Free Access
Issue
ESAIM: M2AN
Volume 51, Number 5, September-October 2017
Page(s) 1617 - 1636
DOI https://doi.org/10.1051/m2an/2017035
Published online 27 September 2017
  1. X. Blanc, É. Cancés and M.-S. Dupuy, Variational projector augmented-wave method. C. R. Math. Acad. Sci. Paris (2017).
  2. P.E. Blöchl, Projector augmented-wave method. Phys. Rev. B 50 (1994) 17953–17979. [NASA ADS] [CrossRef]
  3. E. Cancès, R. Chakir and Y. Maday, Numerical analysis of the planewave discretization of some orbital-free and Kohn−Sham models. ESAIM: M2AN 46 (2012) 341–388. [CrossRef] [EDP Sciences]
  4. E. Cancès, G. Dusson, Y. Maday, B. Stamm and M. Vohralík, A perturbation-method-based a posteriori estimator for the planewave discretization of nonlinear Schrödinger equations. C. R. Math. Acad. Sci. Paris 352 (2014) 941–946. [CrossRef] [MathSciNet]
  5. E. Cancès, G. Dusson, Y. Maday, B. Stamm and M. Vohralík, A perturbation-method-based post-processing for the planewave discretization of Kohn–Sham models. J. Comput. Phys. 307 (2016) 446–459. [CrossRef] [MathSciNet]
  6. E. Cancès, V. Ehrlacher and Y. Maday, Non-consistent approximations of self-adjoint eigenproblems: application to the supercell method. Numer. Math. 128 (2014) 663–706. [CrossRef] [MathSciNet]
  7. H. Chen, X. Dai, X. Gong, L. He and A. Zhou, Adaptive finite element approximations for Kohn–Sham models. Multisc. Model. Simul. 12 (2014) 1828–1869. [CrossRef]
  8. H. Chen, X. Gong, L. He, Z. Yang and A. Zhou, Numerical analysis of finite dimensional approximations of Kohn–Sham models. Adv. Comput. Math. 38 (2013) 225–256. [CrossRef] [MathSciNet]
  9. H. Chen and R. Schneider, Error estimates of some numerical atomic orbitals in molecular simulations. Commun. Comput. Phys. 18 (2015) 125–146. [CrossRef] [MathSciNet]
  10. H. Chen and R. Schneider, Numerical analysis of augmented plane wave methods for full-potential electronic structure calculations. ESAIM: M2AN 49 (2015) 755–785. [CrossRef] [EDP Sciences]
  11. G. Dusson and Y. Maday, A posteriori analysis of a nonlinear Gross–Pitaevskii-type eigenvalue problem. IMA J. Numer. Anal. 37 (2017) 94–137. [CrossRef] [MathSciNet]
  12. P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari and R.M. Wentzcovitch, QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys. Cond. Mat. 21 (2009) 395502. [CrossRef] [PubMed]
  13. S. Goedecker, M. Teter and J. Hutter, Separable dual-space Gaussian pseudopotentials. Phys. Rev. B 54 (1996) 1703–1710. [CrossRef]
  14. X. Gonze, B. Amadon, P.-M. Anglade, J.-M. Beuken, F. Bottin, P. Boulanger, F. Bruneval, D. Caliste, R. Caracas, M. Côté, T. Deutsch, L. Genovese, Ph. Ghosez, M. Giantomassi, S. Goedecker, D.R. Hamann, P. Hermet, F. Jollet, G. Jomard, S. Leroux, M. Mancini, S. Mazevet, M.J.T. Oliveira, G. Onida, Y. Pouillon, T. Rangel, G.-M. Rignanese, D. Sangalli, R. Shaltaf, M. Torrent, M.J. Verstraete, G. Zerah and J.W. Zwanziger, ABINIT: First-principles approach to material and nanosystem properties. Comput. Phys. Commun. 180 (2009) 2582–2615. [CrossRef]
  15. X. Gonze, J.-M. Beuken, R. Caracas, F. Detraux, M. Fuchs, G.-M. Rignanese, L. Sindic, M. Verstraete, G. Zerah, F. Jollet, M. Torrent, A. Roy, M. Mikami, Ph. Ghosez, J.-Y. Raty and D.C. Allan, First-principles computation of material properties: the ABINIT software project. Comput. Materials Sci. 25 (2002) 478–492. [CrossRef]
  16. F. Gygi and G. Galli, Real-space adaptive-coordinate electronic-structure calculations. Phys. Rev. B 52 (1995) R2229–R2232. [CrossRef]
  17. M. Hanrath, Wavefunction quality and error estimation of single- and multi-reference coupled-cluster and CI methods: the H4 model system. Chem. Phys. Lett. 466 (2008) 240–246. [CrossRef]
  18. T. Helgaker, P. Jørgensen and J. Olsen, Molecular electronic-structure theory. John Wiley & Sons, Ltd, Chichester, UK (2000).
