Free Access
Volume 51, Number 3, May-June 2017
Page(s) 851 - 888
Published online 05 April 2017
  1. A. Abdulle and M. Huber, Discontinuous Galerkin finite element heterogeneous multiscale method for advection-diffusion problems with multiple scales. Numer. Math. 126 (2014) 589–633. [CrossRef] [MathSciNet]
  2. G. Allaire and R. Brizzi, A multiscale finite element method for numerical homogenization. Multiscale Model. & Simul. 4 (2005) 790–812. [CrossRef] [MathSciNet]
  3. J.H. Bramble, R.D. Lazarov and J.E. Pasciak, Least-squares for second-order elliptic problems. Comput. Methods Appl. Mech. Engrg. 152 (1998) 195–210. [CrossRef] [MathSciNet]
  4. F. Brezzi, M.-O. Bristeau, L.P. Franca, M. Mallet and G. Rogé, A relationship between stabilized finite element methods and the Galerkin method with bubble functions. Comput. Methods Appl. Mech. Engrg. 96 (1992) 117–129. [CrossRef] [MathSciNet]
  5. A.N. Brooks and T. Hughes, Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations. Comput. Methods Appl. Mech. Engrg. 32 (1982) 199–259. [CrossRef] [MathSciNet]
  6. E. Burman, Stabilized finite element methods for nonsymmetric, noncoercive, and ill-posed problems. Part I: Elliptic equations. SIAM J. Sci. Comput. 35 (2013) A2752–A2780. [CrossRef]
  7. P. Degond, A. Lozinski, B.P. Muljadi and J. Narski, Crouzeix-Raviart MsFEM with bubble functions for diffusion and advection-diffusion in perforated media. Commun. Comput. Phys. 17 (2015) 887–907. [CrossRef]
  8. Y. Efendiev and T. Hou, Multiscale Finite Element Methods. Vol. 4 of Surveys and Tutorials in the Applied Mathematical Sciences. Springer, New York (2009).
  9. Y.R. Efendiev, T.Y. Hou and X.-H. Wu, Convergence of a nonconforming multiscale finite element method. SIAM J. Numer. Anal. 37 (2000) 888–910. [CrossRef] [MathSciNet]
  10. A. Ern and J.-L. Guermond, Theory and practice of finite elements, vol. 159. Springer (2004).
  11. L.P. Franca, S.L. Frey and T.J.R. Hugues, Stabilized finite element methods: I. Application to the advective-diffusive model. Comput. Methods Appl. Mech. Engrg. 95 (1992) 253–276. [CrossRef] [MathSciNet]
  12. F. Hecht, New development in FreeFem++. J. Numer. Math. 20 (2012) 251–265. [CrossRef] [MathSciNet]
  13. T. Hou, X.-H. Wu and Z. Cai, Convergence of a multiscale finite element method for elliptic problems with rapidly oscillating coefficients. Math. Comput. 68 (1999) 913–943. [CrossRef] [MathSciNet]
  14. T.Y. Hou and X.-H. Wu, A multiscale finite element method for elliptic problems in composite materials and porous media. J. Comput. Phys. 134 (1997) 169–189. [CrossRef] [MathSciNet]
  15. T. Hughes, Multiscale phenomena: Green’s functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods. Comput. Methods Appl. Mech. Engrg. 127 (1995) 387–401. [CrossRef] [MathSciNet]
  16. T.J.R. Hughes and A. Brooks, A multidimensional upwind scheme with no crosswind diffusion. In Finite element methods for convection dominated flows (Papers, Winter Ann. Meeting Amer. Soc. Mech. Engrs., New York 1979). Vol. 34 of AMD. Amer. Soc. Mech. Engrs. (ASME), New York (1979) 19–35.
  17. W. Hundsdorfer and J. Verwer, Numerical Solution of Time-Dependent Advection-Diffusion-Reaction Equations. Vol. 33 of Springer Ser. Comput. Math. Springer-Verlag, Berlin (2003).
  18. J. Ku, A least-squares method for second order noncoercive elliptic partial differential equations. Math. Comput. 76 (2007) 97–114. [CrossRef]
  19. C. Le Bris, F. Legoll and A. Lozinski, MsFEM à la Crouzeix-Raviart for highly oscillatory elliptic problems. Chinese Ann. Math. B 34 (2013) 113–138. [CrossRef] [MathSciNet]
  20. C. Le Bris, F. Legoll and A. Lozinski, An MsFEM type approach for perforated domains. Multiscale Modeling & Simulation 12 (2014) 1046–1077. [CrossRef] [MathSciNet]
  21. C. Le Bris, F. Legoll and F. Madiot, A numerical comparison of some Multiscale Finite Element approaches for convection-dominated problems in heterogeneous media. Preprint arXiv:1511.08453.
  22. C. Le Bris, F. Legoll and F. Thomines, Multiscale Finite Element approach for weakly random problems and related issues. Math. Model. Numer. Anal. 48 (2014) 815–858. [CrossRef] [EDP Sciences] [MathSciNet]
  23. F. Madiot, Multiscale finite element methods for advection diffusion problems. Ph.D. thesis, Université Paris-Est (2016). Available at:
  24. F. Ouaki, Etude de schémas multi-échelles pour la simulation de réservoir. Ph.D. thesis, École Polytechnique (2013). Available at:
  25. P.J. Park and T. Hou, Multiscale numerical methods for singularly perturbed convection-diffusion equations. Int. J. Comput. Methods 1 (2004) 17–65. [CrossRef]
  26. J. Principe and R. Codina, On the stabilization parameter in the subgrid scale approximation of scalar convection-diffusion-reaction equations on distorted meshes. Comput. Methods Appl. Mech. Engrg. 199 (2010) 1386–1402. [CrossRef] [MathSciNet]
  27. A. Quarteroni and A. Valli, Numerical approximation of partial differential equations. Vol. 23 of Springer Ser. Comput. Math. Springer-Verlag, Berlin (1994).
  28. H.-G. Roos, M. Stynes and L. Tobiska, Robust Numerical Methods for Singularly Perturbed Differential Equations: Convection-Diffusion-Reaction and Flow Problems. Vol. 24 of Springer Series Comput. Math. Springer (2008).
  29. H. Ruffieux, Multiscale finite element method for highly oscillating advection-diffusion problems in convection-dominated regime. Master’s thesis. École Polytechnique Fédérale de Lausanne, Spring 2013.
  30. S.A. Sauter and C. Schwab, Boundary element methods, Vol. 39 of Ser. Comput. Math. Springer (2011).
  31. W.G. Szymczak, An analysis of viscous splitting and adaptivity for steady-state convection-diffusion problems. Comput. Methods Appl. Mech. Engrg. 67 (1988) 311–354 [CrossRef] [MathSciNet]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you