Free Access
Volume 53, Number 3, May-June 2019
Page(s) 1031 - 1059
Published online 25 June 2019
  1. A. Ambroso, C. Chalons, F. Coquel and T. Galié, Relaxation and numerical approximation of a two-fluid two-pressure diphasic model. ESAIM: M2AN 43 (2009) 1063–1097. [CrossRef] [EDP Sciences] [Google Scholar]
  2. A. Ambroso, C. Chalons and P.A. Raviart, A Godunov type method for the seven-equation model of compressible two-phase flow. Comput. Fluids 54 (2012) 67–91. [Google Scholar]
  3. M.R. Baer and J.W. Nunziato, A two phase mixture theory for the deflagration to detonation transition (DDT) in reactive granular materials. Int. J. Multiphase Flow 12 (1986) 861–889. [CrossRef] [Google Scholar]
  4. G. Berthoud, Vapor explosions. Annu. Rev. Fluid Mech. 32 (2000) 573–611. [Google Scholar]
  5. W. Bo, H. Jin, D. Kim, X. Liu, H. Lee, N. Pestiau, Y. Yu, J. Glimm and J.W. Grove, Comparison and validation of multiphase closure models. Comput. Math. Appl. 56 (2008) 1291–1302. [Google Scholar]
  6. A. Chauvin, Etude expérimentale de l’atténuation d’une onde de choc par un nuage de gouttes et validation numérique. Ph.D. thesis, Université Aix Marseille (2012). [Google Scholar]
  7. A. Chauvin, G. Jourdan, E. Daniel, L. Houas and R. Tosello, Experimental investigation of the propagation of a planar shock wave through a two-phase gas-liquid medium. Phys. Fluids 23 (2011) 113301. [CrossRef] [Google Scholar]
  8. F. Coquel, T. Gallouët, J.M. Hérard and N. Seguin, Closure laws for a two fluid two-pressure model. C. R. Math. 334 (2002) 927–932. [CrossRef] [MathSciNet] [Google Scholar]
  9. F. Coquel, J.M. Hérard, K. Saleh and N. Seguin, A robust entropy-satisfying finite volume scheme for the isentropic Baer Nunziato model. ESAIM: M2AN 48 (2014) 165–206. [CrossRef] [EDP Sciences] [Google Scholar]
  10. F. Coquel, J.M. Hérard and K. Saleh, A positive and entropy-satisfying finite volume scheme for the Baer Nunziato model. J. Comput. Phys. 330 (2017) 401–435. [Google Scholar]
  11. M. Essadki, Contribution to a unified modelling of fuel injection: From dense liquid to polydisperse evaporating spray. Ph.D. thesis, Ecole Polytechnique (2018). [Google Scholar]
  12. G. Faccanoni, S. Kokh and G. Allaire, Modelling and simulation of liquid-vapor phase transition in compressible flows based on thermodynamical equilibrium. ESAIM: M2AN 46 (2012) 1029–1054. [CrossRef] [EDP Sciences] [Google Scholar]
  13. T. Flätten and H. Lund, Relaxation two-phase flow models and the subcharacteristic condition. Math. Models Methods Appl. Sci. 21 (2011) 2379–2407. [Google Scholar]
  14. S. Gavrilyuk, The structure of pressure relaxation terms: The one-velocity case. EDF report H-I83-2014-0276-EN (2014). [Google Scholar]
  15. S. Gavrilyuk and R. Saurel, Mathematical and numerical modelling of two-phase compressible flows with micro inertia. J. Comput. Phys. 175 (2002) 326–360. [Google Scholar]
  16. B.E. Gelfand, Droplet breakup phenomena in flows with velocity lag. Progr. Energy Combust. Sci. 22 (1996) 201–265. [CrossRef] [Google Scholar]
  17. P. Helluy and H. Mathis, Pressure laws and fast Legendre transform. Math. Models Methods Appl. Sci. 21 (2011) 745–775. [Google Scholar]
