Free Access
Volume 53, Number 3, May-June 2019
Page(s) 833 - 867
Published online 25 June 2019
  1. S.G. Advani and C.L. Tucker, III, The use of tensors to describe and predict fiber orientation in short fiber composites. J. Rheol. 31 (1987) 751–784. [CrossRef] [Google Scholar]
  2. M.C. Altan and L. Tang, Orientation tensors in simple flows of dilute suspensions of non-Brownian rigid ellipsoids, comparison of analytical and approximate solutions. Rheologica Acta 32 (1993) 227–244. [Google Scholar]
  3. S. Badia and J. Bonilla, Monotonicity-preserving finite element schemes based on differentiable nonlinear stabilization. Comput. Methods Appl. Mech. Eng. 313 (2017) 133–158. [Google Scholar]
  4. G.R. Barrenechea, E. Burman and F. Karakatsani, Edge-based nonlinear diffusion for finite element approximations of convection.diffusion equations and its relation to algebraic flux-correction schemes. Numer. Math. 135 (2017) 521–545. [Google Scholar]
  5. G.R. Barrenechea, V. John and P. Knobloch, Analysis of algebraic flux correction schemes. SIAM J. Numer. Anal. 54 (2016) 2427–2451. [Google Scholar]
  6. G.R. Barrenechea, V. John and P. Knobloch, An algebraic flux correction scheme satisfying the discrete maximum principle and linearity preservation on general meshes. Math. Models Methods Appl. Sci. 27 (2017) 525–548. [Google Scholar]
  7. G.R. Barrenechea, V. John, P. Knobloch and R. Rankin, A unified analysis of algebraic flux correction schemes for convection-diffusion equations. WIAS Preprint No. 2475 (2018). [Google Scholar]
  8. J. Boris and D. Book, I. SHASTA, a fluid transport algorithm that works. J. Comput. Phys. 11 (1973) 38–69. [Google Scholar]
  9. B. Burgeth, A. Bruhn, S. Didas, J. Weickert and M. Welk, Morphology for matrix data: Ordering versus pde-based approach. Image Vis. Comput. 25 (2007) 496–511. [Google Scholar]
  10. D. Gilbarg and N.S. Trudinger, Elliptic Partial Differential Equations of Second Order. Springer, New York (2015). [Google Scholar]
  11. M. Hubbard, Non-oscillatory third order fluctuation splitting schemes for steady scalar conservation laws. J. Comput. Phys. 222 (2007) 740–768. [Google Scholar]
  12. V. John and P. Knobloch, On spurious oscillations at layers diminishing (SOLD) methods for convection–diffusion equations: Part I.A review. Comput. Methods Appl. Mech. Eng. 196 (2007) 2197–2215. [Google Scholar]
  13. M. Klíma, M. Kuchařík, M. Shashkov and J. Velechovský, Bound-Preserving Reconstruction of Tensor Quantities for Remap in ALE Fluid Dynamics. Technical report, Los Alamos National Laboratory (LANL), LA-UR-17-20068. In: Proceedings of XVI International Conference on Hyperbolic Problems Theory, Numerics and Applications, Aachen (Germany), Aug. 1–5, 2016 (2017). [Google Scholar]
  14. P. Knobloch, Numerical solution of convection–diffusion equations using a nonlinear method of upwind type. J. Sci. Comput. 43 (2010) 454–470. [Google Scholar]
  15. D. Kuzmin, Algebraic flux correction for finite element discretizations of coupled systems. In: Computational Methods for Coupled Problems in Science and Engineering II, CIMNE, Barcelona (2007) 653–656. [Google Scholar]
  16. D. Kuzmin, Scalar conservation laws, edited by D. Kuzmin, R. Löhner and S. Turek. In: Flux-Corrected Transport, Scientific Computation. Springer, The Netherlands (2012) 145–192. [CrossRef] [Google Scholar]
  17. D. Kuzmin, S. Basting and J.N. Shadid, Linearity-preserving monotone local projection stabilization schemes for continuous finite elements. Comput. Methods Appl. Mech. Eng. 322 (2017) 23–41. [Google Scholar]
  18. K. Lipnikov, M. Shashkov, D. Svyatskiy and Y. Vassilevski, Monotone finite volume schemes for diffusion equations on unstructured triangular and shape-regular polygonal meshes. J. Comput. Phys. 227 (2007) 492–512. [Google Scholar]
  19. C. Lohmann, Flux-corrected transport algorithms preserving the eigenvalue range of symmetric tensor quantities. J. Comput. Phys. 350 (2017) 907–926. [Google Scholar]
  20. K. Löwner, Über monotone Matrixfunktionen. Math. Z. 38 (1934) 177–216. [CrossRef] [Google Scholar]
  21. G. Luttwak, On the Extension of Monotonicity to Multi-Dimensional Flows (2016). [Google Scholar]
  22. G. Luttwak and J. Falcovitz, Vector image polygon (VIP) limiters in ALE hydrodynamics. In Vol. 10 of EPJ Web of Conferences. EDP Sciences (2010) 00020. [Google Scholar]
  23. G. Luttwak and J. Falcovitz, Slope limiting for vectors: A novel vector limiting algorithm. Int. J. Numer. Methods Fluids 65 (2011) 1365–1375. [Google Scholar]
  24. P.-H. Maire, R. Abgrall, J. Breil, R. Loubère and B. Rebourcet, A nominally second-order cell-centered Lagrangian scheme for simulating elastic-plastic flows on two-dimensional unstructured grids. J. Comput. Phys. 235 (2013) 626–665. [Google Scholar]
  25. M.H. Protter, H.F. Weinberger, Maximum Principles in Differential Equations. Springer Science & Business Media, New York (2012). [Google Scholar]
  26. S.K. Sambasivan, M.J. Shashkov and D.E. Burton, Exploration of new limiter schemes for stress tensors in lagrangian and ALE hydrocodes. Comput. Fluids 83 (2013) 98–114. [Google Scholar]
  27. Y.-T. Shih and H.C. Elman, Modified streamline diffusion schemes for convection-diffusion problems. Comput. Methods Appl. Mech. Eng. 174 (1999) 137–151. [Google Scholar]
  28. M. Stynes and L. Tobiska, Necessary L2-uniform convergence conditions for difference schemes for two-dimensional convection-diffusion problems. Comput. Math. Appl. 29 (1995) 45–53. [Google Scholar]
  29. R. Temam, Navier-Stokes Equations. Vol. 2. North-Holland Amsterdam (1984). [Google Scholar]
  30. P. Wesseling, Partial Differential Equations: Analytic Aspects. Springer Berlin Heidelberg, Berlin, Heidelberg (2001) 53–80. [Google Scholar]
  31. J.H. Wilkinson, The Algebraic Eigenvalue Problem, Oxford University Press Inc., New York, NY, USA (1988). [Google Scholar]
  32. S.T. Zalesak, Fully multidimensional flux-corrected transport algorithms for fluids. J. Comput. Phys. 31 (1979) 335–362. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you