] [Google Scholar]
  30. R. Scheichl, R. Masson and J. Wendebourg, Decoupling and block preconditioning for sedimentary basin simulations. Comput. Geosci. 7 (2003) 295–318. [CrossRef] [Google Scholar]
  31. X. Tunc, I. Faille, T. Gallouet, M.C. Cacas and P. Havé, A model for conductive faults with non matching grids. Comput. Geosci. 16 (2012) 277–296. [CrossRef] [EDP Sciences] [Google Scholar]
  32. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you