  18. P. Helluy and N. Seguin, Relaxation models of phase transition flows. ESAIM: M2AN 40 (2006) 331–352. [CrossRef] [EDP Sciences] [Google Scholar]
  19. J.M. Hérard, A three-phase flow model. Math. Comput. Model. 45 (2007) 732–755. [Google Scholar]
  20. J.M. Hérard, A class of compressible multiphase flow models. C. R. Math 354 (2016) 954–959. [CrossRef] [Google Scholar]
  21. J.M. Hérard and O. Hurisse, A fractional step method to compute a class of compressible gas-liquid flows. Comput. Fluids 55 (2012) 57–69. [Google Scholar]
  22. J.M. Hérard, K. Saleh and N. Seguin, Some mathematical properties of a hyperbolic multiphase flow model. Preprint Hal: 01921027v1 (2018). [Google Scholar]
  23. T. Hibiki, M. Ishii, One-group interfacial area transport of bubbly flows in vertical round tubes. Int. J. Heat Mass Transf. 43 (2000) 2711–2726. [Google Scholar]
  24. A.K. Kapila, S.F. Son, J.B. Bdzil, R. Menikoff and D.S. Stewart, Two phase flow modeling of deflagration to detonation transition: Srtucture of the velocity relaxation zone. Phys. Fluids 9 (1997) 12180–3590. [CrossRef] [Google Scholar]
  25. H. Mathis, A thermodynamically consistent model of a liquid-vapor fluid with a gas. ESAIM: M2AN 53 (2019) 63–84. [CrossRef] [EDP Sciences] [Google Scholar]
  26. M. Massot, F. Laurent, D. Kah and S. de Chaisemartin, A robust moment method for evaluation of the disappearance rate of evaporating sprays. SIAM J. Appl. Math. 70 (2010) 3203–3234. [Google Scholar]
  27. R. Meignen, B. Raverdy, S. Picchi and J. Lamome, The challenge of modelling fuel-coolant interaction. Part II: Steam explosion. Nucl. Eng. Design 280 (2014) 528–541. [CrossRef] [Google Scholar]
  28. S. Müller, M. Hantke and P. Richter, Closure conditions for non-equilibrium multi-component models. Continuum Mech. Thermodyn. 28 (2016) 1157–1190. [CrossRef] [MathSciNet] [Google Scholar]
  29. S. Picchi, MC3D version 3.9. Description of the physical models of the premixing application. IRSN internal report PSN-RES/SAG/2017-0073 (2017). [Google Scholar]
  30. M. Pilch, Acceleration induced fragmentation of liquid drops. Ph.D. thesis, University of Virginia (1981). [Google Scholar]
  31. M. Pilch and C.A. Erdman, Use of breakup time data and velocity history data to predict the maximum size of stable fragments for acceleration induced breakup of a liquid drop. Int. J. Multiphase Flow 28 (1987) 741–757. [CrossRef] [Google Scholar]
  32. X. Rogue, G. Rodriguez, J.F. Haas and R. Saurel, Experimental and numerical investigation of the shock induced fluidization of a particles bed. Shock Waves 8 (2014) 29–46. [Google Scholar]
  33. E. Romenski, A.A. Belozerov, I.M. Peshkov, Conservative formulation for compressible multiphase flows. Preprint ArXiv:1405.3456 (2014). [Google Scholar]
  34. E. Rusanov, Calculation of interaction of non steady shock waves with obstacles. J. Comput. Math. Phys. 1 (1961) 267–279. [Google Scholar]
  35. K. Saleh, A relaxation scheme for a hyperbolic multiphase flow model. Part I: barotropic EOS. Preprint Hal:0173768v1 (2018). [Google Scholar]
  36. W. Yao and C. Morel, Volumetric interfacial area prediction in upward bubbly two-phase flow. Int. J. Heat Mass Transf. 47 (2004) 307–328. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you