  19. J. Kaye, L. Lin and C. Yang, A posteriori error estimator for adaptive local basis functions to solve Kohn–Sham density functional theory. Commun. Math. Sci. 13 (2015) 1741–1773. [CrossRef] [MathSciNet]
  20. W. Kohn and L.J. Sham, Self-consistent equations including exchange and correlation effects. Phys. Rev. 140 (1965) A1133–A1138. [CrossRef] [MathSciNet]
  21. G. Kresse and J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 5 (1996) 11169–11186. [NASA ADS] [CrossRef]
  22. W. Kutzelnigg, Error analysis and improvements of coupled-cluster theory. Theor. Chim. Acta 80 (1991) 349–386. [CrossRef]
  23. W. Kutzelnigg, Rate of convergence of basis expansions in quantum chemistry. AIP Conf. Proc. 1504 (2012) 15–30. [CrossRef]
  24. S. Li, K. Chen, M.-Y. Hsieh, N. Muralimanohar, C.D. Kersey, J.B. Brockman, A.F. Rodrigues and N.P. Jouppi, System implications of memory reliability in exascale computing. In Proc. of 2011 International Conference for High Performance Computing, Networking, Storage and Analysis on - SC ’11, page 1, New York, New York, USA (2011). ACM Press.
  25. L. Lin and B. Stamm, A posteriori error estimates for discontinuous Galerkin methods using non-polynomial basis functions Part I: Second order linear PDE. ESAIM: M2AN 50 (2016) 1193–1222. [CrossRef] [EDP Sciences]
  26. Y. Maday and G. Turinici, Error bars and quadratically convergent methods for the numerical simulation of the Hartree-Fock equations. Numer. Math. 94 (2003) 739–770. [CrossRef] [MathSciNet]
  27. S. Mohr, L.E. Ratcliff, P. Boulanger, L. Genovese, D. Caliste, T. Deutsch and S. Goedecker, Daubechies wavelets for linear scaling density functional theory. J. Chemical Phys. 140 (2014) 204–110. [CrossRef]
  28. P. Motamarri, M.R. Nowak, K. Leiter, J. Knap and V. Gavini, Higher-order adaptive finite-element methods for Kohn–Sham density functional theory. J. Comput. Phys. 253 (2013) 308–343. [CrossRef] [MathSciNet]
  29. J.E. Pask and P.A. Sterne, Finite element methods in ab initio electronic structure calculations. Model. Simul. Mat. Sci. Eng. 13 (2005) R71–R96. [CrossRef]
  30. P. Pernot, B. Civalleri, D. Presti and A. Savin, Prediction uncertainty of density functional approximations for properties of crystals with cubic symmetry. J. Phys. Chemistry A 119 (2015) 5288–5304. [CrossRef]
  31. S.N. Pieniazek, F.R. Clemente and K.N. Houk, Sources of error in DFT computations of C–C bond formation thermochemistries: πσ transformations and error cancellation by DFT methods. Angew. Chem. Int. Ed. 47 (2008) 7746–7749. [CrossRef]
  32. M. Reed and B. Simon, Methods of modern mathematical physics. I. Functional analysis. Vol. 53. Academic Press Inc., New York (1972).
  33. T. Rohwedder and R. Schneider, Error estimates for the coupled cluster method. ESAIM: M2AN 47 (2013) 1553–1582. [CrossRef] [EDP Sciences]
  34. Y. Saad, J.R. Chelikowsky and S.M. Shontz, Numerical methods for electronic structure calculations of materials. SIAM Rev. 52 (2010) 3–54. [CrossRef] [MathSciNet]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you